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Abstract
Understanding the risk of collision between tidal stream turbines and marine species is required for environmental impact 
assessment. Field observations are often limited by sensor capabilities. This study used a laboratory-scale water tank to 
monitor fine-scale fish behavior near a model of rotating turbine blades. Differences in behavior between three species were 
investigated: Oryzias latipes, Gnathopogon elongatus, and Rhodeus ocellatus ocellatus. Behavioral response under dark 
conditions was further investigated for Gnathopogon elongatus, as it showed active behavior near the turbine under bright 
conditions. 71% of fish actively avoided or swam away from the turbine during bright conditions. Under dark conditions, 
92% avoided or swam away; fish approached less frequently and retreated sooner than in bright conditions. Alertness in 
dark conditions possibly increases due to the inability of fish to visually detect the blades; thus, dark conditions may not be 
directly linked to a higher collision risk. No striking events occurred which resulted in injury or mortality.
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1 Introduction

Marine renewable energy is a promising method to real-
ize sustainable societies and has advanced rapidly in recent 
years. Before installing marine renewable energy devices, an 
environmental impact assessment (EIA) is required to obtain 
permission and facilitate the consenting process between 
regulators and stakeholders. Stakeholders, in particular fish-
ers, are often concerned about risks to fish if the device is 
installed in fishing areas. Copping et al. [1, 2] summarized 

impacts of tidal and wave power generation, and concluded 
that a single device may have relatively minor environmen-
tal impacts including underwater noise and electromagnetic 
fields. These impacts may become greater in the future as 
individual devices are scaled up to arrays. For tidal power 
generation, turbines with rotating blades are installed in the 
sea, and EIAs require investigation of possible impacts, such 
as collision risk, to marine species. However, due to a lack 
of available observational data, potential impacts are still 
unknown, even for a single device, and information on col-
lision risk is lacking.

Several monitoring studies have been conducted using 
acoustic sensors to observe presence of fish around hydro-
kinetic devices at different sites [3–9]. Results showed that 
presence and distribution of fish varied with environmental 
cycles, such as seasons and tides. Presence of fish has also 
been observed around turbine support structures and related 
devices [10–13], with aggregation of fish observed more 
frequently around the structure compared to reference sites. 
Generally, fish are attracted by anthropogenic structures, 
such as offshore wind farms [14–18], wave power founda-
tions [19, 20], and oil and gas platforms [21–24].

There is no evidence for direct collision between tur-
bine blades and fish in natural environments; however, field 
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observations are often limited by sensor capabilities, e.g., 
acoustic resolution, camera visibility/water turbidity, data 
volumes, analysis and automation methods. Potential colli-
sion continues to be of concern for regulators and stakehold-
ers, often requiring collision-risk modeling prior to gaining 
consent. Hence, field studies often focus on estimating col-
lision risk (encounter rate, fine-scale evasion) which can be 
supported by tank studies to provide fundamental data about 
fine-scale fish behavior near rotating turbine blades.

Several studies have been conducted to monitor fish 
around turbine blades using laboratory-scale tank or flume 
experiments [25–30]; however, these studies were all con-
ducted under bright conditions. Direct collision has not been 
reported, except by Yoshida et al. [30] who reported direct 
collision of the species Gnathopogon elongatus. The fish 
were occasionally distracted from the rotating turbine blades 
by currents within the tank, which resulted in a high colli-
sion risk. However, their experiment was conducted under 
limited conditions, i.e., only one species was observed, and 
only under bright conditions.

