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Abstract
The estimation of the propulsion system states and especially of the main engine is essential for control, diagnosis and per-
formance evaluation. If all the required sensors were available, providing required measurements, the state and performance 
monitoring is of no particular difficulty. However, not all the required parameters can be measured directly, or the addition 
of multiple measurement channels is out of appropriateness. Furthermore, the propulsion plant state dynamics is justified by 
propeller load torque fluctuation that in turn is caused by fluctuating effective inflow velocity into the propeller, and which 
cannot be measured directly. Thus, the problem of estimating unmeasured state and disturbance variables of the propulsion 
system is considered and formulated as the design of an unknown input observer under model uncertainty and nonlinearity. 
To solve the design problem, this paper introduces a nonlinear engine dynamic model to catch the internal engine states 
and an unscented Kalman filter for concurrently performing disturbance and state estimation. The effectiveness is verified 
through the experiments.

Keywords Unscented Kalman filter · Engine observer · Inflow velocity estimation · Free running test

1 Introduction

Globalisation is one of the driving factors of maritime trans-
port growth, which in the last analysis contributes to global 
warming through increasing of greenhouse gas (GHG) 
emissions. In support of profound concern, the Interna-
tional Maritime Organisation (IMO) forces commercial 
vessels to be more efficient and clean than ever. Thus, the 
energy efficiency design index (EEDI), introduced by IMO 
in 2013, requires a final 30% reduction of the  CO2 emissions 
per transport work for vessels built after 2025. Furthermore, 
in MEPC72 [1] (April 2018), it was agreed to reduce  CO2 
emission per transport work by 40% until 2030 and pursue 
efforts towards 70% reduction by 2050 compared with the 
level in 2008. In addition, the initial IMO GHG strategy, 

including a vision and target to reduce GHG by at least half 
by 2050 and 0 emissions as soon as possible within this cen-
tury, was addressed as well. To meet the above strict goals, 
the various energy-efficient solutions have to be adapted to 
the ship design. These include measures and devices for 
the optimisation of the propulsive effectiveness of the ship 
hull and propeller as well as the efficiency of the propulsion 
engine itself. However, the energy efficiency is not only a 
design issue, but also should be ensured in operation. To 
achieve this, an advanced control and monitoring system for 
the ship propulsion plant is of great importance.

Optimal operation of the propulsion engine depends on 
many factors such as fuel injection, combustion air supply 
management, and exhaust gas energy management. How-
ever, the typical control system of the propulsion engine, 
aimed at keeping the desired propeller rotational speed 
and rejecting disturbance due to varying propeller torque, 
governs the fuel injection system only. The latter task is 
achieved by a linear control algorithm disregarding the 
mutual relationships with other subsystems which are highly 
nonlinear. Nonlinear model predictive control, which uses 
the nonlinear models as a basis for state estimation and 
control strategy decision, can be expected to provide sig-
nificantly improved performance of the propulsion system. 
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Thus, in [2] the advanced adaptive control algorithm was 
applied to control the scavenging air pressure through the 
exhaust gas energy management. In [3], a model-based state 
feedback controller was applied to control the NOx emission 
from the engine. In both cases, the model-predictive control 
outperforms the classical linear algorithms.

Furthermore, the scavenging air management system 
was discussed in [4, 5], and the importance of cylinder air 
charge estimation was outlined. In that respect, an observer 
for estimating the unmeasured states and filtering the meas-
ured ones are essential for any advanced control and moni-
toring application. Besides, a propulsion engine model of an 
appropriate choice and with sufficient accuracy is crucial in 
applying observer for the engine internal state estimation.

On top of that, the dynamic response of a propulsion sys-
tem composed of a fixed-pitch propeller and an engine is 
justified by wave-induced fluctuations of propeller torque. 
Estimation of engine state requires the solution of coupled 
problem where the components causing propeller torque 
fluctuation are unknown and unmeasured. Tracking of torque 
fluctuation components allows for efficient compensation by 
appropriately modifying the torque delivered by propulsion 
engine, and if the internal engine state is known such com-
pensation can be done with the optimal engine performance. 
Thus, the problem is formulated as an observer design 
problem, in which both the engine model nonlinearities and 
unknown input such as components of propeller torque fluc-
tuation can be handled.

In this paper, a task of engine state estimation con-
currently with the unknown disturbance observation is 
addressed. It is proposed to utilise the complete nonlin-
ear model of propulsion system composed of propeller 
and engine and the Kalman filtering technique to estimate 
the system states based on a limited number of available 
measurements. Two experimental cases are presented in 
the paper: the first experiment demonstrates estimation of 
fluctuating inflow velocity into the propeller disk utilising 
the self-propelled model ship driven by the marine diesel 
engine simulator, and the second experiment demonstrates 
estimation of a marine diesel engine dynamic states, simul-
taneously with the identification of load torque.

