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Abstract
The accuracy of underwater acoustic positioning is greatly influenced by both systematic error and gross error. Aiming at 
these problems, the paper proposes a robust zero-difference Kalman filter based on the random walk model and the equiva-
lent gain matrix. The proposed algorithm takes systematic error as a random walk process, and estimates it together with 
the position parameters by using zero-difference Kalman filter. In addition, the equivalent gain matrix based on the robust 
estimation of Huber function is constructed to resist the influence of gross error. The proposed algorithm is verified by the 
simulation experiment and a real one for underwater acoustic positioning. The results demonstrate that the robust zero-
difference Kalman filter can control both the effects of systematic error and gross error without amplifying the influence of 
the observation random noise, which is obviously superior to the zero-difference least squares (LS), the single-difference 
LS and zero-difference Kalman filter in underwater acoustic positioning.
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1  Introduction

With the development of the national marine strategy and 
the marine resource exploration, accurate ocean navigation 
and positioning technology are needed to obtain the high-
precision, large-scale marine environmental information 
[1–3]. Sound waves, rather than electromagnetic waves or 
light waves, are mainly used to estimate the position of the 
underwater target. The reason is that sound waves can spread 
hundreds of kilometers in the water while electromagnetic 
waves and light waves decay quickly [4]. The classical 
acoustic-based approaches for underwater target positioning 
include long baseline (LBL), short baseline (SBL), ultra-
short baseline (USBL) and underwater global positioning 
system (GPS) according to the acoustic baseline range [5, 
6]. The shipborne acoustic positioning generally adopts the 
voyage positioning mode, which is affected by the geometric 

structure of trajectory and the measurement error related to 
the time delay as well as the sound speed [7, 8].

For underwater acoustic positioning, there inevitably 
exist the gross error, the random error and the systematic 
error caused by the marine environment and the observation 
instrument. Many studies have been dedicated to improve 
the underwater positioning model and the error correction 
method. Xu et al. [9] first proposed the underwater differ-
ence positioning algorithm including the single difference 
algorithm between the observation epochs and the double 
difference algorithm which can greatly improve the accu-
racy of seafloor deformation measurement. Zhao et  al. 
[10] proposed a ship-board difference positioning method 
based on selecting weight iteration. Although the differ-
ence positioning algorithm can weaken the effects of the 
systematic errors, it enlarges the influence of random errors, 
which decreases the accuracy of the underwater acoustic 
positioning. Aiming at the time delay error, a positioning 
model considering the apparent time delay error as unknown 
parameter is proposed [11]. Yan et al. [12] proposed a long 
baseline positioning algorithm for moving buoy by estimat-
ing the uncertain sound speed as an unknown parameter. 
However, even though the time delay error or the unknown 
sound speed is estimated as a fixed systematic parameter, it 
is hard to be accurately estimated since it changes with the 
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change of the marine environment. In the global navigation 
satellite system (GNSS) positioning, Paziewski and Wiel-
gosz [13] used the random walk model to estimate the inter-
system biases as the unknown parameters, which inspires 
us to apply this method to estimate the systematic error in 
underwater acoustic positioning. As for gross errors, Zhou 
[14] proposed the IGG robust estimation method based on 
the equivalence weight. On this basis, Yang et al. [15] devel-
oped the bi-factor equivalence weight based on the robust 
estimation for correlation observation. Xu et al. [16] pro-
posed a robust estimation method based on the symbol con-
straint. Wang et al. [17] proposed a robust extended Kalman 
filter using W-test statistics based on filtering residuals to 
eliminate the effect of gross errors on GNSS navigation solu-
tions. Yang et al. [18] proposed the robust M–M unscented 
Kalman filtering for GPS/IMU navigation. The applications 
of the robust estimation in GPS navigation and position-
ing have been widely adopted and tested [19]. Wang et al. 
[20] proposed an adaptive robust unscented Kalman filter 
for autonomous underwater vehicle (AUV) acoustic navi-
gation, which constructs the judgment factor and adaptive 
factor by the prediction residual to balance the contribution 
between the observation information and AUV motion state 
information.

