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Abstract Analysis is computationally the most expensive

part of optimization. Surrogate models, which are

approximate but faster statistical models, can be used in

place of more precise but more computer-intensive meth-

ods like finite element method to improve efficiency.

Unfortunately, the surrogate models are limited by the

number of model parameters. So large-scale problems

cannot be fully defined by a single surrogate model. Fur-

thermore, current domain decomposition methods cannot

be used with black-box models. This study presents a novel

approach to design thin-walled structures using surrogate

models that overcome the curse of dimensionality by a

special decomposition method. A parametric panel struc-

ture is defined as a building block. An interface is devel-

oped to maintain compatibility across the blocks. Finally,

an iterative algorithm finds the displaced state using only

local information. Three test structures are used to show

the convergence of the algorithm for static analysis. In

these sample cases, number of steps required for conver-

gence of the error did not change with the number of

panels. This approach offers many benefits including

automatic design creation and optimization, effective usage

of stream processors and model reuse.

Keywords Surrogate model � Domain decomposition �
Design optimization � Curse of dimensionality

1 Introduction

Engineering design optimization is mainly based on two

aspects: search and analysis. While there are currently

many search approaches with varying degrees of applica-

bility, the analysis methods are generally restricted and

they are the most time-consuming part of the search

process.

The analysis bottleneck has driven the research com-

munity to improve the efficiency of the search methods

with different perspectives. For example, parallel compu-

tation trend offered some solutions in the search tech-

niques. Evolutionary algorithms (EA) are natively

suitable for concurrent search [1]. Sometimes EA’s are

applied at the global level for multilevel search approaches

[11].

Many solutions regarding linear systems of equations

have also been offered in literature. Pre-conditioners like

incomplete factorization [8] and approximate inverses [9]

are used with relative ease. Furthermore, alternative

methods like domain decomposition methods are active

research topics, where both discretization and the differ-

ential problem are being utilized. Schwarz methods [7]

decomposes the problem domain with overlapping sub-

domains and the coordination of solution is maintained by

passing intermediate solutions as Dirichlet boundary con-

dition to the neighbouring sub-domain with a coarse grid

usage over the global domain.

Direct substructuring, being one of the earliest attempts

of factorization of the problem, was a non-overlapping

domain decomposition method [15]. Its main purpose was

overcoming the memory limitations for large-scale struc-

tures. On the other hand, it was also suitable for parallel

implementation. As a top-down approach, the global model

has to be decomposed into subdomains. The nodes at the
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interfaces are selected as master degrees of freedom. DOFs

of interior nodes are eliminated by static condensation

creating a superelement for the subdomain. The resulting

Schur complement system is solved and the remaining

solution for the internal nodes are recovered by a back-

substitution process. Repeating patterns in the structure

create an advantage by calculating only a single Schur

complement for each part.

Faster solution methods have appeared since then as

iterative substructuring algorithms, where distributed

Krylov subspace methods have been utilised in the solution

procedure of Schur complement system [10, 13].

In recent years, the computer-intensive analyses are

replaced with approximate but faster statistical models,

referred to as surrogate models [16] (a.k.a. meta-model,

response surface). The main idea is based on the con-

struction of an alternative model by sampling the search

space with the data provided from computationally

expensive simulations increase the search efficiency.

Although the computer simulation results have no mea-

surement error, they still have uncertainty with the pre-

dictions. From that perspective there have been many

efforts to efficiently design computer experiments and have

an estimation of uncertainty of predictions [17]. The sur-

rogate models can be used in search directly as in efficient

global optimisation [12], as local models [6], as multi-fi-

delity models in space mapping techniques [2], or in reli-

ability analysis [4].

These models are very powerful but they are limited by

the number of parameters the problem has. The required

number of samples to build the model increases exponen-

tially with increasing number of parameters. Some

improvements have been made by sampling techniques like

space filling [14] or sequential sampling [20], but still, the

curse of dimensionality problem [3] has not been solved

yet. The problem of handling models with large number of

variables was also emphasised along with three other

challenges in a panel discussion that was held in 9th AIAA/

USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimisation in Atlanta [18].

Until now, the attempts to utilise the surrogate models

were merely bringing together the common problem defi-

nitions or their limited/localised counterparts with common

surrogate modelling methods. One of the implications of

the ‘‘no free lunch theorem’’ [21] is that there cannot be a

single optimum solution for every search problem or, in

other words, a generic solution may not be the best

approach for a given problem.