2  Kalman filtering technique

The measurement of dynamic system state variables, along 
with the conventional sensors, can be done with virtual infor-
mational channels based on dynamic observers and estima-
tors. The problem of dynamic state estimation and observation 
has received considerable attention, and to date, a variety of 
linear and nonlinear state estimators have been proposed in 
the literature [6–8]. In the meantime, an algorithm proposed 
by Kalman [9] had become de facto a standard approach for 

optimal estimation. The Kalman filter (KF) is a special kind 
of observer that, for a dynamic linear system subject to Gauss-
ian noise, provides a minimal-variance estimation [10]. An 
extended Kalman filter (EKF) is a generalisation of Kalman 
theory applied for nonlinear systems. In EKF, the mean and 
covariance of the Gaussian probability density function (pdf), 
approximating the system state distribution, are propagated 
through a system linearised around the operating point at each 
time instant. Although EKF is efficient for state estimation 
contaminated with measurement noise, the Jacobian matri-
ces providing the system linear approximation, in addition to 
computation complexity, introduce cumulative linearisation 
errors in the state, which may cause the estimation filter to 
diverge and loss stability. In this respect, for nonlinear sys-
tems, an unscented Kalman filter (UKF) has recently attracted 
attention as an effective and stable algorithm [11]. The UKF 
propagates the pdf simply and effectively—state distribution is 
represented using a minimal set of specially chosen weighted 
sample points. These samples are propagated through an accu-
rate nonlinear system, thus providing the posterior statistics, 
which is accurate up to the second order in estimating mean 
and covariance [12].

The outlined family of the Kalman filters has been widely 
applied in the field of electric drives providing dynamic 
state estimators and virtual measurement channels. In [13], 
the EKF was successively applied for sensorless control 
of induction motors. In [14], the EKF was compared with 
UKF in the problem of nonlinear state estimation for sensor-
less control of electric drives. The modification of UKF in 
[15] was applied for the power measurements in large-scale 
power transmission grids. So far, a number of UKF filter 
applications have been found in marine and engine fields: 
for disturbance estimation and noise filtering [16], for the 
unknown input observation and state estimation [17], to cite 
a few.

2.1  Theoretical background of UKF

The core part of UKF is an unscented transformation (UT), 
which is a method for calculating statistics of a random vari-
able that undergoes a nonlinear transformation. To be spe-
cific, a discrete-time model of a nonlinear dynamic system 
is expressed as:

where n is the dimension of the state vector; m is the dimen-
sion of measurement/observation vector; F and H are the 
sets of nonlinear system functions; wk and vk are the system 
process and observation noise, respectively; u is the system 
input vector; given a state estimate at time instance k, xk|k , 
with a covariance matrix defined as �x

k|k , the statistics of 

(1)
xk+1 = �

(
xk, uk+1

)
+ wk, xk ∈ ℝ

n × 1,

yk+1 = �
(
xk+1, uk+1

)
+ vk, yk ∈ ℝ

m × 1,
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nonlinear transformation are estimated through a set of sam-
ple points χ, called sigma points, which are selected accord-
ing to the following:

where λ = α2(n + κ) − n is the scaling parameter. The con-
stants α and κ determine the spread of the sigma points 
around the mean.

Then, each sigma point propagates through the nonlin-
ear system dynamic model providing a time update. The 
predicted state mean and covariance are then approximated 
using a weighted sample mean and covariance of the pos-
terior sigma points according to:

where the weights Wi are given by

Here, the superscripts m and c denote weights for mean 
and covariance statistics, respectively.

Similarly, the output statistics of the dynamic system 
is obtained propagating the sigma points through nonlin-
ear output function, if any, and providing measurement 
update. The mean, covariance and cross-covariance are 
also approximated using weights,

Here, Q and R are the covariance matrices of the addi-
tive (zero mean) noise.

The UKF is a straightforward extension of the UT to the 
recursive state estimation of the classical EKF. Accord-
ingly, the filter gain matrix Kk, the corrected state vari-
ables mean xk+1 and the covariance matrix Px, conditional 
to the measurement ym are computed as follows:

(2)
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In the general case, the state observer can be seen as 
a feedback correction, and the degree of correction is 
determined by the covariance matrix Px and the gain K. 
The general overview of state observer information flow 
is shown in Fig. 1.

