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Abstract In this paper, we present a Finite pointset

method (FPM) for the numerical simulation of free surface

flow around a ship in calm water. It is a Lagrangian and

meshless particle scheme which is applied to the projection

method for the incompressible governing equations. This

requires the solution of Poisson problems in each time step,

so a moving least squares (MLS) interpolants is used for

the spatial derivatives in order to discretize the Poisson

equation with pressure-Dirichlet condition of free surface

flow in meshless structure. Meanwhile, an additional

problem of the periodic particle locations redistribution in

the present approach is still handled by MLS interpolants.

With the proposed FPM technique, problems associated

with the free surface flow around a ship are circumvented.

A verification of numerical modeling is made using the

Wigley hull and the validity of the proposed methodology

is examined by comparing the detail of wave profile and

wave-making resistance with Series 60 model. The results

demonstrate that FPM is able to perform efficient and

stable simulations of free surface flow around a ship.

Keywords Lagrangian � Finite pointset method (FPM) �
Projection method � Moving least squares (MLS) � Free
surface flow � Wave-making resistance

1 Introduction

Meshless techniques or particle methods have become

quite prevalent in computational mechanics. The key point

of these methods is to supply numerical solutions with a set

of arbitrarily distributed points without using any mesh to

link them. Compared to traditional mesh techniques that

consume time and simulate difficultly for some problems

with large deformation or within complicated geometry,

particle methods are found to be appropriate and

acceptable.

Smoothed particle hydrodynamics (SPH) is the longest

established free Lagrangian method and is quickly

approaching a mature stage among the various meshless

methods. Development of this classical meshless method

has increased during the last decades, SPH which was

originally used for the treatment of astrophysical phe-

nomena [1, 2] has been extensively studied, extended and

applied to varieties of engineering problems so far. From

the view of naval architecture, a detailed discussion of the

relevant mesh-free method and its connections to predict

ship motions for a Wigley hull was presented in Pearce

et al. [3]. Daniel and Tim [4] combined strip theory and

SPH algorithm for solving the problem of ship keel and

bow-flare slamming. The 2D ? t approach has been

introduced into SPH computations to study the ship-

breaking wave pattern by Marrone et al. [5]. Following the

2D ? t method, Landrini et al. [6, 7] developed a hybrid

analysis and application of BEM-SPH used for simulating

the free surface bow flow around a high speed ship.

Compared to the classical mesh-based method, although

SPH has a number of advantages in terms of the harmo-

nious combination of the Lagrangian formulation and

particle approximation, the adaptive nature for modeling

complex free surfaces without the need of any form of
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explicit surface tracking [8] and so on, this type of mesh-

less method has suffered several numerical drawbacks:

inconsistency, and difficulty in the treatment of boundary

conditions. Several methods developed to improve SPH

have been presented in ref [9–12]. Other detailed discus-

sion on SPH method modification can be found in [13–16].

On the other hand, Finite point method (FPM) proposed

by Oñate et al. [17–19] is the representative example of

meshless method which has been developed for fluid

mechanics problems. This approach is implemented in such

a way that finite number of particles (pointset) which are

so-called numerical grid points and can be arbitrarily dis-

tributed consist of the fluid domain and use different least

square interpolation scheme within each point cloud to

minimize the distance between the interpolated function

and the value of the unknown point. As a result, the dis-

crete equations as well as point redistribution are obtained

in that way. Moreover, the particles in Finite point method

merely participant in interpolation for the field information.

Compared to the classical SPH method, this makes the

method easier in terms of numerical implementation and

more flexible for the treatment of boundaries by just pre-

scribing boundary conditions on points placed on bound-

aries naturally as well as particle management. It is found

that FPM is suitable to handle, for example, flow problems

with complicated and rapidly changing geometry [20], free

surface flows [21, 22] and multiphase flows [23, 24].

A main focus of this paper lies on the application of the

Finite pointset method to the incompressible and inviscid

governing equations. Therefore, we propose numerical

simulation of free surface flow around a ship moving with a

constant speed in calm water based on FPM. The incom-

pressibility is taken care of by a projection method. This

requires the solution of Poisson problems in each time step.

