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1 Introduction

It is necessary to know the mechanism of sediment transport 
in coastal area to not only design the coastal structures but 
also understand the features and make best use of coastal 
zone. Coastal structures are generally built on coastal area 
in the nearshore zone, which has a very complex nature. 
In this region, especially in the sandy coast, the sediment, 
which forms the bottom, moves to various directions, as both 
longshore and cross-shore transport. Therefore, the interac-
tion between structures and coast must be well known in all 
of the studies carried out on the coast.

Most of the studies in literature related to cross-shore 
sediment transport focused on the prediction of coastal 
profile geometry. Watanabe et al. [1] analyzed the cross-
shore sediment transport using the laboratory test data on 
two-dimensional beach deformation. Larson [2] developed 
a numerical model to evolution beach profile and to cal-
culate the cross-shore transport rate under random waves. 
Hsu [3] conducted a series of experiments to investigate 
the geometric characteristics of a storm profile. Rozynski 
[4] proposed empirical orthogonal functions to determine 
the characteristic evolution patterns of multiple longshore 
bars at a coastal segment of the Baltic coast. Günaydın 
and Kabdaşlı [5] carried out an experimental investigation 
of coastal erosion under the effect of regular and irregu-
lar waves. The results of the study suggest that the wave 
types, whether regular of irregular, were not effective in 
describing the geometric characteristics of coastal erosion. 
Günaydın and Kabdaşlı [6] also investigated bar geometry 
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using both regular and irregular waves and proposed new 
empirical formulas to determine the geometric parameters. 
Kömürcü et al. [7] studied cross-shore sediment movement 
and coastal profiles using a physical model. They proposed 
dimensional and non-dimensional equations by regression 
methods through the experimental data. Kömürcü et al. [8] 
obtained 80 experimental data for offshore bar geometric 
parameters. The experimental results in the study were 
evaluated by the genetic algorithms. Özölçer [9] performed 
experimental study to determine coastal erosion geometry 
under the influence of the regular waves and proposed the 
regression equations. Demirci and Aköz [10, 11] carried 
out the experiments to investigate the geometrical charac-
teristics of beach profiles under storm conditions. Demirci 
and Aköz [12] also developed non-dimensional equations 
to determine various bar geometric parameters using linear 
and non-linear regression methods through the experimental 
data. Demirci et al. [13, 14] investigated bar volumes caused 
by cross-shore sediment transport using experimental data 
with regular waves.

A few studies have been performed to evaluate the tem-
poral variation of cross-shore sediment transport. Kankal 
[15] studied the temporal variation of cross-shore sediment 
transport using a physical model and performed regres-
sion analysis to determine temporal rate coefficient. Kankal 
et al. [16] conducted regression and artificial neural network 
(ANN) analysis to obtain empirical temporal rate coefficient 
and concluded that the ANN gave better results than regres-
sion analysis.

Nowadays, ANN has become one of the most effec-
tive and reliable modeling techniques in different research 
areas. The model with hybrid ANN approaches has 
increased considerably due to their power to solve dif-
ferent problems. The use of these models not only sig-
nificantly improves the performance of models, but also 
resolved different types of problems with more accurately 
[17]. Although ANN approaches have found wide variety 
of application in solving problems related to coastal engi-
neering [18], studies using hybrid ANN models in this 
area are few [19–21]. Artificial bee colony (ABC) and 

especially teaching–learning-based optimization (TLBO) 
are recently proposed meta-heuristic methods which are 
generally used to solve combinatorial optimization prob-
lems [22]. In this study, novel, simple and robust optimiza-
tion algorithms called TLBO and ABC were used to find 
optimum coefficients in the ANN analysis.

The main purpose of the present study is to investigate the 
ability of ANN models including different training algorithm 
namely TLBO, ABC, and back propagation (BP) for predict-
ing temporal rate coefficient (α) of bar volume. Initial bed 
slope (m), wave height (H0), wave period (T) and grain size 
(d50) obtained from experimental study were used as input 
variables in the models. To the best of our knowledge, this is 
the first study related to coastal engineering in the literature 
that used the TLBO and ABC algorithms in the training 
procedure of ANN approach.

