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Abstract
Optimal path planning is required for unmanned surface vehicle (USV) operation. This paper proposes two new path planning 
methods based on ant colony algorithm considering variables such as minimum energy consumption, lowest collision prob-
ability with fixed and moving obstacles and the least travelling time. These two methods are called ant colony optimization 
local search (ACOLS) Out Teta and ACOLS Curve Path. In the ACOLS Out Teta, path is optimized using a new pheromone 
updating method based on distance with obstacles. In the ACOLS Curve Path method, an innovative way is presented to 
eliminate curvatures of the path, which reduces the robot’s maneuverability, decreasing the path length, energy consumption 
and travel time. In this paper, collision probability variable is used, providing the ability to present methods for providing an 
optimal path by paying a reasonable fee. Their performance is compared with each other, and with ACO and PSO.

Keywords  Optimal path planning · Unmanned surface vehicle (USV) · Ant colony optimization algorithm · Local search

1  Introduction

Unmanned surface vehicle (USV) is a type of vessel that 
navigates in water and it is controlled by intelligent algo-
rithms or remote control. USVs are useful for offshore patrol 
and emergency rescue operations [1]. The primary objec-
tives of route planning and collision avoidance (COLAV) 
algorithms for unmanned surface vessels are to optimize 
operations, increase travel safety, and demonstrate their util-
ity in the real world. By providing algorithms that increase 
the independence level, it is believed that human error, fuel 
consumption, collision probability, and operating costs will 
be decreased [2]. One of the main challenges faced by USVs 
is safe navigation [3], which should be achieved without 
interference with path planning tasks. The importance of 
path planning for USV to achieve the defined purposes such 
as patrolling and rescue missions fast and securely becomes 
apparent. USV path planning is derived from robot route 
planning in the presence of obstacles (autonomous ground 

vehicle (AGV) and autonomous aerial vehicle (AAV)) [4]. 
In reference [5], a path planning system with a collision 
avoidance function has been implemented using deep rein-
forcement learning (DRL). References [6, 7] have addressed 
various controlling and path planning ways. USV path plan-
ning is similar to ship navigation [6–8].

To find the optimal path, the energy consumption, the 
shortest travel time, and the collision-free path should be 
examined together. Therefore, in this paper, a multi-objec-
tive cost function is proposed, which examines the effect of 
these factors on the path separately and scrutinizes the effect 
of variations of each factor on the other factors. The majority 
of collision avoidance studies have accepted the concept of 
a “safe area” as an area that is not accessible to other ves-
sels. This area is typically circular in shape and its center is 
the instantaneous position of the obstacle. In the USV path 
planning, this circular-shaped area is not very commodious, 
especially when the vessel is moving with high speed and 
the risk of a forward-facing obstacle is far more than the 
possibility of collision between the stern and sides. For this 
reason, in this paper, the safety area of moving obstacles 
is considered to be elliptical according to their dimensions 
and speed so that it is closer to the real model. Without 
safety constraints, the USV cannot perform its mission or 
tasks in a realistic environment. Given the importance of 
the safety issue, this paper tries to optimize the safety issue. 
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In addition, To optimize energy consumption and travel 
time, safety of the generated path for navigation would be 
acceptable.

The innovations of this article are as follows:
A multi-objective path planning optimization function, 

including path length, path smoothness, travel time, energy 
consumption and cost of collision with operational con-
straints has been defined. Accordingly, the optimal path is 
selected based on overall cost and mission. The penalty func-
tions are defined to reduce the possibility of collision. USV 
stops along the path, as a result of which the cost of collision 
and energy consumption are reduced. A method is proposed 
to identify the points of convexity and contradiction of the 
path and illuminate them as possible, consequently the path 
smoothness and the possibility of reducing travel time and 
energy consumption increase. Two optimization methods 
have been proposed based on Ant Colony algorithm named 
ACOLS Out Teta and ACOLS Curve Path. Finally, the pro-
posed methods have been tested through simulation under 
different conditions and the results are compared with other 
methods.

The rest of this paper is organized as follows. Section 2 
presents a brief review of articles that consider path plan-
ning methods and use difference optimization algorithms. 
Section 3 introduces the problem and models the vehicle. 
Section 4 describes the fundamentals of the method, the 
cost functions and the penalties used in this paper. Sec-
tion 5 introduces the proposed optimization algorithms, the 
ACOLS OUT TETA and the ACOLS Curve path in details. 
The proposed algorithms and methods are verified through 
simulations under different variations in Sect. 6. Section 7 
concludes the principal works of this paper. Finally, the 
nomenclature Table 3 is in Appendix I.

