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Abstract
This study addresses the vortex-induced vibration of a flexible riser pipe. The primary purpose is to determine the fluid–
structure interaction mechanism for the modal growth of structural and lift force modes formed along the vibrating riser, and 
to obtain the fundamental relationship between lift force and elasticity. To this end, a linear theory representing the essence 
of the vibration mechanics is described, and the mechanical properties involved in the theory are examined by performing 
eigenvalue analysis. In this theory, the fluid–structure interaction is shown to be mainly governed by spatial correlations 
among a vertical profile of flow velocities and structural eigenmode functions. The presence of shear induces growth of one 
or more structural modes, depending on the strength of the shear, and energy necessary for the structural mode growth is 
supplied from different lift force modes as well as the same mode of lift force. The dominance of multiple frequency com-
ponents can be explained by differences in growth rate among prominent growing modes.

Keywords Riser · VIV · Structural mode · Lift force mode

1 Introduction

Recent increases in depth at installation sites of production 
riser pipes require them to function in more severe ocean 
environments. Their task is to serve as paths for fossil fuels 
to be conveyed from the sea floor to platforms on the sea 
surface, and they have to be placed for long service periods, 
subjected to vibration caused by surrounding currents. The 
present trend of increasing riser length makes it difficult to 
predict how the vibration will occur along a riser pipe, and 
accordingly to know the extent of material fatigue accumula-
tion in the pipe.

Mechanically, a production riser pipe can be consid-
ered to be a beam with both its extremities fixed. Structural 
mechanics theory shows that such a beam has vibratory 
motions with nodes and antinodes (modal configuration). 
Experiments have confirmed such vibrations in flexible mod-
els of risers (e.g., [1–3]). Particularly, recent advances in 
experimental methods captured a clear image of the fluid 
at a wake interfering with a moving flexible structure (e.g., 

[4–7]), and enabled the measurements of both the cross flow 
and inline components of displacements and forces along a 
flexible cylinder (e.g. [8]). These efforts have revealed how 
the viscous fluid dynamics is related to the modal configura-
tion and its associated vibratory frequency. It is important to 
be able to specify the modal configuration which dominates 
the vibration, because it is closely related to the stress in 
the riser [9].

The industrial demand has led engineers and researchers 
to attempt to understand the vibration of long slender struc-
tures subjected to fluid flow. A few achievements produced 
by these efforts are simulation tools [10–13]. These include 
databases for estimating hydrodynamic forces, which have 
been constructed by collecting measurement results of the 
forces acting on experimental models in test tanks, making 
it possible to conduct a practical and realistic simulation. As 
an example of simulation methods without such a database, 
there is one which uses computational fluid dynamics (CFD) 
applied to the entire length of a riser, e.g., [14–17]. These 
works successfully captured the complicated patterns of vor-
tex generation and shedding in two- or three-dimensional 
numerical simulations.

The fact remains that a little clear understanding has 
thus far been achieved regarding fluid–structure interaction 
occurring in a riser undergoing vortex-induced vibration 
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(VIV). In particular, we have not sufficiently determined 
how vortex-induced forces interact with a vibrating flex-
ible body. This study examines the interaction in detail, and 
reveals the mechanism underlying the relationship between 
the lift force and elasticity of a long slender structure.

The complexity of the VIV of the riser stems primarily 
from spatial nonuniformity in the vertical profile of fluid 
flow around the riser. Certain oceanographic observations 
found that there are flow velocity shears at locations where 
risers were installed [18]. This has also led many research-
ers to address the motion of flexible slender structures under 
a shear flow, e.g., [2, 19–21], providing some suggestive 
insight on the relationship of the modal growth to the shear. 
To the end mentioned above, this study attempts to conduct 
a mathematical analysis based on a linear theory. VIV is 
one of the vibrations with a limit cycle, and thus has a non-
linear property. We infer that risers installed in the actual 
ocean experience both matured and unmatured states of VIV. 
The unmatured state means that the VIV is in the course of 
growing and has a small amplitude. In the matured state, the 
VIV has the maximal amplitude under a flow speed condi-
tion, in which the oscillation of wake can be regarded as 
the limit cycle. An examination of the unmatured state as 
well as the matured state has an academic value, because 
the fluid–structure interaction along a flexible riser has been 
not yet sufficiently revealed. When focusing on the initial 
growing state of VIV, within which the amplitude is not so 
large, the linear analysis is applicable. If the linear analysis 
produces a solution for the issue posed above, it can lay a 
mechanical foundation, based on which mechanically ade-
quate simulations can be performed. To make the founda-
tion more firm, there is still room for linear analysis of the 
interaction between the lift force and elastic body.

Analytical approaches, e.g., [21–24], have been employed 
to investigate the modal configuration of a riser. Eigenmode 
functions, which are the most important when discussing 
the modal configuration of a vibrating riser, were computed 
using certain methods, e.g., [25–27]. Referring to those 
studies, we calculated the eigenmode functions to build our 
analytical method.

Expecting that the wake oscillator model is applicable to 
the interaction between the lift force and elasticity, this study 
applied it to compute the lift force. The basis of this model 
is the simplification of the oscillatory rotational motion of 
the wake region behind a moving body into the rotation of a 
rigid bar. Although this simplification is made under certain 
approximations, it involves the essence of hydrodynamics 
and vibration mechanics for the VIV. Some studies used 
the model for simulating time variations in long slender 
structures [28, 29]. The simplified form of the model is well 
suited to the mathematical approach.

This study attempts to theoretically determine the 
fluid–structure interaction involved in the VIV of the riser 

using the eigenmode function and wake oscillator model 
mentioned above. To this end, a matrix expressing explicitly 
the fluid–structure interaction is introduced.