2  Experimental design

2.1  Apparatus and measuring method

The experiments were performed at the wave flume facil-
ity of Karadeniz Technical University, Trabzon, Turkey. 
The wave flume featured dimensions of 30 m length, 1.4 m 
width, and 1.2 m depth. The wave generator is located at 
the beginning of the flume, which has a sandy beach model 
at the end (Fig. 1). The wave characteristics were measured 
using three wave gauges and recording units. In each case, 
reflection coefficients in the experiments were estimated to 
be less than 7.1% (actually it changes between 2.2 and 7.1%). 
The flume was divided into 70 longitudinal sections and each 
section was divided into three horizontal measuring points 
(i.e., three depths were measured and averaged in a section) 
and 210 total points were measured during an experiment 
(Fig. 2). A uniform measurement grid of 20 × 20 cm was 
surveyed within the mesh. At each point and time of interest, 
sand elevations above the basin floor were simply measured 
[7, 8, 16].

Fig. 1  Wave flume used in 
experiment
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2.2  Wave conditions and experimental implementation

The experiments performed to investigate the variation 
in the coastal profile under different scenarios. A Froude 
model scale of 1:25 under undistorted conditions was 
designed to prepare the experimental studies. Monochro-
matic waves were used in all experiments. Wave condi-
tions were chosen to be between a maximum and minimum 
to originate the erosion profile, as would be in nature, in 

order to examine the considered parameters. The seven 
deepwater wave heights (H0), two wave period (T), three 
initial bed slopes, and four granular materials were cho-
sen as seen in Table 1. The specific gravity of the granu-
lar materials was 2.55 t/m3. The uniformity of materials 
is important aspect for sediment transport. As materials 
uniformly distributed around the same diameter closely 
move each other, the determination of diameters in these 
materials is, therefore, strictly considered.

Fig. 2  Measurement mesh in 
wave flume

Table 1  Experiment conditions

The bold experiment numbers represent 10 cases for testing set in ANN models

Exp. no m T (s) H0 (m) d50 (m) Exp. no m T (s) H0 (m) d50 (m)

01 0.1000 1.46 0.065 0.00018 27 0.0667 2.03 0.200 0.00018
02 0.1000 1.46 0.115 0.00018 28 0.0667 1.46 0.065 0.00026
03 0.1000 1.46 0.200 0.00018 29 0.0667 1.46 0.115 0.00026
04 0.1000 1.46 0.230 0.00018 30 0.0667 1.46 0.200 0.00026
05 0.1000 1.46 0.260 0.00018 31 0.0667 1.46 0.230 0.00026
06 0.1000 1.46 0.300 0.00018 32 0.0667 1.46 0.300 0.00026
07 0.1000 2.03 0.115 0.00018 33 0.0667 2.03 0.200 0.00026
08 0.1000 2.03 0.160 0.00018 34 0.0667 1.46 0.115 0.00033
09 0.1000 2.03 0.200 0.00018 35 0.0667 1.46 0.200 0.00033
10 0.1000 1.46 0.160 0.00026 36 0.0667 1.46 0.300 0.00033
11 0.1000 1.46 0.230 0.00026 37 0.0667 2.03 0.115 0.00033
12 0.1000 1.46 0.300 0.00026 38 0.0667 2.03 0.160 0.00033
13 0.1000 2.03 0.115 0.00026 39 0.0667 2.03 0.200 0.00033
14 0.1000 2.03 0.160 0.00026 40 0.0667 1.46 0.160 0.00040
15 0.1000 1.46 0.115 0.00033 41 0.0667 1.46 0.260 0.00040
16 0.1000 1.46 0.160 0.00033 42 0.0667 1.46 0.300 0.00040
17 0.1000 1.46 0.200 0.00033 43 0.0400 1.46 0.115 0.00018
18 0.1000 1.46 0.230 0.00033 44 0.0400 1.46 0.160 0.00018
19 0.1000 2.03 0.115 0.00033 45 0.0400 2.03 0.115 0.00018
20 0.1000 1.46 0.160 0.00040 46 0.0400 2.03 0.160 0.00018
21 0.1000 1.46 0.230 0.00040 47 0.0400 1.46 0.115 0.00026
22 0.1000 1.46 0.300 0.00040 48 0.0400 1.46 0.160 0.00026
23 0.1000 2.03 0.200 0.00040 49 0.0400 2.03 0.115 0.00026
24 0.0667 1.46 0.065 0.00018 50 0.0400 1.46 0.115 0.00033
25 0.0667 1.46 0.115 0.00018 51 0.0400 1.46 0.160 0.00033
26 0.0667 1.46 0.300 0.00018 52 0.0400 2.03 0.160 0.00033
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There is also a relationship between experimental time 
and erosion parameters. The experimental time was con-
firmed during a preliminary experiment for each slope to 
find the time for the erosion profile to reach equilibrium. 
This duration was determined by several criteria: main-
tain the initial erosion point, equilibrium point and final 
bar point, decrease the total quantity of moving material 
to below a certain ratio, and move materials with the same 
slope; the experiment time was chosen 12 h for 1/10 beach 
slope, while it was selected 14 h for 1/15 and 1/25 slopes 
[7, 8, 16].

