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Abstract The focus of this paper is on devising designer-

friendly hull-form variations coupled with optimization

algorithms. Hull-form variations are carried out through

parametric modification functions. Two kinds of repre-

sentative optimization algorithms are considered here. One

is the well-known sequential quadratic programming which

is the derivative based. The other is particle swarm opti-

mization which is the derivative free. The results applying

these two algorithms to typical hull-form optimization

problems are discussed in the paper. The technique using

the parametric modification functions has been developed

for modifying the ship’s geometry according to the widely

recognized naval architect’s design practice. An original

geometry can be easily deformed through the change of the

variables of the modification functions; and useful infor-

mation about the effect of the parameters is immediately

obtained. Moreover, the variables of the modification

functions can be considered as the design variables in the

formulation of the optimization problem. For the perfor-

mance prediction of the hull form, WAVIS version 1.3 is

used for the potential-flow and RANS solver. Computa-

tional results for both single- and multi-objective problems

are presented.

Keywords Hull-form optimization � Parametric

modification function � SQP � PSO � KCS � KVLCC2

1 Introduction

Simulation-based design (SBD) is an emerging engineering

tool to deal with complicate optimization problems which

come out of diverse technical sectors, including ship

hydrodynamics. The developments in CFD and greater

computer power offer chances for a more integrated and

frequent use of the SBD in the ship design process.

However, the SBD has not been widely used in practical

ship design. There are some problems to resolve—robust

and automated grid generation and manipulation, and hull-

form variation under constraints according to the industrial

needs; and the parameterization is one of the issues that

must be overcome before the SBD can make a widespread

impact on the practice of ship design, which has to be as

familiar as possible to the ship designer. Despite the

damping effects of reality on the immediate expectations,

the potential benefits and pay-offs of the impact of the SBD

on the ship design process are so great that the researches

on the SBD have been performed to yield promising

results, to reveal specific new challenges and to suggest

directions of research.

Various types of ships have been optimized to satisfy the

objective functions through SBD: Wigley with minimum

wave-making resistance [1], bow vertical motion [2];

Series 60 with minimum wave-making resistance in deep

water [1, 3] and shallow water [4], bow vertical motion [2],
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total resistance expressed as the sum of wave-making and

viscous resistance [5, 6]; tanker SR221 with minimum

delivered power and overshoot angle [7]; Suezmax tanker

with minimum wave-making resistance at bow region and

viscous pressure resistance at stern region [8]; LPG carrier

with minimum total resistance [9]; container ship SR175

with minimum heave motion [10], heave and pitch motion

[11]; KCS with minimum wave-making resistance [12];

ultra large container ships with minimum total resistance

[9]; ferry with minimum wave height in calm water and

absolute vertical acceleration [13]; combatant ship DTMB

5415 with improvement of flow- and wave-field [14], with

minimum total resistance obtained from RANS solver [15,

16], total resistance and seakeeping [17, 18]; frigate with

minimum total resistance obtained from RANS solver [19],

wave-making resistance and seakeeping [20]; catamaran

with minimum wave-making resistance [21], and total

resistance [22].

There are three core technologies for the SDB: hull-form

variation, performance prediction via a flow solver of a

varied hull form, and selection of the optimized hull form.

These three technologies have each developed to be

applied in various ways. Various techniques have been

deployed for the hull-form variation—vertex control,

modification function, and form-parameter variation.

Vertex control involves expressing the initial hull form

as a curved surface such as a B-spline, and shifting the hull

form with the vertex as the design parameter [1, 6, 7, 10,

11, 16, 23–25]. The upside to this technique is the flexi-

bility of the hull-form variation, but poor fairness after the

variation and the challenging control of the hull form are

the downsides. The form-parameter variation defines the

hull form with a form parameter for surface modeling [9,

13, 15, 17, 19, 20, 26–28]. It boasts strong flexibility and

fairness, and ease-of-use; but the initial hull form is not

readily conveyed with a form parameter. Modification (or

transformation) function calculates the varied hull-form by

reflecting the variation amount that taps into the modifi-

cation function of the initial hull form, which does not

require the initial hull form to be defined by a form

parameter [3–5, 8, 14, 21, 22, 29]. Flexibility and fairness

are the advantages, while the variation is restricted by the

modification function and it is not as easy to manipulate for

the designer.

In the field of the CFD prediction for the objective

functions (i.e., ship resistance, propulsion, seakeeping and

maneuvering performance, etc.), the potential-flow and

RANS solvers have been applied. The potential-flow solver

has widely used because of the efficiency in evaluating the

wave-making resistance [1, 3, 4, 21, 24, 30–32] or the wave

height [13] in calm water, in spite of the low physical

fidelity. Furthermore, the total resistance in full scale can

be obtained by adding the viscous resistance expressed as

empirical formula to the wave-making resistance [5, 6, 9,

22]. In the case of small margin of improvement, it is

necessary to use the high-fidelity CFD solver, such as

RANS solver. The RANS solver has been applied to pre-

dict the total resistance in model scale, which includes the

automatic grid deformation as a sequel to hull-form vari-

ation [12, 14–16, 19, 33–35]. Tahara et al. [7] performed

the optimization for the minimum delivered power and the

first overshoot angle in 10o/10o zig-zag test using the

RANS solver. Park et al. [8] optimized the bow and the

stern hull forms separately, where the objective functions

are the minimum wave-making and viscous resistance for

the bow and stern using potential-flow and RANS solvers,

respectively. The seakeeping qualities are assessed using

either two-dimensional strip theory [2, 11, 13, 20] or three-

dimensional panel methods [10].

