
Vol:.(1234567890)

Journal of Marine Science and Technology (2019) 24:846–854
https://doi.org/10.1007/s00773-018-0591-x

1 3

ORIGINAL ARTICLE

On the loss of stability of periodic oscillations and its relevance to ship 
capsize

A. Maki1 · L. N. Virgin2 · N. Umeda1 · T. Ueta3 · Y. Miino4 · M. Sakai1 · H. Kawakami5

Received: 27 May 2018 / Accepted: 21 August 2018 / Published online: 3 September 2018 
© JASNAOE 2018

Abstract
This research revisits the analysis of roll motion and the possible capsize of floating vessels in beam seas. Many analytical 
investigations of this topic have adopted the softening Duffing equation, which is similar to the ship roll equation of motion. 
Here we focus on the loss of stability of periodic oscillations and its relevance to ship capsize. Previous researchers have 
found the thresholds of the saddle-node, flip, and heteroclinic bifurcations. They derived the flip condition from the negative 
stiffness condition in a Mathieu type variational equation. In our revisited analysis, we show that this threshold is identical 
to a pitchfork bifurcation. On the other hand, we simultaneously find that the generated asymmetry solution is unstable due 
to the limitation of the first order analysis.

Keywords Nonlinear dynamics · Softening Duffing equation · Capsizing · Pitchfork bifurcation

1 Introduction

Capsizing is a dangerous phenomenon, capable of caus-
ing considerable loss of life. Therefore, capsize should be 
absolutely avoided. Unlike conventional strip theory of ship 
motions, which is linear, the equation of ship roll motion is 
highly nonlinear due to the restoring curve, culminating in 
a complete loss of restoring force at the angle of vanishing 
stability (a softening-spring effect). Whereas the govern-
ing equations of electrical engineering and similar fields 

are typified by a hardening restoring component, ship roll 
motion is dominated by softening characteristics.

In a pioneering study, Nayfeh et al. treated the capsiz-
ing problem as a nonlinear dynamical system. In 1986, they 
showed the existence of chaos in beam-sea roll motions [1–3]. 
Using the equation of motion with a quadratic restoring term, 
Thompson uncovered the fractal structure in the safe basin 
boundary of capsizing [4–6]. At that time, Virgin newly 
reported the bifurcation conditions and chaos in this ship 
motion [7–9]. Following these successes, Kan and Taguchi 
considered the fractal metamorphoses of the equation of ship 
roll motion. Following Melnikov’s method, they showed that 
a heteroclinic bifurcation threshold appears in this system [10, 
11]. Later contributions were made by Falzarano et al. [12], 
Spyrou et al. [13], Wu and McCue [14] and Maki et al. [15, 
16]. With the exception of Thompson, all of these researchers 
applied the softening Duffing equation because of its similarity 
to the equation of ship roll motion in beam seas. The diver-
gence in the solutions of the softening Duffing equation can 
be regarded as the capsizing phenomenon in the ship motion. 
Although the actual shape of the GZ (restoring arm) slightly 
differs from the cubic polynomial in the softening Duffing sys-
tem, this relatively simple system has provided much fruitful 
and practical knowledge on nonlinear ship motion and the cap-
sizing phenomenon. Therefore, the present research considers 
the stability of periodic solutions in the unbiased softening 
Duffing equation.
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Numerical methods have substantially progressed over 
the past several decades. However, in preliminary design 
or for regulatory purposes, analytical results remain impor-
tant to this day, as evidenced by the wide application of 
theoretical methods and approaches in the first and second 
phases of next-generation intact stability criteria. Therefore, 
approximation methods such as the perturbation technique, 
harmonic balance method, and averaging method will be 
important in future analyses.

As stated above, the softening Duffing equation has been 
extensively applied to ship roll, and various bifurcation con-
ditions, namely, saddle-node bifurcation [17], flip bifurca-
tion [9, 18] and heteroclinic bifurcation [10], e.g., [15], have 
been revealed. The present research explains the derivations 
of the saddle-node and flip bifurcations, and characterizes 
the flip bifurcation in greater detail than previously. Based 
on the obtained knowledge, we finally review the capsizing 
conditions.