In this study, we first conducted experiments using three 
species of fish, and then the species showing the highest col-
lision risk was selected for the second phase, which focused 
on their behavior near the turbine blades under dark con-
ditions (i.e. removing visual cues). For such conditions, a 
field survey [5–7] reported higher presence of fish around 
a turbine at night than during the day, while another study 
showed no significant difference in numbers between day 
and night around a turbine structure or in natural flow con-
ditions [12]. The presence of fish may also vary depend-
ing on the location and fish species prevalent in the area; 
however, fish may have difficulty in detecting and avoiding 
rotating turbine blades due to lack of visibility. If presence of 
fish increases around the device at night, collision risk may 
be higher. Therefore, this experiment aims to mimic dark 
conditions (i.e. night) to observe fish behavior near rotating 
turbine blades. From these results, we will discuss how fish 

react to rotating blades under dark conditions and how the 
reaction relates to collision risk.

2  Methodology

A laboratory-scale water tank was used for the experi-
ment. Figure 1 illustrates the experimental setup, and Fig. 2 
shows a photograph of the experiment. It was installed at the 
Marine Ecosystem Engineering Laboratory of the Institute 
of Industrial Science, University of Tokyo, Japan. The water 
tank dimensions were 5 m × 1 m × 0.5 m in length, width, 
and height.

The experimental conditions were similar to those 
described in a previous study [30]. The experiment was 
conducted at a water temperature of 14–17 °C for three 
species of fish under bright condition to investigate differ-
ences between species. A second experiment was conducted 
at 25 °C for one species under normal (bright) conditions 
and dark conditions to investigate the influence of illumina-
tion. The increased temperature occurred during summer. 

Fig. 1  Schematic of the 
experimental setup, including 
the turbine of diameter 0.25 m. 
Figure adapted from Yoshida 
et al. [30]

Fig. 2  Photo of the water tank experiment showing the camera and 
turbine (0.25 m diameter)
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However, comparisons are not made between experiments 
to avoid any potentially confounding effect of water tem-
perature; instead, comparisons are made within experiments, 
i.e., between species (experiment 1) and between bright/dark 
(experiment 2).

The observational area was in a partitioned section of the 
water tank of dimensions 0.6 m × 0.3 m × 0.35 m in length, 
width, and height. The turbine’s diameter was 0.25 m, and 
the tip speed ratio was 5. Thus, the narrowest space on either 
side is 0.025 m, and the narrowest space above is approxi-
mately 0.05 m. A water pump was used to generate current. 
To achieve the desired turbine rotating speed, a motor was 
connected to the turbine shaft, because the water current in 
the tank was limited. The rotating speed and water current 
were set to 20 rpm and approximately 0.05 m/s, respectively. 
Current speed was measured by an electromagnetic current 
meter for laboratory use (ACM2-RS, JFE Advantech Co., 
Ltd.). The settled current was measured at the center point 
of the model turbine located in the observation area, and the 
current was similar across the tank.

Five randomly selected fish from each species group were 
released into the observation area. They were acclimatized to 
the environment with the rotating turbine blades for 30 min 
before the experiment. Then, their behavior was recorded 
for 11 min. This was repeated several times (approximately 
five repetitions) to investigate differences between fish spe-
cies. The experiment was repeated two times for different 
species of fish under bright condition, and five times for 
one species under bright and dark conditions sequentially. 
Behaviors were determined by analyzing the experimental 
video files taken by an underwater camera. We assume that 
the fish were capable of maneuvering and holding station 
in the flow without fatigue for the experimental period; in 
addition, noise from tank machinery is neglected.

The underwater camera was an HX-A1-H (Panasonic 
Corporation), which was installed at the bottom of the 
water tank, and the video camera was an HC-VZX992M-T 
(Panasonic Corporation), which was installed at the side of 

the water tank on the outside. The images were full HD, 
sampling at 20 frames per second. The cameras have a night-
vision function with zero-lux mode using a separate infrared 
light to monitor fish behavior under dark conditions. The use 
of infrared is acceptable, as fish cannot see this wavelength. 
The wavelength of the infrared light ranged from 850 to 
940 nm.