The zero-difference (ZD) least squares (LS) is rarely 
adopted for the high precision underwater positioning due 
to the effects of systematic error as well as gross error. At the 
same time, the single-difference (SD) LS of adjacent epoch 
enlarges the influence of random errors and even the gross 
errors while it suppresses the effects of systematic errors. 
To solve the aforementioned problems, this paper proposes 
a robust zero-difference Kalman filter based on the random 
walk model and the equivalent gain matrix to resist the 
effects of systematic errors and gross errors in underwater 
acoustic positioning. The proposed method involves a robust 
estimation method based on the prediction residual as well 
as the observation variance, and an improved KF with sys-
tematic error compensation, which has obvious differences 
compared to the method of reference [20].

The paper is organized as follows. We firstly present an 
improved zero-difference positioning function model as well 
as the zero-difference Kalman filter by estimating the sys-
tematic error as the random walk process in Sect. 2. Then 
Sect. 3 introduces the theoretical derivation and algorithm 
implementation of the robust zero-difference Kalman fil-
ter. The robust zero-difference Kalman filter is verified and 
analyzed by the simulation experiment and a real one for 
underwater acoustic positioning in Sect. 4. Finally, we sum-
marize the significant conclusions in Sect. 5.

2 � Method

2.1 � Zero‑difference positioning function model

The transducer under the survey ship can continuously send 
sound waves to the transponder to get the signal propaga-
tion time [21]; therefore, the range between the transducer 
and the transponder at the different time and position can be 
obtained by the travel time and the sound speed structure 
[22].

As shown in Fig. 1, assuming that the transducer at posi-
tion �k and time tk transmits an acoustic signal to the tran-
sponder to get the slant range �k , the transponder coordinates 
can be obtained through the intersection positioning method, 
which can be regarded as a prototype of the underwater zero-
difference positioning, since there are no differential opera-
tions on observations between epochs and transponder sta-
tions. The observation model of underwater zero-difference 
positioning can be expressed as 

where �o = (xo, yo, zo) is the unknown position vector of the 
transponder, and �k = (xk, yk, zk) is the position vector of 

(1)�k = f
(
�k,�o

)
+ ��dk + ��vk + �k,

(2)f
(
�k,�o

)
=

√
(xk − xo)

2 + (yk − yo)
2 + (zk − zo)

2,

(3)�k = ctk,
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Fig. 1   The geometric diagram of underwater zero-difference position-
ing
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transducer under the ship, which can be directly calculated 
from the kinematic GNSS. f

(
�k,�o

)
 is the theoretical range 

between the transponder and the transducer. ��dk is the sys-
tematic error due to the time delay in re-transmitting the 
received signal from the transponder back to the transducer, 
��vk is the systematic error due to the spatial and temporal 
variation in the sound speed structure, �k is the random rang-
ing error. tk is the travel time between the transducer and the 
transponder, and c is the sound speed.

In the actual underwater acoustic positioning, the sound 
speed error is affected by the ocean internal wave and has a 
periodic variation. In addition, the systematic error related 
to time delay for the same transponder is approximately 
equal [23, 24]. Therefore, the systematic error related to 
the time delay and the sound speed can be estimated as 
an unknown parameter and the observation Eq. 1 can be 
rewritten as

where ��k is the estimated parameter of the systematic error.
Equation 4 is linearized as

where �0
o
 , ��0

k
 are approximate values for �o and ��k . d�o 

and d��k are the unknown coordinate correction vector and 
the systematic error correction vector to be estimated with 
�o = �0

o
+ d�o and ��k = ��0

k
+ d��k , respectively. ak and bk 

are the first-order partial derivatives with respect to �o and 
�k , respectively, and ��k

 is the random errors of the survey 
ship positions.

When combining all the measurements, the linear 
observation equation of underwater zero-difference posi-
tioning can be expressed as:

(4)�k = f
(
�k,�o

)
+ ��k + �k,

(5)�k − f
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0
o
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− ��0
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,

where ��
o = (xo, yo, zo, ��k) , � is the constant term, � is 

the coefficient matrix of observation equation, and � is the 
observation residual vector.

