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Abstract The flow-induced vibration of a cylindrical

structure is a very common problem in marine environments

such as undersea pipelines, offshore risers, and cables. In

this study, the vortex-induced vibration (VIV) of an elasti-

cally mounted cylinder at a low Reynolds number is simu-

lated by a transient coupled fluid–structure interaction

numerical model. Considering VIV with low damping ratio,

the response, hydrodynamic forces, and vortex shedding

modes of the cylinder is systematically analyzed and sum-

med up the universal rule under different frequency ratios.

On the basis of the analysis, we find that the frequency ratio

a is a very important parameter. It decides the locked-in,

beat, and phase-switch phenomena of the cylinder, mean-

while, it also influence the vortex mode of the cylinder. The

trajectory of the two degrees of freedom (2 DOF) case at

different natural frequency ratios is discussed, with most

trajectories having a ‘‘figure of 8’’ shape and a few having a

‘‘crescent’’ shape. A fast Fourier transformation technique is

used to obtain the frequency characteristics of the vibration

of the cylindrical structure. Using the 2 DOF cylinder model

in place of the 1 DOF model presents several advantages in

simulating the nonlinear characteristics of cylindrical

structures, including the capacity to model the crosswise

vibration generated by in-line vibration.

Keywords Fluid–structure interaction � Vortex-induced
vibration � System coupling

List of symbols

m* = m/md Ratio of oscillating mass over displaced

mass

f = d/2p Damping ratio

fn ¼ 1
2p

ffiffiffiffiffiffiffiffiffi

k
mþma

q

Natural frequency of elastic cylinder in

still water

ma = qpD2/4 Added mass in still water

U* = U/(fnD) Reduced velocity in water

fs Vortex shedding frequency of elastic

cylinder

St = f0D/U Strouhal number in still water

Re = UD/m Reynolds number

f0 Vortex shedding frequency of fixed

cylinder

a = fn/f0 Frequency ratio

1 Introduction

The flow-induced vibration of a cylindrical structure is a

very common problem in marine environments such as

undersea pipelines, offshore risers, and cables, which has
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arouse many scholars extensively study in recent decades.

The research of vortex-induced vibration (VIV) for the

design of the marine structure is very important [1]. The

VIV is a typical fluid–structure interaction (FSI) problem.

The fluid force generated by the vortex around the riser

makes the riser vibrate; on the other hand, the oscillating

riser also affects the flow field around it. The general

process of FSI is like this.

Early VIV research mainly is the study of the one degree

of freedom (1 DOF) vibration of a circular cylinder, that is

to say, only allow cylindrical cylinder transverse vibration.

Feng [2], Brika and Laneville [3, 4], Anagnostopoulos [5],

Khalak and Williamson [6] are just a few of the con-

tributing researchers. The content of the VIV for different

aspects have been well documented in several overviews,

such as those of Sarpkaya [7], Williamson and Govardhan

[8, 9], Bearman [10], Okajima [11], Wu et al. [12]. How-

ever, the study of VIV considering the two degrees of

freedom (2 DOF) is not as much as the 1 DOF. Research

into the 2 DOF VIV of a circular cylinder is relatively rare.

Jeon and Gharib [13] studied the vortex wake for the 1 and

2 DOF VIV of a circular cylinder, and reported that even a

small stream-wise motion can inhibited the formation of 2P

(two pair) vortex. Jauvtis and Williamson [14] studied the 2

DOF VIV of a circular cylinder at low mass ratio and

reported a new response branch, the ‘‘super-upper’’ branch,

which occurred when the mass ratios were reduced below

m* = 6. In the ‘‘super-upper’’ branch, the transverse

amplitudes of the cylinder vibration can be 1.5 times of the

cylinder diameter. Guilmineau and Queutey [15] studied

the fluid around an elastically mounted rigid cylinder

which is only allowed transverse vibration with low mass-

damping. Vortex shedding around the cylinder was inves-

tigated numerically by the SST k–x model. Dahl et al. [16]

conducted 2 DOF tests on an elastically mounted rigid

cylinder which is allowed transverse and stream–wise

vibration at Re = 11,000–60,000. In their experiment, the

mass ratios were less than 6.0, and the natural frequency

ratios of the in-line to transverse varied from 1.0 to 1.9.