To reproduce dark conditions, a blackout curtain was used 
to cover the water tank, as shown in Fig. 3. Figure 4 is a 
snapshot taken during the experiment under dark conditions, 
and it was recorded by the underwater night-vision camera 
with infrared light, showing the rotating blades and the fish.

The behavior of fish near the turbine was classified as fol-
lows (as shown in Fig. 5): “avoiding” when the fish changed 
its movement in front of the blades to pass outside of the 
rotating blades; “entering,” when the fish swam through the 
area of the rotating blades but did not make contact with the 
blades; “responding and entering” when the fish changed 

Fig. 3  Blackout curtain covering the water tank to reproduce dark 
conditions

Fig. 4  Snapshot during the experiment under dark conditions using 
infrared light and a night-vision camera, rotating turbine blades 
(center), and fish (bottom left)

Fig. 5  Classification of fish behaviors around the turbine blades: 
avoiding, entering, responding and entering, high striking risk, and 
returning. Figure adapted from Yoshida et al. [30]



544 Journal of Marine Science and Technology (2022) 27:541–548

1 3

its direction but still swam through the area of the rotating 
blades; “high collision risk” when the rotating blades struck 
or made light contact with the fish; and “returning” when the 
fish turned in front of the rotating blades and moved back in 
the direction it came from. If the observer could not judge 
whether the fish made contact with the blades, because the 
fish came too close before avoiding the rotating blades, the 
response was classified as high collision risk.

In this study, the three fish species used in the experiment 
(Fig. 6) were Oryzias latipes, Gnathopogon elongatus, and 
Rhodeus ocellatus ocellatus, and their lengths were approxi-
mately 0.02–0.03 m, 0.04–0.05 m, and 0.03–0.04 m, respec-
tively. Gnathopogon elongatus was used as the experimental 
species under dark conditions, as it showed active behavior 
near the rotating blades under bright conditions and for com-
parison to previous work [30]. Gnathopogon elongatus and 
Rhodeus ocellatus ocellatus belong to the carp family and 
were selected based on their lengths and the scaling in the 
tank experiment for comparison with fish species found in 
real ocean sites. In terms of swimming behavior, Gnathopo-
gon elongatus is considered to be relatively similar to Japa-
nese horse mackerel (Trachurus japonicus) and Japanese 
sea bass (Lateolabrax japonicus), and Rhodeus ocellatus 
ocellatus is relatively similar to the red sea bream (Pagrus 
major). Oryzias latipes is a dartfish, a small floating fish 
(like sardine) and a relative of the saury (Cololabis saira), 
with similar swimming behavior. In terms of swimming 
depth, Oryzias latipes often swim near the surface, while 
Gnathopogon elongatus and Rhodeus ocellatus ocellatus 
often swim in the middle to bottom of the water column.

The fish species were selected under the assumption of 
the similarity law, which is the ratio between the tip speed 
of the turbine and the maximum swim speed of the fish. 
This enabled us to determine whether the fish would be 
able to avoid the turbine when they approached it. Based on 

this, fish responses in the real ocean site can be predicted 
using experimental results based on the similarity law. The 
similarity law assumed during the water tank experiment 
was described by Taya [28] and Zhang et al. [29]. First, to 
calculate the maximum swim speed of a fish, Triantafyllou 
et al. [31] reported that it is related to the amplitude of the 
tail tip. It is also related to the body length of the fish [32]. 
From this, the maximum swim speed of a fish (U) can be 
expressed as:

where f is the frequency of the tail beat, l is the length of the 
fish, and St is the Strouhal number, a dimensionless number 
describing oscillating flow mechanisms. We assumed that 
the amplitude of the tail tip was 20% of the body length, 
and the frequency of the tail beat was 10–20 Hz. Therefore, 
f = 20 Hz and St = 0.33 were used as representative values in 
accordance with Taya [28] and Zhang et al. [29].