Thereupon, the approximation of spatial derivatives arisen

from pressure Poisson equation is obtained by the moving

least squares (MLS) interpolants. When it comes to the use

of MLS on particle methods, it should be noted that though

this interpolation scheme has several superiorities such as

the regularity and accuracy of the solution, the permission

of avoiding some stability control corrections, it may also

lead to the loss of conservation properties and a general

robustness reduction of the scheme as a sacrifice [25, 26].

As for the treatment of boundary conditions, we place the

boundary particles at all domain boundaries to satisfy

Neumann boundary condition. Since the particle positions

are given by a scattered point cloud changes from time step

to time step, it is in need of an efficient data management

or re-meshing technique to process the problems associated

with irregular particle distribution during flow. Regarding

the treatment of free surface, a concept of particle density

is chosen as the judgment criteria to distinguish the point

on free surface by time step. Through comparing the detail

of wave profile and wave-making resistance of experiment

with Lagrangian finite pointset method numerical simula-

tion, the proposed methodology demonstrate the capability

of FPM as a meshless method for accurate and robust

simulation of incompressible fluid flows.

The paper is organized as follows. In Sect. 2, we

describe the implementation of FPM in detail, which

contains the mathematical model governing the incom-

pressible flow of fluid, the moving least square (MLS)

approximation and the projection method for solving the

following discretization of Poisson equation, the point

redistribution or data management, and the free surface

treatment. In Sect. 3, a verification of numerical modeling

is made using the Wigley hull and the validity of the

proposed methodology is examined by comparing the

detail of wave profile and wave-making resistance with

Series 60 model. The paper ends up with concluding

remarks in Sect. 4.

2 Implementation of FPM

2.1 Governing equations

The equations of fluid mechanics are derived from physical

balance and conservation principles by assuming the fluid

to be a continuum and the quantities being sufficiently

smooth. In a Lagrangian frame, the mass and momentum

conservation equations for the motion of a viscous

incompressible can be written as

Mass conservation:

Dq
Dt

þ q
oui

oxi
¼ 0 ð1Þ

Momentum conservation (RANS turbulent model):

q
Dui

Dt
þ q

o ujui þ u00j u
00
i

� �

oxj
¼ � op

oxi
þ o

oxi
l

oui

oxj
þ ouj

oxi

� �� �

þ q�fi
ð2Þ

where ¯ is time average physical components, 00 is time

fluctuating physical components, qu00j u
00
i is Reynolds stress

tensor, and q is the fluid density, t the time, ui the Cartesian

ith components of the velocity field, xi the Cartesian ith

components of the position vector, p the pressure, l the

viscosity and fi the source term (normally the gravity gi).

Du=Dt denotes the total or material time derivative of a

function u.
From the view of the potential flow theory, the well-

known Rankine source method is proposed by Dawson [27]

and then has been widely applied as a classical method for

solving some practical problems. In addition, many
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improvements containing the consideration of the nonlin-

earity of the free surface physics have been conducted by

the researchers who are Musker [28], Nakos and Scla-

vounos [29], Millward et al. [30] and so on. Therefore,

these improved approaches have deeply demonstrated that

when dealing with the free surface flow around a ship

neglecting viscosity is a classical and practical method and

can also give a satisfactory and valid result. Since the main

focus of this paper is the ship wave-making resistance

which is obtained by the surface particle pressure integra-

tion, so based on the same assumption as the popular

Rankine source method in potential theory, we suppose the

fluid be of no viscosity so that the arising viscosity term l
and the time average physical term in Eq. (2) can be

neglected. For this condition of incompressible fluid

potential flow, Eqs. (1) and (2) can be, respectively, sim-

plified as:

oui

oxi
¼ 0 ð3Þ

q
Dui

Dt
¼ � op

oxi
þ qgi ð4Þ

where the source term fi is replaced by the gravity gi.

2.2 The projection method

In FPM, we consider the projection method [31] to solve

the Eqs. (3) and (4) in time. A semi-implicit method is

employed. The momentum conservation equation is firstly

explicitly solved to obtain the temporal velocities and

positions except the pressure gradient term

rnþ1
i ¼ rni þ Dtuni ð5Þ

~unþ1
i ¼ uni þ Dtgi ð6Þ

where rni is the Cartesian ith components of the particle

position vector, and the left hand side of Eq. (6) ~unþ1
i is the

intermediate velocity term.

