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Abstract In the present paper, fluid force distribution of a

long flexible cylinder subject to vortex-induced vibrations

is investigated by Generalized Integral Transform Tech-

nique (GITT). This method is using experimental response

data as input, and then implementing GITT to transfer the

governing differential equations to ordinary differential

equations. Therefore, the selection of truncation order

could be analyzed to avoid the error induced by the high-

mode response. Once each mode contribution of fluid force

is obtained, the analytical inversion transfer recovers the

fluid force. An experiment was carried out in a towing tank

and the experimental response was accurately measured

and used as input, then GITT was performed to calculate

the fluid force distribution of the long flexible cylinder. The

comparison between the numerical results from GITT and

the experimental results from load cell verified the capa-

bility and availability of the proposed method. If one can

use this method for lower modes, then one certainly can

extend the method for higher modes. Two experimental

cases from the literature were evaluated and good agree-

ment was obtained based on the spatio-temporal evolutions

of the lift coefficient and the mode numbers. Since this

method is easy to implement, it could be an alternative

method to investigate fluid force of such slender structures.

Keywords Fluid force � Integral transform � Vortex-
induced vibrations � Model test � Towing tank � Flexible
cylinder

1 Introduction

In deep water, marine risers subject to strong ocean cur-

rents, suffer from high-mode vortex-induced vibrations

(VIV), when vortex shedding interacts with the structural

properties of the riser, resulting in large amplitude vibra-

tions in both in-line (IL) and cross-flow (CF) directions.

When the vortex shedding frequency approaches the nat-

ural frequency of the marine riser, the cylinder takes con-

trol of the shedding process causing the vortices to be shed

at a frequency near the natural frequency. This phe-

nomenon is called vortex shedding ‘lock-in’ or synchro-

nization. Under the ‘lock in’ conditions, large resonant

oscillations reduce the fatigue life significantly.

Analysis of dynamic response excited by VIV is one of

the most important aspects in the design of the offshore oil

production risers and pipelines, which connect the fixed

facilities on the seabed and the processing equipments on

the offshore platforms. To understand the insight of VIV,

large work has been done on the evaluation of dynamic

response, wake structure and fluid force of rigid and flex-

ible cylinder, see critical reviews from Sarpkaya [1] and

Williamson [2]. The drag and lift coefficients of a spring-

mounted rigid cylinder has been largely estimated in the

literatures [3, 4], but they have not been evaluated well for

a long flexible cylinder. The investigation of fluid force

along a long flexible cylinder either experimentally or

numerically is complicated, see comment from Huera-

Huarte et al. [5]. Evangelinos et al. [6] used direct

numerical simulation (DNS) to calculate fluid force of

flexible cylinders which subjected VIV up to second mode.

Huera-Huarte et al. [5] implemented a finite element

method model (FEM) to obtain fluid force of a long flexible

cylinder which subjected VIV up to 14th mode in in-line

and 8th mode in cross-flow. His methodology was using
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experimental response data obtained in a test program as

input to the numerical model, the instantaneous distributed

in-line and cross-flow forces acting on a flexible cylinder

could be studied successfully. However, there still existed

an approximation using the stiffness, mass and damping

matrices which were not updated during each time step.

Following the idea to use experimental response data as

input by Huera-Huarte et al. [5], an alternative numerical

model named as Generalized Integral Transform Tech-

nique (GITT) approach is studied here to investigate fluid

force distribution of a long flexible cylinder. This compu-

tational algorithm, with its intrinsic characteristic of find-

ing solutions with automatic global error control [7–10],

opened up an alternative perspective in benchmarking and

covalidation for such analyses of dynamic response of

beams and plates [11–14]. Gu et al. [15] had used this

method to study the fluid force of a long flexible cylinder,

the drag and lift coefficients were evaluated by the com-

parison with previous results to show its reliability and

capability. In this paper, we complete those previous

results by reporting an accurate solution of fluid force

distribution of a long flexible cylinder. The partial differ-

ential equations (PDEs) is transferred to ordinary differ-

ential equations (ODEs) by GITT, then the convergence

behavior is possible to be performed through different

truncation order (N = 1, 2, 3, 4, 5, 6, 8, 16 and 32) to

evaluate the influence of the different mode number, which

obviously cannot be performed in the physical space. The

comparison between the numerical results from GITT and

the experimental results from load cell shows the perfor-

mance of GITT solution. The numerical results found that

the highest mode will be subject to the greatest uncer-

tainties, and the truncation order N = 4 is adequate for the

present experimental cases. Then, the application of pro-

posed GITT to a large-scale experimental program con-

ducted by Trim et al. [16] was implemented to evaluate the

fluid force of a long flexible riser during high-mode VIV.