2 � Literature review

In recent years, many effective ways have been presented 
for global path planning. In reference [9], ACO for AUV 
path planning has been improved by constructing heuristic 
information using artificial potential concept. An improved 
ACO algorithm can create a safe distance between AUVs 
and obstacles. However, the generated yaw angle is exten-
sive and may divert the vessel from the main path. The 
heterogeneous distribution of the primary pheromone and 
heuristic strategy with directional information in an ACO is 
provided by Zhang et al. for path planning of the omnidirec-
tional mobile vehicle. Additionally, overlapping and updat-
ing strategy is defined in the pheromone updating process 
to avoid duplicate searches. These improvements increase 
time efficiency and simplicity of the algorithm and reduce 
the search space for an ant colony algorithm [10]. In Ref-
erence [11], a multi-colony ACO algorithm has been used 

to implement the UAV path planning system, in which N 
ACO work on a similar problem by redistributing, and the 
local information of each clone is shared with other colo-
nies at specified intervals. The multi-colony ACO method 
can reduce the risk of being trapped in local optima, but the 
algorithm might have a prolonged interruption in the con-
vergence process. The ACO algorithm has been modified in 
[12] to improve its convergence and search capability. The 
modified ACO algorithm is then used to solve the global 
path planning problem for the robot. The modifications are 
as follows: (1) the amount of pheromone is increased along 
the shortest path of each cycle, and (2) the rate of phero-
mone evaporation is dynamically adjusted in response to 
the changes in each iteration. In [13], the Position Tracking 
control method and artificial immune network algorithm 
(AINA) have been combined to solve the multi-robot forma-
tion path planning problem, in which the steering direction 
is determined by the AINA algorithm. The ACO algorithm 
has been used in [14] to generate a path that utilizes ocean 
energy and takes advantage of desired ocean currents to 
move and guide the Multi-modal underwater vehicle (MUV) 
while collecting ocean data and measurements. To solve 
problems of the typical ACO, including low convergence 
speed, possibility of getting trapped in local minimums and 
poor robustness, the authors of [15] have used the Hybrid 
quantum ACO (HQACO) method for AUV path planning 
and it has been shown that HQACO is faster than ACO and 
QACO. In this paper, QACO and ACO methods have been 
combined. The authors of [16] have used the ACO algorithm 
for AUV path planning in a high-risk environment. In [17], 
the ACO algorithm has been used to navigate a ground robot 
in a rugged environment with a bumpy road. The authors of 
[18] have provided online path planning for a mobile robot 
based on rapid exploring random trees (RRT) method. This 
method can generate collision-free paths, but the optimal 
route may connive in some cases. An algorithm based on 
machine learning has been presented in [19] for detecting 
moving obstacles. In [20], a system based on fuzzy logic has 
been used to avoid obstacles. It is worth noting that many 
of the studies conducted in the field of path planning, have 
described the path planning problem as a single-objective 
optimization function, which aims to find the shortest path, 
the most cost effective path (with minimum travel time or 
low energy consumption), the safest path and so on. In fact, 
the shortest path, the most economical path, and the colli-
sion-free path plays a vital role in the path planning problem. 
When it comes to optimal path planning, it is imperative 
that the shortest, most economical and safest path should 
be selected.

Obtaining the shortest path from the starting point 
to the endpoint is the primary goal of many engineering 
researches in real world. The authors of [21] have proposed 
the dynamics-constrained global–local (DGL) hybrid path 
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planning scheme that is used to find shortest global path. 
The authors of [22] have proposed the shortest path problem 
as a single-objective linear programming function in a grid 
environment. In reference [23], the ACO algorithm has been 
used to find the shortest path according to fixed obstacles. In 
the shortest path planning problem, the simulation field is 
over-simplified, and little heed has been paid to other issues 
such as energy consumption, path smoothness and dynamic 
constraints of the robot. By moving forward in a smooth 
direction, rapid movements can be avoided, which reduces 
lifetime of the mechanical equipment [24, 25]. A smooth 
route navigation guarantees guidance, and control of a USV 
[24–26]. In most studies [27, 28], smooth path is expressed 
using a polynomial function, and the maneuverability of the 
vessel has not been considered. During navigation, reference 
points generated by the navigation system are connected lin-
early to guide and control the vessel. Choosing the smooth-
est path is a significant issue in the path planning problem. 
However, USV operating restrictions should be considered.