2  Saddle‑node (fold) and period‑doubling 
bifurcations

The simplified beam-sea roll equation in regular beam seas 
is represented by

where Φ is the instantaneous roll angle of the ship. Of 
course, Φ is a function of time t. Ixx and Jxx are the moment 
of inertia and the added moment of inertia in the roll, respec-
tively, R is the roll-damping coefficient, W is the ship mass, 
and GM is the metacentric height. ΦV is the vanishing 
angle of the roll restoring moment, and M0 and M denote 
the amplitudes of the wind-induced and wave-induced roll 
moments, respectively. ω is the wave frequency and δ is the 
phase of the wave-induced moment. In this equation, over 
dot denotes the differentiation with respect to time t.

In this equation, the restoring curve is represented as 
Duffing-type cubic polynomial. The GZ-curve of many ves-
sels is characterized by linear or lightly stiffening features for 
normally expected roll angles. In case extreme roll motion 
leads to capsizing occurs, the restoring moment tends to 
decrease with increase of heel angle due to deck submer-
gence and/or bottom emergence. This can be approximated 
by a softening spring so that this paper used the GZ-curve 
having Duffing-type softening spring nature.

Dividing both sides of Eq. 1 by the moment of inertia, the 
equation of motion becomes:

where the coefficients are given by

(1)
(
Ixx + Jxx

)
Φ̈ + R ⋅ Φ̇ +W ⋅ GM ⋅Φ

[
1 −

(
Φ∕ΦV

)2]
= M0 +M cos (𝜔t + 𝛿),

(2)�̈� + 𝜅�̇� + c1𝜙 − c3𝜙
3 = B0 + B cos (𝜔t + 𝛿),

Now, when B0 = 0 and � = 0 , Eq. 2 reduces to

This is a symmetric equation with respect to the roll angle 
ϕ. Now we apply the harmonic balance method [17]. In the 
beginning, its first order solution is assumed as

One may naturally assume a symmetric solution, as elab-
orated later. Substituting the above solution into the equa-
tion of motion and comparing the coefficients of cos�t and 
sin�t , we obtain

From these two conditions, the amplitude of the periodic 

solution is found as

This is well known result. The stability of the periodic 
solutions is determined as described in Hayashi [17]. Intro-
ducing the nondimensional time � = �t , the governing equa-
tion becomes:

where the coefficients are redefined as

In Eq. 8, over dot denotes the differentiation with respect 
to nondimensional time τ. The periodic solution �0(�) , 
already assumed as Eq. 5, satisfies the following equation.

Now, assume a small perturbation in the periodic motion 
�(�) . Substituting �(�) = �0(�) + �(�) into Eq. 8 yields

(3)

⎧⎪⎪⎨⎪⎪⎩

� ≡ Φ∕ΦV

� ≡
R

Ixx + Jxx
, c1 ≡

W ⋅ GM

Ixx + Jxx
, c3 ≡

W ⋅ GM�
Ixx + Jxx

�
Φ2

V

B0 ≡
M0

Ixx + Jxx
, B ≡

M

Ixx + Jxx
.

(4)�̈� + 𝜅�̇� + c1𝜙 − c3𝜙
3 = B cos𝜔t.

(5)� = A cos(�t + �).

(6)

⎧⎪⎨⎪⎩

�
A(c1 − �2) −

3

4
A3c3

�
sin � + ��A cos � = B

�
A(c1 − �2) −

3

4
A3c3

�
cos � − ��A sin � = 0.

(7)B2 = A2

{[(
c1 − �2

)
−

3

4
A2c3

]2
+ �2�2

}
.

(8)�̈� + 𝛽�̇� + 𝛼1𝜙 + 𝛼3𝜙
3 = B1 cos 𝜏,

(9)� =
�

�
, �1 =

c1

�2
, �3 = −

c3

�2
, B1 =

B

�2
.

(10)�̈�0 + 𝛽�̇�0 + 𝛼1𝜙0 + 𝛼3𝜙
3
0
= B1 cos 𝜏.

(11)𝜉 + 𝛽�̇� + (𝛼1 + 3𝛼3𝜙
2
0
) 𝜉 = 0.
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To eliminate the damping term, we introduce the following 
transformation:

from which we get

The steady-state periodic oscillation is given by:

Substituting Eq. 14 into Eq. 13 gives

In the above Mathieu’s equation, the coefficients �0 and �1 
are defined as follows:

If the following equation describing the first instability 
region in Mathieu’s equation is satisfied, the solution is stable 
(as shown in Eq. 4.6 in Hayashi [17]).