Finally, extended discussion of the error and limitation of

the proposed method was presented and several conclu-

sions were drawn.

2 Model description

The marine riser model can be idealized as a beam with

low flexural stiffness. The deflection of a generic beam is

described by means of Euler–Bernoulli beam equation. As

shown in Fig. 1, a Cartesian coordinate system with its

origin at one end of the cylinder model is used, in which x -

axis is parallel to flow velocity, z-axis coincides with

spanwise axis of the cylinder model in its undeflected

configuration and y -axis is perpendicular to both. Since the

governing equations in in-line and cross-flow directions are

the same, only the cross-flow deduction is presented here.

The equation of transverse displacement Y of the cylinder

model is described by:

m
o2Y

oT2
þ rs

oY

oT
� Ttop

o2Y

oZ2
þ EI

o4Y

oZ4
¼ FL; ð1Þ

where EI denotes the flexural stiffness, Ttop the applied

axial tension, q the fluid density, U the flow velocity, D the

diameter of the cylinder model, FL the lift force around

Strouhal frequency including all the hydrodynamic forces,

such as the potential and vortex force components [2, 17].

T the time and Z the coordinate in spanwise direction. The

mass m is the mass of cylinder model per unit length, rs the

structural damping [18].

By introducing dimensionless time t ¼ TXf , transverse

displacement y ¼ Y=D and span position z ¼ Z=L, the

coupled fluid-structure dynamical system yields

o2y

ot2
þ d

oy

ot
� c

o2y

oz2
þ b

o4y

oz4
¼ f ; ð2Þ

The dimensionless damping d, tension c, bending stiffness

b and fluid force f are given by:

d ¼ rs

mXf

; ð3aÞ

c ¼ Ttop

mX2
f L

2
; ð3bÞ

b ¼ EI

mX2
f L

4
; ð3cÞ

f ¼ FL

mX2
f D

; ð3dÞ

U(Z)

Y(Z,T )

X(Z,T )

z

x

y

Fig. 1 Sketch of the coordinate system
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The cylinder model is pin-ended, hence deflections and

curvatures equal to zero at each end, giving the following

boundary conditions:

yð0; tÞ ¼ 0; ð4aÞ

yð1; tÞ ¼ 0; ð4bÞ

o2yð0; tÞ
oz2

¼ 0; ð4cÞ

o2yð1; tÞ
oz2

¼ 0; 8t: ð4dÞ

3 Integral transform solution

Following the ideas in GITT, the next step is that of

selecting eigenvalue problems and proposing eigenfunction

expansions. The eigenvalue problem for transverse dis-

placement y(z, t) is chosen as expression:

d4/iðzÞ
dz4

¼ k4i /iðzÞ; 0\z\1; ð5Þ

The advantage of the selection of the proposed eigen-

function can eliminate the fourth-order derivative term

related to the bending stiffness, then the selection of

truncation order could be analyzed to avoid the error

mainly induced by the high mode, which cannot be

examined in the physical space. The boundary conditions

of eigenvalue problem are shown as follows

/ið0Þ ¼ 0; ð6aÞ

/ið1Þ ¼ 0; ð6bÞ

d2/ið0Þ
dz2

¼ 0; ð6cÞ

d2/ið1Þ
dz2

¼ 0; ð6dÞ

where /iðzÞ is the eigenfunction of problem (5), ki is the
corresponding eigenvalue, they satisfy the following

orthogonality property

Z 1

0

/iðzÞ/jðzÞdz ¼ dijNi; ð7Þ

with dij ¼ 0 for i 6¼ j, and dij ¼ 1 for i ¼ j. The norm, or

normalization integral, is written as

Ni ¼
Z 1

0

/2
i ðzÞdz; ð8Þ

Problem (5) is readily solved analytically to yield

/iðzÞ ¼ sinðkizÞ; ð9Þ

and the eigenvalues become

ki ¼ ip; i ¼ 1; 2; 3; . . .; ð10Þ

The eigenvalue problem (5) allows definition of the fol-

lowing integral transform pairs

�yiðtÞ ¼
Z 1

0

~/iðzÞyðz; tÞdz; transform

�
ð11aÞ

yðz; tÞ ¼
X1
i¼1

~/iðzÞ�yiðtÞ; inversion

(
ð11bÞ

�fiðtÞ ¼
Z 1

0

~/iðzÞf ðz; tÞdz; transform

�
ð12aÞ

f ðz; tÞ ¼
X1
i¼1

~/iðzÞ�fiðtÞ; inversion

(
ð12bÞ

where ~/iðzÞ is the normalized eigenfunction

~/iðzÞ ¼
/iðzÞ
N

1=2
i

; ð13Þ

Now, the next step is thus to accomplish the integral

transformation of the original partial differential system.