Thus, if the functions {F, H} describing the system 
dynamics are available in the closed form, the system state 
vector xk can be estimated from only the measured noisy 
signal ym

k
 . Thus, the preliminary task is to elaborate on the 

description of the propulsion system dynamics providing 
the required functional relationships.

2.2  Propulsion system model

The conventional propulsion plant is considered to be 
composed of two primary entities—a propeller and an 
engine, which are interfaced through the shaft rotational 
dynamics, according to:

Here, the time constant τe of propulsion system charac-
terises the inertia of whole shaft line Ish, including engine, 
propeller and shaft.

The engine torque Qe is the result of brake mean effec-
tive pressure (bmep), Pb, developed during one cycle in 
the Zc number of engine cylinders, and the volume of each 
is Vs:

(6)

Kk = �
xy

k+1|k
(
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y

k+1|k
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,
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(
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.

(7)
dne

dt
=

1

�e

[
Qe(t) − Qp(t)

]
, ∵�e = 2�Ish.

Fig. 1  General overview of state observer information flow



621Journal of Marine Science and Technology (2021) 26:618–631 

1 3

The engine bmep is the integral result of fuel combustion 
in the engine cylinders, and in the general case it can be con-
sidered as a function of fuel pump index hp, i.e. the amount 
of fuel delivered to the engine cylinders, engine rotational 
speed ne, and other engine intrinsic states, i.e. Pb = f(ne, hp, 
…, t).

The propeller torque Qp or load torque, in general, is rep-
resented by a quasi-steady characteristic as a function of 
shaft rotational speed np and the external disturbance u.

Thus, in the general case, the state vector x is composed 
of the shaft rotational speed and augmented with the states 
related to the engine model description. The known input 
is the fuel pump index hp, and unknown input, disturbance, 
is u.

The exact formulation of the engine bmep as well as the 
propeller torque Qp can be represented in different ways 
depending on the available data and the aim of analysis. The 
details are provided concerning the considered experimental 
studies in the subsequent chapters.

3  Experimental studies

Two experimental studies were performed to examine the 
application of the UKF to the tasks of propulsion system 
disturbance tracking and state estimation. The first, the esti-
mation problem of inflow velocity into the propeller is con-
sidered, based only on the engine speed measurement. This 
aimed at evaluating the performance of an unknown input 
observer. The second, marine low-speed two-stroke diesel 
engine testbed was used to estimate the internal engine states 
for the purpose of engine performance monitoring, and con-
currently the identification of unknown load torque was also 
performed. This aimed at evaluating the performance of 
UKF in the case of a higher-order nonlinear system.

3.1  The problem of inflow velocity estimation

In relation to the ship propulsion plant composed of a 
fixed-pitch propeller and an engine, the wave-induced 
fluctuations of the inflow velocity into the propeller disk 
is the dominant disturbance, which together with the 
shaft rotational speed determines the propeller torque. 
However, the direct measurement of inflow velocity 
is difficult or even an unrealisable task, which can be 
solved by indirect measurement, if there exists a unique 

(8)Qe = Zc
PbVs

2�
.

(9)Qp = f
(
np, u, t

)
.

correspondence between the input disturbance and the 
process response. Many theoretical and experimental 
studies have been performed in the field of propulsive 
performance of a ship in waves [18–21]. The main find-
ing of those studies is that the propeller performance in 
waves can be characterised through an open water char-
acteristic of the propeller. Thus, if the thrust and torque 
of the propeller can be measured, the direct estimate of 
inflow velocity is possible utilising the thrust or torque 
identification methods [22]. Merely, only a number of 
actual ships is equipped with the propeller shaft torque 
meters; besides, the torque meters suffer from zero-drift 
errors and consistency of measurement [23].

On the other hand, as evident from Eq. 7, the propulsion 
engine response, in terms of the rotational speed, is the 
consequence of the fluctuating propeller torque [21, 24]. 
In other words, the engine rotational speed holds a mutual 
relationship with the inflow velocity into the propeller, and 
if the complete model is available, the task of disturbance 
estimation can be solved.

To confirm the performance of the unknown input 
observer, the real measured data are necessary as a refer-
ence. The measurement of inflow velocity is a demanding 
task and is hardly possible on a real ship, though. At the 
same time, measurement is possible in the course of a 
scaled model ship tests in a towing tank. The towing tank 
tests of scaled model ships are being used for a long time 
to evaluate the hydrodynamic characteristics of a full-scale 
ship. These also include a free-running test, but without 
attention to the response characteristics of a propulsion 
engine. To fill the gap, the methodology of tank test with 
a marine diesel engine simulator (MDES) was developed 
[25] and has been successfully used to study the propel-
ler–engine interaction in real-like sea conditions [21, 26].