2.2 � Zero‑difference Kalman filter

The observation and state equations using zero-difference 
Kalman filter for underwater acoustic positioning can be 
expressed as [25]:

where ��
o,k = (xo,k, yo,k, zo,k, ��k) denotes the estimated 

parameter vector of the transponder position and the sys-
tematic error at time tk , �k is the observation vector with 
covariance matrix �k , assumed to be white, �k is the coef-
ficient matrix of observation equation and �k is the obser-
vation residual vector. �k,k−1 is the state transition matrix 
from epoch tk−1 to tk . �k−1 is the process noise vector with 
covariance matrix �k , assumed to be white.

The discrete first-order Gauss–Markov process [26] 
describes the epoch state changes of related parameters, and 
the mathematical expression is as follows:

where Λt = tk − tk−1 , � is the time constant, and � is Dirac 
function.

When � → ∞ , the state of Eq. 11 is the random walk 
process

When � → 0 , the state of Eq. 11 is the white noise

where �2
�

 is the variance of the state parameters.
The unknown parameters of the zero-difference Kalman 

filter are the transponder position and the systematic error. 
Since the transponder position parameters are constants and 
the systematic error parameter changes regularly with time, 
the state transition matrix and the state noise matrix of Eq. 10 
are given by

(9)�k = �kd�
�
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(10)��
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�
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where �4×4 is a unit array of four rows and four columns, and 
�2
���

 is the variance of the systematic error parameter.
The covariance propagation equation is given by

The solutions for the estimated state vector, the Kalman 
filter gain matrix and the covariance matrix of the estimated 
state can be obtained as [25]

3 � Robust zero‑difference Kalman filter

In underwater acoustic positioning, when the observation 
contains the gross error, the measurement equation should 
be

where �k is the interference matrix of gross error, and �k is 
the gross error.

If the standard Kalman filter is still used for calculation, 
the prediction residual with the gross error is as follows:

where Vk and Ṽk are the prediction residual vector without 
the gross error and with the gross error respectively.

The gross error is fully reflected in the prediction resid-
ual, then the state vector is

According to Eq. 22, the gross error in the observation 
affects the state vector �′

k through the gain matrix �k . To 
resist the influence of gross error, a robust zero-difference 
Kalman filter is adopted based on the equivalent gain matrix. 
By using the prediction residual and the observation vari-
ance to construct the judgment factor Sk , the gross error in 
the observation equation can be efficiently detected. Based 
on the idea of equivalent gain matrix [20] and equivalent 
weight function of Huber [27, 28], the equivalent gain 
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−1,
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(
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+ ��k + �k�k + �k,

(21)Ṽk = 𝜌k − f
(
�k,�o

)
− 𝛿𝜌k = Vk + �k�k,

(22)��
k = ��

k,k−1 +�kṼk.

matrix related to the constant k0 is constructed to reduce 
the influence of gross error. The equivalent gain matrix is 
expressed as

where k0 is a constant, generally, k0 = 1 ∼ 2.

where Vk is the prediction residual vector, and �V(k) is the 
covariance matrix of observation vector.

When there exists gross error in the observations, the cor-
responding �k will be decreased and the influence of gross 
error on KF will be reduced.

To resist the effects of both systematic error and gross 
error, a robust zero-difference Kalman filter based on the 
random walk model and the equivalent gain matrix is pro-
posed. The flowchart of the proposed algorithm is shown 
in Fig. 2. The detailed steps of the algorithm are explained 
as follows:

(23)�k =

{
�k

||Sk|| < k0

�k

k0|Sk| ||Sk|| ≥ k0
,

(24)Sk = Vk∕
√

�V(k),

(25)�V(k) = [� −�k�k]Rk,

Fig. 2   The flowchart of the robust zero-difference Kalman filter



738	 Journal of Marine Science and Technology (2021) 26:734–749

1 3

1.	 The initial state vector ��
o,1 = (xo,1, yo,1, zo,1, ��1) includ-

ing the transducer position and the systematic error is 
given.

