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Abstract This paper presents and discusses the results of

a comparison between using deterministic and ensemble

weather forecasts for weather routing. The study is based

on comparisons between predicted and realised perfor-

mance of routes suggested by a route optimization method

and focuses on two important performance factors, namely,

fuel consumption and late arrival. The study is purely

qualitative since the simulations do not include re-routing

of the vessel as new forecasts become available. To per-

form the study a multi-objective dynamic programming

method is tailored to the problem and implemented to

perform the route optimization and a ship performance

model is used to calculate the additional fuel consumption

due to wind and waves acting on the ship. The results show

that route optimization using ensemble weather forecasts

has the potential to reduce the risk of late arrival for voy-

ages during periods of harsh weather.

Keywords Route optimization � Weather routing �
Dynamic programming � Ensemble weather forecasts

1 Introduction

For ships navigating across large oceans considerations

about the present weather conditions are essential for safe

and efficient operations. The highly dynamic environment

exposes the ship to loads from wind, waves and currents.

To ensure safe passage, arrival on time, minimized oper-

ational costs and minimal environmental impact it is

important that the route of the ship is optimized with regard

to the weather.

Numerical route optimization, or weather routing, is

proven to be successful in reducing travel times in ocean

yacht racing, in minimizing operational costs [1, 2] and in

reducing encountered wave heights [3]. The two main

problem areas in the field of numerical weather routing are

the modelling of added resistance due to wind and waves

and the reliability of the weather forecasts on which the

optimization is based. This paper deals with the latter

problem by investigating the use of ensemble weather

forecasts.

The standard weather forecast, here referred to as a

deterministic forecast, is typically computed by first cal-

culating the current state of the weather from observational

data collected by weather stations and satellites. The cal-

culated representation of the weather is called the analysis.

The analysis then serves as the initial condition from which

a numerical model of the atmosphere is integrated in time.

The analysis can also refer to a set of consecutive analysis

steps used as a record for the true development of the

weather. In this paper the term ’verified weather’ is used

instead to avoid confusion. The progression in time of the

deterministic forecast is naturally strongly dependent on

the initial condition (the analysis).

As an alternative, or a complement, to the deterministic

forecast one can produce what is called an ensemble

forecast. The ensemble forecast is a large set of deter-

ministic forecasts that are generated by performing the

same integration in time but using slightly perturbed initial

conditions, resulting in a set of forecasts that thus evolve

differently over time. The individual forecasts in the
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ensemble are called ensemble members, and the ensemble

member that is derived from the unperturbed initial value is

called the control member. All of the forecasts in the

ensemble are typically considered equally likely to realise.

The spread of the ensemble members is called the

ensemble spread and can be used to asses how stable the

current weather conditions are and thus indicate the

uncertainty of the deterministic forecast. A large spread at

a given time in the forecast indicates high uncertainty and

vice versa. A good introduction to ensemble weather

forecasts is provided by the National Oceanic and Atmo-

spheric Administration (NOAA) online [4].

Several approaches have been proposed for using

ensemble weather forecasts for route optimization. In [1],

Saetra provided important information about the relation-

ship between ensemble spread and routing performance,

confirming that the application of ensemble forecasts to

weather routing has merit. Hoffschildt [5] and Saetra [1]

evaluated several approaches to route optimization using

ensemble weather forecasts; however, none of those per-

formed better than methods based on the deterministic

forecast.

Allsopp, Philpott and Mason [6, 7] presented a method

based on a dynamic programming approach to solve a

minimum time routing problem under consideration of

uncertainties. The method is similar to the Bellman method

[5] but expands the state space to include the weather

scenario. The weather scenarios are part of a branching tree

of scenarios with specified probabilities associated with

each branch. The method is implemented for a yacht racing

problem where the only objective is time, but the method

could be expanded to more complicated problems. Treby

[8] used a different dynamic program to solve the same

problem.

Harries et al. [9] introduced a novel approach to route

optimization that uses a genetic algorithm to generate Pa-

reto optimal solutions to a multi-objective routing problem.

In addition to varying the route, the velocity profile along

the route was also varied, making the problem more

complex. Hinnenthal [10], together with Saetra [11] and

Clauss [12], later expanded this method to make use of

ensemble forecasts by introducing a concept of Robustness

(see Sect. 3.2) to evaluate the sensitivity of the routes to

changes in the weather.

The ensemble forecast is a relatively new approach to

weather forecasting, first being put to use in the 1990s;

therefore, the potential applications and benefits to weather

routing have not yet been fully explored.Although the papers

referenced here provide evaluations of several methods,

comparisons of the performance in realised weather of

routes computed using deterministic and ensemble

weather forecasts are performed only in [1] and [5].