The key point of the methodology is that the scaled 
model ship, equipped with an electric motor to drive a 
propeller, is controlled by the MDES. In this manner, the 
measured propeller torque and rotational speed are used 
as input to the simulator, and then the response of propul-
sion engine in real time is used to control the rotation of 
the electric motor. The developed methodology provides 
a measurement of the full-scale propulsion performance 
based on the free-running test. The direct measurements 
were made possible owing to the developed method of 
resolving hydrodynamic scale effects between the model 
and full scale. Specifically, the corrections are applied to 
the viscous effect of calm water resistance and wakefield 
around the propeller. The details can be found in [25].

To apply UKF for the purpose of inflow velocity esti-
mation, at first the engine and propeller models have to 
be specified concerning the scaled model ship used in the 
experiments.
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3.1.1  Propeller–engine system model

The propeller torque model is based on the propeller open-
water characteristics obtained in calm water conditions. 
The propeller torque is given as:

where ρ is the water density, np is the propeller rotational 
speed, Dp is the propeller diameter, Kq is the torque coeffi-
cient, J is the propeller advance ratio, ηr is the propeller rela-
tive rotation efficiency, and up is the effective inflow velocity.

If torque coefficient, Kq, is expressed as a second-order 
polynomial function of J, the propeller torque function 
can be transformed to the convenient form interfacing the 
inflow velocity and open-water torque characteristic as 
follows:

where c1, c2 and c3 are the coefficients of the second-order 
polynomial approximating the torque coefficient charac-
teristic. Here, it should be noted that the propeller torque 
evaluation also includes a correction for hydrodynamic 
scale effects, which is omitted here for the sake of simplic-
ity though.

The engine model employed in the MDES is a simpli-
fied representation of the real engine and is based on the 
following considerations [24]: the bmep necessary to eval-
uate engine torque is in the general case can be considered 
as a nonlinear function of fuel pump index hp, and engine 
rotational speed ne, expressed in the following form:

where coefficients k, a, b, and c are selected to fit the exter-
nal characteristics of a particular engine.

In addition, the essentially quasi-steady engine model 
neglects the dynamic of the turbocharger, which supplies 
air necessary for combustion and introducing inevitable 
delay to torque generation. The latter can be indirectly 
taken into account by considering the dummy dynamic of 
the engine torque as follows:

where τtc is the time constant introducing the effect of tur-
bocharger lag on the engine torque.

The complete model of propeller–engine interaction, 
thus, results in a coupled set of nonlinear differential 
equations:
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,
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,

(13)
dQe

dt
=

1

�tc

[
Qe

(
ne, hp

)
− Qe(t)

]
,

The value of fuel pump index hp is determined by the 
control system depending on the control algorithm.

Here, it should be noted that MDES is directly con-
nected to the propeller, thus np ≡ ne.

3.1.2  Inflow velocity estimator model

The established mutual relationship between the inflow 
velocity and the engine rotational speed provides for the 
implementation of a state observer. However, as one may 
note from Eqs. (11) to (14), the inflow velocity is the 
external input and not a state variable. Therefore, for the 
application of UKF the inflow velocity has to be repre-
sented as an adjoint state, and this can be done by intro-
ducing an internal model of disturbance [27]. To do so, it 
is entirely acceptable to assume that the inflow velocity is 
a linear function of time:

so that it represents the solution of a set of homogene-
ous differential equations with unknown initial conditions:

Combining the model of propeller–engine interaction 
Eq. 14 with the internal model of disturbance Eq. 16, the 
extended model of the propeller–engine interaction yields:

with the state vector xe =
[
ne,Qe, up,U

]T  and known 
external input u ≡ hp.

It is considered that the only shaft rotational speed is 
available for measurement; consequently, the measure-
ment-update equation of the UKF is given as follows:

The estimation starts from the initial mean of the 
state vector xe and covariance Px, and recursively apply-
ing the UKF algorithm, a set of sigma points progres-
sively converge to true mean and covariance of real state 
distribution.

(14)
d

dt

[
ne
Qe

]
=

[
f
(
ne, up, t

)
f
(
Qe, ne, hp, t

)
]
.

(15)up(t) = up0 + U t,

(16)
dup

dt
= U

dU

dt
= 0.

