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Abstract
In this paper, the authors discuss the development of a procedure for modeling the transient torsional loads on shafting 
systems induced by an ice impact sequence on Polar Class vessels propellers. The procedure was used to solve the transient 
torsional vibration using a lumped masses model of shafting systems driven by electric motors. After a description of the 
methodology and procedure used to model the vibratory behavior of a shafting system, the discussion will focus on a sen-
sitivity analysis performed on the relevant parameters that allows a proper description of the shaft’s dynamics. The model 
has then been benchmarked and validated against the results from a finite element code, using an R-Class icebreaker from 
the Canadian Coast Guard as a case study. The results show promising outcomes for the assessment of the transient torque 
loads, and the model will be used in the future to aid the upcoming experimental activity.

Keywords  Polar Class · Lumped model · Sensitivity analysis · Ice loads · Transient torsional vibration analysis

1  Introduction

Arctic navigation has consistently increased in the last few 
decades, driven by the exploitation of the unveiled natural 
resources in the region. Even though the level of invest-
ment for this purpose has decreased in the last few years, 
the exploitation and development of Arctic traffic of vessels 
will continue [1]. For instance, it is forecast that more and 
more passenger ships will undertake polar routes, especially 
in exploring cruises [2], leading to increased safety concerns 
for Arctic-going vessels as more people traverse ice-infested 
routes.

It is anticipated that more ships will be assigned to or 
constructed for such services and there is an increased need 
for reliable and sustainable ship design procedures. This has 
lead to research efforts towards proper assessment of the 
ship–ice interaction that is inevitable in that environment. 
The design inputs have to include the ice loads expected 
over the life-time of the vessel. These loads, among others, 
affects important systems such as the propulsion machin-
ery. The loss of this system can produce severe hazard for 
the safety of navigation, and jeopardize the survival of the 
crew and passengers. In recent years, there has been much 
study on the ice loads acting on the propulsion system. The 
thrust and bending moment acting on the blades during the 
interaction of the propeller with the water and ice can be 
divided in three components: a separable hydrodynamic load 
(open water condition), an inseparable hydrodynamic load 
(increased torque and thrust due to blockage) and ice mill-
ing/impact loads [3]. Several experiments have been carried 
out to measure the loads induced by the propeller–ice inter-
action in an ice towing tank [4–9]. Numerical procedures 
have been developed to predict the hydrodynamic loads due 
to blockage [10], ice contact loads [11] or both [12].

The knowledge gained in ice loading on the propulsion 
system eventually led to the proposal of a design approach 
for the whole shafting system [13]. The International 
Association of Classification Societies (IACS) has been 
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developing a set of harmonized rules for polar vessels that 
includes requirements for the propulsive machinery [14]. 
These rules have been also adopted by the American Bureau 
of Shipping (ABS), introducing requirements for vessels 
intended for Polar Class notation [15]. For the shafting 
systems in particular, it is required to assess the maximum 
torque responses during the dynamic response to a milling 
sequence or subsequent ice impacts. The load pattern is 
provided by the rules according to the specific ship’s Polar 
Class and characteristic.

Shaft torsional vibrations and dynamic responses have 
long been known and studied. The peak and hazardous 
response of all the systems in the propulsive machinery sub-
jected to the ice impacts is transient. In recent times, several 
studies focused on the development of models and proce-
dures for a proper assessment of transient torsional vibration 
analysis (TTVA) to assess the maximum torque loads in the 
shafting [16, 17]. The response of the machinery system as 
a whole depends on the behavior and interaction of the sub-
systems, as shown in Fig. 1, the mass-elastic behavior of the 
shaft, the presence of torsional dampers, clutches, gears, the 
type of propeller, the type of prime mover, and the speed-
control system [18]. All the aforementioned papers expose 
and analyze methodologies to assess TTVA under prescribed 
ice loading conditions. Both Batrak et al. [16] and Barro and 
Lee [17] make use of a lumped-parameter model to simulate 
the shaft dynamics, while Polic et al. [18] introduce also 
an alternative modal-parameter model of the shaft, using 
the bond-graph method. The models presented by Batrak 
et al. [16] and Polic et al. [18] also take into account the 
dynamics of diesel engines with a speed controller. Polic 
et al. [18] present an extensive analysis of the sensitivity of 
the bond-graph model to the system parameters. These stud-
ies have provided insights into the modeling of the dynam-
ics of Polar Class ship shafting systems. Nevertheless, the 

state-of-the-art literature review shows that any variation 
of the load scenarios as a function of the Polar Class and 
their effect on the shafting system’s dynamic response have 
not yet been investigated. Furthermore, a guidance on the 
minimum number of lumps to properly model the dynamic 
transient behavior of a flexible shaft has not been provided.

This paper presents the recent outcomes of ongoing 
research between Memorial University of Newfoundland 
and the Harsh Environment Technology Center (HETC) of 
ABS on the development of a procedure for assessing the 
TTVA of Polar Class shafting systems. Here, we focused 
on modeling of the mass-elastic properties of a shafting 
system as a system of lumps, rather than the other relevant 
subsystems.