2  Analytical method

The mathematical symbols representing the relevant vari-
ables are listed in Table 1.

Table 1  Independent and dependent variables

“–” means dimensionless

Symbol Definition Unit

t Time s
s Lagrangian coordinate along pipe m or –
CL Lift coefficient –
y Transverse displacement at a point on pipe m
Y Dimensionless transverse displacement at a 

point on pipe
–

Table 2  Parameter list

“–” means dimensionless

Symbol Definition Value Unit

a
∗ Dimensionless equivalent length 0.75 –

CD Drag coefficient 1.00 –
d Outer diameter of pipe 0.40 m
E Young’s modulus 2.10 × 1011 N m−2

E
∗ Dimensionless bending stiffness 2.62 × 10−7 –

f Slope of lift curve 1.16 rad−1

g Gravity acceleration 9.80 m s−2

I Moment of inertia of pipe area 5.20 × 10−4 m4

l Half-length of wake 1.10d m
L Entire length of riser 5.00 × 103 m
M Pipe mass per unit length 339.70 kg m−1

N Number of mode expansion 50
q Breadth of wake 1.25d m
P
′ Nonlinear damping coefficient 33.64 –

T Tension N
V Fluid velocity m s−1

� Dimensionless tension –
� Self-excitation coefficient 3.80 × 10−2

� Sea water density 1.00 × 103 kg m−3

�v Vortex shedding frequency rad s−1

�∗

v
Dimensionless vortex shedding 

frequency
–
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The parameters used to build the theory are defined in 
Table 2, with the exception of certain parameters defined in 
the text. The coordinate s specifies a length at a point on the 
pipe measured from the bottom extremity.

2.1  Governing equations and energy equation

The displacement transverse to the flow direction is gov-
erned by the following equation of motion for an Euler–Ber-
noulli beam excited by hydrodynamic forces:

Here, y represents the transverse deviation from a static 
position of the riser pipe. In the present linear theory, the 
riser is assumed to have a catenary shape in the static con-
dition, and only the static component of the tension T(s) is 
considered. We consider only the fluctuating lift force to 
simplify the theoretical analysis and elucidate the relation-
ship between the lift force and structural motion, although 
in reality, potential and drag components also act. To bring 
a simulation of the dynamics of a riser more realistic such as 
[30], the drag as well as the lift must be considered, because 
it is one of the components inducing the vibration of the 
riser. This study pursues a clarification of the mechanical 
mechanism of the essence of the fluid–structure interaction 
along the riser, and thus employs a simplified model incor-
porating only the lift.

The time-varying lift force is described by a vibration 
equation with forcing by the acceleration in the y-direction 
as follows:

which is the nonlinear wake oscillator model developed by 
[31]. When addressing the unmatured state of the VIV, the 
nonlinear term, the third order of magnitude of CL , is negli-
gible than the other terms, because in the unmatured state, 
CL is quite smaller than unity. A mathematical proof for it 
is given in Appendix. This study thus employs a linearized 
form of Eq. (2) as follows:

(1)
M
�2y

�t2
−

�

�s

(
T
�y

�s

)
+ EI

�4y

�t4

=
1

2
�dV2CL −

1

2
�dCDV

�y

�t
.

(2)

�2

�t2
CL − 2��v

(
1 −

P�

f 2
C2
L

)
�CL

�t
+ �2

v
CL

=
f

1

2
+ l

�2y

�t2
,

(3)
�2

�t2
CL − 2��v

�CL

�t
+ �2

v
CL =

f

1

2
+ l

�2y

�t2
.

The outputs of the model were validated and found to show 
reasonably good agreement with the measured displace-
ments [31, 32] and hydrodynamic forces [33]. The vortex 
shedding frequency �v is related to the fluid velocity V(s) 
as follows:

where St denotes the Strouhal number, which is expressed 
in terms of dimensionless parameters of the wake oscillator 
as follows:

Without structural motion, the wake oscillator represents 
vortex shedding behind a fixed circular cylinder. It is char-
acterized by the following dimensionless parameters:

The notation k∗ represents the radius of rotation of the wake 
oscillator.

Normalizing the quantities by M, L, and time defined as √
L∕g , we have the dimensionless forms of the governing Eqs. 

(1) and (3):

In Eqs. (7–8) and henceforth, s is used as a dimensionless 
quantity, and �∗

v
≡ �v

√
L∕g is the dimensionless vortex 

shedding frequency. A prime symbol ′ indicates a first-
order differentiation with respect to dimensionless time. The 
dimensionless form of the static tension is assumed to be 
given by that of the catenary cable as follows:

The imposed boundary conditions are that the riser is simply 
supported at both its extremities:

Starting from Eqs. (7) and (8), we derive the energy equation 
for a coupled fluid–structure system as follows:

(4)�v = 2�St
V

d
,

(5)St =
1

2

√
1

�q∗k∗
.

(6)l∗ ≡ l

d
, k∗ ≡ 1

2
+ l∗, n∗ ≡ �d2

2M�
, and q∗ ≡ q

d
.

(7)
Y ��

−
�

�s

�
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�Y
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�
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v
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√
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Y �,

(8)C��

L
− 2��∗

v
C�

L
+ �∗2

v
CL =

f

k∗
Y ��.

(9)�(s) =
√
a∗2 + s2.

(10)
{

Y(0) = Y ��
(0) = 0,

Y(1) = Y ��
(1) = 0.
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where the bracket symbol <> means a spatial integration 
along the entire length of the riser pipe. The left-hand side 
of Eq. (11) represents the rate of variation in the dynamic 
energy contained in the coupled fluid–structure system.