Substituting �0 and �1 into the above inequality condition 
and setting c1 = 1 and c3 = 1 , the critical condition takes the 
following simple form:

with

(12)�(�) = exp
[
−
1

2
��

]
�(�),

(13)�̈� +
(
𝛼1 −

1

4
𝛽2 + 3𝛼3𝜑

2
0

)
𝜂 = 0.

(14)�0(�) = A cos(� − ��).

(15)�̈� + (𝜃0 + 2𝜃1 cos 2(𝜏 − 𝜀�)) 𝜂 = 0.

(16)

⎧⎪⎨⎪⎩

�0 = �1 −
1

4
�2 +

3

2
�3A

2

2�1 =
3

2
�3A

2.

(17)
(
𝜃0 − 1

)2
+ 2

(
𝜃0 + 1

)
𝛽2 + 𝛽4 > 𝜃2

1
.

(18)C2 +
3

2
CA2 + �2�2 = 0,

(19)C ≡ �2 − 1 +
3

4
A2.

We focus on the saddle-node bifurcation (fold bifurca-
tion). As the amplitude of the external forcing is increased, 
this system realizes multiple solutions (see Fig. 1). The left 
and right panels of Fig. 1 are the numerical and analytical 
solutions, respectively, with c1 = 1 , c3 = 1 , B0 = 0.0 and 
� = 0.04455 . The numerical solutions were obtained by 
Kawakami’s method [19–21]. In this methodology, with the 
use of Newton method, not only the trajectory in the time 
domain, but also characteristic multipliers obtained from the 
Poincaré map is simultaneously calculated. In the left panel 
of this figure, the amplitude is defined as the absolute value 
of the maximum value of φ in the periodic solution. Further-
more, if Eq. 18 is satisfied, the periodic solution becomes 
unstable (hatched region in the right panel). The theoretical 
results (right panel) are unstable only when the saddle-node 
bifurcation appears. Note that the capability of other bifurca-
tions is not considered in the theoretical analysis.

When a saddle-node bifurcation occurs, the following 
“vertical tangent” condition is satisfied:

To obtain dB∕dA , we differentiate both sides of Eq. 7 with 
respect to the amplitude A as follows:

Applying Eq. 19, we have:

Finally, the following equation is obtained:

which is equivalent to Eq. 18. Notably, the conditions of 
the saddle-node bifurcation and stable periodic solutions are 

(20)
dB

dA
= 0.

(21)

2B
dB

dA
= 2A

{[
(1 − �2) −

3

4
A2

]2
+ �2�2

}
− 3A3

[
(1 − �2) −

3

4
A2

]
.

(22)
dB

dA
=

A

B

[
C2 +

3

2
CA2 + �2�2

]
.

(23)C2 +
3

2
CA2 + �2�2 = 0,

Fig. 1  Response amplitude of the primary motion with c
1
= 1 , c

3
= 1 , � = 0.04455 and B

0
= 0.0 (left: numerical solution, right: analytical solu-

tion). Solid and dashed lines delineate the stable and unstable regions, respectively
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identical. This finding is reasonable because a saddle-node 
bifurcation destabilizes the tracing solution. Figure 2 shows 
a representative saddle-node bifurcation occurring in this 
system at a specific forcing frequency. Stable and unstable 
fixed points are generated around B = 0.02, and disappear 
around B = 0.035.

The flip bifurcation condition was identified by Hol-
mes and Rand [18] and Virgin [9]. In their formulations, a 
negative stiffness condition in a Mathieu-type equation was 
imposed on Eq. 15. Under this condition, 𝜃0 < 0 in Eq. 15, 
and we have:

In terms of Eq. 9, this becomes:

In the equation of ship roll motion, κ is generally small, 
so the above inequality reduces to

(24)𝛼1 −
1

4
𝛽2 +

3

2
𝛼3A

2 < 0 ⇒ A2 > −
2𝛼1

3𝛼3

(
1 −

𝛽2

4𝛼3

)
.

(25)A >

√
2c1

3c3

(
1 +

𝜅2

4c3

)
.

which is unstable condition for the flip bifurcation. In the 
hardening-type Duffing equation, the above condition cannot 
be satisfied because c3 < 0 . Combining the condition

with Eq. 7, we obtain

Under the condition in which the motion amplitude exceeds 
the stability vanishing angle � = (−�1∕�3)

1∕2 , we obtain 
another condition:

(26)A >

√
2c1

3c3
,

(27)A =

√
2c1

3c3
.