The authors present the results of a sensitivity analysis 
on a general two-lumps shaft, aiming to give guidance for 
the minimum number of lumps to describe the transient 
dynamics of a generally shaped flexible shaft. Later, we 
consider a shafting system from an R-Class icebreaker and 
we present the transient torque response using the same pro-
cedure applied to the developed lumped-mass model and a 
finite-element model. The loads are varied for all the load 
cases considered in the Polar Class rules. Influence of the 
main simulation parameters is considered on this simula-
tion. Finally, we discuss and compare the results for the two 
models of the case study in order to get useful indications 
for future work and proper modeling.

2 � Methods

The task of modeling the torsional vibration and the torque 
response in the shaft of a Polar Class ship requires the 
thorough description of each subsystem of the propulsive 
machinery. When a diesel engine is considered, the model 
requires a high level of detail. This means that transient 
engine characteristics such as the air intake, turbocharger, 
combustion, injection, governor and reciprocating mass are 
required to be included in the model [19]. Also, the exist-
ence of a z-drive propulsion unit calls for modeling the 
presence of gearboxes. In the following work, the authors 
concentrated on the proper modeling of the shaft behavior 
not considering the influence of speed control systems on 
the shaft response.

For this reason focus was put on a procedure to model a 
generally gear-branched shafting system driven by an elec-
tric motor. Thus, for the current application of the methodol-
ogy, the presence of the speed controller was not modeled, 
assuming that the synchronous motor is delivering a constant 
power. The delivered torque was modeled accordingly, and 
adding a torque cap Qmot,0 for low motor speeds, as shown in 
Fig. 2, in such a way, in the transient simulation, the speed 
drop due to the ice impact is eventually modeled.

Engine Charactheristics

Ice Milling

Shaft Response

Torque Impact Load

Fig. 1   The response of the shaft, depending on the behavior of the 
single propulsive machinery subsystems
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2.1 � Lumped parameters model

The dynamics of a flexible shaft was modeled using the clas-
sic approach of a linear lumped masses system [20]. In this 
approach, the mass is lumped at the shaft ends and at loca-
tions where relevant rotary masses are present (flywheels, 
bearing disks, gears). These locations, called nodes, are 
assigned with a polar moment of inertia I and a degree of 
freedom (DOF). The latter is the rotation about their axis 
�(t) , a function of time. The mass of the shaft is included in 
the lumps, split in half between adjacent nodes, as shown 
in Fig. 3.

The torsional elastic behavior of the shaft is modeled 
using classical beam theory to obtain an equivalent torsional 
stiffness k from node to node. The presence of tapers, steps 
and hollow sections in the shaft between node is accounted 
for using the concept of series of equivalent torsional stiff-
ness [21].

Linear viscous damping torque proportional to the rela-
tive velocity between adjacent nodes is used to model the 
damping of the material, called relative damping [16]. The 
latter is assumed to be proportional to the shaft equivalent 
stiffness. Hence the relative damping coefficient for the 
generic shaft element (i, shaft) can be written as:

where � is a rotation phase velocity and ki,shaft is the tor-
sional equivalent stiffness of the considered shaft element. 
The coefficient � is a damping ratio for the shaft material 
representative of the ratio of damping torque to the elas-
tic response torque. Viscous damping can be also applied 
directly to the rotating lumps and is called absolute damping.

The dynamics are represented via the classic equation of 
motion:

where [I] is an inertia matrix, [C] is a damping matrix. [K] 
is a singular stiffness matrix, �(t) is a load vector of external 
torques applied at nodes and �(t) is the nodal rotation vector. 
The matrices are assembled using a finite element procedure 
for gear-branched shafting systems [22].

2.2 � Loads treatment

The external loads are the hydrodynamic open water torque, 
the impact torque acting on the propeller(s) and the delivered 
torque by the motor(s), applied at their respective nodes.

The hydrodynamic load of the propeller is modeled with a 
simple power law, depending on the rotation rate of the node. 
The propeller during the ice milling sequence is operating in 
an unsteady state. The adsorbed torque curve is steeper than 
the open water one. The exponent for the propeller power 
law is taken such as the adsorbed torque is function of power 
higher than 2 of the propeller rotation rate, according to the 
Archer number A [23, 24]. Assuming that more than one 
propeller can be present in the shafting system, the adsorbed 
torque law for the node (p, i) is then written as:

where the constant cQ0
 depends on the propeller open water 

characteristics, and a is an exponent that is taken to be big-
ger than 2. Archer’s Number A is calculated by A = 9.55a . 
A ≈ 20 for most of the conventional propellers in steady-
state operation.