They reported that the maximum transverse amplitude

exceeded 1.35D (where D is the cylinder diameter),

whereas the stream-wise response reached 0.6D. When the

cylinder was in the largest amplitude response, the cylinder

moved along a crescent-shaped orbital trajectory. Placzek

et al. [17] reported the result on the cylinders forced or free

oscillating in low Reynolds number flow and analyzed the

vortex shedding modes related to the frequency response.

Bahmani and Akbari [18] investigated the basic charac-

teristics of the dynamic response and vortex shedding on an

elastically mounted circular cylinder in laminar flow. Bao

et al. [19] reported that the VIV of the isolated and tandem

elastically mounted cylinders which were allowed 2 DOF

vibration at a series of the natural frequency ratio of the in-

line to transverse. Kang and Jia [20] used the experiment to

investigate 1 and 2 DOF VIV of a cylinder. A ‘‘double

peak’’ phenomenon was found within the range of the

reduced velocities tested, moreover, a ‘‘2T’’ wake appeared

in the vicinity of the second peak in the 2 DOF VIV

experiment, and the trajectory of cylinder exhibited a

reverse ‘‘C’’ shape, i.e., a ‘‘new moon’’ shape.

Despite the large number of studies [2–6, 17, 18] dedi-

cated to the VIV of a cylinder vibrating in the transverse

direction, there is a little research [13, 14, 16, 19, 20] that

also allows the cylinder to vibrate in the in-line direction,

with some researchers studying the law of synchronization

and the amplitude of vibration in the 2 DOF case [13, 16,

20] and some researchers investigating the regime of syn-

chronization, amplitude, and wake pattern of the isolated

and tandem elastically mounted cylinders which are

allowed 2DOF vibration at a series of the natural frequency

ratio of the in-line to transverse [19]. However, the vortex

pattern, trajectory, frequency characteristics and so on have

not been investigated with varying frequency ratios a = fn/

f0. Moreover, the VIV of an elastic cylinder has a strongly

nonlinear quality. There have been a few nonlinear anal-

yses of phenomena such as locked-in, beat, and phase-

switch. From Table 1, it can be seen that most of the lit-

eratures investigate the VIV in 1 and 2 DOF with variable

mass, damping, Reynolds number, reduced velocity pro-

duced by different velocity flow and the in-line to the

transverse natural frequency ratio fnx/fny. Only a small

amount of literature [17] studied on the VIV of the circular

cylinder with the frequent ratio, but it was the study of the

forced oscillations of a cylinder, and only considering

transverse vibration. To the best of our knowledge, the

frequency characteristics of the vibration of a cylindrical

structure in 1 and 2 DOF cases have not been analyzed with

varying frequency ratios and there is little discussion on the

nonlinear phenomena of bifurcation in VIV and the dif-

ference in nonlinear phenomena between VIV with 1 and 2

DOF.

The present work is to study 2 DOF VIV of an elasti-

cally mounted cylinder for the varying frequency ratio. The

response, hydrodynamic forces, vortex shedding modes

and trajectory of the cylinder are systematically analyzed

and summed up the universal rule under different fre-

quency ratios. The nonlinear phenomena such as ‘‘lock-in’’,

‘‘phase-switch’’, ‘‘beat’’ are analyzed at different frequency

ratios, and the critical point of each nonlinear phenomenon

is discussed. Finally, the frequency characteristics of the

elastically mounted cylinder is also analyzed at different

frequency ratios.
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2 Fluid governing equations and transient
dynamic analysis

2.1 Fluid governing equations

The two-dimensional, incompressible, Navier–Stokes

equations in the Cartesian coordinate, which can be written

as follows:

r � ðqv~Þ ¼ 0 ð1Þ
o

ot
ðqv~Þ þ r � ðqv~v~Þ ¼ �rpþr � ðsÞ þ F~ ð2Þ

where p is the static pressure, s is the stress tensor (de-

scribed below), and F~ are the external body forces and v~ is

the velocity vector. For the two-dimensional, incompress-

ible, Navier–Stokes equations, v~¼ ½u; v�. The large eddy

simulation (LES) method is employed for the solution of

Eq. 2.