The objective functions are nonlinear with respect to the

design variables, and complex design constraints are

imposed. Several techniques based on deterministic or

probabilistic algorithms have been applied for solving

nonlinear optimization problems with constraints such as

genetic algorithms (GA), evolution strategy (ES), sequen-

tial quadratic programming (SQP), and particle swarm

optimization (PSO). However, no single technique is best

for solving all problems. The evolutionary algorithms

(EAs), which are inspired by the Darwin’s theory of evo-

lution and the survival of the fittest, are stochastic search

techniques that perform a multiple directional search by

maintaining a population of potential solutions. GAs and

ESs are the most widely used EAs. In the GAs, the whole

parent population is replaced by their offspring and their

cost value is computed, whereas this happens partly only in

the ESs. The EAs are able to avoid local optima as they

start from multiple points. The GAs [2, 5, 13, 31] and the

ESs [1] have been widely used. Another feature of the GA

is that it can be extended to find Pareto optimal solutions in

multi-objective optimization, i.e., multi-objective GA [3, 7,

20, 29]. The SQP is the gradient-based technique that taps

into the differential value of the objective function or the

constraint’s design parameter [4, 6–8, 21, 36]. The

advantages are rapid convergence and computational effi-

ciency. However, this is a local optimizer which may prove

challenging to employ in local minima and non-connected

feasible regions. The SQP is suitable for a single-objective

optimization. The PSO is derivative free and suitable for a

multi-objective optimization [7, 10, 11, 16, 22, 29, 37, 38].

Peri and Campana [35] suggested two phases of the opti-

mization process by introducing the surrogate models for

the reduction of the overall time. Chen et al. [24] proposed

the Levenberg–Marquardt method, which is an inverse

design algorithm, to determine the optimal shape of the

bulbous bow. Campana et al. [15] suggested two alterna-

tive ways to reduce the computational expense; the narrow
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band derivative-free approach using GA and the derivative-

based variable-fidelity approach. Tahara et al. [17] pro-

posed the uniform covering (UNICO) approach with vari-

able fidelity for the multi-objective optimization problems.

Campana et al. [10] suggested a filled function-based

algorithm when the objective function requires high-fi-

delity models and its first derivatives are not available. Kim

et al. [12] applied the variable-fidelity optimization model

to the hull-form hydrodynamic optimization problem:

minimization of the wave drag of a modern container ship.

In this paper, a designer-friendly hull-form variation

technique is proposed. The varied hull forms are coupled

with not only a local but also a global optimization algo-

rithm. One is a well-known SQP, which is the derivative-

based algorithm. The other is the deterministic particle

swarm optimization (DPSO), which is the derivative free.

They are the representatives of classes, however, with

rather opposite characteristics. The results applying these

two algorithms to typical hull-form optimization problems

are discussed as well. Issues pertain to bow hull-form

optimization for the container ship and the stern for the

VLCC. The former is about minimizing wave-making

resistance at two ship speeds. The latter is about mini-

mizing viscous resistance and optimizing the wake on the

propeller plane. Objective functions are obtained using the

potential-flow and RANS solver of WAVIS version 1.3

[39, 40].

2 Problem formulation

The mathematical formulation of the optimization problem

is expressed as Eq. 1

Minimize ½f1ð�xÞ; f2ð�xÞ; . . .; fKð�xÞ� ð1Þ

Subject to the equality and inequality constraints

hjð�xÞ ¼ 0; j ¼ 1; . . .; p ð2Þ

gjð�xÞ� 0; j ¼ 1; . . .; q ð3Þ

where fið�xÞ is the objective function, K is the number of

objective functions, p is the number of equality constraints,

q is the number of inequality constraints and �x ¼
ðx1; x2; . . .; xNÞ � S is a solution or design variable. The

search space S is defined as an N-dimensional rectangle in

<N (domains of variables defined by their lower and upper

bounds):

x‘i � xi � xui ; i ¼ 1; . . .;N ð4Þ

The constraints define the feasible area. This means that

if the design variables vector �x be in agreement with all

constraints hjð�xÞ (equality constraint) and gjð�xÞ (inequality
constraint), it belongs to the feasible area.

In this study design variables vector includes the main

parameters (length, breadth, draft) and the hull control

points which are limited by the lower and upper bounds.

The displacement (V) is an inequality constraint, which is

kept within ±1 % of the original value (V0), namely

0.99 B V/V0 B 1.01.

3 Parameterization approach

A designer-friendly parametric modification tool is adopted

for modifying the hull form according to the classical naval

architect’s approach as well as the office design practice.

Among a large number of methods available to modify

hull forms, ship designers, traditionally, are interested in

systematic using of some parameters. The major benefit of

this approach is that the original ship geometry can be easily

deformed by a limited number of the well-known design

parameters. As a consequence, the modified hull form due to

the change of the parameters is immediately obtained.Useful

information about the effect of the modified hull form on the

hydrodynamic characteristics is obtained through CFD

analysis. Moreover, the variables of the parameter modifi-

cation function can be considered as the design variables of

an optimization problem. These variables are varied sys-

tematically one by one, keeping constant all the others. Then,

the design sensitivity can be easily extracted through the

CFD analysis for the evaluation of the ship performances.

For a number of reasons, this is not the approach followed

by most of the current generation of optimization codes. The

geometrical manipulation modules of these codes are indeed

typically based on CAD systems (or CAD emulators) and

hence make use of mathematical surfaces instead, i.e.,

describing the ship surface based on non-uniform rational

basis spline (NURBS) or splines patches, with a limited

number of control points, freely adjustable by the designer,

to obtain the required hull shape. As a consequence, the

changes of the main hull parameters are computed a poste-

riori, and they are not the direct output of the code.

This paper, somewhat, goes back to a practical hull-form

design approach, in which the hull-form variations are

directly related to the design parameters, and the para-

metric modification is fully integrated with both the

geometry modification module and the CFD analysis.

The initial hull surface is represented using the follow-

ing B-spline surfaces:

Q u; vð Þ ¼
Xniþ1

i¼1

Xnjþ1

j¼1

Bi;jNi;kðuÞMj;‘ðvÞ ð5Þ

where the Bi,j are the vertices of a polygon net, Ni,k(u) and

Mj,‘(v) the B-spline basis function in the bi-parametric

u and v directions, respectively.
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The parametric modification function is superimposed

on the original hull (Hold) to obtain modified geometry

(Hnew):

HnewðX; Y; ZÞ ¼ HoldðX; Y ; ZÞ þ rð‘ÞðXÞ � sðmÞðYÞ � tðnÞðZÞ
ð6Þ

where r(‘)(X), s(m)(Y) and t(n)(Z) are the parametric modi-

fication functions defined as polynomials along the X, Y

and Z directions, respectively. The superscripts ð‘Þ, (m) and
(n) are the orders of polynomials. Here, a local coordinate

(X, Y, Z) is applied, where the positive X direction goes

from the AP to the FP, and the positive Z direction is

vertical from the hull bottom. The units of X and DX are

stations. DY and DZ are non-dimensionalized by B/2 and T,

respectively. The modified geometry is obtained using the

perturbation with specific direction depending on the

design parameters. Sectional area curve (SAC), section

shape and bulb shape are used as modification functions of

bow hull form in Table 1.