The impact torque is provided by the Polar Class rules from 
ABS [15], and is a function of the angular position at the pro-
peller node, implicitly depending on time. The torque loading 
is given by a sequence of half-sine impacts given by the fol-
lowing function:

Depending on the Polar Class (7–1) and the impact cases 
(1–3), the coefficients Cq , �i and the maximum impact 
torque Qmax are given, as well as the number of impacts in 

(1)ci,shaft =
� ki,shaft

�
,

(2)[I] �̈(t) + [C] �̇(t) + [K]�(t) = �(t),

(3)Qhydro(𝜃̇p,i(t)) = cQ0
𝜃̇ a
p,i
(t),

(4)Qimp(�p,i(t)) = Cq Qmax sin

(
�p,i(t)

180

�i

)
.
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Fig. 2   Electric motor-delivered torque characteristic

I  /2

lumplump shaftshaft shaft

ci-1i-1k cki+1 i+1cki i

iI

i-1C Ci

I
I    /2s,i-1 I    /2s,i+1

i-1

s,i

Fig. 3   Lumped masses model of a portion of the shaft: k is the shaft 
equivalent stiffness, c the relative damping, Is the moment of inertia 
of the shaft, I the moment of inertia of relevant lumps at nodes and C 
the absolute damping
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the propeller–ice interaction sequence. Both ice impact and 
hydrodynamic loads are summed and applied to the propel-
ler loads can then be summed up in a unique torque load at 
the generic propeller at node (p, i) the torque load can be 
defined as:

As outlined before, assuming that the model can present 
more than one motor, the delivered torque from the electric 
motor at the generic node (e, j) with spin velocity �e,j(t) is 
modeled according to a constant delivered power law. For 
lower speeds, a torque cap Qeng,0 for the delivered torque is 
introduced. The delivered engine torque as function of the 
rotation rate is then expressed via the following definition:

where the speed range from 0 ≤ 𝜃̇ ≤ n1 presents a constant 
delivered torque behavior and the range n1 < 𝜃̇ ≤ nmax pre-
sents constant delivered power behavior. n1 , nmax represents 
limit rotation rate for the motor delivered torque behavior. 
Pmot is the delivered power from the engine, that as men-
tioned before, is considered constant and set to the value 
of interest (i.e., rated power). The data regarding the torque 
motor characteristics are usually provided by the motor’s 
manufacturer. The torque law described in Eq. 6 is shown 
in Fig. 2.

2.3 � Time solution

The solution for the set of n (= number of nodes) second-
order ordinary equations is done solving a state space formu-
lation. The latter is a set of 2n first-order ordinary differential 
equations [25], that can easily be solved with any implicit or 
explicit time integration algorithm. In this case, an explicit 
Runge–Kutta algorithm implemented in MATLAB® is used 
to solve the differential equations.

The initial condition for the time solution are set so that 
the system nodes are spinning at the set rated speed and the 
system is twisted due to the steady-state torque load over 
the shaft.

At each time step, the load level at the motor and pro-
peller nodes is updated taking into account the current 
level of displacement and velocity. Since the loads, follow-
ing Sect. 2.2, implicitly depend on time, at each time step 
the loads are interpolated from the defining functions that 
depend on the nodes’ displacements and velocities at the 
start of the time step.

Once the solution is obtained, the displacement and 
velocity at the nodes are processed to obtain the torque 

(5)Qprop,(p,i)(t) = −Qimp(𝜃p,i(t)) − Qhydro(𝜃̇p,i(t)).

(6)Qmot,(e,j)(𝜃̇e,j(t)) =

⎧
⎪⎨⎪⎩

Qmot,0 0 ≤ 𝜃̇e,j ≤ n1

Pmot

𝜃̇e,j(t)
n1 ≤ 𝜃̇e,j ≤ nmax,

response. This is due to the reactive forces of the torsional 
stiffness and relative damping between two adjacent nodes. 
Once the response is calculated, the maximum ( Qpeak ) and 
minimum ( Qmin ) peak torques can be obtained from the time 
series and the torque amplitude, for each shaft component 
is obtained as:

3 � Finite element model

In this research activity, the need of a benchmark case 
to compare the results of the lumped model with, led the 
authors to develop equivalent finite element models of the 
shaft system considered. A commercial finite element code 
(ANSYS®) was used to develop the structural models, using 
two approaches for the structural shaft components:

1.	 Structural solid modeling, using structural brick 3D ele-
ments.

2.	 Structural 3D linear beam elements modeling, given that 
the slenderness of a beam is high enough.

The element size in both cases was tuned so that enough 
divisions were present in the length span of the shaft to 
capture properly the first 10 torsional modes. For the solid 
models, only regular mapped meshing is used, so that nodes 
in the longitudinal span are lying in the cross sections.

The lumps were modeled with point masses provided 
with mass and moments of inertia equivalent to the actual 
mass distribution of the corresponding lump. The structural 
damping can be modeled according to these two approaches 
[26]:

1.	 Using Rayleigh damping, and setting the damping 
matrix proportional to the stiffness 

2.	 Using a constant critical damping ratio � , if the solu-
tion to response in both frequency and time domain are 
obtained using modal superposition.

The loads for the time domain solution, likewise the lumped 
model in Sect. 2.2, are interpolated from their definition 
using the levels of the degrees of freedom at the end of the 
previous time-step. The torque moment response is calcu-
lated in the post-processing phase. In a cross section of the 
shaft, the nodes are selected. The contribution of the struc-
tural elements connected on one side is then summed. In this 
manner, the total torque moment acting on one cross section 
side is obtained, for each time-step. For internal balance this 
moment is equal to the one on the other side.