For this purpose, Eq. 5 followed by the boundary condi-

tions given by Eq. 6 are multiplied by
R 1

0
~/iðzÞdz, inte-

grated over the domain in z [0,1], and the inverse formula

given by Eq. (11b) is employed. After the usual manipu-

lations, the following coupled ordinary differential system

results, for the calculation of the transformed �yðtÞ:

d2�yiðtÞ
dt2

þ d
d�yiðtÞ
dt

� c
X1
j¼1

Pij�yiðtÞ þ bk4i �yiðtÞ ¼ �fiðtÞ;

i ¼ 1; 2; 3; . . .;

ð14Þ

where the coefficient of the ordinary differential system is

given by the following expressions:

Pij ¼
Z 1

0

~/iðzÞ
d2 ~/jðzÞ
dz2

dz; ð15Þ

The first and second derivative of �y with respect to time can

be obtained by following integral transform

d2�yiðtÞ
dt2

¼
Z 1

0

~/iðzÞ
o2yðz; tÞ

ot2
dz; ð16aÞ

d�yiðtÞ
dt

¼
Z 1

0

~/iðzÞ
oyðz; tÞ

ot
dz: ð16bÞ

The boundary conditions are naturally satisfied by the

eigenfunctions. System (14) is now in an appropriate format for

numerical solution when the displacement, velocity and accel-

eration are obtained fromexperimental response data.Once �fiðtÞ
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hasbeennumericallyevaluated, the analytical inversion formula

(12b) recovers the dimensionless function f (z, t).

To verify and validate the inverse solution for source

term, an experiment of a towed riser model was conducted in

uniform flow in present research. The fluid force is extracted

from the load cell in the experiment. Since the time-varying

shape of the riser can be composed as a series of eigen-

functions or mode shapes [19], theoretically, the series

should be infinity. Hence, the maximum mode (truncation

order) is determined based on the mode analysis to evaluate

the convergence behavior of inverse solution.

4 Experimental details

To calibrate GITT solution, an experiment of a towed riser

model in uniform flow was conducted in present research.

The experiments were carried out in a towing tank which

Steel
Core

D=6.4mm 

Strain 
gage 1#

Strain 
gage 2#

Strain 
gage
3#
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gage
4#

In-line
Flow

Plastic tube
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(a)
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S – Strain Gage Station
S2

S3
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Hot film
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Fig. 2 Sketch of the experimental setup. a Cross section view of cylinder; b cylinder model; c side view, d front view
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has a test section 0.75 m in width, 0.72 m in height and

16 m in length, at School of Engineering, Federal

University of Rio Grande (FURG), Rio Grande do Sul,

Brazil. The sketch of the experimental setup is shown in

Fig. 2. The flexible cylinder had an outer diameter of 19.5

mm and was constructed of plastic tube with a 6.4-mm

steel core as shown in Fig. 2a. Several nylon pieces were

used to clamp the steel core and support the outer plastic

tube as shown in Fig. 2b. Strain gages were mounted on the

flexible cylinder to measure the responses at five locations

(identified as S1, S2, S3, S4 and S5), with the relative

positions 0.84, 0.67, 0.50, 0.33, and 0.16 in length from the

bottom end, respectively. The load cell was used to extract

the supporting force of the flexible cylinder. As for the

dynamic system of the flexible cylinder, the supporting

force in cross-flow motion is approximately expressed as:

FS ¼ m
o2Y

oT2
� FL: ð17Þ

where FS denotes the supporting force in cross-flow

motion.

The lift coefficient is a dimensionless coefficient that

relates the fluid force acting on a reference area associated

with the body, which is defined as:

CL ¼
FL

1
2
qU2D

: ð18Þ

Based on this definition, once the fluid force FL is evalu-

ated, the lift coefficient can be obtained.

The natural frequency of the flexible cylinder with

variable top tension was measured from plunk tests in still

water. To find the experimental natural frequencies, the

cylinder model was excited at its middle span after setting

each different top tension. Table 1 shows the fundamental

natural frequencies in terms of different top tensions

applied. Since the aspect ratio (L=D � 74) is not large, the

natural frequency of second mode was not captured.