This parametric modification approach can also be

applied to grid generation because the modification func-

tions are based on positions only. The smoothness is

guaranteed as the modified geometry is constricted by

modification functions.

The disadvantage of this approach is that it is not fully

flexible and it allows us to obtain the modified geometry

according to parametric modification function which is

already defined.

3.1 SAC shape parametric modification function

Various hull forms can be derived by parametric modifi-

cation of SAC. Figure 1 shows the SACs of fore body for

the original and the modified hull form using four design

variables (X0, X1, Xc, DX
SAC).

A sixth-order polynomial defined only in x direction as

r(6)(X) can be used as parametric modification function of

the SAC shape. To determine the polynomial coefficients of

r(6)(X), the following seven conditions need to be satisfied:

rðX0Þ¼0 rðX1Þ¼0 rðXCÞ¼0 r0ðX0Þ¼0 r0ðX1Þ¼0;

rð0:5X0þ0:5XCÞ¼DXSAC; rð0:5XCþ0:5X1Þ¼�DXSAC

where X0 and X1 represent the reference range of the

modification, XC a position at which the shape of the ship

section is fixed, DXSAC maximum longitudinal movement

of the sections. Note that the section positions for the

maximum longitudinal movement are located at

X = 0.5(X0 ? XC) and X = 0.5(X1 ? XC), respectively,

to preserve the displacement. The modification function

r(6)(X) can be changed by the variations of parameters X0,

X1, XC and DXSAC. So, these four parameters can be con-

sidered as design variables associated with the parametric

modification of the SAC. One can also fix some of the four

parameters, and change the others. In the applications

presented in the present study, the parameters X0, X1 and

XC are prescribed, and only parameter DXSAC is allowed to

change, i.e., taken as design variable.

As a result of the modification of the original SAC, the

new section shape at any longitudinal position can be

obtained by Lackenby method [41]. The new grid point on

the hull surface can be obtained by moving the grid point in

x direction according to the modification function as

follows,

Xnew ¼ Xold þ rð6ÞðXÞ ð7Þ

3.2 Section shape parametric modification function

There are two types of the section shape modification func-

tions: design load water line (DLWL) and U–V type. The

DLWL type is the function to modify the section shape

associated with the DLWL and the U–V type is the function

to modify the section shape into the U- or the V-shaped

section.

Table 1 Design parameters for the fore body hull-form optimization

Modification function Design parameter Annotation

SAC shape DXSAC Maximal movement

X0, X1, XC Fixed section

Section shape

U–V type DYU–V Maximal movement

Z0
U–V, Z1

U–V Fixed section

DLWL type DYDLWL Maximal movement

Z0
DLWL, Z1

DLWL Fixed waterline

Bulb shape

Area DYBA Maximal movement

Length DXBL Maximal movement

Height DZBH Maximal movement

Size DZBS Maximal movement

Fig. 1 SACs of fore body for the original and the modified hull form

using four design variables
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The parametric modification functions of the section

shape are also defined as three polynomials in X, Y and Z

directions. The new grid point on the hull surface can be

obtained using the perturbation in Y direction, and the

amount of perturbation can be obtained by multiplying

three modification functions as follows,

Ynew ¼ Yold þ rð4ÞðXÞ � sð5ÞðYÞ � tð1Þ=ð3Þ=ð2ÞðZÞ ð8Þ

where r(4)(X) and s(5)(Y) are fourth- and fifth-order poly-

nomial defined in X and Y direction, respectively. t(1)/(3)/(2)

in Z direction is divided into three; a first-order polynomial

is used below Z0, a third-order between Z0 and Z1, and a

second-order beyond Z1. The coefficients of the polyno-

mials are determined from the specified conditions. Note

that r(4)(X) and s(5)(Y) serve as the weight functions for a

given section, and t(1)/(3)/(2) defines the change in y, i.e.,

DY as a function of Z for a given section located at X.

The modification function t(1)/(3)/(2) can be changed by

the variations of the parameters DY, Z0 and Z1, where

DY represents maximum horizontal movement, denoted as

DYDLWL for the section modification function associated

with DLWL type and DYU–V for that of U–V type, Z0 is

kept fixed as the draft of the hull, and Z1 is the position

where horizontal movement is maximum.

Figure 2a shows the distribution of the DLWL type

modification functions for DYDLWL = 0.1, Z0 = 0.3 and

Z1 = 1, and Fig. 2b shows the distribution of the U–V type

modification functions for DYU–V = 0.04, Z0 = 0.35 and

Z1 = 1. The x, y and z in Fig. 2 are non-dimensionalized by

LPP. The parameters DYDLWL, Z0 and Z1 can be used as

design variables in the DLWL type section modification,

and DYU–V, Z0 and Z1 in the U–V type section modification.

The left and right sides of Fig. 3 show the body plans for

the section shape modification function of the DLWL type

(DYDLWL, ZDLWL
0 and ZDLWL

1 are design variables) and of

the U–V type (DYU–V, Z0
U–V and Z1

U–V are design variables),

respectively.

In the present optimization study, both Z0 and Z1 are

prescribed, and only DYU–V and DYDLWL are allowed to

change (used as design variables) in the DLWL type and

U–V type modifications, respectively.

3.3 Bulb shape parametric modification functions

Modification of bulb shape can be conducted by four

design parametric functions: bulb area, bulb height, bulb

length and bulb size.