USV's economic path can be examined from two aspects, 
including the shortest travel time or the least energy con-
sumption. Due to the increased cost and energy consump-
tion associated with long-distance travel, one of the primary 
goals of the path planning system is to reduce travel time and 
energy consumption. When performing tasks like transpor-
tation and scientific research, economic paths are routes of 
interest for the ships such that travel time and energy con-
sumption are reduced significantly [29–31]. Path planning 
with minimum energy consumption has been presented in 
[32, 33]. In reference [34], the GA and Voronoi diagrams 
are integrated to produce energy efficient path by consider-
ing sea currents. In [35], considering the time cost func-
tion along with the programming techniques and the sliding 
wave front expansion in terms of mathematical analysis, it 
is ensured that the least possible travel time is achieved in 
the presence of strong currents. The authors of [36] have 
used a reinforcement learning for path planning, aiming to 
minimize travel time but it has not considered movement 
and maneuverability constraints. In [37], ACO algorithm 
has been used to perform path planning for an AUV based 
on a bi-objective cost function of the shortest and collision-
free path. In [38], the QPSO-based path planning algorithm 
has been used to generate optimal path for an AUV to long 
range operation in uncertain ocean environment. The aim 
of this article is to find an optimal route for AUV, using the 
maximum energy of ocean currents and the shortest time to 
reach the goal. Finally, they used Monte Carlo simulation to 
validate the performance of the proposed algorithm.

Generally, static and moving obstacles prevent USVs 
from safe navigation. In [27, 28], obstacles have been pre-
sented in circular and spherical forms in two- and three-
dimensional spaces, and safety has been expressed as a 
limitation in the path planning function. The authors of [39] 

have proposed a collision-free path planning method for sur-
face vessels, considering a certain amount of distance from 
obstacles as a safety index. The authors of [35] have used 
the ACO algorithm and actual sea traffic data to generate a 
collision-free path for vessels.

3 � Problem statement

Consider a USV, aiming to find the optimal path with the 
path planning approach in the presence of static and dynamic 
obstacles. As mentioned before, there are three key elements 
in the path planning approach to find the optimal path, 
including the shortest travel time, the safe path and the opti-
mal energy consumption. Therefore, the path planning sys-
tem should be able to trace its current position, identify the 
static obstacles, and predict the course of dynamic obstacles 
so that it can plan the optimized path according to the mis-
sion and the defined objects. Also, one important element 
of path planning is the path’s curvature. Most vessels have 
maneuverability limitation on sharp angels. Therefore, the 
convexity and contradiction points of the path should be 
identified and illuminated as possible. Some restrictions are 
defined for USV. The USV yaw angle changes cannot be 
more than 22.5 degree in one step. The normal speed of USV 
is 5 m/s but in acceleration maneuver, the USV’s speed can 
increase to 7.5 m/s and in deceleration and stop maneuvers, 
speed reduces to 2.5 m/s and 0 m/s, respectively. Figure 1 
illustrates the planar motion of the USV. 

Fig. 1   Schematic diagram of USV planar motion
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4 � Cost optimization using ACO

4.1 � Ant colony optimization algorithm

Ant colony optimization algorithm (ACO) is one of the evo-
lutionary algorithms inspired by the natural behavior of ant 
colony looking for the shortest path between their nest and 
food [40]. Among advantages of ACO, positive feedback, 
ability to optimize and parallel work can be mentioned [41]. 
Since the process of finding food of the ants is similar to 
the routing process, path planning systems usually use this 
method to find the shortest path.

4.1.1 � Pheromones updating

When ants seek for purveyance sources, they release a chem-
ical substance, called the pheromone to attract other ants to 
the path that they have passed. The selection criterion for 
ants in choosing a path that depends on the power of the dif-
fused pheromone in that direction. The higher the intensity 
of the pheromone, the greater the probability of choosing 
that path.

Generally, the pheromone is updated in two steps: in the 
first step, pheromones evaporate on all edges or points. λ 
is the parameter that is called the pheromone evaporation 
factor. If the evaporation coefficient is considered a small 
value, the old path of previous repetitions will remain more 
prominent, and the convergence rate will be reduced, and if 
the evaporation factor is assumed significant, the best path 
of the old repetitions will be eliminated faster, which will 
increase the convergence rate. In the second step, the phero-
mone should be diffused.