(17)
d

dt

�
xe

�
=

⎡⎢⎢⎣

�
�
ne,Qe, up,U, u, t

�
U

0

⎤⎥⎥⎦
,

(18)
y = ��e

� =
[
1 0 0 0

]
.
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3.1.3  Estimation of inflow velocity fluctuation in waves 
using UKF

The experiments with the free-running model providing nec-
essary data were conducted in the actual-sea model basin 
(AMB) at the National Maritime Research Institute of Japan. 
The panamax-size bulk carrier was used as a prototype for 
model tests. The model tests were performed at full draft 
without trim. The required engine power was assessed from 
the results of accompanying tests under calm water con-
dition and with 15% sea margins. Thus, the engine MCR 
was defined at 9350 kW and 91 rpm. The parameters of 
the engine were converted into model scale with the Froude 
Similarity Law [26]. The detailed description of the test 
facility is not in the scope of this paper and can be found 
in [21, 25]. Table 1 summarises principal data of the model 
ship and propulsion engine, whereas Table 2 includes con-
stants and coefficients of the engine and propeller models.

The free-running tests of the model ship controlled by 
the MDES were performed in regular and irregular head 
waves. The results of the latter case are of primary interest 
and thus discussed here. The target directional spectrum of 
the short-crested waves generated in the AMB is of modi-
fied Pierson–Moskowitz type with  cos2 direction distribu-
tion function. The significant wave height parameter of the 
frequency spectrum was equivalent to the Beaufort scale 
(BS) 7 determined by the World Meteorological Organiza-
tion (WMO). The parameters of the generated waves are 
listed in Table 3. Here, the values in the full scale are values 
given by the WMO and the model scale values are as actu-
ally measured.

Although the state observer is designed for online 
application providing observations simultaneously with 
the measurements, for performance investigation of the 
state observer, all the results were obtained in the off-line 
simulations. For the above purpose, the following signals: 
propeller torque/thrust, propeller rotational speed, engine 
governor output (fuel pump index hp) and engine torque, 
were collected with the 50 Hz sampling frequency. The 

required inflow velocity was estimated from the measured 
propeller torque/thrust utilising the torque/thrust identity 
method [22]

Figure 2 demonstrates the time-varying engine rota-
tional speed, engine torque and inflow velocity measured 
during the tests in irregular waves. These are superim-
posed with the results obtained from the observer model. 
The blue vertical line denotes the commencement of filter 
operation. By observing Fig. 1, it is interesting to note that 
the original inflow velocity, before the line, is buried in 
the measurement noise. In contrast, the UKF restores the 
smooth signal with acceptable accuracy. The same can be 
noticed for the estimation of the engine torque. The perfect 
estimation of engine speed is evident due to the available 
reference signal in the observer model.

Figure 3 depicts the power spectral density of the meas-
ured inflow velocity superimposed with that estimated by 
the observer model. The latter is entirely in line with the 
measured one, demonstrating near-perfect recovery of the 
signal statistical properties.

The last point that is worth mentioning here is the per-
formance of the observer gain vector K. The results are 
illustrated in Fig. 4. It is observed that the components 
of the vector converge to the steady-state values within 
a brief period, irrespective of the fact that the adjoint 
dummy model of inflow velocity Eq. 16, has unknown 
initial conditions.

Table 1  Principal parameters of the model ship

Model Ship

LPP (m) 4.585 217.0
B (m) 0.682 32.3
dm (m) 0.258 12.2
Displacement (ton) 0.677 7.17 × 104

Design speed 1.08 (m/s) 14.5 (kt)
DP (m) 0.150 7.10
Engine power (W) 12.4 9.35 × 106

Engine speed (rps) 10.4 1.52
Inertia (kg  m2) 1.23 × 10–3 2.99 × 105

Table 2  Constants and coefficients of the engine and propeller mod-
els

Parameter Value

Section of propeller blade MAU
Propeller pitch @0.7R, P/D 0.844
Rotation efficiency, ηr 1.048
Propeller torque characteristic:
 c1 0.04291
 c2 − 0.01424
 c3 − 0.02444

Engine bmep characteristic:
 k 0.965
 a − 0.842
 b 1.866
 c − 0.008

Table 3  Parameters of short-crested waves used in tests

Full scale Model scale
BS:7 BS:7

Significant wave height 4.0 (m) 8.33 (cm)
Mean wave period (s) 7.7 10.16
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3.2  The problem of propulsion engine monitoring

The vast majority of merchant ships use a low-speed two-
stroke marine diesel engine as a prime mover. The generated 
engine torque is the result of bmep developed in the cylinder 
and, in turn, the bmep is a function of engine states such as 
rotational speed, scavenging air/exhaust gas mass flows and 
injected fuel mass flow. These variables are mutually related 
through the internal engine characteristics and, in general, 
cannot be measured directly. The purpose of a state estima-
tor is the application of advanced controller for performance 

monitoring and fault diagnosis tasks. The essential prereq-
uisite for state observer design is the choice of appropriate 
propulsion engine model providing mutual relationships 
between the variables of interest with sufficient accuracy.