Following the similar procedure as the section shape

parametric modification, the modified grid point can be

obtained by adding the perturbation in each direction, in

which the amount of perturbation can be obtained by

multiplying three modification functions as follows,

Bulb area : Ynew ¼ Yold þ rð2Þ=ð3ÞðXÞ � tð5ÞðZÞ ð9Þ

Bulb length : Xnew ¼ Xold þ rð4ÞðXÞ ð10Þ

Bulb height : Znew ¼ Zold þ rð4ÞðXÞ � sð1ÞðYÞ � tð5ÞðZÞ ð11Þ

Bulb size : Znew ¼ Zold þ rð4ÞðXÞ � sð1ÞðYÞ � tð6ÞðZÞ ð12Þ

Note that r(2)/(3)(X) of the bulb area is divided into two; a

second-order polynomial is used between X0 and X1, and a

third between X1 and X2, where X2 is the location where the

bulb ends. These functions can again be obtained from the

specified conditions. And r(2)/(3)(X) in Eq. 9, r(4)(X) and

s(1)(Y) in Eqs. 10 and 11 serve as weight functions, which

can be determined first. The other polynomials in Eqs. 9–

12 are defined in terms of some parameters, which can be

used as design variables. In the present study, some of

Fig. 2 Distributions of the section shape modification functions

Fig. 3 Original and modified body plans and design variables using

section shape modification function of the DLWL and the U–V type
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these parameters are fixed, and others are allowed to

change (used as design variables). Figure 4 shows the

original and the modified bulb area, bulb length, bulb

height, bulb size, and the corresponding design variables.

DyBA, DxBL, DzBH and DzBS are chosen as design variables,

which denote the variation of bulb area, bulb length, bulb

height and bulb size, respectively.

During each optimization cycle of the hull-form modi-

fication, surface grids are generated through the use of the

modification function and volume grids are manipulated.

The grid manipulations are carried out with an algebraic

scheme since the structured grid system is being employed,

in reference to the work of Tahara et al. [14].

4 The optimization algorithms

The gradient-based algorithms are widely used in the

industrial due to their rapid convergence properties and the

computational efficiency when a relatively small number of

variables are considered. However, these algorithms are

local optimizers, which have difficulties with local minima

and non-connected feasible regions. Because of the

increase of computer power and the development of effi-

cient global optimization (GO) methods, in recent years,

the nongradient-based algorithms have attracted much

attention. Furthermore, GO method provides several

advantages over local approaches. They are generally easy

to program and to parallelize, do not require the continuity

in the problem definition, and are generally better suited for

finding a global, or a near global, solution. In particular,

these algorithms are ideally suited for solving an

optimization problem of discrete and/or combinatorial

type. In this paper, the gradient-based SQP and the gradi-

ent-free PSO are compared, focusing on their effectiveness

and efficiency.

4.1 SQP

The SQP is an efficient, gradient-based, local optimization

algorithm. The method, based on the iterative formulation

and solution of quadratic programming subproblems,

obtains subproblems using a quadratic approximation of

the Lagrangian and by linearizing the constraints. The

equations of 1–3 are approximated with quadratic forms:

min 1=2d
TB d þ f ðxÞTd ð13Þ

subject to

hiðxÞTd þ hiðxÞ ¼ 0; j ¼ 1; . . .; p ð14Þ

giðxÞTd þ giðxÞ ¼ 0; j ¼ 1; . . .; q ð15Þ

where d is search direction vector and B is approximate

Hessian matrix of the Lagrangian. During the optimization

process, the optimum d is determined and x is updated as

expressed in Eq. 14 at each iteration [36].

xkþ1 ¼ xk þ ak � dk ð16Þ

where k means kth iteration and a represents step size.

4.2 PSO

The PSO is a gradient-free and global optimization algo-

rithm. The PSO to solve distinctive global optimization

problems (e.g., ship design) is encouraged by the following

appealing features: (1) balance, between the computation

involved and the precision of the solution detected; (2)

constant computational cost and memory engagement at

each iteration; (3) availability of a current approximate

solution; (4) derivatives of the objective function not

required; (5) easy implementation and parallelization of the

method.

The PSO simulates the social behavior of a group of

individuals by sharing their information during the

exploring of design space. Each particle of the swarm has

its own (individual) memory to remember the places vis-

ited during the exploration, and the swarm has its own

collective memory to memorize the best location ever

visited by anyone of the particles. The particles have an

adaptable velocity and investigate the design space ana-

lyzing their own flying experience, and the one of all the

particles of the swarm. Each particle is a potential solution

of the optimization problem.

The PSO algorithm assumed that each individual in the

particles swarm is composed of three N-dimensional

Fig. 4 Four design variables (DYBA, DXBL, DZBH and DZBS) to

describe the bulb shape
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vectors, where N is the dimensionality of the search space.

These are the current position x
*

i, the previous best position

p
*

i, and the velocity v
*

i. A particle swarm is composed of Nv

number of particles, the position of the number i particle

expressed as x
*

i ¼ ½xi1; xi2; . . .; xiN �, and so the velocity is

v
*

i ¼ ½vi1; vi2; . . .; viN �, the best position find by the number i

particle is p
*

i ¼ ½pi1; pi2; . . .; piN �, the best position find by

the whole particles expressed as p
*

g ¼ ½pg1; pg2; . . .; pgN �.
The basic algorithm is simple as follows:

• Step 0 (initialize)

Distribute a set of particles inside the design space,

using user-defined distributions. Evaluate the objective

function in the particles’ position and find the best location

(pb).

• Step 1 (compute particle’s velocity)

At the step k ? 1, calculate the velocity vector vi for

each particle i using the equation:

vkþ1
i ¼ v½wkvki þ c1r

k
1ðpki � xki Þ þ c2r

k
2ðpkg � xki Þ� ð17Þ

where v is a speed limit and w is the inertia of the particles

controlling the impact of the previous velocities onto the

current one. The second and third terms, with weights c1
and c2, are the individual and collective contributions,

respectively, and finally r1 and r2 are random coefficients

uniformly distributed in [0, 1].

• Step 2 (update position)

Update the position of each particle:

xkþ1
i ¼ xki þ vki ð18Þ

• Step 3 (check convergence)

Go to Step 1 and repeat until some convergence crite-

rion (e.g., the maximum distance among the particles, a

condition on the velocity) is matched.

DPSO is a deterministic version of the basic PSO for

constrained single-objective problems which includes

several algorithmic improvements. More details are given

in Campana et al. [41]. A multi-objective version of the

DPSO has been recently presented in Pinto et al. [11] to

which the interested reader is referred.