3  Methodology

3.1  The ANN approach

Many researchers and scientists have applied neural network 
techniques in predicting the coastal dynamic processes like 
wave parameter estimation, tidal prediction, coastal struc-
tural design and storm surge. They have achieved better 
results as compared to that using mathematical models like 
statistical tools, ARMA model and regression models. It is 
found that the neural networks are reliable and gives accu-
rate results [23].

The input and output data using in the training and testing 
process of ANN models are normalized between 0.1 and 0.9. 
The maximum and minimum values of the input data can 
be obtained from the Table 1 for the normalization process. 
The minimum and maximum values of the α value were 
0.115 and 0.592, respectively. In this study, the architecture 
of ANN models were generated by using the multilayer feed 
forward NN and a three-layer network with one hidden layer 
was selected. The different number of neurons from five to 
20 with an incremental of five was trialed to assign the opti-
mum number neurons of the hidden layer. Hyperbolic tan-
gent sigmoid (input layer → hidden layer) and linear (hidden 
layer → output layer) transfer functions were used within the 
network. The number of maximum epoch was set to 15,000 
for BP and 5000 for TLBO and ABC algorithms. The mean 
square error (MSE) goal was selected as 8 × 10−8.

3.2  The data used in the ANN approach

In this study, experiment data including m, d50, T, and H0 
were used as independent variables to calculate α coeffi-
cient. The data used in the ANN models were divided into 
two parts: 42 data were reserved for network training and 
the remaining 10 data were used to test the network. All 
the independent variables were obtained from experimen-
tal studies. The dependent variable α was obtained by the 
experimental results with the help of some calculations 
given below.

As a bar moves offshore, it increases in volume to 
approach an equilibrium size. Since equilibrium bar volume 
was not entirely reached in some cases, a simple expres-
sion of exponential type was least-square fitted to the data 
for each case to obtain an objective method for determining 
equilibrium bar volume. Generally, an expression of expo-
nential type is employed in growth problems where an equi-
librium state exists [24]. In this expression, the bar volume 
(V) is assumed to grow toward the equilibrium volume (Veq) 
according to

where t and α are time and an empirical temporal rate coef-
ficient, respectively. α value controls the speed at which 
equilibrium bar volume is attained; a large α value produces 
a rapid response toward equilibrium. Several experimental 
studies have showed that equilibrium bar volume is most 
closely related to deep-water wave height, sand grain size (or 
fall speed), and initial beach slope. Various studies were also 
performed to relate α to some wave, sediment, and beach 
parameters [16, 24].