The number of ants is represent by Q. τij(t) is the phero-
mone trail intensity on points (i, j) at iteration t. After all the 
ants have completed the search in iteration t, the intensity of 
the pheromone trail is updated using the following equation:

where the evaporation of pheromone trail is represented 
by (1 − λ) and the change of pheromone trail intensity is 
shown by ∆τij(t), and calculated as

4.1.2 � Path selection

In the implementation of the ant colony algorithm, m is the 
number of artificial ants that generate the path in parallel. 
Each ant, placed on the points is selected circumstantially 
and the ant will select the first point (i), randomly. It is 

(1)�ij(t + 1) = (1 − �) × �ij(t) +
∑

Δ�ij,

(2)Δ�ij =

{
Q∕num for the nodes of the bestants

0 otherwise
.

assumed that ant k is located at point (i), so, the probability 
law determines the point towards which the ant wants to 
move. In the first iteration, the amount of primary phero-
mone is the same for all paths; so, the selection probability 
for all paths is the same. Nevertheless, after each repetition 
of the algorithm, the selection probability of some paths 
increases due to the evaporation and release of pheromone 
on the paths and based on intensity of the pheromone and 
the heuristic information of the problem.

The equation below shows the probability of choosing a 
path for ant k from point i to the point j.

In the above formula, �ij shows the heuristic information, 
α represents the influence coefficient of pheromone, and β 
is the impact factor of the heuristic information. These two 
coefficients establish a balance between the heuristic infor-
mation and the pheromone level.

4.2 � Energy consumption

One of the intended goals is to optimize the vessel energy 
consumption, while moving from the starting point to the 
endpoint through solving a constrained optimization prob-
lem. The constraints represent the dynamic limitations of 
the vessel. So, at the beginning, a realistic model of energy 
consumption of the vessel is required, which is obtained 
using the following equation:

Pb represents the power consumption of the payload items 
such as computers and sensors on the vessel that have con-
stant power utilization.

The DC electric motor equation is expressed as follows:

where �b is propeller distance from the center of USV, Ra 
is armature resistance, 𝜃̇ is propeller rotational velocity, Ke 
is motor back EMF constant, I is motor current, V is motor 
armature voltage, Kt is motor torque constant and La is arma-
ture inductance.

In this paper, electrical equations of the motors are con-
sidered in a steady-state mode. Considering this assumption, 
the static equations of the motor can be rewritten as follows:

Also, the torque equation is considered as follows:

(3)Pk
ij
(t) =

��
ij
× �

�

ij
(t)

∑

l

��
il
× �

�

il
(t)

, l, j ∈ ok(i).

(4)lpow = IV + Pb,

(5)La𝜌b
d∕dtI + RaI = V − Ke𝜃̇,

(6)V = RaI + Ke𝜃̇.
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where τ is driving torque of motor.
By substituting Eqs. 13 and 14 in Eq. 12 and considering 

the rotational velocity equation:

where �p is propeller radius and r is rotational velocity.
The instantaneous power equation is

where u(t) is velocity along the x-axis.

4.3 � Collision avoidance circumscription

Another requirement is to create paths with minimum pos-
sibility of collisions between USV with static and dynamic 
obstacles. Therefore, at time t, the vessel should not be 
located closer than the defined safety distance from other 
obstacles; hence, one constant (CCol) is characterized for 
dynamic obstacles, which presents the safety distance 
between the USV and dynamic obstacles. Another constant 
is presented, which is called Cobs and defines the collision 
avoidance constraint between USV and static obstacles.

where i is the number of dynamic obstacles and SD is the 
safety distance domain of each vessel.

The collision avoidance constraint between USV and 
static obstacles can be formulated similarly.

where j ∈
{
1.…… .No

}
 and No and Ro represent the number 

and the radius of the static obstacles, respectively.

4.4 � Vessel’s domain area

As noticed before, most researches in the field of path plan-
ning have adopted the concept of a “safe area”. The problem 
of last work is expressed (implementation of circular shape 
for ship domain) and a suggestion is outlined to solve this 
problem as described in the following.

The dimension of the vessel’s area is computed using 
the two following equations, called SDfore and SDstern which 
calculate fore and stern sections, respectively.

(7)I = �∕Kt,

(8)𝜃̇ =
1

𝜌p

(
u + 𝜌br

)
,

(9)Lpow(u(t)) = Ra

�2

K2
t

+
Ke

Kt

(
�

�w

(
u + �br

)
)

+ Pb,

(10)CCol =

(
x(t) − xi(t)

)2

(
SD + SDi

)2 +

(
y(t) − yi(t)

)2

(
SD + SDi

)2 − 1 ≥ o

(11)Cobs

(
x(t).oj

)
=

(
x(t) − xoj

)2

(
Roj + SD

)2 +

(
y(t) − yoj

)2

(
Roj + SD

)2 − 1 ≥ o

where rmin is the minimum distance that must be maintained 
between two vessels, Dislimit is the maximum permitted 
distance at the sides and heels of the vessel and t is the sam-
pling time.