More detail of this setup of the experiment could be

found in Gu et al. [15]. The summary of the experiments is

shown in Table 2. The aspect ratio is defined as K ¼ L=D;

reduced velocity is defined as Ur ¼ U=fnD; Reynolds

number is defined as Re ¼ qUD=m, m denotes viscosity of

the flow.

5 Experimental verification

The present experiment used 5 strain gage stations to

capture the displacement of the dynamic vibration, a cubit

polynomial fitting method was implemented to yield the

displacement of the entire spanwise position of the cylinder

model. Figure 3 indicates the instantaneous displacements

in CF and IL directions in a time interval t 2 [8 21] s at

Ttop ¼ 49:0 N, U ¼ 0:54 m/s , Ur ¼ 5:3. The left column is

Table 1 Summary of main parameters of the experiment

Top tension T (N) Symbol fn

19.6 h 4.5

29.4 � 4.83

49.0 4 5.33

68.6 þ 5.67

88.2 � 6.0

107.8 � 6.3

Table 2 Summary of main parameters of the experiment

Experiment parameters Symbol Unit Value

Total length L m 1.45

Outer diameter D m 0.0195

Submerged length Ls m 0.70

Bending stiffness EI N m2 20.4

Mass ratio m� – 1.55

Aspect ratio K – 74.4

Top tension Ttop N 19.6–107.8

Flow velocity U m/s 0.1–0.98

Reduced velocity Ur – 0.8–11.2

Reynolds number Re – 1950–19110

Structural damping f % 3.18

−1.5 0 1.5
0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

 y/D
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−0.2 0 0.4 0.8

 x/D

 Ttop=  49.0 N;  U  = 0.54 m/s

−0.2 −0.1 0 0.1 0.2
 (x−xm)/D

Fig. 3 Instantaneous displacements from cubic polynomial fitting. (1)

Left column graph the instantaneous CF deflection; (2) middle column

graph IL deflection; (3) right column graph IL deflection without

mean. Black lines plotted at every 0.1 s in the time interval t 2 [8 21]

s, Ttop ¼ 49:0 N, U ¼ 0:54 m/s, Ur ¼ 5:3
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the instantaneous CF displacement, the middle column is

the IL displacement and the third column is the IL dis-

placement without mean. It is noticed that in all cases the

IL mean displacements at z=D ¼ 0:33 are larger than the

ones at z=D ¼ 0:84, this is confirmed by the second column

in Fig. 3, due to: (1) the drag force in water is much higher

than in air, hence larger drag force exerts on the lower half

of the flexible cylinder; (2) lower axial tension force acts

on the lower half of flexible cylinder due to its weight.

The dynamic response results shown above is used as

input to calculate fluid force distribution based on GITT,

and the verification of the proposed numerical method with

experimental results is performed. We chose the maximum

mode as 32, which should be sufficient for the present

experimental flexible cylinder, since it only can be excited

in the low modes (1–3). The maximum mode is set as N =

1, 2, 3, 4, 5, 6, 8, 16 and 32 to evaluate the convergence

behavior of integral transform solution.The instantaneous

spanwise distribution of lift force coefficient CL is shown

in Figs. 4 and 5 at Ttop ¼ 49:0 N, U ¼ 0:54 m/s, Ur ¼ 5:3,

the times are at T ¼ 6:5 s and 8.7 s, respectively. It can be

observed that in the last graph (N ¼ 1� 32) in the Fig. 4,

the curves of N ¼ 4, N ¼ 5 and N ¼ 6 are almost over-

lapped. This means the fluid force has good convergence

behavior in the mode number range 4–6; but when N� 8,

the lift distribution presents the high-mode feature. This

phenomenon is induced by the error of high-mode �yNðtÞ,
which is proportional to the term k4. From the mode
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Fig. 4 GITT solutions of spanwise distribution of lift coefficient CL with different truncation orders N at time T ¼ 6:5 s, Ttop ¼ 49:0 N,

U ¼ 0:54 m/s, Ur ¼ 5:3
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analysis shown in Fig. 6, the third mode almost has no

contribution to the overall response. Hence, the truncation

order N ¼ 4 is selected to be adequate in all numerical

simulations to avoid the error induced by the high mode.

Figure 7 shows the instantaneous spanwise distribu-

tion of drag force coefficient CD at Ttop ¼ 49:0 N, U ¼
0:54 m/s, Ur ¼ 5:3, the time is at T ¼ 6:5 s. It is noted

that the error induced by high mode of drag coefficient

distribution is not so remarkable as the one of lift

coefficient distribution. This phenomenon is due to that

the in-line vibration is always happening behind the

cylinder model as shown in the middle graph of Fig. 3.