(7)QA = |Qpeak − Qmin|.

(8)[C]FEM =
�

�
[K]FEM.
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4 � Sensitivity analysis

Once the methodology was set and the procedure verified 
using the available literature, the authors performed a sen-
sitivity analysis for the model. A two degrees of freedom 
(2-DOFs) shaft with point masses at both extremities was 
modeled. The authors believe that this example was mean-
ingful, since it is the minimum representation of a marine 
shafting system, usually consisting of a propeller and a 
motor that can be represented as point masses at the oppo-
site extremities of a shaft. This model, as shown in Fig. 4 is 
described through the moments of inertia from point masses 
at the end nodes I1 and I2 , that are connected via a cylin-
drical shaft of length L and diameter D, respectively. The 
material properties were selected in the general case of a 
steel shaft, i.e., Esteel = 210 GPa and �steel = 7850 kg/m2 . 
The inertia of the shaft Ishaft , the damping and equivalent 
torsional stiffness of the shaft can be obtained from first 
principle formulas.

The aim of this analysis is to investigate the minimum 
requirement on the parameters sets to properly assess the 
dynamics of the system. The lumped model created follow-
ing this paper’s procedure is benchmarked against an equiva-
lent finite element model developed in ANSYS® for the same 
basic shafting system. The latter is modeled using solid brick 
elements for the shaft, and two point masses representing the 

point masses at the ends, with equivalent mass properties of 
a thin cylindrical flywheel.

The criteria used to compare the models are the following:

1.	 Match of the system’s undamped natural frequencies
2.	 Match of the frequency response function for the torque 

response
3.	 Match of the transient response to a single ice impact

4.1 � Parameters variation matrix

Four main dimensional parameters were identified: I1 , I2 , 
Ishaft , L, D. Three dimensionless parameters were used for 
variation in the analysis: I1∕I2 , I1∕Ishaft , L / D. The param-
eters outlined are varied as detailed in Table 1.

The finite element models created in this sensitivity anal-
ysis present three degrees of freedom for each node, due to 
the use of solid bricks to model the flexible shaft between 

Fig. 4   Outline of a generic 
lumped 2-DOFs shafting model 
for the torsional vibrations and 
modeling using commercial 
finite element

Table 1   Variation of the nondimensional parameters for the sensitiv-
ity analysis of the 2-DOFs system

Parameter Values

I1∕I2 1, 5, 10, 15, 20
I1∕Ishaft 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60
L / D 2, 5, 10, 15, 20, 25
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two lumps. Thus, a modal analysis will produce not only the 
torsional modes, but also, for instance, the bending modes 
of the shaft. The lumped model of the same has only two 
nodes with one degree of freedom (i.e., the rotation about 
their axis) and thus 2-DOFs only. The dynamics of such 
an unconstrained 2-DOF system is fully described by only 
two natural modes, a rigid motion with zero frequency and 
a torsional mode. For this reason, a comparison is provided 
only for the first torsional mode.

4.2 � Results of the sensitivity analysis

The outcome shows important results for proper modeling 
a shaft. It is often reported in literature that the assump-
tion of lumped masses is consistent as long as its moment 
of inertia is small compared to the adjacent point masses 
inertias. In this sensitivity analysis it was found that, given 
a threshold of 5% on the percentage difference of the natu-
ral frequencies, it is consistent to model the shafting with 
lumped masses when I1∕Ishaft ≥ 2 , as seen in Table 2. Above 
the latter threshold, the ratio of the moments of inertia I1∕I2 
and the shaft slenderness ratio L / D does not affect the dif-
ference, but just the magnitude of each natural frequency 
when the parameters are varied. 

Below I1∕Ishaft ≤ 2 , as shown in Table 3 the modeling 
can still be good, given that the ratio I1∕I2 ≥ 10 . This result 
is particularly useful in a shaft that presents two adjacent 

lumps at the ends, one lumped mass several times heavier 
than the other, the lumped assumption is still valid if the 
lightest lump has moment of inertia comparable to the one 
of the shaft.

The response torque in the shaft of an applied torque 
at node 1 was studied as well. In Figs. 5 and 6 the ampli-
tudes of the frequency response functions (FRFs) for the 
aforementioned quantity are presented. The behavior of this 
function to the parameters L / D, I1∕Ishaft and I1∕I2 can be 
synthesized in the statements:

1.	 The second torsional mode has peak amplitude com-
parable to the one from the first torsional mode when 
the mass of the shaft is comparable to the lumps 
( I1∕Ishaft = 2 ) and I1∕I2 is close to unity.