2.	 The state vector �′
o,k and the corresponding covariance 

matrix �k,k−1 are calculated by Eqs. 10 and 16.
3.	 The gain matrix of the Kalman filter �k is computed by 

Eq. 18. The equivalent gain matrix �k based on robust 
estimation is calculated by Eq. 23.

4.	 The state vector and the error covariance matrix are esti-
mated by Eqs. 26 and 27.

(26)��
o,k = ��

o,k−1 +�k[Zk −�kd�
�
o,k−1],

(27)�k = [� −�k�k]�k,k−1.

5.	 The steps (2)–(4) are repeated until filter convergence.

4 � Simulation and real experimental analysis

4.1 � Simulation analysis

Simulation analysis on the acoustic positioning based on 
the proposed method is conducted in this paper. As shown 
in Fig. 3, the four transponders are located at the positions 
of the asterisk symbol with the different underwater depth 
of 30 m, 100 m, 500 m and 3000 m. The trajectories of the 
ship are circles with the radius of 100 m, 200 m, 800 m and 
3000 m as well as the linear track with the grid shape. The 
sampling interval is 2 s and the speed of the survey ship is 

Fig. 3   The diagram of simulated ship and transponder
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Fig. 4   The observation residuals of LS, SD and KF at different depths
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Fig. 5   The results of the estimated systematic errors by KF at different depths



741Journal of Marine Science and Technology (2021) 26:734–749	

1 3

Fig. 6   The underwater positioning results of different algorithms at different depths
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about 1 m/s. The measured sound speed profile of 3000 m 
is adopted for the calculation of sound speed. The layered 
ray acoustic tracking algorithm is used to simulate the travel 
time, and the systematic error [29] is simulated based on 
Eq. 28 proposed in Xu et al. [9]. The slant range error caused 
by the random error is 0.1 m; therefore, the initial measure-
ment noise variance is R = 0.01 m2. The initial system noise 
matrix is � = diag[0 0 0 0.001] m2.

where the constant term is c1 = 0.1 m, the short-period 
internal wave error term is c2 = 0.12 m, the long-period 
error term is c3 = 0.3 m, the term related to the measure-
ment range is c4 = 0.02 m, the short period of internal wave 
is TS = 15 ∗ 60 s (equal to 15 min) and the long period of 
internal wave is TL = 12 ∗ 3600 s (equal to 12 h). ‖‖�o − �‖‖ 
is the distance between the transducer and the transponder.

The zero-difference least squares (LS), the single-dif-
ference least squares (SD), the zero-difference Kalman 
filter (KF), the robust zero-difference least squares(R-LS), 
the robust single difference least squares (R-SD) and the 
robust zero-difference Kalman filter (R-KF) are conducted 
and compared for underwater acoustic positioning. Firstly, 
the proposed algorithm is validated in the case without 
gross error. The observation residuals of LS, SD and KF 
as well as the estimated systematic errors by KF are shown 
in Figs. 4 and 5. Monte Carlo experimental simulation with 
100 times is conducted, the root mean squares (RMS) of the 
transponder position calculated at the different depth and 
the different algorithm is shown in the Fig. 6. In calculating 
the formula of RMS, Xo,k and X̂o,k are the calculation value 

(28)��v = c1 + c2 sin

(
2
(
t − t0

)
TS

�

)
+ c3 sin

((
t − t0

)
TL

�

)
+c4

[
1 − exp

{
−
1

2
‖‖�o − �‖‖∕(2km)2

}]
,

and the real value of the transponder respectively. N is the 
number of the transponder.  

As shown in Figs. 4 and 5, the SD can effectively reduce 
the effects of systematic errors compared with the LS. How-
ever, the SD produces larger random errors compared with 
the KF. The KF can effectively estimate systematic error 
parameters, together with position parameter without enlarg-
ing the influence of random errors. Therefore, the KF can 
significantly improve the underwater positioning accuracy.