From the shape of the in-line motion, it is known that

the response of the cylinder is obviously dominated by

mode 1 if we do not take out of the mean of the

response. In other words, the weight of mode 1 of in-line

motion should be much higher than the ones of other

mode numbers. Thus, the influence of the high-mode

error induced by the term k4 in in-line motion is much

less when compared with the same influence in cross-

flow motion. However, the instantaneous spanwise dis-

tribution of drag force coefficient after taking the mean

IL motion out is shown in Fig. 8. It is depicted that the

drag force coefficients after taking the mean IL motion

out decrease from about 4 to 1, which is less that the lift

force coefficient. The high-mode feature also could be

seen when N� 8, but it is not so remarkable as in the lift

force coefficient distribution.
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Fig. 5 GITT solutions of spanwise distribution of lift coefficient CL with different truncation orders N at time T ¼ 8:7 s, Ttop ¼ 49:0 N,

U ¼ 0:54 m/s, Ur ¼ 5:3
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Figure 9 illustrates instantaneous spanwise distributions

of fluid force coefficient at every 0.05 s in the time interval

T 2 [6 9] s, Ttop ¼ 49:0 N, U ¼ 0:54 m/s, Ur ¼ 5:3. The

left column graph represents the instantaneous lift coeffi-

cient CL and the right column graph represents the

instantaneous drag coefficient CD. It is noticed that the

envelope of lift coefficient presents symmetric feature,

whereas the envelope of drag coefficient presents the

asymmetric feature. The mean of all instantaneous distri-

butions of drag coefficients is plotted as the red line as

shown in the right graph. The red curve shows that the drag

force is much larger at the lower part than the upper part of

the flexible cylinder. The reason is that the fluid force

induced by the water is obviously larger than that induced

by the air. Since the lift and drag coefficients calculated

from GITT are based on the experimental response data as

input, they could be presented in spatial and temporal

evolutions as shown in Figs. 10 and 11. It is noticed that

the lift coefficient varies in positive and negative alter-

nately, whereas the drag coefficient stays only in positive.

Meanwhile, the maximum drag coefficient stays around the

zone z 2 [0.2 0.4], which proved that the larger fluid force

is induced by water.

The comparison of RMS (root mean square) of lift

coefficient at different top tension between the proposed

approach and the experimental results from load cell is

performed to verify the accuracy of GITT solution, as

shown in Fig. 12. The blue square and red circle symbols

represent the experimental results from load cell and

numerical results from GITT, respectively. It is noticed that

the numerical results are in good agreement with the

experimental results. The maximum lift coefficient is about

3.0, and both the numerical and experimental results have

the clear upper and lower branches. When comparing the

upper and lower branches of lift coefficient and of the

maxima cross-flow amplitude from Gu et al. [15], it is

observed that the maximum lift force occurs at the maxi-

mum cross-flow amplitude. The comparisons of lift coef-

ficient at Ttop ¼ 49 N in tabular form is given in Table 3,

with absolute and relative errors in percentage. It is nec-

essary to point out that in some region where lift coeffi-

cients are very small, such as Ur 2 [8,12] at Ttop ¼ 19:6 N,

any uncertain factor will induce the relative errors in per-

centage which are quite large if we compare them with

these small lift coefficients. Hence, the relative errors in

percentage represent the absolute error with respect to the

maximum value from load cell. From Table 3, the maxi-

mum relative errors are less than 20 % and average errors

are approaching zero, which shows that the lift coefficients

reasonably agree well with the experimental results.

Mean drag coefficients CD with respect to the reduced

velocity at different top tension are also calculated based

on GITT as shown in Fig. 13. The maximum drag coeffi-

cient is about 3.5, and the numerical results have the clear

upper and lower branches. However, it is observed that

when the drag coefficient passes the first peak (maximum

value) at reduced velocity around 5.5, it decreases initially

and then increases again to format a second peak as shown

in the plot at the Ttop ¼ 19:6 N. To explain this phe-

nomenon, the comparison of maxima in-line vibration
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amplitudes between strain gage station S3 and the results

by cubic polynomial fitting is performed as shown in

Fig. 14. The green square and pink circle symbols repre-

sent the maximum amplitude from strain gage station S3

and the maximum amplitude from the polynomial fitting,

respectively. It is shown that when reduced velocity is

lower than 5.5, these two lines are quite close. When

reduced velocity is around 5.5, both of them have a peak

and then decrease. When reduced velocity approaches to

12, the pink line has larger values than that of green line.