To compare between bright and dark conditions in the 
tank experiment, the probability, simple correlation coef-
ficient, and p value between behaviors under different con-
ditions were calculated using Microsoft Excel. The p value 
is the probability of results being at least as extreme as 
those observed if the null hypothesis (assuming no differ-
ence between data and observed values) is true. A p value 
of ≤ 0.05 was used to indicate significance.

3  Results and discussion

3.1  Three fish species under bright condition

We conducted the first part of the experiment using three fish 
species for two repetitions to observe their behavior near the 
turbine blades in bright conditions and to determine the most 
active species near the rotating turbine blades. Table 1 lists 
the total number of behavior classifications observed and 
the probability for each of the three fish species. Consider-
ing the characteristics of each fish species, it was expected 
that Oryzias latipes would have a slower maximum swim-
ming speed and, therefore, a higher possibility of collision, 
but the results showed no higher collision risk compared 
to Gnathopogon elongatus. Gnathopogon elongatus was 
the most likely to exhibit the behavior of responding and 
entering, thus, had a higher collision risk. High collision 
risk was not a behavior seen in Oryzias latipes or Rhodeus 
ocellatus ocellatus. Oryzias latipes may have retreated from 
the turbine due to their low swimming ability (estimated 
from Eq. 1). Similarly, Rhodeus ocellatus ocellatus showed 
the response of returning during the experiment, as they 
usually swim in the bottom layer. For these two species, 

(1)U =

0.2 ⋅ f ⋅ l

St
,

Fig. 6  Photo of fish used in the experiment: Oryzias latipes (0.02–
0.03 m long), Gnathopogon elongatus (0.04–0.05 m long), and Rho-
deus ocellatus ocellatus (0.03–0.04  m long). Figure adapted from 
Yoshida et al. [30]
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the number of interactions with the turbine was low, and 
this may have been due to vigilance in the presence of the 
turbine. Meanwhile, Gnathopogon elongates were active 
around the rotating turbine blades, as they can easily avoid 
the blade, because their maximum swimming speed is faster 
than the tip speed of the turbine blade, and they sometimes 
approached the turbine, in contrast with the other species. 
The results of this experiment suggest that presence of a 
rotating turbine affects species differently, depending on the 
swimming characteristics of the species.

Scaling tank measurements to real ocean sites relies on 
the ratio between fish length and blade tip speed. The lengths 
of fish used in the experiments are listed in Table 2. They 
ranged from 0.02 to 0.05 m. Table 2 also summarizes the 
maximum swim speed of each fish species and the ratio with 
tip speed. From this, the experimental ratio between maxi-
mum swim speed and tip speed was approximately 0.4–1.3. 
In one example of a real ocean site, fish length ranges from 
0.03 to 0.5 m [6]. They also reported that the average cur-
rent speed is 1.6 m/s, the average rotational speed of the 
turbine is 21.4 rpm, and the average tip speed of the turbine 
is 2.1 m/s. From this, the maximum swim speed can be esti-
mated as approximately 0.4–6.1 m/s from Eq. 1. When the 
tip speed is 2.1 m/s, the ratio between the tip speed and max-
imum swimming speed is approximately 0.3–5.2 in a real 
ocean setting. If the value is less than 1, the fish can avoid 
the rotating turbine blades relatively easily. The experimen-
tal cases can be applied to relatively large fish; in particular, 
Gnathopogon elongatus can be assumed to be approximately 
0.25–0.35 m in length in an assumed real ocean site.

As Gnathopogon elongates was the most active near the 
turbine in normal (bright) conditions, and therefore, had 
the highest collision risk, Gnathopogon elongates was used 
in the second part of the experiment conducted under dark 
conditions.

3.2  Comparison with bright and dark conditions

Using Gnathopogon elongates, the total number of different 
behaviors for five repetitions under bright and dark condi-
tions is shown in Table 3. Table 3 also lists the probability 
of each behavior, and the correlation to compare between 
bright and dark conditions. Table 4 lists mean, variance, and 
the p values at each behavior for five repetitions.