This study is based on these motives. The new proposed

approach was originated from the problem point of view.

Considering the limitations of statistical methods, the speed

up has been achieved by taking advantage of the geomet-

rical order and patterns that exist in common structures.

Regarding the parallel computing trend, the approach was

designed with the least possible interdependence between

the components. Besides, to promote the reuse of compo-

nents and to benefit from using stream processing tech-

nologies [19], the models have been created as generic as

possible. A stiffened panel is defined as a generic building

block of a structure. The behaviour of the global structure

is calculated from the outputs of surrogates of those panels

and those outputs are used exclusively. This in turn,

enables a parallel mechanism that scales easily and con-

fines the parameter limitations to the panel level only. The

proposed algorithm to decompose the structure has showed

constant time complexity behaviour in the test cases, i.e.,

number of iterations did not change with increasing num-

ber of sub-structures.

2 The new building block concept

Structural designmay be summarised as the determination of

a material distribution that will sustain the required amount

of load while carrying its duty, constrained by the operating

conditions, cost, design life, etc. It is a search process and in

practice, this search starts in a confined search space (for

example topology is given a priori) because otherwise it

would be impossible to consider every possible design. In

this study, the search space is divided into two levels, and an

algorithm is proposed to coordinate these levels.

The first level is a parametric stiffened panel block and

its corresponding approximate statistical model is generic

enough to fit any part of the structure and it is capable of

representing any operating condition. The block may be

considered as a finite element with a design space of its

own. By using a building block like this, it is possible to

create the statistical model with reduced number of

parameters, compared to a whole structural system. A

representative panel can be seen in Fig. 1. Although a

rectangular panel is given as an example, curved panels can

be defined as well, by addition of parameters that define the

Fig. 1 A representative parametric panel
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curvature. The block has information about geometry,

material, different load cases and it has junction nodes that

define its degrees of freedom (DOF). Those fixed number

of nodes are required to cover any type of geometry and to

have a compliant interface with other neighbour blocks.

On the second level, the blocks have to be coordinated to

obtain the behaviour of the system as a whole. The algorithm

does that by iteratively using gathered information from the

concurrent solutions of the problems at block level. The

details of the algorithm are given in the next section.

This approach, besides solving the main problem of

curse of dimensionality, comes with many other side

benefits. The building block can be defined generic enough

to represent various loading conditions, geometry and

material properties. So the construction of the surrogate

model is a one-time process and the model can be reused as

any sub-component, for many applications. It will be a

more demanding task to build one of these models, com-

pared to the surrogate models currently in practice. But in

the long term, there is no need to create different models

each time when a new design required.

The building block is a fixed model after training. In

other words, no matter what input is fed, same operations

are applied and that makes it suitable to implement the

system in modern stream processors like GPUs, to have a

huge advantage in terms of parallel processing. Even

dedicated integrated solutions can be created after a well-

established surrogate model creation.

If the design space can be defined in terms of number,

connection topology and orientation of blocks, complying

with producibility and ergonomic constraints and also

feasibility of geometries for both block and design level is

satisfied; optimum designs can be created automatically

even at topological level. Because the problems regarding

the model of the building block is solved in the model

building stage, encapsulation of the model is accomplished

as a result and it is necessary for an automated design

process where no user interaction/correction is preferable.

Another advantage of this approach is the direct map-

ping of the input to the output. For example, statistical

model building does not differentiate between input–output

data couples from a simple linear analysis with data from a

more complex non-linear analysis. In the end the model

will generate the results at same speed given a proper

model is fitted with the data. Only the one time data gen-

eration in the model building stage is adversely affected

with the complexity of the simulation.

2.1 Complexity comparison of FEM vs surrogate

based decomposition

As will be explained in Section 3.4, no surrogate model has

been constructed for the present study. However, even a

qualitative comparison can clearly highlight the

differences.

First major difference is the variable that defines com-

plexity. It is the number of nodes for FEM and number of

design parameters for a surrogate model. For instance,

when a stiffener is added to the system, only the parameter

that represents the number of stiffeners changes in value

for the surrogate model, whereas the number of nodes for

each additional stiffener is added to the FEM model node

pool.

For many substructuring methods, the boundaries of

each subsection have to be determined. But with surro-

gates, the design can be built parametrically in terms of the

panels. So no need for explicit geometrical decomposition.