This difference illustrates that the maximum amplitude

does not occur at the strain gage station S3, especially at

the higher flow velocity. This also could be confirmed by

the middle graph of Fig. 3 which shows clearly that the

lower part instantaneous displacements of cylinder are

larger than that of the strain gage station S3. From the

Fig. 6, it is known that the in-line vibration is dominated by

the first mode and the fluid force based on GITT is cal-

culated using the experimental response data as input, thus

the dramatical increase of the pink line at higher reduced

velocity induces the second peak of the drag coefficient as

shown in Fig. 13.
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Fig. 7 GITT solutions of spanwise distribution of drag coefficient CD with different truncation orders N at time T ¼ 6:5 s, Ttop ¼ 49:0 N,

U ¼ 0:54 m/s, Ur ¼ 5:3
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6 Application to high-mode VIV

The above discussion verified the capability and avail-

ability of the proposed method to evaluate the fluid force of

flexible cylinder. Since the eigenfunction is a sinusoidal

series expansion, it should have the ability to simulate the

high-mode behavior of vortex-induced vibrations. To apply

the GITT to evaluate the fluid force of high-mode VIV, the

numerical simulation of an experiment on a towed riser

model in uniform flow conducted by Trim et al. [16] is

carried out. The experimental investigation was performed

at Marintek Ocean Basin in Trondheim. The overall layout

of the experiments is shown in Fig. 15. The riser model

was 38 m in length and 27 mm in diameter with an aspect

ratio of 1407. It was equipped with a dense array of high-

quality instrumentation, and the flow profile was uniform

stepped from 0.3 to 2.4 m/s with an increasing step of 0.1

m/s. The summary of main parameters of the experiments

is given in Table 2. The datasets used in present simulation

are Test No. 2120 and Test No. 2150 [20], the corre-

sponding flow velocities are 1.4 and 1.7 m/s, respectively.

To obtain the displacement of transverse vibration from

finite strain gage sensors, Lie and Kaasen implemented

modal analysis [19]. This method is based on the

assumption that the time-varying shape of riser can be

composed as a series of eigenfunctions or mode shapes.

But the displacements computed from measured bending

strains have errors due to the magnitude of bending strain
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associated with displacement of a given amplitude in the i

th mode is proportional to i2, which means the lowest

modes will be subject to the greatest uncertainties [21].

Therefore, in present cases, mode numbers from 6 to 15 are

involved in numerical simulation. Since the participative

modes are fewer than strain gage sensors, a least-squares

method is used to calculate displacement, then imple-

menting finite difference method to obtain velocity and

acceleration. The strain signals are filtered through Meyer

wavelet-based denoising to avoid the influence of high-

frequency noise.

Based on the modal analysis, the spatio-temporal evolu-

tions of instantaneous displacement Y of Test No. 2120 and

Test No. 2150 are shown in Figs. 16 and 17, respectively. It

is seen that the maximum amplitude has been found with

values up to 0.06 m in Test No. 2120 and 0.08 m in Test No.

2150, respectively. In some region the displacement

demonstrates as a traveling wave, which means the instan-

taneous displacement has no remarkable anti-nodes as

shown in Figs. 20a and 21a. The travelingwavewas defined

by Chaplin et al. [21] with a similar experiment setup. As he

explained, in the absence of any knowledge of distribution of

added mass, and neglecting the effect of variations in ten-

sion, the mode shapes have been assumed to be sinusoids.

The fact that all contributing modes defined in this way are

neither in phase nor in anti-phase with each other, and the

fact that there are no pure nodes in the profiles, indicated that

the motion in both directions is a traveling wave.

The next step is to use the dynamic response as input

and implement GITT to calculate the fluid force distribu-

tion of the long flexible riser. Figures 18 and 19 show the

spatio-temporal evolutions of lift coefficient CL of Test No.

2120 and Test No. 2150, respectively. It is seen that the

maxima amplitudes have been found with values up to 2 in

Test No. 2120 and No. 2150. The features of the color

contours do not follow the spatio-temporal evolutions of

instantaneous displacement as shown in Figs. 16 and 17.

Figures 20c and 21c show the instantaneous lift coefficient

at midpoint in a time interval 0.2 s for these two cases. No

pure nodes are depicted in the plots which are the same as

the instantaneous displacement, the traveling wave also can

be observed in Figs. 18 and 19.