Table 1  Summary of number of times each behavior was observed for Oryzias latipes, Gnathopogon elongatus, and Rhodeus ocellatus ocellatus 
near rotating turbine blades under normal (bright) condition

Oryzias latipes Gnathopogon elongatus Rhodeus ocellatus ocellatus

Number of 
behavior

Probability (%) Number of 
behavior

Probability (%) Number of 
behavior

Probability (%)

Avoiding 4 12.9 24 41.4 0 0
Entering 0 0 11 19.0 4 10.3
Responding and entering 1 3.2 3 5.2 1 2.6
High collision risk 0 0 3 5.2 0 0
Returning 26 83.9 17 29.3 34 87.2

Table 2  Ratio between the tip speed and maximum swimming speed for a typical real ocean site and the experiment

Length of fish [m] Maximum swimming 
speed of fish [m/s]

Tip speed of turbine 
blade [m/s]

Ratio between tip speed and 
maximum swimming speed

Real ocean site [6] 0.03–0.5 0.4–6.1 2.1 0.3–5.2
Oryzias latipes 0.02–0.03 0.2–0.4 0.26 0.7–1.3
Gnathopogon elongatus 0.04–0.05 0.5–0.6 0.26 0.4–0.5
Rhodeus ocellatus ocellatus 0.03–0.04 0.4–0.5 0.26 0.5–0.7

Table 3  Summary of number of behaviors for Gnathopogon elon-
gatus near rotating turbine blades under bright and dark conditions 
including probability, and statistical values, including the correlation 
coefficient between bright and dark conditions

Number of behavior Probability (%)

Bright Dark Bright Dark

Avoiding 49 26 35.0 28.3
Entering 19 4 13.6 4.3
Responding and entering 14 1 10.0 1.1
High collision risk 7 2 5.0 2.2
Returning 51 59 36.4 64.1
Total number 140 92
Correlation coefficient 0.88
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Comparing to the first trial in the previous section, the 
tendency of fish behavior is similar to the second experi-
ments as shown in Tables  1 and 3, although the water 
temperature was higher. Therefore, we assumed the effect 
of water temperature on Gnathopogon elongates can be 
neglected in this experiment. As indicated in Table  3, 

avoiding and returning were the most common behaviors. 
Entering, and responding and entering, occurred less fre-
quently, and only 2 out of 92 behaviors were classified as 
high collision risk due to the fish being touched by the tur-
bine blade, or avoiding the blades just before they reached it. 
Figure 7 shows examples of time-series snapshots for each 
fish behavior shown in Fig. 5. A time-series snapshot before 
and after high collision risk is also shown in Fig. 7, although 
neither case resulted in injury to the fish. According to other 
laboratory-scale tank or flume experiments [25–30], the 
mortality rate 48 h after the experiments was considered. 
In this study, no fish died within 48 h after the experiment.

With regard to differences between bright and dark condi-
tions, avoiding, entering, responding and entering, and high 
collision risk occurred more often in bright conditions than 
in dark conditions, while the response of returning occurred 
more often in dark conditions. As shown in Table 3, the 
probability of returning under the dark condition was 64.1%, 
while it was 36.4% under bright conditions. Avoidance in 

Table 4  Summary of statistical values for five trials, including mean 
and variance of the number of each behavior per trial, and p value 
between bright and dark conditions for each behavior

Mean Variance p value

Bright Dark Bright Dark

Avoiding 9.8 5.2 21.7 10.2 0.08
Entering 3.8 0.8 7.2 1.7 0.04
Responding and entering 2.8 0.2 7.2 0.2 0.10
High collision risk 1.4 0.4 2.3 0.3 0.23
Returning 10.2 11.8 18.7 40.7 0.63