The first and second terms on the right-hand side are 
the rate of energy transfer from the fluid to the structure 
(abbreviated as FS), and that from the structure to the fluid 
(abbreviated as SF), respectively. The FS term represents 
that a high correlation between CL and Y ′ produces an energy 
delivery from the fluid to the structure, exciting the vibration 
of the riser pipe. A high correlation between CL and Y ′ is 
mostly equivalent to a high correlation between Y ′′ and C′

L
 . 

This means that the energy transfer between the fluid and 
structure is interactive, and that the coupled system exhibits 
positive feedback. Following this concept, we examine how 
FS contributes during the growth phase of VIV to reveal the 
essential mechanism involved in the lift force elasticity of 
an underwater very long slender structure. The third term is 
the power extracted from the surrounding flow to the wake 
oscillator by the self-excitation property of the wake.

2.2  Structural eigenmodes

In this study, we also refer to structural eigenmodes as 
uncoupled modes to distinguish modes of the coupled 
fluid–structure system. Denoting the ith eigenfrequency by 
�i and the ith uncoupled mode function by yi , they satisfy 
the freely vibrating beam equation with the above boundary 
conditions (Eq. 10):

To obtain a closed form of yi with spatially varying tension 
�(s) , we use one of the perturbation techniques to approxi-
mate it. Introducing a longer spatial coordinate defined as 
z ≡ �s to view the order of variation of each term over the 
entire scale of the riser, Eq. (12) is recast into [27]:
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(12)−�2
i
yi(s) −

�

�s

{
�(s)

�yi

�s

}
+ E∗

�4yi

�s4
= 0.

where �∗
(z) ≡ �(z∕�) and �∗(z) ≡ �

d�∗(z)

dz
 . In Eq. (13), the 

dimensionless bending stiffness E∗ is selected as the book-
keeping parameter � , that is, E∗

= � , because it is generally 
significantly smaller than unity.

The fourth term has the highest order derivative with the 
highest order of � multiplied. Consideration of the bending 
stiffness and prevention of secular terms from appearing in 
the solution lead us to use a singular perturbation method. In 
this study, the Wentzel–Kramers–Brillouin (WKB) method 
was employed, because it is applicable if the functions �∗

(z) 
and �∗(z) can be regarded as slowly varying functions, that 
is, if they can be assumed to vary by the zeroth order of � 
(O(1)) on a spatial scale of O(1), which is the case for the 
present problem.

The WKB method expresses the solution as follows:

in which an asymptotic expansion in powers of � appears in 
the argument of the exponential. The expansion coefficients 
un are determined by substituting the form of Eq. (14) into 
Eq. (13) and equating terms of the same order of � [27].

The uncoupled mode functions approximately satisfy the 
following orthogonal relations:

where �ij is the Kronecker delta function, and Ii is ith nonzero 
value computed from the above integration.

2.3  Eigenfunction expansion and modal 
decomposition

Let the solution of the simultaneous equations (Eqs. 7, 8) be 
Y and CL , which is the solution of the coupled fluid–structure 
system. Expansions of Y and CL in terms of the uncoupled 
mode functions yi are:

(13)
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i
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(z)
�2

�z2
yi(z) − ��∗(z)

�

�z
yi(z)

+ �5
�4

�z4
yi(z) = 0,

(14)yi(z) ∼ exp

[
1

�

∞∑
n=0

�nun(z)

]
, � → 0,

(15)∫
1

0

yi(s)yj(s)ds = Ii�ij,

(16)Y(s, t) =

N∑
i=1

Yi(t)yi(s),

(17)CL(s, t) =

N∑
i=1

CL_i(t)yi(s).
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The expansion in terms of mode functions for both the struc-
tural and fluid variables has been used by [29]. Substituting 
these expanded forms into the governing equations (Eqs. 7, 
8), multiplying both by yj , integrating them over 0 ≤ s ≤ 1 , 
and applying Eq. (15), we have:

where Vji and Wji denote elements of the matrices � and 
� defined below, and i and j are integers that satisfy 
1 ≤ i, j ≤ N . In the above expressions, the Einstein summa-
tion convention is applied. In the subsequent subsections, 
an analytical way to address the fluid–structure interaction 
along the riser will be built, in which the matrices � and � 
have a key role.

2.4  Matrix representation of fluid–structure 
interaction

The N × N matrices � and � are defined as follows:

where i and j represent column and row numbers, respec-
tively. � and � are symmetric. The diagonal elements of 
� ( � ) measure the extent to which the profile of the flow 
velocity (the profile of the flow velocity squared) overlaps 
with the configuration of the structural eigenmode function 
squared. The off-diagonal elements of � ( � ) measure the 
correlation among the profile of the flow velocity (the profile 
of the flow velocity squared) and the ith and jth structural 
eigenmodes. Here, the matrices � and � are referred to as 
the first and second kinds of fluid–structure interaction (FSI) 
matrices, respectively.

To examine the solutions of Eqs. (18) and (19) using 
matrix algebra, they are written in a state space form. The 
state vector is defined as follows:
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(22)� ≡(�T, �T
L

)T
,

Equations (18) and (19) are second-order ordinary differen-
tial equations with respect to time. To reduce the differential 
order of the state space form, we define an augmented vector 
from � as follows:

Equations (18) and (19) are thereby of the form:

where the state transition matrix ( 4N × 4N ) � is defined as 
follows:

The 2N × 2N  submatrix � contains elements of restoring 
effects:

where the N × N submatrices in � are defined as follows:

The 2N × 2N submatrix � contains elements of damping and 
self-excitation effects:

where the N × N submatrices in � are defined as follows:

(23)� ≡(Y1, … , YN
)T
,

(24)�L ≡(CL_1, … , CL_N

)T
.