While for FEM, repeating parts in structure are advan-

tageous, surrogate models are already the single repeating

model that defines the whole structure by itself.

Finally, when decomposed, the distributed elements of

FEM equations require dedicated CPU time. On the other

hand, there is only a single surrogate model so vector

processing can be used. This in turn when compared with

message passing architectures, greatly improves paral-

lelization. It is only limited by the number of panels that

the structure can be defined.

3 Decomposition algorithm

To determine the global behaviour of the structural system for

a static analysis, the displacements of all the junction nodes

have to be predicted. If the displaced state of the system is

considered, any deviation of the junction nodes’ equilibrium

position creates a restoring force that points to the undisturbed

position. Once all the restoring forces are known, this infor-

mation can be used to find the equilibrium configuration. The

restoring force can be found as follows: for each junction

node, each panel that shares the node are isolated and analysed

separately. Current estimation of the junction nodes’ position/

direction is imposed as displacement boundary condition.

After the analysis, reaction force/moment can be derived from

each panel. The sum of these force/moment values is the

reaction force/moment when panels are connected and same

deviation has occurred. By using this, the equilibrium of a

single DOF for a junction node can be found knowing that all

other DOFs are kept constant. However, considering the

structure as awhole, a searchproblemwith (number ofnodes x

DOF) number of parameters has to be solved.

This study presents a mechanism to coordinate these

local searches to find the global equilibrium of the system.

Analogous to the momentum concept in classical

mechanics, the algorithm either increases or decreases the

step size of the search depending on the proximity to the

solution.
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An example, as illustrated in Fig. 2, has been con-

structed to clarify the logic behind the algorithm. The solid

curve shows an estimated displaced state in an intermediate

stage of the search. The dashed curve represents the actual

equilibrium configuration to be found. First of all, a

restoring force which is directed downwards is expected to

be generated at node D. As a result of this restoring force,

the algorithm updates the position of node D with a lower

position. If the new position results in a restoring force with

the same direction, the position of the node is updated to an

even lower position. Otherwise, the update direction is

changed and the amount of the change is decreased because

now the solution is trapped between the previous estimate

and current estimate. This works for each node and each

DOF separately. But globally the change is applied to all

nodes and DOFs at the same time and the solution cannot

be located as in the single search.

To overcome this problem a momentum like step size is

applied separately for each node and associated DOF. The

step sizes are increased if the restoring force’s/moment’s

sign does not change; otherwise, it is decreased. So even

though the solution is not trapped, the step size is changed.

By using this strategy, the nodes which are relatively far

away from equilibrium gain momentum and drag the

neighbouring nodes with lower momentum. For example,

in Fig. 2, after a close estimation of the positions of C, D

and E (far from actual equilibrium but locally no noticeable

restoring force), they would have low step sizes. But nodes

B and F would have a growing step size, and after updating

their nodal position, C and E in turn would have a larger

step size and finally same would apply to node D. The

same principle will continue to drive the search to converge

to the correct configuration in a similar manner.

3.1 Formal summary of the algorithm

The equilibrium state of the structure can be found by

solving

min
xi

X

i

rriðxiÞ; ð1Þ

where i represents every (node, DOF) pair combination, xi
is displacement configuration and rr is the residual reaction

force/moment for ith (node, DOF) pair. Algorithm relies on

an assumption of monotonicity of residual reactions. In

other words, for every xm; xn if

sgnðxmÞ ¼ sgnðxnÞ ð2Þ

and

jxm � xeqj[ jxn � xeqj; ð3Þ

then

rriðxmÞ[ rriðxnÞ; ð4Þ

where xeq is the displacement configuration of the equi-

librium. The residual reaction at each (node, DOF) is equal

to zero for xeq.

Algorithm starts with the initialization procedure,

x0i ¼ �i ð5Þ

u0i ¼ �i ð6Þ

where � is a small random real number, xti is the dis-

placement of ith (node, DOF) at iteration t and uti is the

corresponding update coefficient.

Iteratively displacements of each (node, DOF) are

updated according to the following:

f tip ¼ panelReactionipðxtiÞ; ð7Þ

where panelReaction is the reaction force calculated for

(node, DOF) of an isolated panel p represented by a sur-

rogate model. Total residual reaction for a node

rrti ¼
X

p

f tip ð8Þ

utþ1
i ¼

uti � ð1þ dÞ if rrti � rrt�1
i [ 0

uti � ð1� dÞ if rrti � rrt�1
i � 0

(
ð9Þ

xtþ1
i ¼ xti þ utþ1

i ; ð10Þ

where d 2 ð0; 1Þ, p is the set of panels having ith (node,

DOF) pair.