1.1 The contribution of this paper

This paper compares the results of using a standard, or

deterministic, weather forecast and an ensemble weather

forecast for numerical weather routing. The comparison

focuses on two important performance factors as objectives

for the optimization: arrival on time and fuel consumption.

Routing using the ensemble forecast implements the

robustness measure, introduced in [11], to ensure that the

optimized routes are not sensitive to the weather develop-

ing differently than predicted by the deterministic weather

forecast. The performance of the routes, optimized using

the deterministic and ensemble weather forecasts, respec-

tively, is evaluated in the verified weather, i.e. the weather

that realised and not the forecasted weather. The scope of

the evaluation presented in this paper is to assess the

qualitative differences between using deterministic and

ensemble weather forecasts for numerical weather routing.

Further, this comparison only investigates one possible

method of using ensemble weather forecasts for weather

routing. To perform the comparison a route optimization

method is implemented that can handle both types of

forecasts. The optimization method is presented in some

detail for completeness. The continuation of this paper is

divided in to the following parts: first, an overview of the

methodology employed for the comparison performed in

this paper is given. Second, the optimization algorithm

used for weather routing using both deterministic and

ensemble forecasts is presented. Third, the test cases used

for this paper are detailed along with some additional

implementation details. Fourth, results from the compari-

son are presented and discussed. Fifth, the authors present

their conclusions and thoughts on future work.

2 Methodology

To compare routing using deterministic and ensemble

forecasts the following methodology is used. Also see

Fig. 1:

– A problem is formulated in terms of point of departure,

point of destination, arrival time and ship characteris-

tics. This is referred to as a ‘case’.

– A set of Pareto optimal (see Sect. 3.1) routes is

computed using the deterministic weather forecast as

input to the optimization algorithm.

– A second set of Pareto optimal routes is computed

using the ensemble weather forecast as input to the

optimization algorithm.

– The realised performance of both routes is re-evaluated

using the verified weather. That is, a journey along the
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route is simulated using the realised weather and the

realised performance is calculated.

– The results of the two different routings are compared

with respect to late arrival and fuel consumption.

Routing using the deterministic and ensemble forecast is

performed using the same optimization algorithm. The

difference is that the additional data available when opti-

mizing with the ensemble forecast allows for the intro-

duction of a new objective, namely robustness. The

robustness objective, how it is computed and other details

about the optimization algorithm, are presented below.

The verified weather is constructed from the initial time

steps of the control members of the ensemble forecasts

issued each day for the duration of the voyage. This can be

considered to be a close approximation of the weather

which would be observed during the voyage. By re-eval-

uating the routes in the verified weather the realised per-

formance of the different routes from the ensemble and

deterministic routings can be determined.

3 Optimization

The optimization method used here is a dynamic pro-

gramming algorithm that finds the Pareto optimal paths

through a graph under constraints. For an introduction to

dynamic programming methods and shortest path problems

see [13, 14] and for a treatment of dynamic programming

and route optimization see [15]. For a thorough presenta-

tion of multi criterion shortest path algorithms see [16–18]

and for a presentation of resource constrained shortest path

problems see [19]. Although dynamic programming

methods have been used for route optimization of ships for

a long time the use of multi-objective optimization meth-

ods does not appear to be common. In [20] a method

similar to the one presented here is introduced, but there

are some important differences. Most notably the algorithm

presented in the present paper stores only Pareto optimal

solutions as opposed to the floating state technique used in

[20]. Further, the method presented in this paper is adapted

for use with ensemble weather forecasts.

The handling of constraints has been left out of the

description of the algorithm below for brevity. The only

constraints considered in this paper are arrival on time and

maximum engine power output (an additional constraint is

imposed for routing using ensemble weather forecasts, see

below). The arrival on time constraint is handled by treating

travel time as a Resource by the method described in [19]

and the achievable engine power constraint is handled by the

performance calculations, see Sect. 3.3. As dynamic pro-

gramming methods are common for solving optimal path

problems and widely known, the presentation here will be in

relation to the weather routing problem with focus on the

adaptation for use with ensemble weather forecasts. The rest

of this section is divided into five parts. First, an introduction

is given to the concept of Pareto optimality. Second, the

robustness concept is introduced and discussed. Third, the

concept of a performance model is introduced briefly.

Fourth, the dynamic programming algorithm is presented.

Finally, the adaptation of the optimization method for use

with ensemble weather forecasts is presented.

3.1 Pareto optimality

The concept of Pareto optimality originates from the field

of economics and game theory. It is named after Vilfredo

Pareto and will here be explained shortly.

Let �f ð�xÞ ¼ ðf1ð�xÞ; f2ð�xÞ; . . .fnð�xÞÞ be the function to

optimize, for example by minimization of all of the func-

tions, min
�x

fið�xÞ, for all i. However it is not clear what

constitutes an optimal solution since, presumably, not all

functions fið�xÞ will have a global minimum for the same

value of �x. One commonly used approach is to create a

weighted sum of the different functions fi. This allows for

the computation of one solution which is optimal for the

given set of weights, but the problem of specifying the

weights remains. An alternative approach is to generate a

set of optimal solutions, the Pareto optimal solutions.