(25)�̃ ≡ (
�, �′

)T
.

(26)�̃�
= ��̃,

(27)� ≡
[

� �
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]
.
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]
,
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(
�2
j

)
,

(30)�SF ≡ − n∗k∗q∗diag
(
I−1
j

)
�,
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�SS,

(32)�FF ≡(1 − fn∗q∗)diag
(
I−1
j

)
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(34)�SS ≡ − n∗CD

√
�q∗k∗diag

�
I−1
j

�
�,
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(36)�FF ≡2�diag(I−1
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)
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2.5  Eigenvalue analysis on coupled fluid–structure 
system

Assuming that the temporal variation in �̃ is expressed as 
�e�t , we derive from Eq. (26) an eigenvalue problem as 
follows:

Whether the vibration of a mode grows or not is indicated 
by the real part of the eigenvalues. A positive (negative) real 
part corresponds to the growth (evanescence) of the mode.

Letting the state vector at an initial condition at a time of 
t0 be �̃0 , the solution of the above equation is expressed in 
the matrix exponential form as follows:

Denoting the eigenvectors and eigenvalues of the eigenvalue 
problem by �i and �i , respectively, the similarity transforma-
tion of � is written as follows:

By applying Eq. (39), the above solution can be expanded in 
terms of the eigenvectors as follows:

where the vectors �k are defined as follows:

and the scalar quantities mk are the inner product between �k 
and �̃0 , expressed as follows:

The eigenvectors are generally complex and are written 
using the real numbers pk_i and �k_i as follows:

and therefore, the components of displacement and lift and 
their temporal differentiations are expressed as follows:

(37)�� = ��.

(38)�̃ = e�(t−t0)�̃0.

(39)
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(43)�k =
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pk_1e

i�k_1 … pk_4Ne
i�k_4N

]T
,

Equation (44) represents that the real parts of the eigenval-
ues �k specify which coupled modes will grow, and that pk_i , 
the magnitudes of the eigenvectors, specify which uncoupled 
modes will be the most dominant with a certain frequency 
given as the imaginary part of �k . The 4N components of �k 
correspond to � ( i = 1,… , N ), �L ( i = N + 1,… , 2N ), �′ 
( i = 2N + 1,… , 3N ), and �′

L
 ( i = 3N + 1,… , 4N).

In Sect. 3.4, we will take only the most unstable com-
ponent into consideration to discuss the energetics of the 
coupled system. This treatment is equivalent to considering 
only a single component of frequency that is the most domi-
nant, retaining the complex conjugate pair with the largest 
real part of the eigenvalue. Now, let the integer k that cor-
responds to the largest real part be denoted by K. The above 
approximation is expressed as follows:

where c.c. means complex conjugate.

2.6  Modally decomposed rigid bodies

Under a uniform profile of flow, all modes become independ-
ent of each other, whereby interactions between the fluid and 
structure are made within the same mode. The equations of 
all the modes are completely decomposed, because the FSI 
matrices become diagonal, and are reduced to:

where �v 0 denotes the dimensionless uniform velocity. 
Equations (46) and (47) are equivalent to the set of equa-
tions for a rigid circular cylinder.

Writing a complex eigenvalue as � = �R + i�i , we can 
relate � , the phase of CL_j relative to that of Yj , to the real 
and imaginary parts of the eigenvalue as follows:
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When a jth mode greatly grows, the jth mode lift force 
is expected to have a phase that favors the growth of the 
jth structural mode, making tan� quite large. Letting the 
value of tan� be denoted by p, the following relationship is 
derived as follows:

Equation (49) expresses the constraint condition satisfied 
by �R and �i , and, on the �R–�i plane, it represents many 
hyperbolic curves as the eigenmode number j varies. The 
left-hand side of Eq. (49) is the quadratic form in terms of (
�R, �i

)
 . Through the following orthogonal transformation:

the above hyperbolic curves are transformed into their stand-
ard forms as follows:

which represents the hyperbolic curves with their focal 

points at 
�
−

1

2
D, ±

√
2vj

4
√
1+p−2

−
1

2
D

�
 in the u–v coordinate sys-

tem (e.g., [34]). Those hyperbolic curves have the common 
asymptotic lines expressed as follows:
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2.7  Computational conditions

In this study, several vertical profiles of the flow velocity 
were constructed by referring to published data obtained 
from oceanographic observations [18, 35, 36] in the Gulf of 
Mexico, and simulated using a numerical ocean model [37] 
applied to the Brazilian Equatorial Margin. The Gulf Stream 
and the North Brazil Current are present at the former and 
latter sites, respectively. The vertical profiles at both sites 
have the following elements in common: prominent shears 
are formed from the surface to a depth of a few hundred 
meters because of the very strong currents, below which 
relatively weak shears are observed to 1000 m. Below the 
strong and weak shear layers, there are layers with almost 
uniform profiles. In Fig. 1, five examples of vertical profiles 
of the flow velocity are plotted. Those are substituted into 
the fluid velocity V, which thus depends on s and, accord-
ingly, �v also depends on s.

The production riser treated in this study is installed at a 
site with a depth of 2500 m, with a catenary configuration 
and a total length of 5000 m. The catenary configuration is 
shown in Fig. 2, in which the horizontal and vertical coor-
dinates are normalized.

To calculate the integrals in Eqs. (20) and (21), Simpson’s 
formula was adopted. The number of mode expansion N 
was determined considering the eigenvalues computed and 
memory needed for the computation.