(28)B2 =
2c1

3c3

[(
�2 −

c1

2

)2

+ �2�2

]
.

(29)A =

√
c1

c3
.

Fig. 2  Saddle node bifurca-
tion with c

1
= 1 , c

3
= 1 , 

� = 0.04455 , B
0
= 0.0 and 

� = 0.905 . The analytical 
fold bifurcation points are 
B = 0.01968 and B = 0.03615 . 
Black and gray regions indicate 
that under the initial condi-
tions, the solution converges to 
a periodic attractor (fixed point, 
represented by the white points)
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Equation 29 resembles the conservative results given by 
Eq. 27.

3  Symmetry breaking and pitchfork 
bifurcation

In the numerical results of Fig. 1, the large-amplitude peri-
odic motion at B = 0.05 becomes unstable around ω = 0.6. 
The bifurcation in the vicinity of this point is shown in 
Fig. 3. In this bifurcation diagram, a flip-type bifurcation 
appears around � = 0.58 . This is a pitchfork rather than a 
period-doubling bifurcation because the solution does not 
change the period of the motion. Furthermore, this point 
marks the onset of asymmetry in the previously symmetric 
solution. This transition from symmetry to asymmetry is 
sometimes called symmetry breaking. Kan and Taguchi’s 
[11] description unfortunately omitted the upper branch in 
the right panel of Fig. 3, although the pitchfork bifurcation 
and symmetry breaking had been already reported by Nay-
feh, e.g., [1]. The three periodic solutions, with asymmetry 
in the phase plane at the two larger amplitudes, are shown 
in Fig. 4. Figure 5 shows the initial condition set which 
converges to three different periodic solutions. The red and 
blue colors correspond to the simultaneous upper and lower 
branches, respectively, and the gray region corresponds to 
the primary solution.

To investigate this phenomenon in detail, we numeri-
cally calculated the characteristic exponents μ by Kawaka-
mi’s method [19–21]. The result is shown in Fig. 6. When 
the pitchfork bifurcation (symmetry breaking) occurs at 
ω = 0.5800, the characteristic exponent crosses 1 (on the 
unit circle) as shown in the left panel of Fig. 6. Clearly, this 
bifurcation is not a period-doubling bifurcation. On the other 
hand, at ω = 0.5720, the bifurcation takes the same shape 
(Fig. 3) but one of the characteristic exponents crosses − 1 
on the unit circle (right panel of Fig. 6), clearly indicating a 
period-doubling bifurcation.

4  Condition of pitchfork bifurcation

As evidenced in Fig. 3, the symmetry breaks just prior to the 
period-doubling bifurcation point, and an asymmetrical solu-
tion appears. To obtain this asymmetrical solution from the 
symmetric equation, we applied the harmonic balance method. 
In the previous consideration, we assume the symmetry solu-
tion. However, to find the asymmetry solution, the constant 
bias term should be taken into account. Using the same equa-
tion of motion, namely,

we add a constant (a “bias” term C0) to the assumed solu-
tion form:

(30)�̈� + 𝜅�̇� + c1𝜙 − c3𝜙
3 = B cos𝜔t,

(31)� = C0 + A cos (�t + �).

Fig. 3  Numerically obtained bifurcation diagram with c
1
= 1 , c

3
= 1 , � = 0.04455 , B = 0.05 and B

0
= 0.0 . The light panel is the magnified plot 

of the left panel

Fig. 4  Phase portrait of the numerically obtained asymmetric motion 
with c

1
= 1 , c

3
= 1 , � = 0.04455 , B = 0.05 , B

0
= 0.0 and � = 0.579 

(line: lower branch, dotted line: upper branch, bold line: another 
branch with small amplitude)
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In Eq. 30, over dot denotes the differentiation with respect 
to time t. Substituting this solution into Eq. 30, we obtain the 
following conditions:

If A satisfies

(32)

⎧⎪⎪⎨⎪⎪⎩

C0

�
c1 −

3

2
c3A

2 − C2
0
c3

�
= 0

A

�
(c1 − �2) −

3

4
A2c3 − 3C2

0
c3

�
sin � − ��A cos � = B

A

�
(c1 − �2) −

3

4
A2c3 − 3C2

0
c3

�
cos � + ��A sin � = 0.