Then the pressure is calculated implicitly with the fol-

lowing Poisson equation of pressure deduced from the

mass conservation equation to maintain the incompress-

ibility of the fluid. That is:

unþ1
i ¼ ~unþ1

i � Dt
q
opnþ1

oxi
ð7Þ

where the pressure gradient is added. Meanwhile, the new

arising velocity must fulfill the incompressibility constraint

ounþ1
i

oxi
¼ 0 ð8Þ

Such that velocity gradient runþ1 in Eq. (8). This yields

a Poisson equation for the pressure pnþ1 to be solved

o

oxi

opnþ1

oxj

� �
¼ q

Dt
o~unþ1

i

oxi
ð9Þ

For the boundary condition, in which case the boundary

particles move along the solid wall, so the velocity on the

boundary C can be formulated as:

u~ � n~¼ 0 and
ou~

on~
� t ¼ 0 8t � n~¼ 0 ð10Þ

where n~ is the wall unit normal vector, i.e., there is no

velocity component into or away from the wall. In this case

the Neumann boundary condition for pressure on C is

derived as

op

on~

� �nþ1

¼ l
o

oxi

ouni
oxj

� �
n~þ qgn~ ð11Þ

As for the kinematic and dynamic boundary conditions

on free surface, it can then be obtained by the equations for

the free surface potential u and for the position of free

surface particles which are implemented as follows:

Du
Dt

¼ 1

2
jruj2 � gg;

Dxi

Dt
¼ ru; p� ¼ 0 ð12Þ

where g represents the vertical position of the considered

free surface particle, p* is the pressure of the particles

detected on the free surface boundary. Incidentally, note

that in the particles method both dynamic and kinematic

free surface boundary conditions are intrinsically satisfied

as proved by Colagrossi et al. [32].

In this projection method, the particle positions are

updated only in the first step. The intermediate velocity, the

pressure and the final divergence free velocity are all

computed on the new particle positions. The spatial

derivatives appearing in the above equations are approxi-

mated by the moving least squares (MLS) which will

directly be used to discretize Poisson pressure Eq. (9). As

computing this second-order systems of equation over time

which will bring about numerical damping associated with

the time-stepping schemes, the scheme adopted in this

paper maintains first-order accuracy. Meantime, the pres-

sure-Dirichlet boundary condition on the free surface is

satisfied by simply prescribing the pressures on the corre-

sponding boundary points to the fixed values. Eventually,

we use this mathematical model to numerical simulate the

free surface flow around a ship.

2.3 Moving least square approximation function

The Moving Least Squares (MLS) was used for recon-

structing a function from values given at scattered data

points. It locally best approximates the function in some

polynomial basis, weighted with respect to the interpola-

tion point. While the polynomial basis remains fixed, the
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weights move over the computational domain X, thus the

method is also referred to as moving weighted least squares

(MWLS) method. Due to the weights changing over the

domain, the global approximating function is not a poly-

nomial. The method is used as a building block for

approximation function in the interpolating case.

Let a function u be given on a domain X � Rd: Consider

a point cloud X ¼ fx1; . . .; xng. The function values

u1; . . .; un are given at the data points by ui ¼ uðxiÞ. The
task is to approximate the function value u(x) at an arbi-

trary point x 2 X, i.e., in the first place we are confronted

with a meshless interpolation problem.

The first step of the MLS is to assign weights to the

points xi via a distance weight function w. Analysis of the

MLS is often times carried out for a class of global distance

weight functions. The distance weight function is chosen

smooth and decaying with increasing distance. If one

wishes to have strictly compactly supported distance

weight functions, one often chooses

wðdÞ ¼ expð�ðd2 � h2Þ�2Þ d\h

0 d� h

(
ð13Þ

or splines

wðdÞ ¼ 1� 6
d

h

� �2

þ8
d

h

� �3

�3
d

h

� �4

d\h

0 d� h

8><
>:

ð14Þ

where d ¼ x� xij j is a positive distance between any two

particles in Euclidian norm, since it is rotationally invariant.

The size of the searching radius h determines n, the number of

neighboring particles around x to be used for MLS approxi-

mation. In this paper, the searching radius h is obtained by

referencing the work of Koshizuka and Oka [33], and decided

by numerical debugging constantly in computation.