3  Results and discussion

3.1  Validation

To validate the numerical computations, the computed 
eigenfrequencies are compared in Fig. 3 with those meas-
ured in the experiment by [38], in which a horizontal riser 
model with a length of 28.04 m and with a diameter of 0.016 
m was subjected to flows. For lower eigenmodes, the present 
method exhibits good agreement with the experiment; how-
ever, the method tends to overestimate for the higher modes. 
The difference between the present analysis and the experi-
ment is probably attributable to the algorithm in the WKB Fig. 1  Vertical profiles of flow 

velocities for Cases 1–5. Verti-
cal coordinate is normalized by 
the total length of the riser

Fig. 2  Configuration of steal catenary riser considered in this study
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approximation. We guess that, for a small-sized model, the 
accuracy of the asymptotic expansion decreases, because the 
bookkeeping parameter � is not so small.

The experiment [38] shows that the most dominant mode 
gradually becomes higher as the flow velocity increases. The 
computation reproduced it well (Fig. 3). The measured fre-
quencies of vibration also show increasing variations with 
increasing flow velocity, which agreed fairly well with the 
computations. However, for the flow velocities ranging from 
0.4 to 0.6 m s −1 , the computation produced larger frequen-
cies than the measured ones. These discrepancies may be 
attributed to the above-mentioned eigenfrequency overes-
timations, which probably lead also to the appearances of 
the lower modes in the computations (Fig. 3b). However, 
because the computations of the eigenfrequencies (Fig. 3a) 
and dominant frequencies (Fig. 3c) for the lower velocity 
cases (0.2–0.4 m s −1 ) agree fairly well with the experiments, 

another factor as well as the eigenfrequency overestimations 
should be considered to account for the lower modes in the 
computations: for example, the linear model may not suf-
ficiently capture transitions between neighboring modes 
which irregularly occur in the experiments.

To furthermore validate the model used in this study, a 
solution of the nonlinear form of the model (Eqs. 1, 2) was 
numerically computed in the time domain. The computed 
results were compared in Fig. 4 with the experimental data 
[39] measured using a straight riser model with a length of 
90 m and with a diameter of 0.03 m. The experimental riser 
model was subjected to a linearly sheared flow by towing the 
model in a test tank. This comparison shows that the analyti-
cal model reasonably well reproduces the real phenomenon.

The validations shown above were for the experimen-
tal models which had much smaller scales than the risers 
installed in the actual ocean. The subsequent section tar-
gets the actual size. Although the validity of the analytical 
model shown here does not fully ensure it for the actual 
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scale, the analytical model used in this study is described 
in terms of the dimensionless variables and parameters, 
and thus is applicable without considering the scale. We 
should, however, be careful for variations of the param-
eters depending on the scale. As for this regard, separate 
considerations are needed.

3.2  Structural eigenmode function

The computed structural eigenmode functions are plotted 
in Fig. 5. Their spatial variation is quite similar to that of 
sinusoidal functions, while their amplitudes very slowly 
increase toward the bottom end because of the effect of the 
third term of Eq. (13) including �∗(z).

3.3  Response in uniform flow

Figure 6 plots the computed eigenvalues against the dimen-
sionless fluid velocity. The positive values of the real 
part indicate the growth of VIV. With the dimensionless 

velocities ranging from 4.0 to 6.5, the growth can be 
detected, and the frequencies are close to the eigenfre-
quency, which means the occurrence of frequency lock-in 
to the natural frequency. Larger velocities inhibit the growth. 
Negative real parts of eigenvalues represent evanescence of 
the modes, and are unobservable.

Under the uniform flow condition, there is no interference 
among different modes, that is, all of the modes are inde-
pendent to each other, while interactions between the fluid 
and structure take place only within the same mode. This is 
mathematically represented by diagonal configurations of 
the matrices � and �.

To understand how the lift forces and structural motions 
interact with each other and eventually grow the VIV, the 
phases of lift forces relative to those of the displacements are 
calculated using eigenvectors (Fig. 6c). The most unstable 
mode has the phase of almost 90◦ . This condition in which 
the lift force gives positive works to the structure and con-
currently the structural motion gives positive works to the 
wake. This study refers to the former force as FS force, that 
is, the force acting from the fluid to structure, and the latter 
force as SF force, the force acting from the structure to fluid.

Energetics of the coupled fluid–structure system provides 
us with a clearer insight about the interaction. The power 
of the FS force increases if the lift force has positive cor-
relation with the velocity of structural motion, as expressed 
in the right-hand side of Eq. (46). We should note that the 
maximization of the power of the FS force is accompanied 
by the maximization of the power of the SF force, which is 
maximized if the velocity of the lift force variation has nega-
tive correlation with the displacement of structural motion. 
The lift force and structural displacement grow, tracing a 
divergent circulation on a Y − CL phase diagram (Fig. 7).

In the uniform flow case, the second kind FSI matrix is 
diagonal (Fig. 8a). Both the structural (Fig. 8b) and lift force 
(Fig. 8c) modes have the single peak at the mode numbers 
corresponding to the diagonal elements, accordingly yield-
ing the peak of FS power (Fig. 8d). The other elements of 
FS power are negative, meaning that those elements serve 
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as the energy conveyers from the coupled system to the sur-
rounding current.

The above interpretation of the VIV growth can be 
thought to be a dynamic instability induced by the coupling 
between the fluid and structural dynamics. The instability 
caused by the coupled fluid–structure interaction is made 
through FS and SF forces. The dynamic instabilities similar 
to the one addressed in this study have been identified in 
other coupled systems: a coupled mechanics in the atmos-
phere–ocean system in the tropics produces a source of 
global climate events [40], a coupled sea–ice–ocean system 
explains well ice melting in the Antarctic [41], high-speed 
stability of a driver–motorcycle system, [42], and a coupled 
strip–roll system in a cold rolling mill [43]. These studies 
are from a variety of academic areas and, nevertheless, have 

in common the mathematical background that describes this 
type of instability.