in the first expression of Eq. 32, then

Note that Eq. 33 is almost recognizable as the flip bifur-
cation [condition 25]. The small difference between Eqs. 33 
and 25 derives from the treatment of κ. In Eq. 26, we ignored 
the squared damping term κ in Eq. 25 because the damp-
ing component is negligibly small in the ship roll equation. 
In this sense, the pitchfork condition is almost identical to 
Eq. 26. Of course, amplitude of external wave moment at 
pitchfork bifurcation is obtained as:

This is also identical to Eq. 28. On the other hand, com-
bining the second and third equations in Eq. 32, the ampli-
tude of the motion is obtained from:

Furthermore, when C0 is non-zero, C0 value is obtained 
from the first equation in Eq. 32 as:

This result confirms two candidates for C0: a positive or 
negative side shift with the same absolute value of the angle. 
Therefore, the motion amplitudes A calculated from Eq. 36 

(33)A =

√
2c1

3c3
.

(34)C0 = 0.

(35)B2 =
2c1

3c3

[(
�2 −

c1

2

)2

+ �2�2

]
.

(36)B2 = A2

{[
(c1 − �2) −

3

4
c3(A

2 + 4C2
0
)
]2

+ �2�2

}
.

(37)C0 = ±

√
c1

c3
−

3

2
A2.

Fig. 5  Convergence of an initial condition set to three different solu-
tions in a safe basin with c

1
= 1 , c

3
= 1 , � = 0.04455 , B = 0.05 , 

B
0
= 0.0 and � = 0.579

Fig. 6  Characteristic exponents with c
1
= 1 , c

3
= 1 , � = 0.04455 , B = 0.05 and B

0
= 0.0 (left: around � = 0.580 , right: around � = 0.572 ). 

Solid and dashed lines denote the different characteristic exponents in each panel
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are also identical. Consequently, as observed in Fig. 4, the 
phase trajectories develop a line symmetry in the phase 
plane. In Eq. 37, important condition is:

On the other hand, let us consider the stability for the 
obtained solution:

Now, periodic solution is:

The equation with respect to � is finally obtained as 
follows;

where

In the above Hill’s equation, the coefficients �0 and �1 
mean as follows;

From the negative stiffness condition in Hill’s equation, 
we have:

c1 and c3 are always positive. Equations 38 and 44 con-
flict. Therefore, the assumed from Eq. 31 becomes unstable.

To analyze the stability further, we apply the averaging 
technique. At first, we transform Eq. 1 as:

Assume the solution as:

Newly introduced A and ψ are slowly varying func-
tion with respect to time t. By substituting Eq. 46 and 

(38)A <

√
2c1

3c3
.

(39)�̈� +
(
c1 −

1

4
𝛽2 − 3c3𝜙

2
0

)
𝜂 = 0.

(40)�0 = C0 + A cos (�t + �).

(41)�̈� +
[
𝜃0 + 2𝜃1 cos (𝜏 − 𝜀) + 2𝜃2 cos 2(𝜏 − 𝜀)

]
𝜂 = 0.

(42)� ≡ �t.

(43)

⎧⎪⎪⎨⎪⎪⎩

�0 = c1 −
1

4
�2 − 3c3

�
C2
0
+

1

2
A2

�

2�1 = −6c3AC0

2�2 = −
3

2
c3A

2.

(44)A >

√
2c1

3c3

(
1 +

𝜅2

8c1

)
.

(45)

{
�̇� = p

ṗ = −𝜔2𝜙 − 𝜅p + (𝜔2 − c1)𝜙 + c3𝜙
3 + B cos𝜔t.

(46)

{
𝜙 = C0 + A cos (𝜔t + 𝜓)

�̇� = −A𝜔 sin (𝜔t + 𝜓).

averaging in one roll period, the differential Eqs. 45 for 
the averaged system were finally obtained:

The stationary solution can be obtained from the 
condition:

And its solution becomes:

This is identical to Eq. 36. Here, Jacobi matrix is as 
follows:

Note that, before making Jacobi matrix, C0 is replaced 
by A. In this process, the results of harmonic balance 
method, namely Eq.  37, is utilized. From the Jacobi 
matrix, the eigenvalues can be calculated. Then, we can 
detect the stability of the solution. As a result, we finally 
noticed that main branches shown as A ± C0 , which are 
obtained from the solution (Eqs. 36 or 49), is unstable 
as shown in Fig. 7. After pitchfork bifurcation, stable 
branches are normally generated. However, in this case, 
the generated branches are unstable. It could be considered 
as the limitation of the first order approximation, and it is 
our one of future researches.