3.3  Assessment of model performance

The performance of a trained ANN model is evaluated using 
the average relative error (RE) and root mean square error 
(RMSE) and mean absolute error (MAE) as follows:

where OANN is the α coefficient values obtained from the 
ANN models and Or is the real α coefficient values.

3.4  Back propagation (BP) algorithm

BP-ANN developed by Rumelhart et al. [25] is the most 
representative learning model for the ANN [26]. BP algo-
rithm consists of mainly two activities: Forward pass and 
backward pass. In forward pass, the activities are propagated 
from input layer to hidden layers to output layer. In backward 
pass, the activity is propagated from output layer to hidden 
layers to input layer for updating the weights in the layers 
[27].
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3.5  ABC algorithm

ABC algorithm is a new population-based metaheuristic 
approach developed by Karaboga [28]. The algorithm based 
on swarm intelligence has been used to solve optimization 
problem considering bee behavior. Honey bees living in 
social order know their job as instinctual. Task of each bee 
belonging to hive is certain. Bees must not digress from this 
task. Storing foods, bringing honey, communication, and 
searching food are bee’s tasks that is given mission in social 
order. Bees living in colonies break down into one of three 
categories: the queen bee, the drones, and worker bees [29].

In the ABC algorithm, the colony of artificial honeybees 
comprises of three groups of bees: employed bees, onlook-
ers, and scouts, among which the number of employed bees 
and onlookers are equal. There is just one employed bee for 
every food source. Put differently, the number of employed 
bees is equal to the number of food sources around the hive. 
The employed bee whose food source has been exhausted 
by the bees becomes a scout. In the flow of algorithm, 
firstly, the amount of nectar is calculated for discovered 
neighbor food sources sending the employed bees to these 
sources. The employed bees search the food sources they 
serve and share information about food sources with the 
scout bees. The scout bees have a tendency to move more 
towards rich food sources in line with the information they 
receive from the employed bees. Finally, the scout bees are 
randomly sent from bee hives to explore richer sources. 
This process is iteratively repeated until the most optimum 
path is found [28].

In this study, the weights of NN model are the param-
eters of a solution and ABC algorithm tries to find optimum 
weight set of NN model. More detail information about ABC 
algorithm can be found in Uzlu et al. [30].

3.6  TLBO algorithm

The TLBO algorithm developed by Rao et al. in 2011 is 
a new metaheuristic optimization algorithm that depended 
on the natural phenomena of teaching and learning [31]. 
Advantages of the TLBO algorithm are simplicity, low 
computational complexity, high searching power to find the 
global optimum and lack of tuning parameters, except for 
the initial population [32]. The TLBO process is divided 
into a “teacher phase” and a “learning phase”. TLBO is a 
population-based algorithm, where a group of students (i.e., 
learner) is considered the population and the different sub-
jects offered to the learners are analogous with the different 
design variables of the optimization problem. The results of 
the learner are analogous to the fitness value of the optimi-
zation problem. The best solution in the entire population is 
considered as the teacher [33].

Teacher phase of the algorithm simulates the learning of 
the students (i.e., learners) through the teacher. During this 
phase, a teacher conveys knowledge among the learners and 
makes an effort to increase the mean result of the class. A 
student within the population consists of a number of design 
variables (Xi) of the problem [33].

where Dn is number of design variables, Pn is size of popula-
tion. Teacher Phase is formulated as follows:

where Xstudentnew_i and Xstudenti are the new and old positions 
of the ith learner, Xteacher is the positions the current teacher, 
r is a random number varying [0,1] and Xmean is the mean 
parameters of each subject of the learners in the class at 
generation [33]. In this study, Xi is the unknown weights of 
a neural network. TF is a teaching factor being either 1 or 2. 
It is determined as follows:

All learners should be re-evaluated after each itera-
tion of teacher phase. If Xstudentnew_i is better than  Xstudenti, 
Xstudentnew_i will be accepted and flowed to learner phase, 
otherwise  Xstudenti is not changed [33].