The stress tensor s is given by

s ¼ lðrv~þrv~TÞ ð3Þ

where l is the molecular viscosity.

2.2 Transient dynamic theory

The basic equation of an elastically mounted cylinder can

be expressed as follows:

m uf g þ c _uf g þ k uf g ¼ fF tð Þg ð4Þ

where m is the mass of the cylinder, c is the damping, k is

the stiffness of the elastically mounted cylinder,

uf g _uf g uf g F tð Þf g are respectively the acceleration vector,

the velocity vector, the displacement vector and the load

vector of the cylinder. The Newmark method is employed

to solve the Eq. 4.

According to the Eq. 4, the motion equation of the

elastically mounted cylinder in the form of dimensionless

can be written as follow:

ux þ 2ffn _ux þ f 2n ux ¼ Fd=m ð5Þ

uy þ 2ffn _uy þ f 2n uy ¼ Fl=m ð6Þ

where ux and uy are respectively the displacement of the

cylinder in the x and y directions, f is the damping ratio of

the elastically mounted cylinder system and is set to 0.01,

fn is the natural frequency of the cylinder in still water, Fd

and Fl are the drag and lift force per unit of length of the

cylinder respectively, and m is the mass of the cylinder.

The drag coefficient and lift coefficient are written as

follows:

Cd ¼
2Fd

qU2D
ð7Þ

Cl ¼
2Fl

qU2D
ð8Þ

where U is the inlet velocity and D is the diameter of the

cylinder.

2.3 Diffusion-based smoothing method

For diffusion-based smoothing, the mesh motion is gov-

erned by the diffusion equation.

r � ðcru~Þ ¼ 0 ð9Þ

where u~ is the mesh displacement velocity. The boundary

conditions for Eq. 9 are obtained from the user-prescribed

or computed (6 DOF) boundary motion. On deforming

Table 1 The study of parameters in relevant publications

Parameters studied References

Investigate numerically the dynamics and fluid forcing on an elastically mounted rigid cylinder with a variety of reduced velocity

U*, constrained to oscillate transversely to a free stream

[15]

Forced oscillations characterized by the frequency ratio a = f0/fs and the amplitude A [17]

2 DOF VIV on isolated and tandem cylinders with a variety of the in-line to the transverse natural frequency ratio, fnx/fny [19]

The response of an elastically mounted rigid cylinder at low mass damping constrained to oscillate transversely to a free stream

with a variety of reduced velocity U*
[21]

The response of a circular cylinder experiencing VIV in the stream-wise direction and the resulting wake field for a range of

reduced velocities in the Reynolds number range 450–3700

[22]

The response of an elastically mounted cylinder, which is free to move in 2 DOF in a fluid flow with a range of reduced velocities

and mass ratio

[23]

The VIV of an elastically supported circular cylinder in water with reduced velocity from 2 to 12, damping factors from 0.002 to

0.4, and mass ratios from p/2 to p/17
[24]

An experimental and numerical investigation of a 2 DOF VIV of a flexibly mounted circular cylinder with a variety of the in-line to

the transverse natural frequency ratio, fnx/fny

[25]

The effect of blockage on VIV at low Re for various values [26]

A parametric study with respect to the reduced velocity U* and Reynolds number [27]
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boundaries, the boundary conditions are such that the mesh

motion is tangent to the boundary (i.e., the normal velocity

component vanishes). The Laplace equation in Eq. 9

describes how the prescribed boundary motion diffuses into

the interior of the deforming mesh. The diffusion coeffi-

cient c in Eq. 9 can be used to control how the boundary

motion affects the interior mesh motion. A constant coef-

ficient means that the boundary motion diffuses uniformly

throughout the mesh. With a non-uniform diffusion coef-

ficient, mesh nodes in regions with high diffusivity tend to

move together (i.e., with less relative motion).

For diffusivity based on boundary distance, the diffusion

coefficient c is equal to the following formula.

c ¼ 1

dh
ð10Þ

where d is a normalized boundary distance. The boundary-

distance-based diffusion Eq. 10 controls how the boundary

motion diffuses into the interior of the domain as a function

of boundary distance. Decreasing the diffusivity away from

the moving boundary causes those regions absorb more

mesh motion, and results better mesh quality near the

moving boundary. This is particularly helpful for a moving

boundary that has pronounced geometrical features (such

as sharp corners) along with a prescribed motion that is

predominantly rotational.