RMS (root mean square) of displacement and lift coef-

ficient is shown in Figs. 20b, d and 21b, d for Test No.

2120 and Test No. 2150, respectively. The profile of RMS

of displacement of Test No. 2120 shows the mode number

is 8 which is smaller than 9 from Trim et al. [16], this

discrepancy may be induced by different participating

modal numbers involved in the calculation between present

study and study from Trim et al. [16]. Mode number of lift

coefficient of Test No. 2120 is 10 as shown in Fig. 20d. As

for Test No. 2150, Fig. 21b shows mode number of
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displacement is 9 which is the same as the study by Trim

et al. [16], and mode number of lift coefficient is 9 as

shown in Fig. 21d.

7 Results and discussion

From the results shown above, the GITT method is using

the displacement, velocity and acceleration as inputs to

obtain each mode contribution of fluid force, thus the

accuracy of input plays an important role to such simula-

tion and should be carefully considered. The error in the

estimated force can come from two different sources,

which are the error of the GITT method itself and the error

due to pre-processing the measurements (filtering, modal

analysis, etc.).

• As for the error of the GITT method, if the dynamic

response is absolutely accurate, the GITT solution

should be more accurate when the truncation order N is

higher. Each term of ~/i zð Þ satisfies boundary condi-

tions, besides, there is no approximation involved in the

analytical derivation of GITT approach, the problem

solution represented by the summation of a rapidly

converging infinite series (12b) simultaneously satisfies

the governing differential equation (2) and the bound-

ary conditions (4). In real calculations, the derived

series solution needs to be truncated somewhere for

computational evaluation. Theoretically, the solution

will be more accurate if the truncation order is higher.

In the reality, the response extracted from experiment

would have some error due to many uncertainties, such

as the turbulence of flow, the noise from towing
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Fig. 12 Comparison of RMS of lift coefficient CL at different top tensions between numerical results by GITT and experimental results from

load cell

Table 3 Lift coefficient

comparisons between the

experimental results and GITT

at different top tensions

Absolute error Relative error

Ttop Minimum Maximum Average Minimum (%) Maximum (%) Average (%)

19.6 -0.29 0.51 -0.01 -9.97 17.57 -0.52

29.4 -0.13 0.49 0.05 -4.44 16.84 1.62

49.0 -0.24 0.28 -0.01 -8.21 9.57 -0.50

68.6 -0.14 0.33 0.02 -4.79 11.22 0.69

88.2 -0.28 0.55 -0.00 -9.61 19.12 -0.01

107.8 -0.15 0.38 0.02 -5.05 13.14 0.77
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carriage and noise from acquisition system. There

errors will be amplified dramatically by the fourth term

k4 at the high-mode �yNðtÞ. Hence, the appropriate

selection of truncation order should be examined after

the modal analysis which could show the dominated

modes clearly. Sometimes, in the dominant mode some
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Fig. 13 Mean drag coefficient CD at different top tensions by GITT
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Fig. 14 Comparison of maxima in-line vibration amplitudes between strain gage station S3 and the results by cubic polynomial fitting
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Fig. 15 Overall layout of the VIV experiment with the carriage

velocity of 0.3–2.4 m/s at MARINTEK [16]

T(s)

L(
m

)

58.5 59 59.5 60 60.5 61 61.5 62 62.5

0
3.8
7.6

11.4
15.2

19
22.8
26.6
30.4
34.2

38 −0.06

−0.04

−0.02

0

0.02

0.04

Fig. 16 Spatio-temporal evolution of the instantaneous displacement

Y. Test No. 2120

T(s)

L(
m

)

58.5 59 59.5 60 60.5 61 61.5 62 62.5

0
3.8
7.6

11.4
15.2

19
22.8
26.6
30.4
34.2

38
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Fig. 17 Spatio-temporal evolution of the instantaneous displacement

Y. Test No. 2150

T(s)

L(
m

)

58.5 59 59.5 60 60.5 61 61.5 62 62.5

0
3.8
7.6

11.4
15.2

19
22.8
26.6
30.4
34.2

38
−2.5

−2

−1.5

−1
−0.5

0

0.5

1
1.5

2

Fig. 18 Spatio-temporal evolution of the lift coefficient CL. Test No.