As shown in Fig. 6 and Table 1, when there exist random 
errors, systematic errors and no gross errors in the acous-
tic observations, the LS cannot resist the effects of the sys-
tematic errors on the positioning result, especially in the Z 
direction of coordinates. The SD and KF can both reduce the 
influence of the systematic errors and greatly improve the 
positioning accuracy. For the case of underwater 30 m depth, 
the three-dimension (3D) RMSs of SD and KF are 0.065 m 
and 0.048 m, respectively, compared to LSs 0.455 m, with 
the improvement of 85.7% and 89.4%. For the case of 100 m 
depth, they are 0.087 m and 0.044 m, respectively, compared 
to LSs 0.380 m, with the improvement of 77.1% and 88.4%. 
For the case of 500 m depth, they are 0.090 m and 0.040 m, 
respectively, compared to LSs 0.406 m, with the improve-
ment of 77.8% and 90.1%. For the case of 3000 m depth, 
they are 0.110 m and 0.065 m, respectively, compared to 
LSs 0.504 m, with the improvement of 78.2% and 87.1%. In 
addition, the KF can further enhance the positioning accu-

racy with about 5–12% improvement compared to the SD.
Secondly, to further verify the performance of LS, SD 

and KF in the case of the ship trajectories with irregular 
curve, the transponders with the different underwater depth 
of 30 m, 100 m, 500 m and 3000 m are positioned by the 
simulated trajectories as shown in Fig. 7. Table 2 presents 
the RMSs of different algorithms and depths. For the case 
of underwater 30 m depth, the 3D RMSs of SD and KF 
are 0.079 m and 0.057 m compared to the 0.362 m of LS, 
with the improvement of 78.2% and 84.3%. For the case of 
100 m depth, they are 0.175 m and 0.082 m compared to the 
0.304 m of LS, with the improvement of 42.4% and 73.0%. 
For the case of 500 m depth, they are 0.127 m and 0.061 m 
compared to the 0.373 m of LS, with the improvement of 
66.0% and 83.6%. For the case of 3000 m depth, they are 
0.223 m and 0.165 m compared to the 0.442 m of LS, with 
the improvement of 47.3% and 62.7%. Therefore, the per-
formance of KF is also better than that of LS and SD in the 
case of the ship trajectories with irregular curve.

Table 1   The positioning result statistics of different algorithms

Depth (m) Method Mean 
RMS-X 
(m)

Mean 
RMS-Y 
(m)

Mean 
RMS-Z 
(m)

3D-RMS (m)

30 LS 0.061 0.059 0.447 0.455
SD 0.014 0.013 0.062 0.065
KF 0.011 0.012 0.045 0.048

100 LS 0.032 0.065 0.373 0.380
SD 0.014 0.015 0.084 0.087
KF 0.010 0.013 0.041 0.044

500 LS 0.034 0.038 0.403 0.406
SD 0.016 0.020 0.086 0.090
KF 0.012 0.011 0.036 0.040

3000 LS 0.039 0.051 0.500 0.504
SD 0.029 0.018 0.105 0.110
KF 0.014 0.014 0.062 0.065
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Finally, the time delay observation is added to the gross 
errors based on normal distribution with zero mean and 
standard deviation of 0.05 s, and the gross errors are added 
in the acoustic observations every 50 s. Figure 8 shows the 
result of the estimated systematic error by the R-KF. At the 
same time, the positioning results of the non-robust estima-
tion and the robust estimation are shown in Figs. 9, 10, 11 
and 12.

Figure 8 shows that the R-KF can resist the influence 
of gross errors on the position and systematic error param-
eter based on the equivalent gain matrix. As shown in the 
Figs. 9, 10, 11 and 12, the accuracy of the SD is significantly 
reduced compared with the LS and the KF due to the effects 

of the gross errors. The R-SD can also resist the influences 
of the gross errors by the robust estimation and reduce the 
influence of the systematic errors to improve the accuracy 
of the underwater positioning compared with the R-LS. 
However, the R-SD has also the disadvantage of enlarging 
the effects of random errors, which leads to the position-
ing accuracy lower than that of the R-KF. The R-KF can 
estimate the systematic errors by the random walk process 
without enlarging the influence of the random errors, and 
provide robust solutions by using the equivalent gain matrix, 
which has higher precision and stability than those of the 
other two algorithms.