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Representative example for the algorithm
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3.2 Edge interpolation

Because there is only one surrogate model at hand for any

combination of design parameters, all the building blocks’

interfaces with other blocks have to be compatible. For that

reason, all the surrogate models are built with a fixed

number of junction nodes. As seen in Fig. 3, there are three

junction nodes and the remaining nodes’ DOF are repre-

sented in terms of the DOF of the junction nodes by means

of an interpolating polynomial. So nodes D and E are

represented by a polynomial, which has coefficients that

are dependent on the position of nodes a, b and c. In this

study, the example applications have three junction nodes

per edge and remaining nodes are imposed as constraint

equations in the form of quadratic polynomials.

To have an idea of the errors as result of constraining the

edges with constraint equations, two example situations are

tested. First one is two flat panels loaded with a lateral

pressure and the other is two stiffened panels with five

stiffeners crossing the interface.

In Table 1, the error percentages for each situation are

given for the maximum displacement in the Z direction, the

maximum rotation around X axis and the maximum Von

Mises equivalent stress. As can be seen in the table, for a

flat panel three junction nodes would suffice. But increas-

ing the complexity, while keeping the number of junction

nodes the same, generates higher errors. When the number

of junction nodes is increased to four, results improve

immediately. For that reason, prior to constructing the

generic surrogate model, a good compromise must be

found between simple and complex panel forms consider-

ing the number of junction nodes and subdivision density.

3.3 Power transform

In the course of the algorithm, large variations in nodal

displacements are common. Because of the dynamic nature

of the search, these fluctuations must be handled quickly. If

update coefficients are adjusted directly, both displace-

ments and corresponding update will change wildly and

this will cause stability problems. Another solution is

transforming the displacements to have the update cause

non-uniform corrections. So irrespective of the order of

magnitude, the displacements receive updates with pro-

portional magnitude. An analogous situation arises in

regression problems. Transform is applied to output vari-

ables to have constant variance in errors [5].

To preserve the sign of values, the following modified

power transform was used in the algorithm:

transformðx; kÞ ¼ xk; for x[ 0

� xj jk; for x� 0

�
ð11Þ

In the example applications of the next section, it has been

observed that 0.15 as the k parameter showed the best

performance.

3.4 Finite element method test bench

To construct a surrogate model for this study deserves a

deep and an extensive study on its own. To test the

decomposition algorithm without the surrogate model

itself, ANSYS finite element method software has been

used as a test bench. Instead of supplying the surrogate

with estimated displacements in the current iteration, the

data are sent to FEM and results are harvested back for

updating the current estimation. For the applications pre-

sented in the next section, a fixed FEM model (fixed

geometry, mesh, loading condition, material) has been

constructed for each panel block in each of the examples.

Models only accept displacements of interface nodes as

input and feedback reaction forces in return. The flow

chart of the test bench and algorithm is given in Fig. 4.

Application of FEM shows us the upper limit for the

proposed method because the surrogate model at most will

behave exactly like its data generator.

4 Applications (3, 9, 25 panel)

Three example problems with varying degrees of scale and

complexity are constructed to demonstrate the convergent

behaviour of the algorithm. The first example consists of 3

panels with no stiffeners, the second panel has 9 panels and

Fig. 3 Edge interpolation

Table 1 Error percentages for various edge interpolations

Panel type 3 Junc. 4 Junc. 5 Junc.

Z - flat panel 0.12 - -

Z - panel with 5 stiffeners 26.96 13.11 6.51

X - flat panel 1.83 - -

X - panel with 5 stiffeners 29.56 19.13 11.54

V - flat panel 0.24 - -

V - panel with 5 stiffeners 8.13 3.096 1.32
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finally the last example has 25 panels with the configura-

tions shown in Figs. 5, 6, 7. Problem parameters can be

seen in Table 2.

Stiffened panels are analysed using ANSYS’ SHELL63

element which is a 4-node shell element with 6 DOF at

each node and with bending and membrane capability.

3-panel example had 75 nodes and 48 elements, 9-panel

example had 934 nodes and 844 elements and finally

25-panel example had 850 nodes and 600 elements.