Table 2   Percentage difference (%) in natural frequency between 
lumped and finite element model, 1st torsional mode, I1∕Ishaft = 2

L

D

I1∕I2

1 5 10 15 20

2 5.41 2.63 2.22 2.08 2.01
5 5.42 2.64 2.23 2.09 2.02
10 5.42 2.65 2.24 2.10 2.03
15 5.42 2.65 2.24 2.10 2.03
20 5.42 2.65 2.24 2.10 2.03
25 5.42 2.65 2.24 2.10 2.03

Table 3   Percentage difference (%) in natural frequency between 
lumped and finite element model, 1st torsional mode, I1∕Ishaft = 1

L

D

I1∕I2

1 5 10 15 20

2 10.36 5.65 4.82 4.53 4.38
5 10.37 5.66 4.83 4.54 4.39
10 10.37 5.67 4.83 4.54 4.40
15 10.37 5.67 4.84 4.54 4.40
20 10.37 5.67 4.84 4.54 4.40
25 10.37 5.67 4.84 4.54 4.40
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2.	 The influence of the slenderness L / D is not affecting 
the shape and the amplitude of the peaks, but is shifting 
the peaks in the frequency. Higher L / D will mean lower 
natural frequencies and consequently peaks positioned 
in the lower frequencies band.

The influence of the presence of appreciable response 
from higher torsional mode on the transient damped 
response was inspected. In this case, the system with 
L∕D = 20 , I1∕Ishaft = 2 , I1∕I2 = 1 was selected, in order 
to have low natural frequencies and second torsional (and 
higher) mode response comparable to the one from the 
first. Its transient response to a single half-sine impact 
applied to node 1 was calculated, using two different 
impulses with impact time span Δ�imp = 0.001 − 0.01s . 
The first was used to excite a large range of frequencies 
and modes, while the second was used to excite mainly the 
first torsional mode. The response was calculated for both 
the lumped and finite element model, the latter presenting 
the modes higher than the first torsional. In Figs. 7 and 8, 
the comparison of the two models is presented for both 
Δ�imp . The behavior of the simulated curves is quite dif-
ferent when the higher modes are included in the response. 
Appreciable differences are seen in the maximum and 
minimum peaks of the transient response (Fig. 7). Hence 
when modeling an n-DOFs lumped model, it is important 
to include and properly model at least the presence of the 
first few higher modes, and to check the presence of appre-
ciable higher torsional modes in the frequency response 
functions. A time lag on the free vibration after the impact 
is found due to the difference on first torsional mode for 
the two models (around 5).

5 � Case study: R‑Class icebreaker

With the knowledge on modeling built up during the sensi-
tivity analysis, the authors selected a case study. This was 
identified in an existing R-Class ice breaker from the Cana-
dian Coast Guard, and the preliminary results of this analysis 
were presented in [27]. This vessel was built in the 1980s, 
and have proven to be a reliable and robust design for the 
Arctic navigation. The propulsive system is driven by an AC 
synchronous electric motor (Table 4). The outline is shown 
in Fig. 9. 

A solid cross-section steel shaft is connecting the prime 
mover to the propeller hub. The coupling to the motor is 
direct, with no torsional damper or elastic coupling. The 
shaft is arranged in three sections, from the propeller to the 
aft bearing of the motor: a tailshaft extending for a portion 
in the machinery space, an intermediate shaft and the motor 
shaft. The tailshaft is supported by sea-water lubricated 
bearings in the sterntube. No bearing is present between the 
forward sterntube bearing and the motor thrust bearing. The 
tailshaft and intermediate shaft are linked with a tapered fit 
coupling. On the aft section of the terminal flange a brake 
disk is installed. The intermediate shaft is coupled via a 
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Table 4   Main dimensions and characteristics of the R-Class ice 
breaker

Symbol Quantity Value

LOA Length overall (m) 99.8
Z Number of blades 4
Dprop Propeller diameter (m) 4.12
dprop Bossing diameter (m) 1.1151
P0.7R Propeller pitch (m) 3.3045
Pmot Rated motor delivered power (MW) 6
nmot Rated motor speed (rpm) 180
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flange to the motor shaft, on which a turning gear is present. 
The engine shaft has a thrust collar, a rotor, brushless exciter 
and a forward bearing.

Relevant lumps are identified in the following list 
(Fig. 10):

1.	 Propeller and entrained water
2.	 Tailshaft/intermediate shaft flange and brake
3.	 Turning gear
4.	 Thrust bearing collar and pads
5.	 Rotor
6.	 Brushless exciter

7.	 Oil disk/forward motor bearing.

5.1 � Mass‑elastic system

In order to evaluate the lumped model parameters, some 
assumptions are made. The shaft couplings are assumed to 
be stiff enough to be modeled as rigid connections and no 
flange or taper fit connection stiffness is considered. The rel-
evant lump locations are used for placing the model’s nodes. 

Table 5   Mass-elastic data from the shafting system

Node name Lumped moments of inertia (kg m2)

Propeller 16499
Tailshaft node 1 477
Tailshaft node 2 738
Brake and flange 1008
Turning gear 207
Thrust Pad 316
Rotor 10634
Brushless exciter 99
Oil disk 15

Shaft element
Stiffness 

(
MN

rad

)
Rel. Damp. 