Let Pm express the vector space of polynomials up to

order m. Consider a basis ðb0; . . .; bkÞ of this vector space. In
this paper, for P3 in 3D one can consider the canonical basis

b0ðx; y; zÞ ¼ 1; b1ðx; y; zÞ ¼ x; b2ðx; y; zÞ ¼ y;

b3ðx; y; zÞ ¼ z; b4ðx; y; zÞ ¼ x2;

b5ðx; y; zÞ ¼ xy; b6ðx; y; zÞ ¼ y2; b7ðx; y; zÞ ¼ yz;

b8ðx; y; zÞ ¼ z2; b9ðx; y; zÞ ¼ xz

ð15Þ

And then any polynomial p 2 Pm can be written as

pðxÞ ¼
Xk
j¼0

ajbjðxÞ ¼ bðxÞT � a ð16Þ

with basis vector bðxÞ ¼ ðb0ðxÞ; . . .; bkðxÞÞT and coefficient

vector a ¼ ða0; . . .; akÞT . A specific point x̂ is considered

and the functional

Ex̂ðaÞ ¼
Xn
i¼0

wiðx̂Þ pðxiÞ � uið Þ2 ð17Þ

is minimized, i.e., one selects the polynomial p 2 Pm,

defined by the coefficient vector a, which minimizes the

moving least squares distance at the data points xi. Since

the weights wi are taken with respect to the point x̂, for

every point x̂ one obtains a different polynomial, and thus a

different coefficient vector aðx̂Þ.
The coefficient vector aðx̂Þ is obtained by the normal

equations

ðVWðx̂ÞVTÞaðx̂Þ ¼ ðVWðx̂ÞÞu ð18Þ

where

V ¼
b0ðx1Þ . . . b0ðxnÞ

..

. . .
. ..

.

bkðx1Þ � � � bkðxnÞ

0
B@

1
CA 2 Rðkþ1Þ�n and

W ¼
w1ðx̂Þ

. .
.

wnðx̂Þ

0
B@

1
CA 2 Rn�n

ð19Þ

Hence, for each point x̂ a small linear system bas to be

solved with matrix VWðx̂ÞVT 2 Rðkþ1Þ�ðkþ1Þ: For every

point x̂ one has a polynomial approximation

PuðxÞ ¼ pxðxÞ ¼ bðxÞT � aðxÞ ð20Þ

Finally, the operator P acts on a function u and yields a

new function which is constructed only from the values of

u at the data points of the cloud X. It is noteworthy that the

MLS approximation can be used only if the points adopted

are not too disordered otherwise the matrices can be ill-

conditioned. This is a problem encountered by some

authors using the meshless method in the context of

breaking waves or for large free surface deformations (see,

e.g., [26]).

2.4 Point data management

Meshless methods, in particular particle methods, for

which the point cloud changes from time step to time step,

require a fair amount of data management to be efficient. In

this subsection, we outline the ideas required to obtain

efficient methods.

The point data management mainly involves finding

neighboring points, removing close points and filling holes

among the flow domain bestrewed by a finite number of

particles (or points) participating in interpolation and dis-

cretization. Tree search algorithm [34] is used for searching

neighboring points since this technique works well for

problems with variable radius hi. In this paper, for

obtaining more point data information around the ship on

the free surface but reducing unnecessary numerical
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simulation time in balance, we use variable radius h which

is kept at a low value 0.05 near the ship and then rises with

the distance rate 0.2 away from there until it reaches a

given maximum value 0.3, and then stays at this level.

Numerical tests show that the tree search method is very

efficient and robust especially for large number of particles

of variable radius [35].

When finding some points’ shortest distances closer than

a given distance dmin by looping over all points, removing

close points by the method of interpolating using all

neighboring points is worth effort. It is implemented in

such a way that let the detected two particles for too close

have the positions x~k and x~l, and the corresponding data

vectors u~k and u~l, so the new inserted particle will be in the

center of mass of the two particles and interpolate linearly

in the data which is x~¼ ðx~k þ x~kÞ=2, and u~¼ ðu~k þ u~kÞ=2,
respectively. As for the condition with too largest holes

generating during flow, searching for all the Voronoi cell

[36] of point xi in 2D or in 3D and constructing the full

Voronoi diagram [37] are the core missions. Once those

largest holes are identified by Voronoi diagrams, new

points will be inserted and participant calculation. It is

known that when dealing with the problem of point re-

distributions by the Voronoi diagram, this can inevitably

introduce a ‘‘mesh’’ ingredient in their scheme. However,

taking into consideration of the construction of spatial

derivatives which are evaluated through MLS, this pro-

posed particle approach, to a large extent, should be clas-

sified as a meshless method.