2120

T(s)

L(
m

)

58.5 59 59.5 60 60.5 61 61.5 62 62.5

0
3.8
7.6

11.4
15.2

19
22.8
26.6
30.4
34.2

38 −2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 19 Spatio-temporal evolution of the lift coefficient CL. Test No.
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Fig. 20 Displacement and lift coefficient distribution. Test No. 2120.

a Instantaneous displacement in a time interval 0.2 s; b RMS of

displacement; c instantaneous lift coefficient in a time interval 0.2 s;

d RMS of lift coefficient

676 J Mar Sci Technol (2016) 21:663–678

123



sort of aliasing may exist, thus the selection zone of

truncation order should contain all of the dominated

modes.

• As for the error due to pre-processing the measure-

ments, the strain signals are filtered through Meyer

wavelet-based denoising to avoid the influence of high-

frequency noise, which is probably different from the

denoising technique used by Trim et al. [16]. But the

filtering quality is verified during present study, and it

is found that the filtered signal is smooth and high-

frequency noise is removed.

• As for the error induced by modal analysis, Trim et al.

[16] commented in their study ‘‘In order to get accurate

results from the modal analysis, the participating mode

numbers used as input to the analysis were tuned on a

trial and error basis. The results are in some cases

sensitive to the participating mode numbers, but are

considered in general to be reasonably accurate.’’ Thus,

we have tried several combinations of the participating

mode numbers for the present 2 cases, it is found that

the participating mode numbers from 6 to 15 are

reasonably accurate to represent the dynamic response

of the riser model.

Another issue of the approximation is the cubic polynomial

fitting method used to capture the spanwise distribution of

in-line and cross-flow motions. Since the response of pre-

sent riser model is dominated mostly by mode 1, the cubic

polynomial fitting method is suitable in present experi-

mental verification. Obviously, when a flexible riser suffers

high modes, the modal analysis is better to reproduce the

dynamic response. In addition, the cubic spline interpola-

tion was performed to compare with the cubic polynomial

fitting, and the error of fluid force coefficient between these

two methods is less than 1 %, which means that the choice

of these two methods is not a matter during the GITT

calculation of present experimental verification.

One question of proposed GITT is Can it be applied to

sheared flow ? In the shear flow, the profile of displacement

may be asymmetric such as the experimental results from

Trim et al. [16]. Then the dynamic response (the profile of

displacement, velocity and acceleration) would be inte-

grated with eigenfunction from 0 to 1 as shown in

Eqs. 11(a) and 16. Then the question will be transformed to

Can the dynamic response be perfectly represented as the

superposition of the eigenfunction? Theoretically, the

Fourier series formalism provides a means to represent any

periodic function as a superposition of sinusoidal functions

whose frequencies are integral multiples of its fundamental

frequency (harmonics). Hence, the dynamic response of the

flexible cylinder could be extended as a periodic function,

then in every closed interval in which the dynamic

response (imagined to be periodically extended) is con-

tinuous as well as sectionally smooth, the Fourier series

converges uniformly. It concludes that the proposed GITT

solution is capable to be applied to sheared flow.

8 Conclusions

A GITT solution capable of evaluating fluid force of a

flexible circular cylinder due to VIV has been proposed in

this paper. The partial deferential governing equations were

transformed to ordinary deferential equations based on the

GITT method. The advantage of the selection of the pro-

posed eigenfunction can eliminate the fourth-order

derivative term related to the bending stiffness, then the

selection of truncation order could be analyzed to avoid the

error mainly induced by the high mode, which cannot be

examined in the physical space. Then an experiment was

carried out in a towing tank. The experimental response

was accurately measured and used as input, then imple-

menting GITT to calculate the fluid force distribution of the

long flexible cylinder. The truncation order of eigenfunc-

tion was examined based on the fluid force spanwise dis-

tribution. Due to error induced by the high-order mode,

truncation order was 4 for all present experimental verifi-

cation. The comparison between the numerical results from

GITT and the experimental results from load cell verified

the capability and availability of the proposed GITT

method. If one can use a method for lower modes, then one

certainly can extend the method for higher modes. Two

experimental cases from the literature were evaluated and

good agreement was obtained based on the spatio-temporal

evolutions of the lift coefficient and the mode numbers.

However, this integral transform method is using the

displacement, velocity and acceleration as inputs to obtain
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Fig. 21 Displacement and lift coefficient distribution. Test No. 2150.

a Instantaneous displacement in a time interval 0.2 s; b RMS of

displacement; c instantaneous lift coefficient in a time interval 0.2 s;

d RMS of lift coefficient
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each mode contribution of fluid force, thus the accuracy of

input plays an important role to such simulation and should

be carefully considered. Since this method is easy to

implement, it can be an alternative method to investigate

fluid force of such slender structures.
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