(47)

⎧
⎪⎨⎪⎩

Ȧ = −
𝜅

2
A −

B

2𝜔
sin𝜓

�̇� =
c1

2𝜔
−

3c3

8𝜔
A2 −

3C2
0
c3

2𝜔
−

𝜔

2
−

B

2𝜔

1

A
cos𝜓 .

(48)

{
Ȧ = 0

�̇� = 0.

(49)B2 = A2

{[
(c1 − �2) −

3

4
c3(A

2 + 4C2
0
)
]2

+ �2�2

}
.

(50)� =

[
−

�

2
−

B

2�
cos�

15c3

4�
A +

B

2�

1

A2
cos�

B

2�

1

A
sin�

]
.

Fig. 7  Analytically obtained bifurcation diagram with c
1
= 1 , c

3
= 1 , 

� = 0.04455 , B
0
= 0.0 and � = 1.0 (solid line: stable solution, dashed 

line: unstable solution)
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5  Bifurcation and capsizing boundary

This section presents the numerical results. Figure 8 is a 
higher-resolution reproduction of Fig. 12 in Kan and Tagu-
chi [10] with all initial conditions set to zero. The used val-
ues of the coefficients are c1 = 1 , c3 = 1 , � = 0.04455 and 
B0 = 0.0 , and the time step of Runge–Kutta method is set to 
be T/200 (T is defined as 2π/ω). These values are identical 
with those used in Kan and Taguchi [10]. On the other hand, 
Fig. 12 in Kan and Taguchi [10] consists of 1.35 million 
points, whereas Fig. 8 does of 4 million points. Within the 
white regions of this figure, the set of forcing parameters 
will lead to capsizing. On the other hand, within the black 
region, the combination of forcing parameters will guaran-
tee no capsizing (typically some kind of stable oscillation). 
This figure clearly shows the fractal structure explained by 
Kan and Taguchi [10], which is also observed in a semi-
submersible model [22]. Moreover, as pointed out by Kan 
and Taguchi [10], the structure strongly depends on the ini-
tial conditions, so the shape of Fig. 8 will change under 
another set of initial conditions. The topological structure 
of this phenomenon has been recently investigated by Miino 
et al. [23].

Figure 9 compares the numerically obtained stability 
thresholds of the periodic solutions (numerical results of 
capsizing) and the analytically obtained thresholds. The 
numerical capsizing threshold traces a periodic solution with 
increasing amplitude of the external force B until the capsize 
event. The threshold defines the amplitude leading to capsiz-
ing. In the region of the co-existing periodic and saddle-node 
bifurcation line, another periodic solution exists. Therefore, 
the thresholds are meaningful above ω = 1.0. The contours of 
the safe basin boundary are also drawn in Fig. 8. As pointed 
out by Kan and Taguchi [10], the saddle-node bifurcation 
line in the small-ω region reasonably agrees with the safe 
basin contours. Further, as also pointed by them [10], in 
the higher frequency region (around ω = 1.0), the pitchfork 
bifurcation point almost coincides with the numerically 

obtained capsizing region. It also gives moderately con-
servative results, whereas the estimates of the other bifur-
cation line are either too conservative or non-conservative. 
Therefore, including the pitchfork bifurcation in the capsiz-
ing assessment is apparently suitable for practical cases.

6  Concluding remarks

This research investigated the roles of fold and flip bifur-
cations in a softening-spring oscillator model of ship roll 
motion, and presented different derivations of the bifurca-
tions. The symmetry breaking noted in Kan and Taguchi 
[11] was found to be identical to the pitchfork bifurcation 
noted in Nayfeh, e.g. [1]. The pitchfork bifurcation condition 
was then derived by the harmonic balance method. This der-
ivation confirmed that the pitchfork bifurcation condition is 
identical to the flip bifurcation condition derived by Holms 
and Rand [18], and by Virgin [9]. On the other hand, after 
pitchfork bifurcation, the generated branches are unstable in 
the first order analytical methods. It could be considered as 
the limitation of the first order approximation, and it could 
be our future research topics. Furthermore, future research 
will consider the period-doubling bifurcation occurring after 
the pitchfork bifurcation, and a more realistic hull form for 
practical applications.
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