All the panels in all examples are modelled separately

with the edge interpolation applied to each side. So around

each panel there are 8 junction nodes (3 junction nodes per

side) each one with 6 DOF. The first and last examples

have eccentric loading while the stiffeners of the second

example are placed asymmetrically. The algorithm

parameters are listed in Table 3.

Starting from the zero displacement configuration, the

algorithm was applied for each example separately. The

progress of the algorithm has been shown in three different

types of plots. Because there are so many number of

variables, the monitored performance parameters were

shown in a rather compact way. The bold curve represents

the average and the lighter curves are ?/- 1 standard

deviations around the average of all values (all the nodes

and DOFs).

For the update coefficients we can see that (Figs. 8, 9, 10),

at the initial stages, their magnitude increases because the

Fig. 4 Test bench and algorithm flow chart

Fig. 5 3-panel structure

Fig. 6 9-panel structure

Fig. 7 25-panel structure
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nodes are far from the equilibrium positions. Update

coefficients form a peak, which means the nodes crossed

their respective equilibrium configurations. After the peak,

the coefficients start to decrease to further locate the pre-

cise displacement configuration.

Although a local oscillatory behaviour is observed, the

error in estimation for the displacements decreases with

increasing the number of iterations globally (Figs. 11, 12,

13). Error in estimation converges within 2 % of average

displacement in 5385 iterations for the 3-panel example, 292

iterations for 9-panel and 9618 iterations for the 25-panel

example. So there seems to be no direct correlation with the

scale of the system. Relatively slow convergence is observed

in the first and third examples and load eccentricity and

asymmetrical geometry of the structure, which is specific for

these examples, may be the reason.

The final plots (Figs. 14, 15, 16) represent the residual

force/moment. Again an oscillating pattern can be seen

Table 2 Problem parameters
3 panel 9 panel 25 panel

Parameter Value Parameter Value Parameter Value

Moulded breadth 1 m Moulded breadth 1 m Moulded breadth 1 m

Moulded length 2 m Moulded length 2 m Moulded length 2 m

Moulded depth 1 m Moulded depth 1 m Moulded depth 1 m

Plate thickness 5 mm Plate thickness 5 mm Plate thickness 5 mm

Horizontal pressure 2000 N/m2 Stiffener height 0.1 m Stiffener height 0.1 m

Vertical pressure 5000 N/m2 Pressure 10 kN/m2 Pressure 10 kN/m2

Table 3 Algorithm parameters

Parameter Value

Maximum initial displacements 1e-5

Maximum initial update coef. 1e-2

Update coef. increment rate 1.1

Update coef. decrement rate 0.9

Power transform coef. (k) 0.15

Fig. 8 Update coefficient progress for 1st example

Fig. 9 Update coefficient progress for 2nd example

Fig. 10 Update coefficient progress for 3rd example
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Fig. 11 Error in displacements for 1st example

Fig. 12 Error in displacements for 2nd example

Fig. 13 Error in displacements for 3rd example

Fig. 14 Residual force/moment for 1st example

Fig. 15 Residual force/moment for 2nd example

Fig. 16 Residual force/moment for 3rd example
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here and overall behaviour is still convergent. Spikes can

be seen in especially the third example. These situations

may arise from time to time, but the algorithm is robust for

these discrepancies and it can make the appropriate cor-

rection itself.

5 Discussions and future work

In three example cases, the decomposition algorithm

showed convergent behaviour. Furthermore, there was no

correlation between scale of the test cases and the number

of iterations required to limit the average error below a

certain limit.

This study does not show directly whether the new

approach performs better when compared against FEM, but

current findings point to the potential improvement over

conventional techniques. Still it is a future challenge to test

the method with additional case studies of even larger

scales and complexity.

Although one of the biggest elements of the problem is

solved, there are many tasks to be accomplished to use this

design approach in a more realistic setting. First of all, the

algorithm is in a rough state. Improvements should be

made to decrease the number of iterations required for

search to converge.

Because only a finite element test bench was used to

show that the algorithm works, an actual surrogate model

construction is needed to be done. An effective

parametrization of the building block should be arranged so

that local problem is represented sufficiently without being

too complicated to be built.

Another immediate need arises when the global struc-

ture is generated automatically to be used in an optimiza-

tion. The generated structure has to obey the constraints,

cover the maximum range of design space without being

infeasible.

Last but not least, because the decomposition method

presented here is only suitable for static problems, a

solution for dynamic problems is still not available.
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