One item considered in the cost function, is to calculate 
the collision probability. Thus, in this paper, four oval-
shaped areas are defined for the USV:

•	 The red zone: the probability of collision is 1, that is all 
obstacles are prohibited from entering this area because 
the collision between USV and obstacles is inevitable.

•	 The blue zone: the probability of collision is 0.5e−4, that 
is the USV can pay the collision probability and pursue 
its direction without any obligation to re-route.

•	 The green zone: the probability of collision is 0.25e−4.
•	 Finally, the last area is the white zone. The probability 

of collision in this zone is zero, that is all vessels and 
obstacles can move in this area freely.

4.5 � Coefficient of smoothness

Due to the dynamic constraints of the USV, a route with 
least amount of maneuvering should be selected. videlicet, 
the optimal route is a path with a smaller angle of inclina-
tion. Therefore, a path smoothness coefficient is added to 
the objective function, so that the selected path is as smooth 
as possible.

where n is the total number of steps and �i is the vessel angle 
in step i.

4.6 � Total cost function

Given that the defined cost functions are not on an identical 
scale, the normalization coefficients are added to regulate 
them on the same datum (or foundation). Finally, the multi-
objective cost function is defined as follows:

(12)SDfore =

{
rfore ifrfore ≥ rmin

rmin otherwise
,

(13)rfore =

{
V × t ifV × t < Dislimit

2 × Dislimit − (v × t) otherwise
,

(14)SDstern =

{
velocity × time ifV × t < Dislimit

rmin otherwise
,

(15)TotalSD = SDfore + SDstern,

(16)DeltaTeta =
1

45

n∑

i=2

|
|�i − �i−1

|
|,
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where
W1 → W4 are the weight impact coefficients. These coef-

ficients are valued according to the defined mission objec-
tives. For example, the coefficient W1 in the cost function is 
more notable if the optimum energy consumption is chosen 
as the target in the defined mission. Of course, the value of 
W depends on several factors, such as vehicle energy con-
sumption, energy costs (electricity, fossil fuels, solar cells, 
etc.), and vehicle models. It is evident that if value of the 
coefficient is significant, influence of the cost function on the 
optimization problem would be more significant.

S1 → S4 The correction factors or normalization of the 
objective functions to put them on the same datum.

Given that valued numbers of F3 and F4 are always 
between 0 and 1, they do not need any datum conversion 
and have used a constant numerical coefficient instead of 
their normalization coefficient. The calculated normalization 
coefficient keeps the value of each objective between 0 and 
1. However, the normalization coefficients of the energy and 
time functions are expressed as follows:

S1 =
1

2lpow
 normalization coefficient of energy function,

S2 =
1

2Step

V0

 normalization coefficient of time.

4.7 � Penalty functions

As previously stated, the primary purpose of this paper is to 
provide an optimal path planning according to the defined 
cost function. To make the problem (or simulation) condi-
tions similar to real situations and provide more practical 
freedom to USV, other functions called penalty functions 
are defined as follows:

4.7.1 � Penalty of collision

Given the variable of climate of sea environment and the 
fact that this paper divides the robot's safe margin into four 
areas with different odds of incidence (red, blue, green and 
white), a penalty function is defined to determine the col-
lision probability in each area, till the collision probability 
reaches zero:

(17)CF = W1S1F1 + W2S2F2 + W3S3F3 + W4S4F4,

F1 = Energy;F2 = Time;F3 = Collision;F4 = Delta Teta

where Pi is the probability of collision and Ci is time that 
spent in the treatment zone.

4.7.2 � Penalty of stop

According to COLREG rules, the robot should perform four 
maneuvers to prevent collisions: head on, overtaking, and 
crossing from port and starboard. But in this paper, we con-
sider three more maneuver to prevent collision: accelerate, 
decelerate and stop. One of the most crucial cost functions 
defined in the total cost function is the energy consumption 
function; given that if a complete stop occurs on the path, 
the robot needs to spend much energy to re-start the move-
ment and reach the previous speed. A penalty function is 
described below for the time that the USV spends in the stop 
mode. Thus, the total of these times will be assumed as an 
additional cost and added to the total cost function.

According to the aforementioned discussion, the total 
penalty function is expressed as follows:

4.8 � Total objective function

Given the total cost function and the total penalty function, 
the objective function is presented as follows:

The initial ACO algorithm that has been implemented in 
this paper to perform global path planning and optimize the 
proposed objective function is shown below:

(18)PenaltyColision =
∑

Level1

PiCi,

(19)
PenaltyStop =

T∑

t=1

Time in Stop

Time in Stop(TiS) =

{
0USV ismoving at timet

1USVhas been Stop at time t
.