The diffusion coefficient c is adjusted by the diffusion

parameter h. A range of 0–2 has been shown to be of

practical use. A value of 0 (the default value) specifies that

c = 1 and yields a uniform diffusion of the boundary

motion throughout the mesh. A higher value of h preserves

a larger region of the mesh near the moving boundary, and

cause the region away from the moving boundary to absorb

more motion.

2.4 FSI

At an iterative process of every time step, firstly, Eqs. 1, 2

are solved to obtain the drag and lift forces of the cylinder;

secondly, the drag and lift forced are substituted into the

Eqs. 5, 6, and then the response of the cylinder is obtained

by using the method of Newmark to solve the Eqs. 5, 6;

finally, the mesh is updated with the diffusion-based

smoothing method based on the response of the cylinder.

The interactive process is repeated iteratively, so that the

interactions between fluid and the cylinder can be calcu-

lated correctly.

2.5 The connection of each module

The VIV behaviour of a circular cylinder is simulated by a

transient coupled FSI numerical model using the combi-

nation of FLUENT and ANSYS transient structure plat-

forms. The well-designed FSI solution scheme provides

tight integration between hydrodynamics and structural

physics, offering a flexible, advanced structure–fluid anal-

ysis tool. The connections of each module are shown in

Fig. 1. The geometry module provides a geometric model

for the transient structure solver and the FLUENT solver.

Coupled simulations begin with the execution of the

ANSYS transient structure and FLUENT solvers. The

system coupling solver acts as a coupling master process to

which the transient structure solver and FLUENT solvers

connect. Once that connection is established, the solvers

advance through a sequence of pre-defined synchronization

points (SP). At each of these SPs, the FLUENT solver

transfers the fluid dynamic loads data to the transient

structure solver based on the system coupling solver; in

turn, the transient structure solver transfers the structure

response data to the FLUENT solver also based on the

system coupling solver. Finally, the mesh is updated with

the diffusion-based smoothing method based on the

response of the cylinder. The coupled simulation proceeds

in time during the outer loop. Staggered iterations are

repeated until a maximum number of stagger iterations is

reached or until the data transferred between solvers and all

field equations have converged. The adoption of implicit

coupling iteration ensures that fluid and structure solution

fields are consistent with each other at the end of each

multi-field step, leading to improved numerical solution

stability.

Fig. 1 The connections of each module
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3 Computational domain and mesh

In this section, we describe the calculation model of this

research. For 1 DOF model, we only allow cylindrical

cylinder to move in the transverse direction. For 2 DOF

model, we allow cylindrical cylinder to move in the

transverse and stream-wise direction (as shown in Fig. 2).

The inlet velocity is set to 0.02 m/s. The right side

boundary is set to an outflow boundary condition (ou
ox
¼ 0;

ov
ox
¼ 0). The upper and lower side boundaries are set to the

symmetry boundary condition (ou
oy
¼ 0; v ¼ 0). Time step is

0.01. For the simulation task, the common goal of grid

design is to provide sufficient grid nodes to obtain suffi-

cient flow field resolution and then we can accurately

simulate the flow field. Therefore, near the cylinder, we

adopt relatively fine mesh to express severe changes of

flow field around the cylinder, with the aim of achieving an

accurate solution. Flow field away from the cylinder is

relatively stable, we adopt relatively coarse mesh to

express its flow field and the coarse mesh can deal with the

grid deformation for the cylinder movement. The thickness

of the first layer grid must meet the condition that

yþ ¼ y
l

ffiffiffiffiffiffiffiffi

qsw
p � 1, where y is the distance from the wall to

the cell center, l is the molecular viscosity, q is the density

of the water, and sw is the wall shear stress. On the

cylindrical surface, we arranged 80 nodes. According to the

above grid partitioning strategy, the whole flow field grid

consists of 11,600 quadrilateral elements. The mesh near

the circular cylinder is shown in Fig. 3.