(
Nm s

rad

)

Tailshaft 1 64.030 33478
Tailshaft 2 271.325 14187
Tailshaft 3 319.346 16697
Intermediate shaft 221.177 11565
Motor input 700.821 36643
Motor shaft 1 329.330 17219
Motor shaft 2 323.500 16915
Motor shaft 3 279.471 14613

Fig. 9   Outline of the case study shafting
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Tailshaft 3
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Oil Disk

Brake & Flange

Propeller

Rotor

Brushless Exciter

Thrust Pad

Turning Gear
Motor Input

Motor Shaft 1

Motor Shaft 2

Motor Shaft 3

Tailshaft Node 1

Tailshaft Node 2

Tailshaft 1

Fig. 10   R-class shafting system lumped model with names of lumps 
and shaft sections



641Journal of Marine Science and Technology (2018) 23:633–646	

1 3

Since the tailshaft section has an high moment of inertia 
for the shaft so that the ratio Ibrake∕Ishaft ≤ 2 , the latter is 
subdivided in two sections. Hence two additional nodes, at 
which the mass of the shaft is lumped, are placed between 
the propeller and the brake disk. Equivalent torsional stiff-
ness is calculated in between nodes, and the mass-elastic 
data are reported in Table 5.

The damping is calculated according to Eq. 1, using a 
phase velocity equal to � = 2�f1st tors , that corresponds to 
the lower torsional mode natural frequency. A dimensionless 
damping ratio � = 0.005 was used.

5.2 � R‑Class loads characteristics

The torque loads are applied to the rotor node (driving 
torque) and the propeller node (Open water load and ice-
impact torque). This also means that a part of the shaft is 
unloaded. The mapping of the torque motor to the rota-
tion speed is done according to Eq. 6, using the specifica-
tion from the actual motor. The characteristic is showed in 
Fig. 11.

The propeller adsorbed torque is modeled according to 
Eq. 3. The Archer coefficient used to model the exponent of 
the power curve was set to 20. The characteristic curve of 
adsorbed torque is presented in Fig. 11.

The impact torque is provided by the Polar Class rules 
from ABS for each impact case and Polar Class.

5.3 � Calculation setup

The aim of the analysis is to compare the transient response 
of the developed lumped model to the ice impacts with the 
response of the finite element model. The comparison has 
been produced for each Polar Class (1–7) and each impact 
case (1–3) and consisted in calculating the maximum peak 

torque in the shaft elements Qpeak and the maximum torque 
amplitude QA as defined in the Polar Class rules.

Solid brick and a beam finite element models modal 
analysis was used to justify the usage of a beam model in 
the calculation of a transient response. This is because the 
latter model has slightly lower computational times for the 
transient response. Proper boundary conditions were placed 
in order to simulate the bearings in the tailshaft and on the 
motor shaft.

In order to include the first four torsional modes in the 
response, the time step of the solution for the finite element 
model was set to Δtcalc,FE = 1∕500 s . A lower time step 
Δtcalc,FE = 1∕1200 s was also used to study the influence of 
this parameter to the response and hence the inclusion of 
higher modes. In the lumped model the time step for the tran-
sient solution is set to a lower value ( Δtcalc,Lump = 4.5 10−4 s). 
This is done for a twofold reason:

1.	 The solver implemented in MATLAB® is explicit, hence 
requires a little time-step for the stability of the solution

2.	 Such a little time step includes all the modes predicted 
by the lumped model.

5.4 � Ice impact loads

The shape of the impact torque, depends on the Polar Class 
and on the impact case. The impact amplitudes ramp up 
of 270◦ at the beginning of the sequence and ramp down 
for 270◦ at the end. The amplitude of the torque impacts 
depends on the propeller characteristics, on the Polar Class 
(higher torques are prescribed for the higher class) and on 
the impact case (each impact case has a different amplitude 
magnifier). The number of ice impacts are described thor-
oughly by the Polar Class (by the size of the ice block) and 
impact case. For the latter, impact case 1 and 2 consider a 
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single impact per blade passage on the milling of the ice 
block, while case 3 considers two impacts on one blade per 
blade passage. For the case study, the number of impacts 
are reported for each considered condition in Table 6.

If the impacts were to happen at constant rotation rate 
(as shown in Fig. 12 for Polar Class 5) the most of the 
energy of the impacts would be concentrated at the blade 
passage frequency and higher harmonics, as well as the 
zero frequency, representative of a mean impact torque. 
For impact case 3 the energy would be concentrate at dou-
ble the blade passage frequency and higher harmonics, 
since the impacts are doubled for each blade passage. In 
reality, due to the speed drop shown in Fig. 13, the peaks 
will smear and shift to lower frequencies, this effect being 

more accentuated the more the speed is dropping (and 
hence slower impacts).

5.5 � Results from the transient analysis

The first results to be presented are the natural frequencies 
from the modal analysis. The finite element solid and beam 
model results were compared with the lumped masses for 
the match of the torsional modes.

In Table 7 it can be seen that the error is minimum for 
the first torsional mode (in the order of 1% ) and increases 
with the higher modes, but still acceptable up to the third. 
It was considered consistent to use the finite element beam 
model to calculate the transient, since it was close to the 
solid model in the natural frequencies and hence in the 
description of the model’s dynamics. This reduced drasti-
cally the computational time when running the finite element 
code. Calculation times for the beam finite element model 
at different time steps and the lumped models are shown in 
Table 8.