In learning phase, all modified students are compared 
with each other to increase their knowledge. Implementa-
tion of this comparison is given as follows:

for i=1:Pn

randomly select Xstudentj, i ≠ j

if  f(Xstudenti)< f(Xstudentj)

difference = Xstudenti–Xstudentj

else 

difference= Xstudentj–Xstudenti

end if 

Xstudentnew_i=Xstudenti+r.*difference 

end for 
As noted in the teacher phase, the new student obtained from 
student phase is not taken into account if its objective func-
tion is not better. At the end of the last iteration, the student 
whose objective function is minimum is the best solution of 

(5)
Xstudenti = [X

i,1 X
i,2 … X

i,D
n
], i = 1, 2,… ,P

n

(6)Xmean = [mean(X1) mean(X2) … mean(X
DN

)],

(7)Xstudentnew_i = Xstudenti + r ∗ (Xteacher − TF ∗ Xmean),

(8)TF = round(1 + rand ∗ (2 − 1))
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optimization problem [34]. Extensive details about the 
TLBO algorithm and its implementation can be found in [31, 
35].

3.7  The ANN Training with the TLBO and ABC 
Algorithm

In the current paper, the adaptations of the TLBO and ABC 
algorithm were presented as the learning scheme to defeat 
the disadvantages caused by BP in the ANN training. The 
reason for using the ABC and especially TLBO algorithm 
as the optimized tool is that it possesses the ability to find 
optimal solutions with relatively modest computational 
requirements. Thus, the ABC and TLBO algorithms are uti-
lized to the neural networks in the training process, to obtain 
satisfying parameters, including weights and biases, which 
will minimize the error function in competitive time. The 
parameters are consistently updated until the convergence 
criterion is reached. The objective function to be minimized 
by the ABC and TLBO algorithms is the mean square error 
(MSE) function. The performance of trained ANN was cal-
culated using the average RE, RMSE, and MAE.

The control parameters of the ABC and TLBO algo-
rithms were selected as the same following values for all 
models: number of maximum iteration (NMI) = 5,000 and 
size of population (SP) = 50. Parameter (unknown weights 
of ANN) range was set [−1, 1]. The training process repeat-
edly applies a set of input vectors to a network, updating the 
network each time until certain stopping criteria are reached.

4  Result and discussion

Coastal erosion is a global problem. Already-severe coastal 
erosion problems witnessed in the 20th century will be exac-
erbated in the 21st century under plausible global warm-
ing scenarios [36]. During the coastal erosion, sediment is 
transported towards offshore and causes the formation of a 
bar. For this reason, the size of the bar and the duration of 
its formation are of great importance. The growth of the bar 
does not last forever, after a while it gets in equilibrium. α 
coefficient is a parameter that controls the speed at which 
the bar reaches the equilibrium. In this study, it was aimed to 

Table 2  The best convergence 
values of TLBO algorithm for 
ANN training

* The error values were calcu-
lated from normalized data

ANN Architecture MSE*
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estimate the α coefficient in the best way and various hybrid 
artificial intelligence techniques were used for this.

In the ANN models, it is first necessary to obtain a well-
trained network. For this, the optimal values of weights in 
the selected network architecture are determined. In the pre-
sent study, the training of ANN was done using three dif-
ferent algorithms, namely TLBO, ABC and BP. The TLBO 
algorithm was given the best convergence values for the 
training set. Table 2 shows the MSE values calculated for 
different network architectures of this algorithm. The small-
est error value for training set was obtained in the network 
architecture with 20 hidden layer nodes.

The results obtained from the ANN models were com-
pared with the experimental ones and the best model was 
determined. The performance of the models was evaluated 
using average RE, RMSE, and MAE values. Table 3 presents 
the error values for the testing set in the models. Taking 
into consideration the network architecture and models, the 
lowest error values were determined and given in bold in 
the table. As can be clearly seen from the table, the best 
model was obtained from the ANN-TLBO with the 4-5-1 
ANN structure for all error values. Error values increased 
with increasing the number of elements in the hidden layer; 
only in the case of 20 hidden layer nodes, the error values 
were slightly reduced. Average RE, RMSE, and MAE val-
ues obtained from the proposed ANN-TLBO model were 
2.965%, 0.0081, and 0.0068, respectively. The RMSE of the 
ANN-ABC and ANN-BP models was decreased by 47 and 
34% using the ANN-TLBO model, respectively. The ANN-
ABC and ANN-BP models gave inferior results in predicting 
the α coefficient.