(20)Total Penalty = W

∑

Level1

PiCi

Colision
+W

∑T

t=1
TimeinStop

Stop
.

OF = min (CF + Total Penalty).
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Algorithm: Global path planning with static and dynamic obstacles by using ACO 

Inputs: 

             -Initial Point of USV 

-Destination Point of USV 

-Define Static and Dynamic Obstacles

Output: Path planning of USV 

-Define Initial Pheromone on All Grid Points

for         n=1:max Iteration 

-Step 1: path planning for each Ant i 

   for    i= 1: npop 

while current point ≠ Dist point 

-select the next point of USV according to the ACO Rules 

end 

-Construct the Route of Ant i 

 end  

-Step 2: Cost Function Calculation for Each Route 

for       i=1:npop 

-Cost(i)=(w1×S1×Energy)+(w2×S2×Time)+ 

(w3×S3×Colision)+( w4×S4×DeltaTeta) 

end 

-step 3: Penalty Calculation for Each Route 

 for       i=1:npop 

∑ ∑

end 

-step 4: Save the Global Best Solution So Far 

-Step 5: Pheromone Updating  

-Evaporation for All Points: 

   Ph= ph×(1- λ) 

-Deposition for Best Ants: 

for    j=1:num Best Ants 

                               Ph(Ant(j))=Ph(Ant(j)+

end  

end  

-Determine the Best Solution for Path Planning of USV 

-end 
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5 � The proposed local search optimizations

The path planning method can be categorized into two groups: 
(1) global search path planning and (2) local search path plan-
ning. In the global search approach, the robot is fully aware 
of navigational environment conditions; therefore, it can reach 
the desired target by a predetermined path. However, in local 
search path planning, the robot has partial knowledge about 
the environment. In unknown environments, the global path 
planning method is less effective than the local search path 
planning method. In general, in the path planning optimization 
problems, random paths are more used at the beginning of the 
algorithm. Given this, the global search is implemented at first, 
and the local search is required when the process has reached 
its end. In the local search combination method based on the 
ACO algorithm, the population in each iteration is divided into 
two collections. The number of superior ants in each iteration 
is considered equal to nQ, the first part of the population con-
sists of nPop-nQ × nBest solutions, and the second part contains 
nQ × nBest solutions; where nPop is the total population of the 
algorithm and nBest is the number of solutions created in the 
neighborhood of each superior ant’s solution, nQ. The first part 
is purely performed in accordance with the rules of the global 
search ACO, while the second part is done by the proposed 
local search methods based on the best solutions found by the 
superior ants (nQ). For each selected ant from the nQ set, the 
number of nBest paths is generated in the neighborhood of the 
selected ant’s path from the global path planning. If nBest is cal-
culated to be zero (nBest = 0), the proposed ACO-LS algorithm 
becomes the proposed ACO algorithm.

In this paper, three methods are presented for the ACO-
LS algorithm, which are called Ant Colony Optimiza-
tion Local Search (ACOLS) Out Teta (ACOLS Out Teta), 
ACOLS Curve Path and ACOLS O/C, which is a combina-
tion of the previous two algorithms.

5.1 � Ant colony optimization local search (ACOLS) 
out Teta algorithm

In the proposed local search method, to create a path in 
the neighborhood of any selected ants, the interval of local 
search is first determined randomly path by the length of ∆X. 
Then, in the whole possible span of the ant’s path, with the 
length ΔX, the total ∆θ of the steps is calculated from the ini-
tial point to the target point, and the range that has the largest 
∆θ from the target point is selected for local improvement.

In the ACOLS Out Teta algorithm, the selected ant’s path is 
divided into two parts called part1 (from the initial point to p1) 
and part2 (from p1 to target point). Here, part1 is copied exactly 
from the path of the chosen ant given by global path planning, and 
part 2 is created using the proposed local search method in the 
neighborhood of the selected ant’s path from p1 to the target point.

Local search from p1 to the target point is done step by 
step in the grid network. Each ant in each step will select a 
point as the next point on its path from the current point i. 
The probability of choosing a path for ant k from point i to 
point j is calculated using the equation below:

In the above formula, the coefficient α shows effect of 
the distance from the closest obstacle, and β represents the 
effect of the heuristic information (inverted distance to the 
target). D is the distance from the nearest obstacle, and η is 
calculated according to the ACO algorithm to determine the 
distance from the target.