2.5 Free surface treatment

As for the numerical simulation of free surface flow, the

treatment of free surface flow has always been considered

and developed into some practicable ideas. Dilts [38]

proposed a purely geometric exposure method to detect

corresponding boundary particles, which eliminates the

limitations of the summation method [39] and does not rely

on the particular interpolant used. Marrone et al. [40]

introduced a more precise and reliable controlling concept

which is based on the properties of the SPH kernel to

complete the free surface detection. In this paper, we adopt

‘‘particle density’’ [41, 42] as the judgment criteria to

distinguish the point on free surface boundary. It is done by

introducing a formula for free surface index, which is

defined as:

nh ii¼
Xn
i¼1

wðjr� rijÞ ð21Þ

where w is the distance weight function proposed above.

See Fig. 1, since there is no fluid points outside the free

Fig. 1 Points clouds in free surface and flow domain
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Fig. 2 The half body plan (symmetry) of the Wigley hull

Fig. 3 The distribution of particles over the Wigley hull at respective

initial time a and finished time b for the condition of Fn = 0.316 Fig. 4 Scattered points on the free surface at Fn = 0.316
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surface boundary C, which will result in the one’s index

satisfying the criterion, i.e., nh ii\b � n0. n0 denotes the free
surface index value of an particle inside the fluid domain X

at the initial stage, and b is an free surface parameter

assumed 0.80–0.99 in this paper. So we can identify free

surface boundary particles in this way.
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Fig. 5 Transvers wave cuts profiles of the Wigley hull in various

sections at Fn = 0.316. a Wave profile at x = -1, named Sec00.

bWave profile at x = -0.8, named Sec01. cWave profile at x = -0.6,

named Sec02. d Wave profile at x = -0.4, named Sec03. e Wave

profile at x = -0.2, named Sec04. f Wave profile at x = 0, named

Sec05. g Wave profile at x = 0.2, named Sec06. h Wave profile at

x = 0.4, named Sec07. iWave profile at x = 0.6, named Sec08 jWave

profile at x = 0.8, named Sec09. kWave profile at x = 1, named Sec10
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2.6 Time step selection

In order to obtain numerical stability, several time step

constraints should satisfied where it includes a Courant–

Friedrichs–Lewy (CFL) condition,

Dt� 0:12
h

Umax

ð22Þ

where Umax denotes the maximum velocity under the given

condition. As the hydrodynamical force acting on the

particle gi, the additional constraints is added,

Dt� 0:24min
8a

ffiffiffiffi
h

gi

s
ð23Þ

3 Numerical results and discussions

In this section, we apply the FPM outlined in the preceding

sections to the prediction of wave-making resistance and

wave profiles (longitudinal and transverse wave cuts) for

two hull models at a wide range of Froude numbers. The

wave drag Rw is computed by integrating the particle

pressure p over the ship wetted surface S projecting to the

Cartesian x-axis direction n~x which is opposed to the

direction of ship progressing. That is Rw ¼
R
s

pn~xds~. With

the time iteration going during the computation, the cal-

culating pressure consequently will reach a satisfying

numerical stable state, and output a final steady-state value.

And then, the wave resistance coefficient can be deter-

mined by Cw ¼ Rw

1=2qU2S
, where U is the ship velocity in

calm water corresponding to the Froude number.

For the first problem, the well-known Wigley hull model

is considered which is defined by the analytical formula

y ¼ B

2
1� 2x

L

� �2
" #

1� z

T

� �2
� �

ð24Þ

where L, B and T are the length, breadth and draft of the

ship, respectively, at still water. The characteristic dimen-

sions of the Wigley hull are B/L = 0.1, T/L = 0.0625,

CB = 0.444, and L = 2 m, while the depth of 3D com-

putational domain size is 1.4 m and the initial time incre-

ment is set 0.001 s in this paper. In Fig. 2, the half body

plan (symmetry) is shown while in Fig. 3 we drew the

particles arrangement over the ship model at calculation

initial time and finished time (or steady time), respectively,
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Fig. 6 Wave-making resistance of the Wigley hull
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Fig. 7 Wave profile along the Wigley hull at various Froude numbers. a Wave profile at Fn = 0.25. b wave profile at Fn = 0.267. c Wave

profile at Fn = 0.289 and d wave profile Fn = 0.316
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at Fn = 0.316. Note that there are nearly 2.0 9 105 parti-

cles in flow domain.