Experimental results indicate that a large value of the

inertia w promotes a wide exploration of the global search

space. Hence, w is initially set to a high value and then

gradually decreased (wkþ1 ¼ K � wn, with K\ 1) to facil-

itate the fine tuning of the current search area. The set of

parameters adopted in the computations is listed in

Table 2, in reference to the work of Compana et al. [42]:

5 Flow solver

The ship sails at constant speed (U) in calm water. Such

condition is assumed to be the same as uniform flow

moving downstream at the condition of a fixed ship. The

coordinate applied has the flow direction as the axis x (?)

and the starboard as the axis y (?), and the opposite

direction of the gravitation as the axis z (?). The origin of

the coordinate is located where the center plane, midship,

and the undisturbed free surface meet.

WAVIS version 1.3 code was utilized, which consists of

potential-flow solver and RANS solver. The details and

formulations of the numerical methodologies are well

described in the works of [39, 40, 43, 44]. Hence, only

main features of the methodologies are described.

The potential-flow part uses a panel method based on the

raised panel approach for the nonlinear ship wave problem

of practical hull forms [39, 40]. The convergence criteria

are the residuals for the kinematic and dynamic free-sur-

face boundary conditions. Kim et al. [43] compared and

verified the computational results with those of towing-

tank experiments of KCS and KVLCC2, which are the

present objective ships. The wave-resistance coefficient

(CW) is eventually given by the pressure integral over the

wetted hull surface. For the computations, the hull and the

free surface have been discretized with 912 and 1690

panels, respectively. During the computation, the ship was

free to sink and trim. We apply the linearized free-surface

boundary condition on the free surface, since this consid-

erably reduces the computational time without affecting the

results.

The RANS solver utilizes the finite volume method to

solve the Reynolds-averaged Navier–Stokes equations

[39]. The realizable k–e model is applied for the turbulence

closure. Double-body model is used to treat free surface.

The computational results of KVLCC2 and KCS are

compared and verified with those of towing-tank experi-

ments [40, 44–46].

The accuracy of flow solver has a large impact on the

practical implementation. Strictly speaking, the validation

and verification of flow solver should be first performed

before the optimization. The improvement obtained by the

optimization should be larger than the numerical noise of

flow solver. However, the uncertainty analysis does not

Table 2 Parameters for the forebody hull-form optimization

algorithm

Constriction parameter (speed limit) v 1.0

Initial inertia weight (w0) 1.4

Decreasing coefficient K for the inertia 0.975

Individual parameter (c1) 0.4

Social parameter (c2) 0.3
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performed in this paper, since the validation and verifica-

tion were carried out in advance by [47]. Kim et al. [40]

showed that WAVIS version 1.3 can predict resistance

coefficients and nominal wake fractions with accept-

able accuracy compared to the towing-tank model experi-

ment. They also studied grid dependency using three grid

systems (83 9 33 9 33, 99 9 41 9 41, 99 9 41 9 41)

and revealed that the calculated result with 166,419

(=99 9 41 9 41) grids is almost the same as that with

280,917 (=117 9 49 9 49). In the present work, 290,813

(=173 9 41 9 41) grids are used. This grid size seems to

be appropriate to identify the proper trends of the objective

functions. Of course, it does not guarantee the accuracy

because of the other effects, i.e., turbulence model, free-

surface effect, etc. Although the present flow solver is low

fidelity, the computational results are seemed to be appli-

cable to the optimization. Each computation requires about

25 min on an Intel Core 2—6600—2.4 GHz.

6 Results

To verify the practicability of the hull-form variation using

parametric modification functions, a bow hull-form opti-

mization was carried out for a container ship. Both the SQP

and the PSO optimization algorithms are applied to find a

proper algorithm. The latter has been used with the two

different sizes of swarm population and of the initial dis-

tributions illustrated in Sect. 6.1.

The objective ship is the Korea Research Institute of

Ships & Ocean Engineering (KRISO) 3600 TEU container

ship (KCS) model. Main dimensions are LPP = 230 m,

B = 32.2 m, T = 10.8 m. In the case of the single-objec-

tive function problem, the goal is a minimum value of

wave-resistance coefficient (CW) at a fixed speed corre-

sponding to FN = 0.26 (design speed 24.0 knots). FN is

Froude number based on LPP. The motivation for the

choice of CW is that the focus of this paper is on linking the

parametric modification approach with local and global

optimizers, and therefore there was no need for using more

complicated objective functions. In the potential-flow sol-

ver of WAVIS version 1.3, the CW is calculated using the

static wetted surface of the varied hull form. The wave-

making resistance is the actual objective function. The CW

in the paper is non-dimensionalized by the static wetted

surface of the original hull for convenience. In the case of

the multi-objective function problem, the objective func-

tions are the minimum values of CW at two speeds. For a

container ship, the wave-making resistance holds a very

large portion of total resistance and is sensitive to not only

hull form but also ship speed. Ship owners are interested in

slow steaming (or reducing ship speed) to cut down fuel

consumption and carbon emissions. Hence, two ship speeds

are taken into account; FN = 0.26 and 0.24 (22.16 knots).

The keel line is fixed, but bulb profile can be changed.

Finally, the design variables are limited by some box

constraints. That is the variations of the design variables

are restricted at the range from Station 12 to bulb tip. The

hull form should be smoothly joined to the original at

Station 12.

For the single-objective problem, we will discuss the

numerical results of five different cases, consisting of 2–6

numbers of parametric modification functions. The cases

are summarized in Table 3. The design variables are

described in detail at the previous section of parameteri-

zation approach. Initial value is used for 0 (zero), which

denotes the original hull form since there is no variation of

the design parameter. Problem number N is obtained by

adding the corresponding design parameter to those used in

the problem number (N - 1).

The more numbers of modification functions, the better

an optimal hull form will be, since the more freedom of

hull-form variation. However, according to the work of

Diez et al. [48], larger design spaces are also more dif-

ficult to explore, especially if a global optimum is sought,

and therefore a proper tradeoff between space dimen-

sionality and design variation should be carefully

considered.

Then, we will discuss the results of a multi-objective

case. This problem is evidently a multi-point optimization

problem more than a truly multi-objective, but, as stated

mentioned before, we have been interested in assessing the

performances of the optimizers/parametric approach cou-

pling more than in solving a complicated problem.