4 Validation tests

We use the grid and time step determined in the previous

section to solve a test case of a fixed circular cylinder in

cross-flow at Re = 200. Table 2 presents the comparison

of our predictions with results found in the literature [28–

30]. The drag and lift coefficients and the Strouhal

number are obtained by analyzing their time history over

an interval of 30 vortex shedding periods. The drag

coefficient is the mean value of the in-line non-dimen-

sionalized force and the lift coefficient is the maximum

value of the non-dimensionalized transverse load. Our

results are in good agreement with the previously pub-

lished results [21–23].

Fig. 2 Schematic of (left) 1 DOF and (right) 2 DOF computational domains

Fig. 3 Mesh near the circular cylinder

Table 2 Fixed cylinder at Re = 200

Fixed cylinder Average of Cd Amplitude of Cl St

Halse [28] 1.35 0.62 0.196

Liu et al. [29] 1.31 0.69 0.192

Li et al. [30] 1.34 0.69 0.192

Present result 1.315 0.68 0.19
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5 VIV of the cylinder with 2 DOF

The VIV of an elastically mounted rigid cylinder is non-

linear. The fluid force generated by the vortex around the

cylinder makes the cylinder vibrate; in turn, the oscillating

cylinder also affects the flow field around it, eventually

flow field changes the induced forces on the cylinder and

hence the cylinder responses. In order to systematically

study the effect of frequency ratio a for the VIV charac-

teristics of an elastically mounted rigid cylinder, the fre-

quency ratio a = fn/f0 ranges from 0.3 to 2.0 at intervals of

0.1 are used. In our study, the Reynolds number value is

equal to 200, the damping ratio f = 0.01, and the mass

ratio m� ¼ 4
p.

5.1 Force time history and two-direction response

Figure 4 shows time history of the drag and lift forces, the

cross-flow and stream-wise displacements of an elastically

mounted rigid cylinder. Through Fig. 4, when the frequency

ratios are at big values, for example a = fn/f0 = 2, the time

history are very similar to those of the fixed cylinder (as

shown in Fig. S1 in the supplementary material). That is

because the fixed cylinder can be seen as an elastic cylinder

with infinite stiffness. When a is at small value, some

interesting VIV characteristics can be observed. When t a
varies from 0.3 to 0.5, the drag coefficient mean value is

smaller than that of the fixed cylinder. When a[ 0.5, the

mean value of the drag coefficient increases. When a varies

from 0.3 to 2.0, the amplitude of the drag coefficient first

increases gradually, and then decrease gradually.

When a varies from 0.3 to 2.0, the lift coefficient and the

transverse displacement curves show an obvious phe-

nomenon: the phase between the lift coefficient and the

transverse displacement undergoes an interesting ‘‘sudden’’

jumping from the ‘‘out-of-phase’’ to the ‘‘in-phase’’ mode,

which is called the ‘‘phase-switch’’ phenomenon. When a
is between 0.3 and 0.5, the lift coefficient and transverse

displacement are in the ‘‘out-of-phase’’ stage, and when a
is between 0.8 and 2.0, both lift coefficient and transverse

displacement are in the ‘‘in-phase’’ stage. Between ‘‘out-of-

phase’’ and ‘‘in-phase’’, the lift coefficient has an obvious

characteristic: its amplitude becomes very small. As shown

in Fig. 4, when a = 0.6–0.7, the amplitude of the lift

coefficient is very small.

When a is 0.5, compared with the amplitude of a = 0.4,

the transverse vibration amplitude suddenly increases,

marking the beginning of the ‘‘lock-in’’ phenomenon. At

this time the frequency of vortex shedding is locked into

the natural frequency of the cylinder.

When a is between 1.2 and 1.4, the lift and drag coef-

ficient and the transverse displacement curve clearly shows

two kinds of frequencies influence on each other, known as

the ‘‘beat’’ phenomenon. The lift coefficient of amplitude is

large at this time, showing that the intensity of vortex is

very great. From ‘‘no beat’’ to ‘‘beat’’, the cylinder’s lift

curve experiences a more disorderly state. As shown in

Fig. 4, when a is 1.2, the lift coefficient curve is disorderly.