Table 9 reports the maximum peak torque Qpeak and the 
torque amplitude QA in the transient response as defined by 
the Polar Class rules. The values presented in the results for 
Polar Class 1–4, impact case 1 are the same. This is due to 
the fact that, for the case study considered, the maximum 
impact torque Qmax and the ramp up of the values of the first 
impacts are the same for the aforementioned Polar Classes 
(for this particular vessel), even though the overall number 
of impacts is different. The maximum and minimum peak 
response torque are placed usually during the ramp up and 
ramp down of the torque impacts, producing the same values 
for the aforementioned load cases.

The maximum peak torque and amplitude for the transient 
response torque of impact case 2 of Polar Class 1–4 are not 
reported. This is because the delivered motor torque is not 
able to overcome these impact load scenarios. The shaft is 
hence decelerating, and eventually stopping. Even after this, 
the overall loads on the shaft yield to a further decelera-
tion of the shaft, that reverse the spin. A transient response 
can be calculated, but no clear maximum peak torque or 
amplitude can be extracted, since the torque response lead 
a periodical steady-state pattern, as shown in the response 
time-history in Fig. 14, as the shaft speed fluctuate between 
forwards and backwards spin velocities. This pointed out 
an issue with the modeling of impacts that eventually lead 
to the aforementioned spurious shaft dynamic response. No 
statement is found on this case in the Polar Class, or about 
any propulsive power minimum requirements. The ice torque 
impact law defined in the rules assumes that the impacts 
are happening in sequence without the propeller stopping 
or spinning backwards.

This behavior can be expected also for models that 
include a speed governor, since for electrical motors a torque 
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Table 6   Number of impacts for the case study

PC Polar Class, IC impact case

PC IC No. of imps. Qmax (kN m)

1 1, 2 32 1110
3 64

2 1,2 28 1110
3 56

3 1, 2 24 1110
3 48

4 1, 2 20 1110
3 40

5 1, 2 16 952
3 32

6 1, 2 14 610
3 28

7 1, 2 12 515
3 24
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limiter is always present in the speed control algorithms. 
The maximum deliverable torque can be reached and the 
ice impact torque can exceed this value as the Polar Class 
is increased.

The maximum differences in Qpeak and QA among the 
whole shaft span were extracted from the torque response 
time history for each loading case, as shown in Table 10. 
The maximum peak response torque Qpeak shows the best 
behavior in terms of percentage differences between lumped 
and finite element models, leading to a maximum difference 
around 3–4%. Larger differences were found in the results 
related to Polar Class 6 and 7. As far as Polar Class 7 is 
concerned, the maximum difference in torque amplitude 
QA is 12% , in the case of Δt = 1

500
 , and 13% in the case of 

Δt =
1

1200
 . The maximum torque amplitude QA is found dur-

ing the ramp down of the impact loads, as seen in Figs. 15 
and 16. It is worth pointing out that in these cases higher 
torsional modes contribute to build up the difference in peak 
and minimum transient torques. This happens because the 
speed drop is smaller for Polar Class 6 and 7, when com-
pared to higher Polar Classes, and this implies that the 
down-shift of the harmonic peaks from the blade passage 
frequency and harmonics is also smaller. Therefore, higher 
modes are excited.

In order to understand better the influence of the tor-
sional modes on the total response, we calculated the fre-
quency response function of the system. Figure 17 shows the 

mobility response functions calculated at ‘Thrust Pad’ node 
when a unitary torque is applied at the ‘Propeller Node’. The 
comparison of the frequency response functions shows that 
the lumped model properly simulates the first torsional mode 
of the shaft system. We can also notice the lower mobility in 
correspondence of the second and third mode of the lumped 
model, while the two frequency response functions do not 
match at higher frequencies. This behavior of the mobility 
functions was observed for each mobility function calcu-
lated at each node of the shafting system, and is causing the 
higher transient response of the lumped model in the peak 
and minimum reaction torques. The authors think that this 
is likely due to the Rayleigh-like damping that considers 
only terms proportional to the stiffness, which are usually 
responsible for the higher frequencies damping only. 

6 � Conclusions

A procedure for modeling a lumped model of shafting sys-
tems intended for the assessment of torsional ice-impact 
loads was developed and presented in the paper. The pro-
cedure is based on proven literature, and provides a meth-
odology to model the mass-elastic model of the shafting 
system driven by an electric motor and the loads acting dur-
ing the transient loading from a sequence of ice-impacts as 
described by the ABS Polar Class rules.