In the case of Fn = 0.316, the wave counters plotted by

tracking the scattered spatial coordinates of points on the

free surface (z = 0 in still water) are presented in Fig. 4.

Figure 5 presents the transverse wave cuts profiles for

the case with Fn = 0.316 in multi-sections which ordered

from ‘Sec00’ at ship stem to ‘Sec10’ at hull stern. Note that

in the present work, the wave elevation in draught direction

around the Wigley hull is tracked by the particles positions

on free surface.

In Fig. 6, the computed wave-making co-efficient of the

Wigley hull with fixed sinkage and trim is compared with

its experimental results [43]. It can be observed that the

results of calculation are in good agreement with the test

data.

Figure 7 shows a comparison of computed and mea-

sured wave profile at various speed of the Wigley hull in

fixed sinkage and trim condition. It can be seen that the

wave phases are nearly consistent, but in the case of low

Froude value, such as Fn = 0.25, a significant difference is

found at the stem region of hull, and the phase moved

forward relative to the experimental wave profile. Though

the first wave crest values are generally less than experi-

ment, with the Froude value increasing, the values of first

wave trough are consistent to the test results, what’s more,

the rest waveforms along the ship hull have satisfier

agreements. When analyzing the reason why the computed

bow wave is underpredicted throughout the range of

Froude values, the intrinsic numerical damping of the

scheme accepted may be an influence factor. Thus, it is

possible to try different spatial resolution to improve this

numerical scheme in further study, but not in this paper.

The following validation studies are carried out for the

Series 60 ship, CB = 0.6 and L = 2 m hull model, with

fixed sinkage and trim. The body plan of the Series 60 ship

is shown in Fig. 8. At Fr = 0.316, the principal view of the

wave counter for Series 60 hull in form of spatial particles

scattered about the free surface (z = 0 in still water) is

shown in Fig. 9.

The comparison between the calculated wave-making

resistance coefficients by present method and the experi-

mental measurements which are obtained by the University

of Tokyo (UT) and Ishikawajima-Harima Heavy Industries

Co., Ltd. (IHHI) are plotted in Fig. 10.

Under the condition of fixed sinkage and trim, the pre-

dicted wave profiles along the Series 60 hull at various

Froude numbers are compared with the experimental

results [44] by the Ship Research Institute (SRI) in Fig. 11.

As shown in Fig. 11, the agreement with the experimental

data is in general good except the condition with low

Froude numbers. This phenomenon is same to that of

Wigley hull. When Fn = 0.18 in wave profiles, some large

fluctuations occurred around the experimental measure-

ments along the Series 60 hull. Note that f is Wave Ele-

vation in Fig. 11. It should be noted that the spiky

fluctuations in Figs. 7 and 11 may be blamed on the reason

that the wave elevation and complicated deformation on

the free surface lead to incontinuity and nonhomogeneity

of particles. This will inevitably result in some fluctuations

between the adjacent two particles. Even though, the wave

plots along the length of shipboard still clearly demonstrate

the discipline of wave profile variation and the validity by

comparing with the experimental data.Fig. 8 The body plan of the Series 60 ship

Fig. 9 The particles arrangement over the Series 60 ship at finished

time with Fn = 0.316
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Fig. 10 Wave-making resistance of the Series 60 ship
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Comparison is done in Fig. 12 between the calculated

longitudinal wave cuts profiles at multi-values of y/L with

different x/L locations and the measurements in the case of

Fn = 0.316. Take notice that the experiment results are

acquired from the work by Toda et al. [45]. As can be seen

that the agreement is quite satisfactory, especially the

interval from the stem to stern (-1 B x/L B 1). Several

discrepancies are only found at the zone which is located at

x/L C 1.5, behind the hull stern position.