5.2 Vortex pattern in wake

Figure 5 shows comparisons of the vortex patterns in the

wake of the elastically mounted rigid cylinder at different

a. The vortex patterns differ with different amplitudes of

cylinder motion and a. When a is at a big value (as shown

in Fig. 5, a = 2.0), the vortex pattern of the elastic cylinder

is very similar to that of the fixed cylinder, i.e., a 2S (two

single) pattern (Fig. S3). When a is at a small value (as

shown in Fig. 5, a = 0.3), the vortex pattern is a 2P (two

pair) pattern. With the increase of a, the cylinder oscilla-

tion begins to affect the vortex pattern in the wake. The

transverse distances and stream-wise distances between

vortices in the wake begin to change. As shown in Fig. 5,

when a = 0.8, the spacing between vortices in the stream-

wise direction narrows, while the spacing widens in the

transverse direction, and then two parallel rows vortices

with the blue and red in the near wake appear. When

a = 0.8–1.1, the vortex pattern forms a double line vortex.

The phenomenon of the vortex pattern switch corresponds

to the phase-switch of lift coefficient and transverse dis-

placement. When the phase-switch occurs, the vortex pat-

tern switches from ‘‘single line’’ to ‘‘double line’’. The

amplitude of the transverse vibration is the reason for the

formation of the ‘‘double line vortex’’. The ratio of the

vortex transverse displacement and the vortex stream-wise

displacement is much greater than that of the fixed cylin-

der. As a reaches 1.2–2.0, the vortex of transverse dis-

placement gradually decreases and the vortex pattern

switches from ‘‘double line’’ to ‘‘single line’’. In general, as

the frequency ratio increases, the VIV experiences three

interesting processes: phase-switch, locked-in, and beat. In

the ‘‘lock-in’’ stage, the vortex shedding modes is mainly

double line mode, while in other stage, the vortex shedding

are mainly single line mode, and in the case of lower fre-

quency ratios shows 2P wake vortex, in the case of higher

frequency ratios show 2S wake vortex.

5.3 Trajectory of the elastically mounted rigid

cylinder at different natural frequency ratios

Figure 6 shows the periodical trajectory plot of the elasti-

cally mounted rigid cylinder in comparison to the results of

different studies [27, 31, 32], in their studies as well as in

our study, the Reynolds number value is equal to 200, the

484 J Mar Sci Technol (2016) 21:479–492
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damping ratio f = 0.01, the reduced velocity U* = 5.0,

and the mass ratio m� ¼ 4
p, confirming that our predictions

are reliable. Figure 7 shows the trajectory of an elastic

cylinder for 2 DOF with various a. These trajectories

clearly show that the oscillations are self-limiting and

similar to a ‘‘Fig. 8’’ shape or a ‘‘crescent’’ shape. With the

increment of a, the mean value of the stream-wise direction

becomes smaller; meanwhile, the amplitude of the trans-

verse vibration firstly increases and then decreases. Note

that the mean value of the vibration in the stream-wise
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Fig. 4 Time history of the drag and lift forces, the cross-flow and stream-wise displacements of the elastically mounted rigid cylinder
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direction is not zero, because the drag force mean value of

the cylinder is not equal to zero. The trajectory in Fig. 7 is

from 50 to 100 s, and when a = 0.4, the trajectory does not

show a ‘‘Fig. 8’’ or a ‘‘crescent’’ shape. The frequency of

stream-wise vibration is not twice as great as the frequency

of transverse vibration at a. The trajectories of each cycle

at each a do not perfectly coincide, because the mean of the

stream-wise vibration response and the amplitude is not

constant, but fluctuates a little, reflecting the randomness of

the VIV.

5.4 Analysis of 2 DOF result

Figure 8 shows the RMS lift coefficient and RMS trans-

verse displacement for various a. When a is at a small

value (a = 0.3), the RMS lift coefficient of the elastic

cylinder is large and the response of the cylinder is weak.