3.4  Energetics in shear flow

Next, we closely examine the rate of work done by the FS 
term in Eq. (18) (hereinafter, it is referred to as FS power) 
to determine the instability of the coupled fluid–structure 
system in shear flows. Here, a single-frequency approxima-
tion is applied, which is written as Eq. (45). Under this 
approximation, the FS power can be calculated by multiply-
ing Eq. (18) by Y ′

j
 and by averaging the result over one 

period.

(a)

(b)

(c)

(d)

(e)

Fig. 8  Uniform flow case. a Elements of the second kind FSI matrix 
on the row corresponding to the most unstable structural mode Y

j
 , b 

p
K_2n+i , elements of eigenvector of the structural mode, c p

K_n+i , ele-
ments of eigenvector of the lift force mode, d FS power from each lift 
force mode CL_i to Y

j
 , and e cosine function of phase of CL_i relative 

to that of Y ′

j
 (horizontal dashed lines are cosine functions of phase 

calculated by rigid body approximation). Vertical lines indicate the 
jth elements. In a–e, horizontal axis is the lift force mode number, i 

(a)

(b)

(c)

(d)

(e)

Fig. 9  Case 1. a Elements of the second kind FSI matrix on the row 
corresponding to the most unstable structural mode Y

j
 , b p

K_2N+i , ele-
ments of structural mode eigenvector, c p

K_N+i , elements of lift force 
mode eigenvector, d FS power from each lift force mode CL_i to Y

j
 , 

and e cosine function of phase of CL_i relative to that of Y ′

j
 (horizontal 

dashed lines are cosine functions of phase calculated by rigid body 
approximation). Vertical lines indicate the jth elements. In a–e, hori-
zontal axis is the lift force mode number, i 
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The presence of shears in a flow velocity profile makes 
the off-diagonal elements of FSI matrices nonzero. Those 
off-diagonal elements are alternately positive and negative. 
This is because the neighboring uncoupled mode shapes are 
even and odd (Fig. 5). Figure 9a shows elements of the sec-
ond kind FSI matrix on the fifth row for case 1, in which the 
fifth structural eigenmode grows the most rapidly (Fig. 9b). 
A sharp maximum in FS power (Fig. 9d) indicates that the 
fifth lift mode supplies the largest amount of energy with the 
fifth structural eigenmode.

It is noteworthy that CL_5 is not the only mode that sup-
plies Y5 with energy (Figs. 9c and d). Cosine functions of 
phase of CL_i relative to Y ′ (Fig. 9e), which are a factor 
determining the magnitude of the FS power, has alternately 
positive and negative values. This distribution of the cosine 
functions comes from the zigzag arrangement of the ele-
ments in the second kind FSI matrix. These indicate that 
higher modes of CL_i remarkably contribute the energy sup-
ply to the fifth structural eigenmode, making the FS power 
have positive values over a wide range of the CL_i mode 
number. The clockwise and anti-clockwise trajectories in 
Fig. 10 are explained by the phase lead and delay, i.e., the 
alternate reverses of the cosine functions of phase.

A stronger shear (Case 5) provides an interesting FS 
power distribution (Fig. 11d). The most rapidly growing 
mode of the displacement is Y10 (Fig. 11b), while it is CL_11 
that gives Y10 with energy. The lift force includes several 

higher modes that grow (Fig. 11c), creating gentle slopes in 
the FS power (Fig. 11d).

(a)

(b)

Fig. 10  Phase diagram for Case 1. a Y9 − CL_15 and b Y9 − CL_16

(a)

(b)

(c)

(d)

(e)

Fig. 11  Case 5. a Elements of the second kind FSI matrix on the row 
corresponding to the most unstable structural mode Y

j
 , b p

K_2N+i , ele-
ments of eigenvector of structural mode, c p

K_n+i , elements of eigen-
vector of lift force mode, d FS power from each lift force mode CL_i 
to Y

j
 , and e cosine function of phase of CL_i relative to that of Y ′

j
 (hori-

zontal dashed lines are cosine functions of phase calculated by rigid 
body approximation). Vertical lines indicate the jth elements. In a–e, 
horizontal axis is the lift force mode number, i 

Fig. 12  Schematic view of energy deliveries around structural mode 
Y
j
 . Arrows indicate energy deliveries. In uniform flow case, energies 

are interchanged inside dashed boxes
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The energy deliveries in the shear flows significantly dif-
fer from that in the uniform flow. It is of importance that the 
higher lift force modes contribute to the growth of lower 
structural modes, as schematically drawn in Fig. 12.

It is notable that several elements of the lift force eigen-
vector (Figs. 9c, 11c) have large values as well as the diago-
nal elements. These growths of lift force are seen especially 
in the modes higher than the diagonal one. These demon-
strate that in the sheared flows, a single or more than one 
structural modes grow together with a lot of higher lift force 
modes.

Lower structural modes coexist with higher lift force 
modes (Fig. 13). The underlying physics can be explained 
from the viewpoint of modal decomposition. The vertical 
profile of the flow velocity (Fig. 1) has configurations much 
different from the configurations of the structural eigen-
mode functions (Fig. 5). The eigenmode functions consist 
of sinusoidal ones, which are even or odd looking from the 
central point of the pipe. The sheared profiles monotoni-
cally increase toward the water surface. The presence of a 
shear, even if it is weak one, accordingly needs a lot of low 
and high eigenmodes to be superimposed to reconstruct the 
profile including the shear. That is why the off-diagonal 
elements become nonzero, although they are far from the 
diagonal region.