Table 3 Test cases for the

different numbers of parametric

modification functions

Problem Number of variables Parametric modification function Range

OPT 1 2 SAC shape

Section shape (U–V type)

-0.5\DXSAC\ 0.5

-0.02\DYU–V\ 0.02

OPT 2 3 OPT1 ? Section shape

(DLWL type)

-0.02\DYDLWL\ 0.02

OPT 3 4 OPT2 ? Bulb area -0.02\DYBA\ 0.02

OPT 4 5 OPT3 ? Bulb height -0.02\DZBH\ 0.02

OPT 5 6 OPT4 ? Bulb size -0.02\DZBS\ 0.02
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6.1 Single-objective tests

The effective number and distribution of the initial particles

significantly affect the results in the PSO algorithm. The

probability to find an optimum value will increase as the

number (of particles) increases with the same number of PSO

iterations, however, the computational time rapidly increases.

If one has a fixedbudget of function evaluations, then there is a

tradeoff between the swarm size and the number and itera-

tions. Therefore, it is necessary to find an optimum number

and distribution to effectively explore the design space. As the

design variables increase, the necessity will increase.

Three kinds of the methods are investigated, that is,

PSO-hcf, PSO-hcv, and PSO-sobol.

• PSO-hcf: the swarm particles initially distributed at the

center of the hypercube faces. The number of the

swarm particles is 2Nv, where Nv is the number of the

design variables.

• PSO-hcv: the swarm particles initially distributed at the

vertices of the hypercube faces. The number of the

swarm particles is 2Nv.

• PSO-sobol: the swarm particles initially distributed

according the Sobol quasi-random sequence). In gen-

eral, this method does not require a fixed number of the

swarm particles. Here, the number is of 2Nv ? 1.

Figure 5 shows the initial distributions of the swarm

particles using the above three methods in the case of

Nv = 3.

The initial value of the design parameter is 0 (zero),

which denotes the initial hull form. The interesting quan-

tities to be monitored are both the resistance reduction and

the number of function evaluations Nf. The CW reduction

ratio (DCW) obtained and Nf are summarized in Table 4.

The CW of the original hull form at FN = 0.24 is

0.3544 9 10-3. Note that Nf is related to the computa-

tional efficiency.

Table 4 shows the feasibility of the parametric modifi-

cation functions, and the optimization using the SQP and

the PSO. In the performance aspect, the order is SQP, PSO-

hcv, PSO-sobol, and PSO-hcf. In the computational effi-

ciency aspect, the order is SQP, PSO-hcf, PSO-sobol, and

PSO-hcv. The SQP demonstrates a fast convergence and a

superior performance. The PSO-hcv is computationally the

slowest. The PSO-hcf is as efficient as the SQP in the

aspect of the computational time, however, inferior to the

other methods in the aspect of the performance. Overall,

the PSO-sobol shows comparable to the SQP in the aspect

of performance and computational efficiency.

Figure 6 shows DCW versus Nv for four methods. All

four methods show better performances as the number of

design variables increases, which is already shown in

Table 4. SQP and PSO-hcv increase linearly their perfor-

mance with Nv. PSO-sobol shows roughly the same trend,

but Nv = 5. In the case of PSO-sobol for Nv = 5, the DCW

decreases as the number of the swarm particles increases.

This means that it leaves a part of the design space unex-

plored. Better result will be shown if the swarm particles

increase. However, the number was not changed, since the

focus is the comparison of the other methods using similar

number of swarm particles (2Nv ? 1). PSO-hcf shows

approximately a square-root trend.

To explain the reason why the SQP shows the best, it is

necessary to look at the convergence path of the OPT1 and

Fig. 5 Initial distribution of the

swarm particles in the case

using 3 design variables

Table 4 Reduction ratios of Cw

and number of function

evaluations of five problems for

single-objective test

Problem SQP PSO-hcf PSO-hcv PSO-sobol

DCW (%) Nf DCW (%) Nf DCW (%) Nf DCW (%) Nf

OPT1 15.2 44 9.1 40 15.6 35 15.7 35

OPT2 20.2 37 19.3 63 19.3 90 18.6 56

OPT3 24.5 56 21.3 63 24.2 221 22.3 72

OPT4 29.0 90 21.3 77 27.8 429 18.2 88

OPT5 32.8 76 21.6 91 32.4 650 29.9 104
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the OPT2 feasible domains in <2 and <3, respectively, as

shown in Figs. 7 and 8. The convergence path of the OPT3,

the OPT4 and the OPT5 cannot be easily shown, since their

domains are in <4, <5 and <6, respectively.

Figures 7 and 8 show the iso-contours of CW and the

convergence paths of the SQP and the PSO-sobol for the

OPT1 and the OPT2, respectively. The shapes of the iso-

contours of CW and the (volume) constraint clearly show

that the domain is convex. Hence, this is a unique global

optimum. This ensures that even a local optimization

algorithm can find the global optimum independently. This

is an ideal condition for the fast convergence of any gra-

dient-based approach. It is deduced from the good perfor-

mances of the SQP for the OPT3, the OPT4 and the OPT5

that the basic features of the set of optimization problems

share the same characteristics.

The PSO-hcv shows almost identical CW reductions

with respect to the SQP, but with a much higher Nf (up to

one order of magnitude). This is predictable since the PSO

is a gradient-free, global optimization algorithm, and the

lack of knowledge of the gradient information requires

more computational effort. On the other hand, it will work

well in cases where any local method would fail. The

different behavior between the two methods can be

observed in the paths of the SQP and of the PSO-sobol.

It is interesting that both the PSO-sobol and the PSO-hcf

show a much reduced Nf comparing that of the PSO-hcv.

The values of Nf of the PSO-sobol and the PSO-hcf are

very close to that of the SQP (in two cases even less than

that of the SQP). These two approaches show, however,

different performances with respect to the CW reduction.

The PSO-sobol very close to that by the SQP is to be

optimum, although the PSO-hcv gives the best CW

reduction.

In conclusion, the PSO-sobol shows good efficiency in

terms of reduced Nf, is attractive when more complex

problems have to be solved (e.g., with more complex

constraints).