3.2.1  Cycle mean value engine model

The cycle-mean value (CMV) modelling approach provides 
the engine cycle-averaged temporal evolution of the engine 
internal states neglecting their in-cycle variations. This 
is due to the assumption that air and fuel mass flows pass 
through the engine continuously irrespective of the engine 

Fig. 2  Time histories of engine responses and inflow velocity measured and estimated

Fig. 3  Power spectral densities of the measured and estimated inflow 
velocity

Fig. 4  Evolution of the observer gain vector K
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cycle intermittent nature. The CMV model is constructed 
decomposing the engine into a number of components that 
are described by generic and reconfigurable mathematical 
models. Figure 5 illustrates the main components considered 
in the CMV model. These are the cylinder, the scavenging 
and exhaust receivers, the compressor and turbine of the 
turbocharger, and the scavenging air cooler.

The engine bmep is calculated as a difference between 
the indicated mean effective pressure (imep), Pi, and fric-
tion mean effective pressure (fmep), Pf. In turn, the imep is 
considered proportional to fuel pump index, hp, and fmep is 
considered to be a linear function of fuel pump index, hp, 
and engine rotational speed, ne; hence,

where ηc is the combustion efficiency, Pi0 is the imep cor-
responding to the maximum continuous rating (MCR) of the 
engine, coefficients kf0,  kf1 and kf2 are selected such that the 
fmep calculation is consistent with the experimental meas-
urements, Ga is the air mass flow rate through the engine, 
and Gf is the fuel mass flow rate delivered to the engine by 
fuel pump.

The engine fuel mass flow rate, Gf, is calculated as a 
linear function of the fuel pump index as follows:

where mfc0 is the mass of fuel injected per cycle at MCR, and 
Zc is the number of engine cylinders. The value of fuel pump 
index, hp, is provided by a control system which governs 
the engine speed constant. The detailed elaboration of the 
control system is not in the scope of this paper.

The air and exhaust gas mass flow rates, through the 
engine and turbine respectively, are calculated under the 
assumption that the engine cylinder as well turbine can be 

(19)

Pb = Pi − Pf,

Pi = �cPi0
hp, �c = f

(
Ga

Gf

)
,

Pf = kf0 + kf1ne + kf2Pi,

(20)Gf = Zcmfc0
hpne

characterised by orifice with an equivalent mean effective 
flow area Ӑo. Thus, the flow of compressible gas is evalu-
ated according to:

Here, P1,2 and T1 are the parameters of gas at the inlet 
and outlet of the orifice, Ψ = f(P1, P2) is the throttling char-
acteristic of the orifice.

The temporal evolutions of thermodynamic states in the 
receivers are obtained from the first law of thermodynam-
ics, an equation of state, a continuity equation, and angular 
moment conservation in the following form:

(21)G(a,e) = Ão

P1√
RgasT1

Ψ
�
P1,P2

�
.

(22)

(a)
dPs

dt
=

RaTs

Vs.r

(
Gc − Ga

)
, (e) Gc = f

(
ntc, Ps

)
,

(b)
dPe

dT
=

ReTe

Ve.r

(
Ga + Gf − Ge

)
, Me =

PeVe.r

ReTe
,

(c)
dTe

dt
=

Te

Me

(
keHc

CpeTe
− keGe −

{
Ga + Gf − Ge

})
, (f) Hc = GaCpaTs + �aGfEf

∵�a = f
(
Pb

)
,

(d)
dntc

dt
=

1

2�Itc

(
QT − QC

)
, (g) QC = f

(
Ps

Pa

,Gc

)
, QT = f

(
Pout

Pe

,Ge

)
,

Fig. 5  Composition of a typical two-stroke marine diesel engine for 
CMV modelling
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where Gc is the air mass flow rate provided by the compres-
sor, Hc is the energy rate [J/s] of the exhaust gas leaving the 
cylinder, Me is the mass of exhaust gas in the receiver of 
volume Ve.r, QT is the torque developed by the turbine due 
to the expansion of exhaust gas from pressure Pe to pressure 
Pout, QC is the torque required by the compressor to incre-
ment ambient pressure Pa to pressure Ps in air receiver with 
volume Vs.r, and ntc is the turbocharger rotational speed.