Fig. 7   The diagram of the simulated ship and transponder in different depths
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The means of RMS for 100 times of each algorithm 
are shown in Table 3. From Table 3, it can be seen that 
the positioning accuracy of the LS, SD and KF is greatly 
decreased by gross errors, especially for the SD due to the 
enlarged gross errors. R-LS, R-SD and R-KF can obvi-
ously improve the positioning by using robust estimation 
to resist the influence of the gross errors. For the case of 
underwater 30 m depth, the three-dimension (3D) RMSs 
of R-SD and R-KF are 0.076 m and 0.045 m, respectively, 
compared to R-LSs 0.463 m, with the improvement of 
83.5% and 90.3%. For the case of 100 m depth, they are 
0.103  m and 0.051  m, respectively, compared to LSs 
0.378 m, with the improvement of 72.7% and 86.5%. For 
the case of 500 m depth, they are 0.099 m and 0.040 m, 
respectively, compared to LSs 0.406 m, with the improve-
ment of 75.6% and 90.1%. For the case of 3000 m depth, 
they are 0.137 m and 0.062 m, respectively, compared to 
LSs 0.504 m, with the improvement of 72.8% and 87.7%. 
In addition, the R-KF can further enhance the position-
ing accuracy with about 7–15% improvement compared 
to R-SD.

4.2 � Real experiment analysis

The in situ data were collected from an experiment con-
ducted at Lingshan Island in Dec. 2017. Lingshan Island 
is located in Qingdao City, Shandong Province in China 
with longitude and latitude about 120°  13′  02″  E, and 
35° 46′ 53″ N, respectively. The single transponder is located 
at the ocean bottom, and the trajectory of the voyage move 
is centered around the transponder with a radius of about 
50 m. The ultrashort baseline response mode is used for 
underwater positioning, and GPS receiver, attitude sensor 
and sound velocity profiler are auxiliary installed.

After preprocessing the measured data, LS, SD, KF, 
R-LS, R-SD and R-KF are used for the positioning cal-
culation and then compared. The observation noise and 
the system noise of Kalman filter are set as R = 1 m2 and 
Q = diag[0 0 0 0.001] m2, respectively. Since the position 
of the underwater transponder in the experimental area is 
unknown, the positioning accuracy cannot be directly evalu-
ated. To verify the accuracy of the algorithm, as shown in 
Fig. 13, the observations that are not involved in positioning 
calculation on the trajectory are selected to calculate the 
residuals, namely the observation ranges minus computa-
tion/theory ranges (O–C).

As shown in Table 4, the RMS of the validated residu-
als of the SD is lower than that of the LS and the KF. The 
reason may be that: (1) since the experiment is conducted 
in shallow sea, the influence of the systematic errors is 
relatively small; (2) the systematic error between the adja-
cent epochs are not exactly equal in the actual observa-
tions, and the SD cannot totally eliminate the systematic 
errors; (3) SD enlarges the influence of random errors. 
When using robust estimation, all the RMSs of the three 
methods decrease, which indicates that robust estima-
tion can efficiently control the influence of gross errors. 
Compared with the R-LS and the R-SD, the RMS of the 
validated residuals of the R-KF is greatly reduced from 
1.63 m and 1.81 m, respectively, to 0.85 m, which proves 
the higher precision of R-KF. From Fig. 14, it can be seen 
that both the KF and the R-KF need some certain epochs 
to make the filtering solution convergence. There is a bias 
between the solutions of R-KF and KF, since the former 
uses robust estimation to reduce the influence of the gross 
errors on the systematic error parameter, while the latter 
has no action on gross errors and inevitably brings the 
deviation of solution for underwater positioning.

5 � Conclusion

To reduce the effects of the systematic error and the gross 
error on the underwater positioning, this paper proposes a 
robust zero-difference Kalman filter based on the random 
walk model and the equivalent gain matrix. After the vali-
dation from the simulation experiment and a real example, 
the following conclusions can be drawn.