6.2 Multi-objective test #1

As previously mentioned, the objective functions are the

minimum values of CW at FN = 0.24 and 0.26. The bow

hull form is optimized without altering the stern. Modifi-

cation functions are the entrance angle in SAC, the section

shape (U–V type), the section shape (DLWL type) and the

bulb area. That means four design variables are considered,

i.e., Nv = 4. The PSO-sobol is implemented. Hence, the

Fig. 6 CW reduction ratio as a function of the number of variables

Fig. 7 Iso-contours of CW and convergence paths of the SQP and the

PSO-sobol for the OPT1

Fig. 8 Iso-contours of CW and convergence paths of the SQP and the

PSO-sobol for the OPT2
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number of initial swarm particles is 17(=24 ? 1). The

initial hull forms and the design spaces are determined

through the parametric studies as the same ways of the

single-objective tests. Figure 9 shows the distributions of

all the swarm particles, the Pareto set after five generation,

and the Pareto optimal set. The swarm particles explore a

wide range of the domain for the objective functions.

The Pareto front is reported in the function space in

Fig. 10. Figure 10 shows the Pareto optimal set from multi-

objective optimization with the PSO-sobol approach and

the SQP solutions.

SQP-KSC1 and 2 represent the SQP solution of the

two single-objective problems obtained for the two dif-

ferent speeds. The SQP can only deal with a single-ob-

jective problem. To deal with a multi-objective one, the

SQP can be applied through an aggregated approach, i.e.,

the problem has to be transformed into a single-objective

one by making a linear combination, with some user-

defined weights, of all the objective functions. In this

way, however, the true nature of the multi-objective

problem (i.e., the concept of Pareto front, see as an

example in Miettinen [49] is lost. Here, the SQP is used

to solve the separated problems at the two speeds. Among

the eight Pareto solutions, three solutions are chosen, that

is, the PSO-KCS1, 2, and 3. The values of CW and the

reduction ratios comparing to that of the original hull

form (DCW) for three Pareto, and two SQP are listed in

Table 5.

The PSO-KCS1 is hull form with a minimum CW

(=0.6129 9 10-3) at FN = 0.26, which reduces the CW by

7.8 %. The PSO-KCS3 is hull form with a minimum CW

(=0.2776 9 10-3) at FN = 0.24, which reduces the CW by

8.5 %. The PSO-KCS2 is one of the remaining Pareto

solutions, which reduces the CW by 7.6 and 7.5 % at

FN = 0.26, and 0.24, respectively. The SQP-KCS1 and 2

are the solutions of the SQP optimization for the single-

objective function at FN = 0.26 and 0.24, respectively. The

CW from the SQP is the lowest, since the optimization is

performed at one objective function.

The body plans of the three PSO solutions are present in

Fig. 11. The three hull forms show some differences,

which are due to their own objective functions. In the case

of PSO-KCS1 and KCS3, the section shapes are modified

toward increasing the entrance angle and the bulb area;

while the variation varies between the two. The section

shapes of PSO-KCS2 are modified in the direction of

increasing the entrance angle and reducing the bulb area.

Note that the multi-optimal problem is taken into con-

sideration in this work. Various hull forms may exist to

satisfy similar objective functions. Multi-optimal hull

forms can be derived using the PSO since the whole design

spaces are explored, whereas the SQP not. All the three

hull forms are practical. Therefore, the PSO and parametric

modification can efficiently find Pareto optimal set the field

of multi-objective hull-form design.

6.3 Multi-objective test #2

The second multi-objective test is the optimization of the

stern hull form of the KVLCC2 (second version of the

KRISO very large crude-oil carrier). Main dimensions are

L = 320 m, B = 58.0 m, T = 20.8 m. The model-ship

scale ratio is 58.00, and FN = 0.142, RN = 4.6 9 106 at

ship design speed (VS = 15.5 knots). RN is Reynolds

Fig. 9 Pareto set after 5 generation and Pareto optimal set of multi-

objective test #1

Fig. 10 Pareto optimal set from multi-objective optimization and the

SQP solutions

J Mar Sci Technol (2016) 21:129–144 139

123



number in model scale based on LPP. This test is more

complex and expensive.

The final goal of the objective function for the hull-form

optimization is minimizing delivered power. This can be

Table 5 Values and reduction ratios of Cw of the original and the

optimized hull forms from the PSO and the SQP at two speeds

Problem FN = 0.26 FN = 0.24

CW 9 103 DCW (%) CW 9 103 DCW (%)

Original 0.6645 0.0 0.3033 0.0

PSO-KCS1 0.6129 7.8 0.2830 6.7

PSO-KCS2 0.6141 7.6 0.2807 7.5

PSO-KCS3 0.6178 7.0 0.2776 8.5

SQP-KCS1 0.6085 8.4 0.2870 5.4

SQP-KCS2 0.6228 6.3 0.2771 8.6

Fig. 11 Body plans of three Pareto front solutions (PSO-KCS1, 2 and

3) and the original ones

Fig. 12 Contours of form resistance and mean velocity on the

propeller plane as a function of the 3 design variables

Fig. 13 The performances of the Pareto solutions
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done through the use of RANS solver in towing and self-

propulsion conditions. It is very time-consuming even at a

model scale. The objective functions in this work are to

minimize (1) viscous pressure resistance coefficient (CVPM,

or form resistance coefficient) and (2) the mean longitu-

dinal velocity of a selected region on the propeller plane as

expressed in Eq. 19

MeanðVxÞ ¼
Z a

�a

Z rP

�r0

Vx � rdrdh ð19Þ

where a is the angle of the selected region (-45o\ a\
45o) and Vx is non-dimensional longitudinal velocity. We

take—Mean(Vx) as objective function to be minimized,

which means maximizing wake velocity. Maximizing wake

velocity is related to resistance and propulsion perfor-

mances. Higher wake velocity (or lower wake fraction) is

known for lower viscous resistance and hull efficiency.

However, it is not generally applicable. The experimental

results of the KVLCC1 which is similar to the KVLCC2,

the V-form hull (i.e., higher wake velocity) is superior to

both the basic and the U-form hull form (i.e., lower wake

velocity) with respect to the resistance and propulsion

performance [50]. In this work, maximizing wake velocity

is selected as one of the objective functions to take the

propulsive performance into consideration. The flow at the

selected upper part of propeller plane is also related to

propeller performance, that is, maximizing wake velocity

makes the inflow velocity distribution on the propeller

plane uniform. Therefore, maximizing wake velocity has

been one of the important parameters used for ship design.