The property of the lift force variation changes sensi-
tively against the presence of a shear through the restoring 
terms �FF , which is proportional to the second kind FSI 
matrix (Eq. 32). The nonzero off-diagonal elements of � 
produce interferences among different lift force modes. The 
oscillatory swinging motions of wake along the riser subject 
to a shear flow naturally exhibit multiple frequencies, ena-
bling resonances among various lift force modes to occur, 
and consequently producing the growths of higher lift force 
modes. This differs significantly from the restoring property 
of wake formed in a uniform flow or wake behind a rigid 
circular cylinder, which can be characterized by a single 
Strouhal number.

This discussion on the lift force mode leads us to suppose 
that multiple high structural modes are likely to more con-
siderably grow because of the excitation by the correspond-
ing high lift force modes. Our analysis certainly shows the 
transfer of the dominantly growing structural mode toward 
a higher one (Figs. 9b, 11b). However, this transfer occurs 
at a much slower pace compared to the very rapid transfer 
of the lift force modes. The key factor lies in the restoring 
submatrix �SS , which stays diagonal and is independent of 
the flow field. The influence of a shear in flows is given to 
the structural mode indirectly through the external force, 
the FS term, while it directly alters the internal forces (the 
third term in the left-hand side of Eq. 19) acting on the lift 
force mode.

3.5  Total energy supplied by all frequency 
components

The previous subsection discusses the FS power by taking 
only the most unstable frequency component (Eq. 45). Real 
responses of the displacement and lift force include many 
frequency components. Thus, applying Eq. (44) instead 
of Eq. (45) to superpose all of the frequency component 
of the calculated �L and �′ , and integrating them in the 
time domain, we evaluated the total energy received by 
Yj through the FS power over the integration period. For 
the five cases, the results of the calculations are shown in 
Fig. 14.

In Case 1, the energy tends to be concentrated on Y5 . By 
contrast, In Cases 2 and 3, the energy is supplied to two or 
more modes. The calculations for Cases 4 and 5 show that 
Y9 and Y10 are supplied distinctively large amounts of the 
energy. These indicate that shear strength influences how 
many modes will grow. This aspect will be discussed again 
in the next subsection from a different point of view. In the 
five cases, moderate shear cases (Cases 2 and 3) tend to 
include more than one mode.

In the discussion in Sect.  3.4, Eq. (45) was applied. 
This approximate expression of the solution is derived by 
comparing the real parts of eigenvalues and omitting the 

(a)

(b)

Fig. 13  Coexistence of lower structural mode and higher lift force 
mode. a Uniform flow ( 0.2 m s−1 ) case, and b Shear flow case (Case 
5). In a, b, the modes corresponding to the largest magnitude of ele-
ments in eigenvector are depicted
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secondary and subsequent components. Here, we examine 
whether this treatment is appropriate.

The phases calculated using the rigid body approxima-
tion (horizontal dashed lines in Figs. 9e, 11e) are in good 
agreement with those determined from the eigenvectors. The 
mode Yj grows while being supplied the energies from other 
many modes of the lift force CL_i . Although this pattern of 
energy delivery is quite different from that for the case of 
uniform flow (Fig. 8), the phase for the shear cases is very 
close to those computed under the rigid body approxima-
tion. This also applies to the total energy delivery to Yj . The 
cosine functions of the phase are distributed similar to the 
total energies (Fig. 14).

3.6  Dominance of multiple frequency components

As discussed above, a shear profile of the flow veloc-
ity leads to the growths of certain components. Looking 
at them in terms of the real and imaginary parts of the 
eigenvalue, we identify them as remarkably large real 
parts (Fig. 15). Much attention should be paid to those 
real parts arranged seemingly in proportion to their cor-
responding imaginary parts. We offer a proof for the 

(a)

(b)

(c)

(d)

(e)

Fig. 14  Heights of bars represent the total energy supplied to each 
structural mode through the FS term. The subfigures ae correspond 
to Cases 1–5, respectively. The magnitudes of the energies are nor-
malized by their maximum. Dashed line with circles indicates cosine 
function of the phase of CL_j and Y ′

j
 calculated by the rigid body 

approximation, where j denotes here, the number of the structural 
mode supplied with the maximum amount of energy

Fig. 15  Relationships of real (horizontal axis) and imaginary (vertical 
axis) parts of the eigenvalues for shear flow: Case 1 (closed green), 
2 (opened blue), 3 (closed blue), 4 (opened red), and 5 (closed red). 
The same relationships for the uniform flow cases ( 0.04 m s−1 , closed 
square) ( 0.06 m s−1 , opened square) are also plotted. The dashed line 
shows the same relationship calculated by the rigid body approxima-
tion

(a) (b)

(c)

(d)

Fig. 16  a Plots of hyperbolic curves (solid curves) representing the 
relationship between �R and �i . Those for the first, fifth, and tenth 
modes are plotted. Horizontal dotted lines indicate the eigenfrequen-
cies of each mode. Gray solid lines are asymptotic lines, and black 
circles are focal points. Black dashed line shows the same relation-
ship calculated by the rigid body approximation with limit of |p| ≫ 1 . 
The three right panels, b 10th, c 5th, and d 1st, are enlargements at 
the intersections
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relationship between �R and �i with the aid of the rigid 
body approximation.

The hyperbolic curves (Eq. 49) are slightly rotated from 
the standard ones (Eq. 52) by the orthogonal transforma-
tion (Eq. 50), and thus are intersected at two points by the 
horizontal line �i = �j . Of the two intersections, that with a 
larger horizontal coordinate corresponds to the solution for 
lock-in to the jth eigenmode. All of the hyperbolic curves 
have the common asymptotic line (Fig. 16), while their focal 
points are located closer to the origin as j becomes smaller. 
If �i is positive, the convex downward curves near the focal 
point for a small j have a quite narrow valley shape. This 
geometrical fact shows that as j decreases, the real part of 
the lock-in solution decreases (the intersection of the solu-
tion is located closer to the vertical axis). We can also prove 
that these intersections form a line (Fig. 16) for the limit of 
|p| ≫ 1.