5.2 � Ant colony optimization local search curve path

The main goal of the proposed method is to eliminate the 
curves of the path according to the main objective func-
tions (Collision probability, Energy consumption, and Travel 
time) of the problem. So, the angular differences of the total 
path (start point to target point) should be calculated and the 
path with the smallest ∆θ should be selected. This paper uses 
this method to find the convexity and contradiction points of 
the path, and then tries to modify them using the ACO rules.

In this optimization method, as in the previous local 
search approaches, three paths from the best paths gener-
ated by ACO are selected. Then, the difference between the 
angles of the current step and the next step and the differ-
ence between the previous one and the first step are calcu-
lated. Regarding the ACO algorithm that is selected with 16 
grids, and the large number of steps, the small curvatures 
are ignored. In the 16th grade, the maximum ∆θ of each 
step is about 22.5 degrees. To do this, the current point is 
compared with three previous steps and three subsequent 
steps (because of ignoring small curvatures and preventing 
reduction of the computation speed), and if ∆θ of the three 
subsequent steps and the three previous steps are greater 
than or equal to 22.5 degrees, then the point is a convexity 
or contradiction point.

Now, for optimization approaches, starting and ending 
points of the convexity or contradiction are selected, which 
are named p1 and p2, respectively. By applying the ACO 
rules and the new condition, max�i ≤ 22.5 , it is tried to 
remove the curves to achieve a smoother path.
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6 � Simulation

To verify the proposed algorithms’ effectiveness and integ-
rity, numerical simulations were run on the renowned ship 
model CyberShip II [42], which is a 1:70 scale replica of a 
supply ship operated by the Marine Cybernetics Laboratory 
at the Norwegian University of Science and Technology. The 
primary parameters of CyberShip II are summarized in [42].

In this section, the proposed methods, ACOLS Out Teta, 
ACOLS Curve Path and ACOLS O/C are simulated and 
the four main parameters, including energy consumption, 
travel time, collision probability and the length of the path 
obtained from these methods are compared with those of 
PSO and ACO. It should be noted that to complete validation 
of the proposed methods, they are tested in many repetitions 
with various populations and different parameters.

Simulations have been performed using a computer with 
the following configuration: CPU Intel Core i7 6700 HQ- 
RAM 16 GB DDR4, Hard Disk 128 SSD.

6.1 � Numerical simulation

The first workspace is implemented by exerting the follow-
ing parameters:

The initial speed of the USV is 5 m/s, the USV’s initial angle 
with respect to the starting point is 0°, the number of static and 
moving obstacles is designated as 9 and 4, respectively. The param-
eters of the algorithm are presented in terms of grid number 16, 
number of populations is 30, Lambda = 0.5, Q = 0.5, the initial 
pheromone value is 0.5, number of best-selected ants for local opti-
mization is 3, initial strength of the heuristic information is 1, the 
final value of beta is 2. In divergent scenarios, the mission objec-
tives are different. As a result of changing goals, the importance of 
coefficients such as energy consumption, time-traveling, etc. may 
also be interchanged. In this paper, the scenario is defined as USV 
traveling the planned path with minimum probability of collision 
and practicable energy consumption at a reasonable time. In this 
paper, W is assumed [0.3 0.2 1 0.1] and Wstop is 0.01.

The algorithm’s path is displayed individually. Figure 2 
illustrates the path created using the standard ACO algorithm. 
Figure 3 illustrates the ACOLS Out Teta path creation pro-
cess, considering the vessel’s direction of motion, its future 
location, and any moving obstacles. As previously stated, 
the ACOLS Out Teta algorithm combines two path planning 
methods: global and local search. At the initial stage, the path 
is generated using global technology, then the neighborhood 
of selected ants (local technology) is explored and the opti-
mal path to the next point is chosen based on the cost func-
tion. As illustrated in Fig. 3, the ACOLS Out Teta algorithm 
offers a new direction that is distinct from the ACO refer-
ence path. As a result of this improvement, the penalty, travel 

time, energy consumption, and other constraints have been 
reduced. The ACO-LS Curve path algorithm is illustrated in 
Fig. 4. As illustrated in Fig. 4, the ACO-LS Curve path algo-
rithm eliminates the majority of path curves (by calculating 
the path angle and taking the restriction into account) and 
returns a path with minimum curves. Furthermore, Fig. 5 
illustrates the path taken by the PSO algorithm in conjunction 
with the movement paths of dynamic obstacles.

Figure 6 illustrates the path obtained using the ACOLS 
O/C hybrid algorithm (which is a combination of two 
algorithms: ACOLS Out Teta and ACOLS Curve Path). 
Although this method has a slightly lower smoothness 

Fig. 2   The path traversed by the ACO algorithm with the movement 
paths of dynamic obstacles

Fig. 3   The path traversed by the ACO-LS Out Teta algorithm with 
the movement paths of dynamic obstacles
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coefficient than ACOLS Out Teta, other cost function con-
straints such as energy consumption, travel time, and path 
lengths have been improved.