The CVPM in the paper is non-dimensionalized by the

static wetted surface of the original hull for convenience,

which is the same case for CW as mentioned before.

The stern hull form is optimized without altering the

bow, since the objective functions are mainly influenced by

the viscous flow of the stern.

The goal of this example is to show the possibility of

linking the parameterization technique with volume solvers

and to test the effectiveness of the optimizers.

Three design variables have been used: (1) x1 = DX in

the parametric function of the SAC shape (stern region), (2)

x2 = DY in the parametric function of the U–V type section

shape and (3) x3 = DY in the parametric function of the

DLWL type section shape. The number of initial swarm

particles is 9(=23 ? 1), since the PSO-sobol is imple-

mented. The adopted box constraints are x1 B 0.5,

x2 B 0.07 and x3 B 0.07. The range of the aft modification

part of the hull is St. 0–St. 8.

A regular sampling of the two objective functions was

performed before the test started, so that it has been pos-

sible to plot their gross structure and to follow the evolu-

tion of the optimization procedure. Figure 12 shows the

distribution of the form resistance and mean velocity on the

propeller plane as a function of the 3 design variables. The

red dots are Pareto solutions. For positive values of x1, both

the functions show reduced values with respect to the

original hull (the point at x1 = x2 = x3 = 0). As to x2 (the

U–V type section shape), the two functions show opposite

trends. Minor changes are produced by x3 (DLWL type

section shape). The discrete approximation of the Pareto

Table 6 Summary of multi-

objective test case #2
Original PSO-KVLCC1 PSO-KVLCC2 PSO-KVLCC3

D(m3) 312,450 311,348 310,970 310,008

CVPM 9 1000 0.913 0.817 (89.5 %) 0.856 (93.8 %) 1.056 (115.7 %)

Mean(Vx) 0.32 0.266 (83.1 %) 0.360 (112.5 %) 0.547 (170.9 %)

Fig. 14 Comparisons of body plans for three different solutions of

the multi-objective test case #2

J Mar Sci Technol (2016) 21:129–144 141

123



front eventually found by the algorithm is also reported.

The solutions are close to the box constraint on x1.

Among these Pareto optimal solutions, three hull forms

are considered as samples: PSO-KVLCC1, 2 and 3. Fig-

ure 13 displays the performances of the Pareto solutions.

The values of the design variables and the objective

functions of the original and three Pareto solutions are

listed in Table 6. The number of evaluation is 369. The

PSO-KVLCC1 is a hull form with a minimum

CVPM(=0.817 9 10-3), which reduces the CVPM by 10.5 %

comparing to that of the original(=0.913 9 10-3). The

PSO-KVLCC3 is hull form with a minimum wake, which

increases the mean velocity by 70.9 % comparing to that of

the original. The PSO-KVLCC2 is one of the remaining

Pareto solutions, which reduces the CVPM by 6.2 % and the

mean velocity by 12.5 % comparing to that of the original.

Their body plans, compared with the original ones, are

reported in Fig. 14. The geometrical features of these three

solutions are easily identifiable. PSO-KVLCC1 has the

highest admissible value of x2, and hence shows a V-type

stern, whereas PSO-KVLCC3 has the lowest admissible

value of x2, hence showing a U-type shape. All the three

ships display a larger SAC angle (positive x1).

The contours of the axial velocity and velocity vectors

on the propeller plane are present in Fig. 15. RP is non-

dimensional radius of propeller. The form drag becomes

smaller as the hull form becomes V type (i.e., PSO-

KVLCC1). The mean velocity becomes faster as the hull

form becomes U type (i.e., PSO-KVLCC3). These are

conflicting. Consequently, the optimal hull form to mini-

mize the objective function will be derived in the case of a

single-objective problem. However, the various hull forms

are derived to reduce the objective functions in the case of

the multi-objective problem. For this reason, the multi-

objective technique is more effective when the objective

functions are conflicting tendency.

(a) Original hull (b) PSO-KVLCC1

(c) PSO-KVLCC2 (d) PSO-KVLCC3 
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Fig. 15 Contour of axial velocity and velocity vector on the propeller plane
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7 Conclusions

1. This paper introduces the practical hull-form opti-

mization design method utilizing the hull-form

parameterization and the deterministic optimization

technique of PSO.

2. Bow and stern hull-form designs are successfully

implemented using the above two methods. The former

is to minimize wave-making resistance at two ship

speeds. The latter is to minimize viscous resistance and

mean longitudinal velocity of a selected region on the

propeller plane, where -45o\ a\ 45o.

3. In the problem of single-objective function, the SQP is

quicker in getting the converged solution than the PSO.

In the problem of multi-objective function, the PSO

effectively deduces the Pareto optimal set.

4. It is possible to cut down on the computational

expenses by reducing the design variables through

the use of hull-form parameterization method. The

practicality of the hull-form optimization is also

increased by lessening computational amount through

the use of global optimization technique of the PSO.

5. However, the hull-form parameterization method has

lower autonomy to modify hull form, since the modi-

fication is only dependent of the parameterization. This

shortcoming will be overcome through developing or

adding a little more various parameterization methods.
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expansion. Comput Methods Appl Mech Eng 283:1525–1544

49. Miettinen KM (1999) Nonlinear multiobjective optimization.

Kluwer Academic Publisher, Boston

50. Min KS, Choi JE, Yum DJ, Shon SH, Chung SH, Park DW

(2002) Study on the CFD application for VLCC hull-form design.

In: 24th Symposium on naval hydrodynamics. Fukuoka

144 J Mar Sci Technol (2016) 21:129–144

123


	Hull-form optimization using parametric modification functions and particle swarm optimization
	Abstract
	Introduction
	Problem formulation
	Parameterization approach
	SAC shape parametric modification function
	Section shape parametric modification function
	Bulb shape parametric modification functions

	The optimization algorithms
	SQP
	PSO

	Flow solver
	Results
	Single-objective tests
	Multi-objective test #1
	Multi-objective test #2

	Conclusions
	Acknowledgments
	References