The relevant parameters affecting the dynamics of the 
system were studied in a sensitivity analysis on the simplest 
case of a 2-DOFs lumped model in comparison to an equiva-
lent finite element model. The relevant parameters were the 
moments of inertia ratios and shaft slenderness. In order to 
consistently assume lumped masses in a shaft, the optimal 
moment of inertia ratios were found. The slenderness ratio 
did not affect the correctness of the assumption, but merely 
shifted the natural frequencies. The response to a single 

Table 7   Torsional modes natural frequencies comparison for R-Class icebreaker

Natural frequencies

Modes Lump. Mod. FEM solid FEM beam

1 14.81 14.59 14.87
2 64.82 61.11 62.09
3 144.32 136.11 139.01
4 177.20 195.91 198.50

Percentage difference (FEM beam vs lumped model)

Modes Lump. Solid Lump. Beam

1 1% 0%
2 6% 4%
3 6% 4%
4 − 11% − 12%

Table 8   Computational times for the transient responses

Δtcalc is the constant time step for the transient solution

Model Δtcalc (s) Computational time (s)

Lumped ≈
1

4500
≈ 9E + 02

FEM beam element 1

500
≈ 5.4E + 03

FEM beam element 1

1200
≈ 1.3E + 04
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Table 9   Tabular results from 
maximum peak Qpeak and 
amplitude QA response torques, 
for each performed calculation

PC Polar Class, IC impact case

Lmp. Md. (kNm) FEM beam el.s (kNm) FEM beam el.s 
(kNm)

Δtcalc =
1

1200 s Δtcalc =
1

500 s

PC IC Qpeak Q
A

Qpeak Q
A

Qpeak Q
A

1 1 1106 1094 1118 1122 1109 1106
2 – – – – – –
3 1290 1613 1276 1592 1275 1579

2 1 1106 1094 1118 1122 1109 1106
2 – – – – – –
3 1266 1570 1255 1554 1253 1541

3 1 1106 1094 1118 1122 1109 1106
2 – – – – – –
3 1202 1454 1198 1448 1195 1436

4 1 1106 1094 1118 1122 1109 1106
2 – – – – – –
3 1070 1205 1068 1204 1062 1190

5 1 1049 1096 1053 1108 1046 1096
2 1005 729 999 722 998 720
3 658 430 660 434 657 430

6 1 676 458 678 459 680 464
2 788 552 791 559 788 555
3 461 149 464 163 456 152

7 1 628 400 630 401 631 405
2 620 350 620 353 618 350
3 432 123 424 117 425 113

Table 10   Tabular results from 
maximum peak Qpeak and 
amplitude Q

A
 response torques 

differences between the lumped 
and finite element models, for 
each performed calculation

PC Polar Class, IC impact case
Negative values means that the lumped model values are higher

Δtcalc =
1

500 s Δtcalc =
1

1200 s

IC1 (%) IC2 (%) IC3 (%) IC1 (%) IC2 (%) IC3

Percentage difference Q
A
(%)

 PC1 − 4 – − 3 − 3 – − 2
 PC2 − 4 – − 2 − 3 – − 2
 PC3 − 4 – − 2 − 3 – − 1
 PC4 − 4 – − 4 − 3 – − 2
 PC5 − 3 − 5 − 4 − 2 − 5 2
 PC6 − 6 − 4 − 5 − 7 − 4 11
 PC7 − 6 − 6 − 12 − 7 − 6 − 13

Percentage difference Qpeak (%)

 PC1 −  2 – − 2 − 1 – − 2
 PC2 − 2 – − 2 − 1 – − 1
 PC3 − 2 – − 1 − 1 – − 1
 PC4 − 2 – − 2 − 1 – − 1
 PC5 − 1 − 2 − 2 − 1 − 2 − 1
 PC6 − 3 − 1 − 2 − 3 − 1 2
 PC7 − 3 − 1 − 2 − 3 − 1 − 2
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ice-impact was studied and compared using the lumped and 
finite element models. This showed that the lower torsional 
modes have an influence on the differences between high-
est and lowest transient response torque peaks, which are 
important to the Polar Class rules. Hence the first few higher 
modes must be properly modeled.

Then, the authors applied the presented procedure to 
calculate the transient torque response of the shafting 
system of an R-Class icebreaker from the Canadian Coast 
Guard. The results from the simulations were bench-
marked against the outcomes of FE dynamic analysis. 
The models showed good agreement for Polar Class 
loading cases from 1 to 5, where higher-than-2 torsional 
modes are not contributing consistently to the whole 
transient response.

The research activity pointed out several topics to be 
inspected in future work. Firstly, experiments should be 
conducted in order to collect data from instrumented shafts 
on-board icebreakers. This will allow the researchers to 
understand completely the dynamic response of shafting 
systems subjected to ice-impacts, and thus improve both 
knowledge of the modeling of lumped models and load-
ing on the shafts of Polar Class vessels. This will lead to 
a better understanding of the phenomena related to rela-
tive and absolute damping components (such as propeller 
damping), which was addressed marginally in this work. 
Another future activity is to extend the modeling proce-
dure to diesel engine applications, including the behavior 
of speed-governors.

Acknowledgements  The authors thank the American Bureau of Ship-
ping (ABS), the Research & Development Corporation of Newfound-
land and Labrador (RDC) and Mr. Mike Chaisson from the Canadian 
Coast Guard for their important and kind contribution to the presented 
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