Figure 6 illustrates the information flow between the 
entities of the CMV engine model. The solution of the 
resulted set of state equations requires the elaboration of 
internal engine characteristics, and for the sake of brevity 
the details are omitted in this paper and can be found in 
[28, 29].

3.2.2  Estimation of engine states

The empirical coefficients parametrise the internal engine 
characteristics, and these have to be tuned to fit a particu-
lar engine. For the purpose of this research, Mitsui E&S 
Machinery provided data from the marine two-stroke low-
speed test engine running in a vast range of loads at the 
steady-state and transient conditions. Table 4 summarises 
the test engine specification. For state estimation perfor-
mance evaluation, as in the previous case, all the results 
were obtained in an off-line manner, utilising the concept 
of the hardware in the loop (HIL) methodology developed 
in the past [30]. For the state variables estimation and load 
torque observation, the simple load fluctuation tests were 
performed on the test engine. The engine was set to run at 
80% of load; after the period of steady-state run, the load 
fluctuation was introduced followed by reducing of engine 
load to 50%, and after a period of stabilisation, repeating the 
load fluctuation.

A vital point that is worth noting here is that the test 
engine is loaded by a water brake which emulates the per-
formance of the propeller with the specific torque–speed 
characteristics. The parameters of the characteristics are 
unknown; therefore, the engine state observer also turns to 
the unknown input observer. Similarly to the first case, load 
torque characteristic has to be represented as an adjoint state 
augmenting the dynamic engine model with the internal 

Fig. 6  Engine CMV model information flow and interface between entities

Table 4  Test engine specification @ MCR

4S50ME-T9

No of cylinders 4
Bore/stroke (mm) 500/2214
Power (kW) 7120
Speed (rpm) 117
IMEP (bar) 22
Scav. air press (bar) 3.4
Airflow rate  (Nm3/h) 41,000



627Journal of Marine Science and Technology (2021) 26:618–631 

1 3

model of disturbance. Thus, assuming that the water-brake 
torque is a slow varying process, i.e.:

one may obtain the adjoint state equations in the follow-
ing form:

Combining the CMV model of the internal engine states, 
a set of Eq. 22, with the engine shaft dynamic Eq. 7 and the 

(23)
d2Qwb

dt2
= 0,

(24)

dQwb

dt
= qwb,

dqwb

dt
= 0.

internal model of disturbance Eq. 24, the extended model of 
the engine states yields:

with the state vector xe =
[
ne, ntc,Ps,Pe, Te,Qwb, qwb

]T and 
known external input hp.

The processes taking place in the engine are highly non-
linear and are characterised by different dynamic properties. 
At the same time, the CMV model is just approximation 
of real phenomenon and is not able to catch the dynamics 
entirely. Thus, to support the state estimation by UKF, along 
with the shaft rotational speed, the pressure of air in the 

(25)
d

dt

�
xe

�
=

⎡
⎢⎢⎣

�
�
ne, ntc,Ps,Pe, Te,Qwb, u, t

�
qwb
0

⎤
⎥⎥⎦
,

Fig. 7  a Time histories of water-brake torque measured and estimated (UKF). b Time histories of water-brake torque measured and estimated 
(EKF)
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scavenging receiver is considered as available measurement. 
The measurement-update equation of the UKF has the fol-
lowing form consequently:

The simulation results of the applied load torque recon-
struction and propulsion engine state vector estimation when 
using the unknown input state observer are presented in Figs 
7a and 8a correspondingly. The first result evident is that 
the state observer provides accurate tracking of load torque 
generated by water brake with uncertain characteristics. In 
support, the distribution of the load torque tracking errors, 

(26)

y = ��e,

� =

[
1 0 0 0 0 0 0

0 0 1 0 0 0 0

]
.

depicted in Fig. 9d, clearly shows that errors are bounded 
in the range of ± 2%. However, using a limited number of 
measurements, all in all, the state observer reconstructs 
the state of propulsion engine with sufficient accuracy as 
observed in Fig. 9a–c illustrating the error distribution. A 
tiny bias observed in the estimation of water-brake torque 
as well as engine state can be explained by a static error in 
the underlying engine model.  

The estimated engine state vector provides information 
necessary for evaluating the engine parameters that are not 
directly measurable. For example, air and exhaust gas pres-
sures, Ps and Pe, set prerequisite to evaluate air mass flow 
Ga according to the Eq. 21. This, in turn, together with the 
fuel mass flow, Gf, and exhaust gas temperature, Te, gives an 
estimate of available exhaust gas energy as well as energy 
consumed by the turbine. In the last analysis, the energy rate 

Fig. 8  Time histories of engine states measured and estimated
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evaluation provides monitoring of the engine energy balance 
emphasising the significance of state estimation through the 
Kalman filtering technique for the propulsion plant energy 
efficiency monitoring. The latter is being actively developed 
as a separate research direction.