Even if shears are present in the flow profiles, the 
growth of VIV in each frequency component can be rea-
sonably well approximated by the modally decomposed 
rigid bodies. The relationships between the real and imagi-
nary parts are depicted on the �R − �i plane for the sheared 
flow cases (Fig. 15). When the real parts are much larger 
than zero, in other words, when the VIV of the modes is 
expected to grow, those real parts are in proportion to 
the imaginary parts. Considering the same relationship 
determined from the intersections on the hyperbolic curves 
on the same plane, we can see that both the relationships 
agree well. The plots for the sheared flows fluctuate 
slightly, stemming from the contributions by the interfer-
ence of other modes through the off-diagonal elements of 
the FSI matrices.

The above discussion on the eigenvalue can be deepened 
by normalizing the real parts by their maxima to provide a 
clear insight on the dominance of multiple frequency compo-
nents in shear flows (Fig. 17). With a relatively weak shear, 
the secondary and certain subsequent real parts are not so 
much smaller than the primary one. By contrast, stronger 
shears yield larger differences among the real parts. Those 
differences are related to the differences in the imaginary 
parts, as examined above.

The differences in the imaginary parts result from the 
shape of the magnitudes of the second kind FSI matrix. A 
comparison of them (Figs. 9a, 11a) demonstrates that the 
stronger shear gives the sharper inclination of the magni-
tudes with the larger peak at the diagonal position. With the 
sharper inclination of the magnitudes arranged in the second 
kind FSI matrix, the influence of the secondary and subse-
quent imaginary parts on the restoring property of the wake 
oscillation decreases relative to that of the primary imagi-
nary part. The differences in the imaginary parts between 
neighboring growing modes become greater than they do 
in the weaker shear. This intensifies the tendency of the pri-
mary component to grow in an isolated manner. Although 
the present linear theory cannot sufficiently reproduce the 
frequency lock-in, the above result suggests the dominance 
of a single-frequency component under a strong shear flow 
condition.

This transfer of frequency component dominance is 
qualitatively consistent with the experimental finding by 
[19] and a numerical simulation in the time domain [28]: 
they showed that there is a range of shear strength within 
which multiple frequency components are observed at the 
same time, and that a shear beyond the range produces 
a single-frequency component that distinctively grows. 
However, our discussion is based on a linear theory, 
which cannot simulate the matured state of VIV, includ-
ing the switch of the dominant mode in the time sequence 
reported by, e.g., [20, 29]. A nonlinear theory can be con-
structed using the present linear theory as a first-order 
approximation.

Further investigations are necessary to verify the pre-
sent theoretical outcomes and to examine the nonlinear 
responses. For instance, if a very dense arrangement of 
force sensors along a flexible pipe model is technically 
possible, such an experiment may provide information to 
deepen our discussion. This study considered only the trans-
verse component of VIV; however, the inline components 
have been reported to be indispensable for evaluating the 
fatigue damage to the riser, which could possibly be dealt 
with by extending the wake oscillator modeling.Fig. 17  Relationships of real (horizontal axis) and imaginary (vertical 

axis) parts of eigenvalues for shear flow. Real parts are normalized by 
their maxima: Case 1 (closed green), 2 (opened blue), 3 (closed blue), 
4 (opened red), and 5 (closed red). The same relationships for uni-
form flow cases ( 0.04 m s−1 , closed square) and ( 0.06 m s−1 , opened 
square) are also plotted
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4  Conclusion

This study has investigated the modal growth of the struc-
tural and lift force modes in a riser pipe vibrating owing to 
vortex-induced forces. A linear theory of the VIV occur-
ring in the riser was built to understand the modal growth 
through an eigenvalue analysis. The following conclusions 
may be drawn:

• It is the fluid–structure interaction matrices that deter-
mine the intensity of interactions between the structural 
and lift force modes, as well as the interference among 
different frequency components.

• The presence of flow shear results in the excitation of 
higher structural modes than a uniform flow veloc-
ity profile. The excited structural modes are supplied 
energy by the same mode of the lift force and by higher 
modes of lift forces.

• The simplified interpretation using the rigid body 
approximates well the phase of the lift force mode rela-
tive to the structural mode that grows remarkably.

• The presence of flow shear grows multiple frequency 
components. The number of the components is closely 
related to the shear strength; a very strong shear results 
in a smaller number of growing frequency components 
than does a relatively weak shear.
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Appendix

In this appendix, we prove that the governing equation of 
lift force, Eq. (2), can be linearized under the assumption 
that the amplitude of VIV is very small. Let CL and Y have 
the forms as follows:

respectively, where � denotes the circular frequency, and � 
denotes the amplitude, which is assumed to be very small. 
The amplitude of Y is the same order of � as the amplitude 
of CL ; thus, CY = O(�0) = O(1) , where O is Landau nota-
tion. The magnitudes of the terms in Eq. (2) are evaluated 
in terms of the order of � . Substituting those into the dimen-
sionless form of Eq. (2):

{
CL = �ei�t

Y = �CYe
i�t ,

C��
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− 2��v
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1 −
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f 2
C2
L

)
C�

L
+ �2

v
CL =

f

k∗
Y ��,

the magnitudes of the terms are evaluated as follows:

It follows that the terms of O(�) become leading terms. Tak-
ing only the leading terms yields

which is equivalent to Eqs. (3) and (8).
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