With the increase of a, the RMS transverse displacement of

the cylinder also increases, but the RMS lift coefficient

decreases. When a = 0.6, the RMS lift coefficient obtains

the minimum value. After that, the RMS lift coefficient

begins to increase, reaching its maximum value when

a = 1.2. When a[ 1.2, the RMS lift coefficient begins to

decrease again. Meanwhile, the RMS transverse displace-

ment reaches its maximum value when a is between 0.8

and 1.1. After that, the RMS transverse displacement

begins to decrease. We need to pay attention to that the

transverse displacement and the RMS lift coefficient are

not direct proportion relationship. However, with the

increment of a, the natural frequency of the cylinder in still

water is increased, and then the elastic strength of the

cylinder is increased. For this reason, the mean stream-wise
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displacement is not direct proportion relationship. Figure 9

shows the mean drag coefficient and the mean stream-wise

displacement for various a. When a is small (a = 0.3), the

mean drag coefficient of the elastic cylinder is small and

the mean stream-wise displacement is large. With the

increase of a, the mean drag coefficient of the cylinder

increases, but the mean stream-wise displacement of the

cylinder decreases. When a ranges from 0.9 to 1.1, the

mean drag coefficient reaches its maximum value. After

that, the mean drag coefficient begins to decrease, finally

reaching the mean drag coefficient of a fixed cylinder. As a
increases, the mean stream-wise displacement decreases,

finally reaching zero.

6 Comparison of the 1 DOF and 2 DOF cases

Comparison of the mean drag coefficient, the RMS lift

coefficient, the mean of stream-wise displacement, the

RMS transverse displacement, and the phase difference

between the lift coefficient and transverse displacement for

the 1 DOF and 2 DOF cases is shown in Figs. 10, 11, 12,

13 respectively. Figure 10 shows the comparison of the

mean drag coefficient. The mean drag coefficients of the 1

Fig. 5 Comparison of vortex

patterns at different frequency

ratios
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DOF and 2 DOF cases are almost equal, but the peak value

in the 2 DOF case is a little bigger than that in the 1 DOF

case. Figure 11 shows the comparison of the RMS trans-

verse displacement. The amplitude of y_r.m.s/D has a

higher value for the 2 DOF case than that of the 1 DOF

case. The a of the 2 DOF case reaches a peak value that is

smaller than the corresponding value of the 1 DOF case. It

is evident that the results of the 1 DOF VIV model are only

in qualitative agreement with the 2 DOF model, because

the stream-wise oscillations, which cannot be captured by 1

DOF model, have an important influence to the transverse

vibrations. Figure 12 shows the comparison of the RMS lift
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coefficient. The peak value of r.m.s Cl is almost the same

as that of the 1 DOF case. It is found that a of the 2 DOF

case reaches the same value, which is smaller than the

corresponding value of the 1 DOF case. In other words, 2

DOF lift coefficient curve changes ahead of the 1 DOF lift

coefficient curve. For example, when a = 0.6, the RMS lift

coefficient obtains the minimum value in the 2 DOF case,

but the minimum value is reached a = 0.8 in the 1 DOF

case, which is later than in the 2 DOF case. Figure 13

shows the comparison of the phase differences between the

lift coefficient and transverse displacement. The phase

difference undergoes a ‘‘sudden’’ jumping from the ‘‘out-

of-phase’’ to the ‘‘in-phase’’ mode. The ‘‘phase-switch’’

phenomenon appears at about a = 0.5 in the 2 DOF case

but at about a = 0.7 in the 1 DOF case, which is also later

than that of the 2 DOF case. In both 1 DOF and 2 DOF

cases, when ‘‘phase-switch’’ phenomena occur, the pattern

begins to change from a single line pattern to the corre-

sponding double line pattern.

To sum up, both 1 DOF case and 2DOF case experience

three phenomena: phase-switch, locked-in, and beat, but

the ‘‘phase-switch’’ phenomenon appears in the 1 DOF

case is later than that of the 2 DOF case with the frequency

ratio increasing. In ‘‘phase switch’’ stage, root mean square

of lift coefficient reach minimum and the phase difference

of the lift coefficient and the lateral displacement response

is nearly 180�. In the ‘‘lock-in’’ stage, the root mean square

of lateral displacement is larger. Using the 2 DOF cylinder

model in place of 1 DOF model presents several advan-

tages in simulating the nonlinear characteristics of cylin-

drical structures, including the capacity to model the

crosswise vibration generated by in-line vibration.