In Fig. 13, we list the numerical results of wave pattern

on the free surface under multi-conditions of Froude

numbers in both display forms which contain the one

plotted by scatter points (left), i.e., the participating cal-

culation particles, and the other drawn by counters (right).

From these figures, we can discover that the stern region is

full of vortices, and the maximum wave crest and trough

around the hull swell with the increase of Froude numbers

markedly. The two type pictures shall both predict the

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.18

Cal.(FPM)
Exp.(SRI)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.22

Cal.(FPM)
Exp.(SRI)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.25

Cal.(FPM)
Exp.(SRI)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.28

Cal.(FPM)
Exp.(SRI)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.30

Cal.(FPM)
Exp.(SRI)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.32

Cal.(FPM)
Exp.(SRI)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

2g
ζ/
U
2

x/L

Fn=0.34

Cal.(FPM)
Exp.(SRI)

a b

c d

e

g

f

Fig. 11 Wave profile along the Series 60 ship at various Froude numbers. a Wave profile at Fn = 0.18. b Wave profile at Fn = 0.22. c Wave
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wave distributions on free surface around a moving ship

accurately.

4 Conclusions

The paper represents a Finite pointset method (FPM) for

applying to simulate the free surface flow around a ship

propagating in calm water. By adopting the projection

method to fulfill the incompressibility of flow, meanwhile

introducing the moving least squares (MLS) interpolants

for solving the pressure Poisson equation, we obtain an

efficient solution for the problems associated with free

surface flow. Particles data management for overcoming

irregular particle distribution and the treatment of free

surface are both considered during flow calculation.

Validation studies have been implemented for the

Wigley hull as well as Series 60 model. The comparison

between calculated results and experimental data shows a

quite satisfy agreement except a few discrepancies arising

in the case of low Froude numbers. In general, it is indi-

cated that FPM is an efficient and robust numerical method

for evaluating the flow field, wave pattern and wave-

making resistance for practical ship forms.

The calculated results are influenced to a certain degree

by the rules of local particles refinement around the hull

Fig. 12 Longitudinal wave cuts profiles of the Series 60 ship at

different values of y/L under the condition of Fn = 0.316. a Wave

profile at y/L = 0.0755. b Wave profile at y/L = 0.1083. c Wave

profile at y/L = 0.1411. d Wave profile at y/L = 0.1739. e Wave

profile at y/L = 0.2067. f Wave profile at y/L = 0.2395
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and the number of particles in calculation domain during

numerical simulating. Hence, some investigations on cal-

culation accuracy should be further studied.
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26. Le Touzé D, Colagrossi A, Colicchio G, Greco M (2013) A

critical investigation of smoothed particle hydrodynamics applied

to problems with free-surfaces. Int J Numer Meth Fluids

73(7):660–691

27. Dawson CW (1977) A practical computer method for solving

ship-wave problems. In: Proceedings of the 2nd international

conference on numerical ship hydrodynamics, Berkeley, CA,

pp 30–38

28. Musker AJ (1989) A panel method for predicting ship wave

resistance. In: 17th symposium on naval hydrodynamics,

pp 143–150

29. Nakos DE, Sclavounos PD (1994) Kelvin Wakes and wave

resistance of cruiser and transom-stern ships. J Ship Res

38(1):9–29

30. Millward A, Nicolaou D, Rigby SG (2003) Numerical modelling

of the water flow around a fast ship with a transom stern. Int J

Marit Eng 145(A3):21–34

31. Chorin A (1968) Numerical solution of the Navier–Stokes

equations. J Math Comput 22:745–762

32. Colagrossi A, Antuono M, LeTouze D (2009) Theoretical con-

siderations on the free surface role in the SPH model. Phys Rev E

Stat Nonlinear Soft Mater Phys 79(5):056701 (:1-13)
33. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit

method for fragmentation of incompressible fluid. Nucl Sci Eng

123(3):421–434

34. Beasley JE, Cao B (1996) A tree search algorithm for the crew

scheduling problem. Eur J Oper Res 94(3):517–526

35. Hernquist L, Katz N (1989) TREESPH-A unification of SPH with

the hierarchical tree method. Astrophys J Suppl Ser 70:419–446

36. Voronoi G (1908) Nouvelles applications des paramètres conti-
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