1.	 Compared with the zero-difference LS, the single-dif-
ference LS between the observation epochs can reduce 
the influence of the systematic error. However, it also 
enlarges the influence of the random errors and the 
gross errors. Although the robust single-difference LS 
can eliminate the influence of the gross errors by the 
robust estimation, its accuracy of underwater position-

Table 2   The positioning result statistics of different algorithms

Depth (m) Method Mean 
RMS-X 
(m)

Mean 
RMS-Y 
(m)

Mean 
RMS-Z 
(m)

3D-RMS (m)

30 LS 0.047 0.066 0.353 0.362
SD 0.020 0.017 0.074 0.079
KF 0.015 0.013 0.054 0.057

100 LS 0.022 0.045 0.299 0.304
SD 0.021 0.019 0.172 0.175
KF 0.014 0.014 0.079 0.082

500 LS 0.037 0.037 0.369 0.373
SD 0.027 0.023 0.122 0.127
KF 0.019 0.012 0.056 0.061

3000 LS 0.039 0.049 0.437 0.442
SD 0.023 0.017 0.221 0.223
KF 0.018 0.014 0.163 0.165
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Fig. 8   The results of the estimated systematic errors by R-KF at different depths
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Fig. 9   The positioning results at the depth of underwater 30 m

Fig. 10   The positioning results at the depth of underwater 100 m
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ing is greatly reduced by the enlarged random errors and 
the remained systematic errors. The accuracy of zero-
difference Kalman filter can be significantly improved 
compared to the zero-difference LS and the single-differ-
ence LS. At the same time, the zero-difference Kalman 

filter has the better performance in the case of the ship 
trajectories with irregular curve.

2.	 The proposed robust zero-difference Kalman filter 
can estimate the systematic error by the random walk 
model without enlarging the influence of the random 

Fig. 11   The positioning results at the depth of underwater 500 m

Fig. 12   The positioning results at the depth of underwater 3000 m
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errors, and resist the influence of the gross error by the 
equivalent gain matrix. In the simulating experiment, 
the positioning accuracy of the proposed algorithm is 
obviously superior to that of robust zero-difference LS 
and robust single-difference LS with the improvement 
of about 86–90% and about 5–15%, respectively. In 
the real data experiment, the RMS of the validated 
residuals of the robust zero-difference Kalman filter 

Table 3   The positioning result 
statistics of different algorithms

Depth (m) Method Mean RMS-X 
(m)

Mean RMS-Y 
(m)

Mean RMS-Z (m) 3D RMS (m)

30 LS 0.399 0.382 0.662 0.862
SD 1.382 1.013 6.183 6.416
KF 0.554 0.480 2.249 2.365
R-LS 0.058 0.062 0.455 0.463
R-SD 0.017 0.015 0.073 0.076
R-KF 0.008 0.011 0.043 0.045

100 LS 0.400 0.467 0.562 0.833
SD 1.099 1.463 4.077 4.469
KF 0.491 0.652 2.463 2.595
R-LS 0.033 0.067 0.370 0.378
R-SD 0.015 0.018 0.100 0.103
R-KF 0.007 0.017 0.048 0.051

500 LS 0.442 0.442 0.490 0.794
SD 1.920 1.458 5.563 6.063
KF 0.547 0.543 2.588 2.600
R-LS 0.036 0.039 0.402 0.406
R-SD 0.018 0.027 0.093 0.099
R-KF 0.008 0.011 0.038 0.040

3000 LS 0.554 0.477 0.558 0.920
SD 1.892 0.138 12.070 12.218
KF 0.617 0.584 2.511 2.651
R-LS 0.039 0.051 0.500 0.504
R-SD 0.031 0.018 0.133 0.137
R-KF 0.014 0.011 0.059 0.062

Fig. 13   The trajectory of ship and checkpoint

Table 4   The residuals statistics of the 20 epochs

Method RMS (m) Max (m) Min (m)

LS 1.73 2.16 0.99
SD 1.91 2.59 1.39
KF 1.24 2.12 0.51
R-LS 1.63 2.17 0.92
R-SD 1.81 2.55 1.26
R-KF 0.85 1.69 0.04
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is about 0.8 m, and obviously less than that of robust 
zero-difference LS and the robust single-difference LS, 
which proves that the proposed algorithm has higher 
accuracy and stability.
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