Figure 7 illustrates all the paths generated by various 
algorithms. As illustrated in Fig. 7, the proposed methods 
generally outperformed the ACO and PSO methods.

The simulation results are shown in Table 1. The objec-
tive cost function, energy consumption, travel time, total 
collision probability (Pi Ci), smoothness coefficient (Delta 
Teta), and run time of each algorithm used to generate the 
path are all compared in this table. As shown in the table, the 

Fig. 4   The path traversed by the ACO-LS Curve Path algorithm with 
the movement paths of dynamic obstacles

Fig. 5   The path traversed by the PSO algorithm with the movement 
paths of dynamic obstacles

Fig. 6   The path traversed by the ACO-LS O/C algorithm with the 
movement paths of dynamic obstacles

Fig. 7   The path traversed by all algorithms

proposed algorithms outperform the standard ACO and PSO 
algorithms. For example, the ACOLS O/C reduced energy 
consumption, travel time, and objective cost function by 
20%, 3.68%, and 7.4%, respectively.

For more verification of the proposed methods, another 
simulation has been conducted with different environmen-
tal conditions and variables. The simulation results are pre-
sented in Table 2.
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Table 1   Comparison of 
objective functions values 
using different algorithms in 
workspace 1

Work space 1, static obstacles: 9, dynamic obstacles: 4, populations: 30, iterations: 10,000

ACO PSO Proposed methods

ACOLS out Teta ACOLS Curve Path ACOLS O/C

Objective cost function 48.1479 49.5321 50.2007 52.3882 51.21957
Energy consumption (KJ) 1.5584 1.6042 1.6253 1.9837 1.94705
Travel time (s) 190.6299 192.6137 191.1020 202.2955 197.7032
∑

PiCi 1.75 e−4 1.25 e−4 3 e−4 7.25 e−4 8.75e−4

Delta Teta 10.1768 11.5802 13.4375 22.5000 24.3976
Travel distances (m) 947.1602 960.7889 964.3299 1008.9844 999.4776
Run time (s) 144 139 132 105 96

Table 2   Comparison of 
objective functions values 
using different algorithms in 
workspace 2

Work space 2, static obstacles: 15, dynamic obstacles: 7, populations: 50, iterations: 10,000

ACO PSO Proposed methods

ACOLS out Teta ACOLS Curve Path ACOLS O/C

Objective cost function 52.6057 53.7521 50.5844 49.9239 48.6433
Energy consumption (KJ) 2.1007 2.3042 1.8804 1.8612 1.6913
Travel time (s) 208.2736 215.9950 199.7589 201.5742 196.7852
∑

PiCi 10.25 e−4 11.50 e−4 5.5 e−4 3.75 e−4 4.25 e−4

Delta Teta 25.6329 24.4688 19.1584 18.0841 16.62168
Travel distances (m) 1004.0731 1012.6142 983.77288 978.9748 961.4338
Run time (s) 102 112 138 146 153

7 � Conclusions

This paper presented three multi-objective optimization meth-
ods for a USV path planning system based on the ACO algo-
rithm. These methods are referred to as ACOLS Out Teta, 
ACOLS Curve Path, and ACOLS O/C. At the ACOLS Out 
Teta method, all neighborhood selected ants are checked, the 
total ∆θ of steps from the initial point to the target point is cal-
culated, and the largest ∆θ is chosen. As a result, sharp angles 
are avoided and rapid maneuvers are avoided. The ACOLS 
Curve Path attempts to eliminate as many curves as possible 
from the path based on collision probability, energy consump-
tion, and travel time. This method calculates the angles of all 
feasible paths and selects the one with the smallest ∆θ. Addi-
tionally, the ACOLS Out Teta and the ACOLS Curve Path 
are combined to generate the final algorithms. This hybrid 
algorithm considers the constraints imposed by the previous 
two algorithms to generate an optimal path.

Energy consumption, travel time, path smoothness, and 
collision probability are used to define the multi-objective 
function. Additionally, penalty functions are defined to make 
the circumstances more realistic. To begin, the presented 
ACO performs global path planning in this paper. Then, 
using the three proposed local search optimization methods, 
the objective function is further optimized and a smoother 
path is created. Finally, the algorithms presented are evalu-
ated under a variety of simulation conditions. The simulation 
results demonstrate that the proposed algorithms performed 
admirably well at optimizing.

Appendix I

See Table 3.
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