The architecture of the best ANN model was presented 
in Fig. 3. Weights of the model in the figure were given 
as “wij

(1)” and “wij
(2)”. In these expressions, i, j and k were 

the element of input, hidden and output layer, respectively. 
While (1), given as upper indices, expressed the connection 
between the input and hidden layer, and (2) expressed con-
nection between hidden and output layer. The best model 
weights were presented in Table 4.

Figure 4 shows the comparison of the results of ANN 
models with experimental ones for the testing set. The 
closest values to the experimental data were found in the 
ANN-TLBO model. This model was followed by ANN-
ABC and ANN-BP models, respectively. Comparisons 
between the predicted and observed outputs of α coefficient 
were presented in Fig. 5. As can be seen from the figure, 

Table 4  The weights of the best ANN model

Weights Value

W11
(1) − 0.3737

W12
(1) − 0.2209

W13
(1) − 0.3228

W14
(1) 0.0533

W15
(1) − 0.3166

W21
(1) 0.5952

W22
(1) 0.9299

W23
(1) 0.2875

W24
(1) 0.0962

W25
(1) 0.392

W31
(1) 0.6505

W32
(1) 0.7592

W33
(1) 0.1649

W34
(1) 0.775

W35
(1) − 0.3132

W41
(1) 0.0346

W42
(1) − 0.5425

W43
(1) 0.5225

W44
(1) 0.0951

W45
(1) 0.5296

W51
(1) − 0.0182

W52
(1) 0.0183

W53
(1) 0.4014

W54
(1) 0.142

W55
(1) − 0.364

W11
(2) 0.0169

W21
(2) − 0.2905

W31
(2) 0.0013

W41
(2) 0.5688

W51
(2) 0.5455

W61
(2) 0.2651

Fig. 3  The architecture of the best ANN model

Table 5  Relative errors for testing set of the proposed model

Exp. no Relative error (%) Exp. no Relative error (%)

12 1.505 30 5.980
16 4.549 33 1.669
20 0.095 39 1.186
24 1.361 44 2.746
28 7.136 48 3.446
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the ANN-TLBO model provides a high correlation in the 
testing sets.

Individual relative errors for testing set in the best model 
were given in Table 5. As seen in the Table 5, predicted and 
observed values were very close to each other. The maxi-
mum relative errors did not exceed 7.136%. The results of 
proposed model show that α coefficient estimate is quite 
satisfactory.

5  Conclusion

In this study, the α coefficient predicting ability of hybrid 
artificial intelligence models, ANN-TLBO and ANN-ABC, 
was investigated. In the ongoing study, ANN-BP model was 

used to test the accuracy of these models. The independent 
variables in the models were designated as initial bed slope, 
wave height, wave period, and grain size obtained from the 
52 experiments. The data set is divided into two parts; one 
part with 42 data for training, other part with 10 data for 
testing.

The accuracy of ANN-TLBO and ANN-ABC models 
was higher than ANN-BP for all architectures of network. 
The ANN-TLBO model gives lower error values than 
ANN-ABC in all ANN architectures except one. The MAE 
of the ANN-BP and ANN-ABC models for testing set was 
decreased by 34.0 and 47.3% using the ANN-TLBO tech-
nique, respectively.

As an outcome of current study, hybrid artificial intelli-
gence approaches yielded quite successful results in predict-
ing α coefficient-controlled speed of bar volume growth. It 
would be useful to use ANN-TLBO and ANN-ABC models, 
which were used for the first time in coastal engineering 
problems, as commonly.
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