7 Frequency spectral analysis of structural
response

To obtain the frequency characteristics of the vibration of

the cylindrical structure, a fast Fourier transformation

technique is used to transform data from the time domain

into the frequency domain to obtain the frequency spectral

analysis. The ratios of the vortex shedding frequency and

the natural frequency of the elastically mounted rigid

cylinder at different a for 2 DOF case are shown in Fig. 14.
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As with the 1 DOF (Fig. S5 in the supplementary material)

results, The ratios of the vortex shedding frequency and the

natural frequency of the elastically mounted rigid cylinder

is very large for a = 0.3–0.4. When a = 0.5 * 1.1, the

ratios of the vortex shedding frequency and the natural

frequency of the elastically mounted rigid cylinder is

approximately equal to one, and the vortex shedding fre-

quency is locked into the natural frequency of the elasti-

cally mounted rigid cylinder. As a increases, the cylinder

undergoes the beat stage, after which the vortex shedding

frequency is no longer locked into the cylinder’s natural

frequency.

The ratios of the elastic cylinder vortex shedding fre-

quency and the fixed cylinder vortex shedding frequency at

different a for the 2 DOF case are shown in Fig. 15. The

ratio of the elastic cylinder vortex shedding frequency and

the fixed cylinder vortex shedding frequency fs/f0 tends to 1

for a = 0.3. fs/f0 gradually increases from a = 0.5. From

Fig. 14, it can be seen that the elastic cylinder vortex

shedding frequency fs begins to be locked into the natural

frequency of the elastically mounted rigid cylinder fn.

According to the analysis above, we make a conclusion

that when a is not close to 1, the elastic cylinder vortex

shedding frequency fs is close to the fixed cylinder vortex

shedding frequency f0.

The ratios of the drag coefficient frequency and the lift

coefficient frequency at different a for 2 DOF case are

shown in Fig. 16. When the elastic cylinder undergoes

VIV, the ratio of the drag coefficient frequency and the lift

coefficient frequency is not equal to two (the ratio of the

drag coefficient frequency and the lift coefficient frequency

is equal to two for the fixed cylinder), except during the

beat stage.

8 Conclusion

This study presents a numerical simulation study of VIV

characteristics on an elastically mounted rigid cylinder

with Reynolds number = 200 and damping ratio = 0.01.

In this research, the numerical calculation is achieved by

combination of the LES method, transient dynamic theory,

and dynamic mesh technology. The response, hydrody-

namic forces, vortex shedding modes of the cylinder, and

the trajectory are systematically analyzed and summed up

the universal rule under different frequency ratios, and

summarize the basic rule of their time history. The non-

linear phenomena such as ‘‘lock-in’’, ‘‘phase-switch’’,

‘‘beat’’ are analyzed at different natural frequency ratios,

and find out the critical point of each nonlinear phe-

nomenon. Both 1 DOF and 2DOF cases experience three

phenomena: phase-switch, locked-in, and beat, but the

‘‘phase-switch’’ phenomenon appears in the 1 DOF case is

later than that of the 2 DOF case with the frequency ratio

increasing. In the ‘‘lock-in’’ stage, the vortex shedding
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modes is mainly double line mode, while in other stage, the

vortex shedding are mainly single line mode, and in the

case of lower frequency ratios shows 2P wake vortex, in

the case of higher frequency ratios show 2S wake vortex. In

‘‘phase switch’’ stage, root mean square of lift coefficient

reach minimum and the phase difference of the lift coef-

ficient and the lateral displacement response is nearly 180�.

In the ‘‘lock-in’’ stage, the root mean square of lateral

displacement is larger. In the ‘‘beat’’ stage, the elastic

cylinder shows characteristic of the multi-frequency

vibration. In some frequency ratio (such as) when the

elastic cylinder occur vortex-induced vibration, the rela-

tionship between the frequency of drag coefficient and the

frequency lift coefficient is not the two times.

The frequency characteristics of the elastically mounted

cylinder are also analyzed at different frequency ratios. At

a wide range of frequency ratio, a = 0.5–1.1, vortex

shedding frequency of elastic cylinder locking in the nat-

ural frequency of elastic cylinder in still water. By com-

paring the transverse vibration amplitude, phase-switch,

lateral displacement RMS, lift coefficient RMS, the 2 DOF

cylinder model presents several advantages over the 1 DOF

cylinder model in simulating the nonlinear characteristics

of cylindrical structures, including the capacity to model

the crosswise vibration generated by in-line vibration.
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