3.3  The performance of UKF compared to the EKF

Although the UKF demonstrated adequate performance in 
the tasks of unknown input observation and dynamic sys-
tem state estimation, the performance of its predecessor, 
the EKF, cannot be readily discarded. Thus, it is of particu-
lar interest to compare the obtained results with the EKF 
observer.

The EKF is a straightforward extension of KF to nonlin-
ear systems. In the EKF, the state variables statistics predic-
tion, especially of covariance Px, is based on the linearisa-
tion of state equations expressed in Eq. 1. EKF assumes that 
errors in the state estimates are small enough to approximate 
state equations using Taylor series expansion keeping only 

the first-order terms. As a result, the predicted state variables 
mean and covariance are calculated in EKF as follows:

The set of Eq. 27 is only the difference between the EKF 
and UKF approaches. The remained recursions of Kalman 
gain evaluation, state estimation correction and covari-
ance update, expressed in the set of Eq. 6, are common 
for both approaches. Although the EKF is straightforward 
and simple, it has a drawback directly relating to the Jaco-
bian matrix ∇� x , which should be evaluated at every time 
instant. Furthermore, the Jacobian matrix might be chal-
lenging to obtain for complex and higher-order systems. In 
particular, concerning the first experimental case of inflow 

(27)

xk+1|k ≈ �
(
xk|k , uk+1

)
,

�x
k+1|k = ∇� x�x

k|k (∇�
x)T +�,

∇� x
[i,j]

=
��[i]

�x[j]

|||xk ,uk .

Fig. 9  Distribution of state variables estimation errors
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velocity estimation in the experiment with the free-run-
ning model, the estimation of Jacobian is a tedious task if 
hardly possible. This is because the propeller torque model 
involves complex and implicit transformation responsible 
for the hydrodynamic scale effects correction, as in details 
explained in [25]. On the other hand, the engine CMV model 
consists of a set of fully developed nonlinear equations; what 
is more, a fully coupled analytical solution for the Jacobian 
matrix was obtained and experimentally validated in the past 
research [31]. The latter facilitates the application of EKF 
to the second experimental case of engine state estimation 
and load torque tracking.

Figure 7b demonstrates the result of water-brake torque 
tracking and Fig. 8b illustrates the estimation of the engine 
state variables. As evident from the presented results, the EKF 
provides essentially the same performance as UKF, which was 
also confirmed by the distribution of state variables estimation 
errors, depicted in Fig. 9. The nearly perfect agreement can be 
explained by the fact that at the point of the Jacobian evalua-
tion (linearisation of the system), the characteristics are close 
to linear and this, in turn, does not introduce the estimation 
error to the covariance matrix.

Although it is shown that both the observers are promising 
estimation tools, the UKF in the last analysis has a slight com-
petitive edge—it does not require the Jacobian. It can operate 
directly on an accurate nonlinear system.

4  Conclusion

This paper adopts a recent trend derivative-free nonlinear 
Kalman filter technique—UKF, to the problem of propulsion 
system monitoring. Use of the nonlinear estimation allows 
inferring the internal state variables and parameters that are 
not directly measurable. The obtained results showed that the 
UKF is the efficient approach for the estimation of propul-
sion system state variables as well for concurrent estimation 
of unmeasured disturbance from the propeller side. The first 
case, based on the real physical model of propeller–engine 
interaction in waves, proved that the use of UKF for estima-
tion of unmeasured inflow velocity is the reliable technique, 
making it possible to estimate the propeller torque without 
the need of shaft torque meter. The second case, based on the 
real marine diesel engine, proved that the UKF appears to be 
an efficient estimator for the highly complex and nonlinear 
system with uncertainties and what is more suitable for the 
estimation of essentially unmeasured parameters of the propul-
sion engine. Furthermore, the latter case proved the concept 
of disturbance estimation from the measured engine response 
again. This makes the propulsion system observer suitable for 
feedforward disturbance compensation task in a suitable con-
trol loop, as well as suitable for the monitoring task with the 
limited number of sensors.

The last point worth noting here is that the observer model, 
as well as precision of estimation, primarily relies on the well-
established and validated model of the propulsion system; 
furthermore, the engine parameters change with the operat-
ing condition, and the model parameters should follow this 
change. The latter can be considered as a task of model adapta-
tion to the current operating conditions, and this is the subject 
of undergoing research.
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