Fig. 7  Time-series snapshots of 
each fish behavior
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bright conditions occurred approximately twice as often 
as in dark conditions, nevertheless the probabilities were 
similar between them. This is because the total number of 
fish behaviors under the bright condition is larger than that 
of the dark condition. In terms of high collision risk, the 
probability reduced from 5.0% under bright conditions to 
2.2% under dark conditions. Overall, the correlation between 
bright and dark conditions was high (0.88) suggested that 
there is no difference between bright and dark conditions. 
In terms of each behavior as shown in Table 4, p value sug-
gesting that entering the turbine area occurred significantly 
less often during dark conditions than during bright; how-
ever, there was no significant difference in occurrence of 
the other behaviors between bright and dark conditions. The 
total number of behaviors showed the fish were more active 
in the vicinity of the rotating turbine blades in bright condi-
tions, which could result in higher collision risk.

In this experiment, the turbine rotation speed was slower 
than the fish swimming speed, so fish could easily avoid 
the turbine. Therefore, there was a tendency to approach 
it. Meanwhile, in dark conditions, it is possible that, due to 
the presence of the turbine itself, fish became more vigilant 
because it was not possible to visually detect the turbine. 
Under dark conditions, it is thought that turbine detection 
mainly occurs due to alternative sensory modes detecting 
changes in pressure, flow, or sound; therefore, the number 
of fish that approached the vicinity of the turbine decreased, 
as the fish were less reliant on visual cues.

Previous field research has shown that fish may have 
shorter detection distances for turbines at night than dur-
ing the day; thus, they tend to perceive the existence of 
turbines later [6]. Previous studies have also reported that 
collision risk may increase due reduced visibility at night; 
however, this study showed that fish may reduce the behavior 
of approaching the turbine blades when visibility is poor, 
and therefore, may not experience increased collision risk 
at night.

4  Conclusion

A water tank test under bright conditions was carried out 
to examine the behavior of three species of fish, Oryzias 
latipes, Gnathopogon elongatus, and Rhodeus ocellatus 
ocellatus, near a model of a rotating turbine to show the 
differences in fish characteristics across the three species. 
It is difficult to detect collisions between fish and rotating 
turbine blades in the field due to instrument limitations. 
Echosounders are used to monitor presence of fish, and 
multibeam sonar used to monitor movement and behavior 
of fish, but these techniques lack the resolution and detail 
to observe direct collisions. Recent advances (e.g. acoustic 
video camera) have high enough resolution with 3 mm/pixel 

to monitor fish behavior; however, these sensors are costly. 
Cameras are inexpensive; however, they can only be used 
when visibility or illumination permit. Thus laboratory-scale 
experiments with cameras can be used to better understand 
fish fine-scale behavior and response around turbines, which 
can then be extrapolated to field conditions.

In this paper, Gnathopogon elongatus was selected to 
investigate differences between bright and dark conditions, 
as this species showed active behavior near the rotating 
turbine blades during experiments with bright conditions. 
Approaching the turbine blades was observed more often 
in bright conditions than in dark, while returning from the 
turbine was observed more often in dark conditions. In dark 
conditions, alertness may have increased due to the inability 
to visually detect the turbine blades. In this study, we used 
a single fish species to observe behavior under dark condi-
tions, but additional fish species should be studied in the 
future to be able to generalize responses to species found 
in field sites.

This study showed the result of fish considered to equate 
to length of 0.25–0.35 m in field sites due to the principles 
of scaling; however, smaller fish are also detected in the field 
[6], with corresponding slower swim speeds. In particular, 
as flow in the ocean is faster than the swimming speed of 
small fish, variation in light and dark conditions where the 
swimming speeds of fish are slower may increase the risk of 
collision. Additional experiments for different correspond-
ing swim speeds and turbine rotation speeds are planned 
in the future. Bridging the gap between laboratory-scale 
experimental studies and field observations around opera-
tional tidal stream turbines within the limitations of sensor 
technology are important next steps to better understand the 
potential for animal collision risk.
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