Fig. 1 Structure of the comparison of weather routing using

deterministic and ensemble weather forecasts
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To define Pareto optimality the concept called domi-

nance is introduced. Let �x0 and �x00 be two different candi-

date solutions to the optimization problem. Then the

solution �x0 dominates solution �x00 if and only if the fol-

lowing holds:

ð8i : fið�x0Þ � fið�x00ÞÞ ^ ð9i : fið�x0Þ\fið�x00ÞÞ:

That is, the solution �x0 is at least as good as �x00 for all

functions fi, and strictly better for at least one function fj. A

solution is Pareto optimal if no other feasible solution

dominates it. Of course, the sign of the inequality in the

definition of dominance depends on whether maximization

or minimization of the objective fið�xÞ is desired. The set of
all Pareto optimal solutions is called the Pareto frontier.

3.2 Robustness

Robustness, in the field of optimization, is a property of a

solution to an optimization problem which describes how

resistant the solution is to errors in the data used in the

optimization process. If the constraints, or other properties

of the problem, used for the optimization are changed

slightly the proposed solution may no longer be the optimal

one, or even a feasible solution. Methods for determining

the robustness of a solution often use random perturbations

of some of the values assumed for the problem which are

considered to be representative of the likely error. In this

paper a similar approach, introduced by Hinnenthal and

Saetra in [11], is used. The ensemble weather forecast is

used to represent all possible outcomes of the weather and

is used to compute the robustness of solutions. This method

is preferable to random variations of the deterministic

weather forecast since it computes the robustness using

only possible developments of the weather. The computa-

tion of the robustness of a solution is simple. The perfor-

mance of a solution is evaluated, using the same

performance model used by the optimization routine, for

all of the ensemble members. The constraints imposed

during the optimization are also evaluated using all the

different ensemble members. The robustness evaluation

results in a set of binary values, one for each ensemble

member, which indicates whether the proposed solution is

feasible in that forecast or not. From each ensemble

member, in which the solution is feasible, there is also

information about the performance in terms of fuel con-

sumption, which can be used to compute the average

expected fuel consumption. The value of this robustness

measure has not been thoroughly studied, but intuitively it

is a reasonable measure. If we assume that one of the

ensemble members will be equal to the true evolution of

the weather, it is reasonable to state that a route with high

robustness will be more likely to remain feasible in the

realised weather than one with low robustness. The

robustness of a route can be viewed as a measure of safety,

if proper safety constraints are imposed, but it is more

useful as a measure of how likely it is that a route has to be

significantly altered, in course or speed, due to the devel-

opment of the weather along the route.

This method for calculating the robustness can be used

to determine the robustness of a route optimized using the

deterministic forecast if the ensemble forecast is available.

If the optimization is instead performed using the ensemble

forecast, the robustness of the solution may be included as

an objective of the optimization and it is thus possible to

ensure solutions which have good performance and are

robust with regard to changes in the weather. This is the

method used for weather routing using the ensemble

forecast in this paper.

3.3 Performance model

The optimization of routes is based on performance pre-

dictions based on forecasted weather and ship character-

istics. These calculations are handled by a performance

model which calculates the resistance acting on the vessel

from information about wind, waves and the ship speed.

The calculated resistance value is used to determine engine

load and fuel consumption. More information on the spe-

cific performance model used in this paper is presented

below, in Sect. 4.

3.4 The basic algorithm

The algorithm resembles the classic Bellman–Ford–Moore

shortest path algorithm [21–23] and other label setting

algorithms. These algorithms work by assigning and cor-

recting labels for each of the vertices in the graph, an

example graph used by the optimization method can be

seen in Fig. 3. Unlike single-objective label setting algo-

rithms the presented algorithm saves all the Pareto optimal

labels for each vertex instead of just one label. This col-

lection of labels is referred to as the Pareto optimal set of

labels. A label is a solution to a sub-problem, namely the

routing problem from the start vertex to the vertex asso-

ciated with the label, and contains a set of values for the

different objectives upon reaching the vertex, e.g. time of

arrival and fuel consumption. The label also contains

information about which vertex preceded the current vertex

so that one can reconstruct the entire route from the labels

of the goal vertex when the algorithm has finished. The

presented algorithm only works for directed acyclic graphs.

Below a step-by-step description of the algorithm fol-

lows. The description is quite general and is applicable for

any number of objectives.
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1. Initiation.

1:1. Generate an appropriate graph covering the area

of interest, with one vertex at the point of

departure and one at the destination.

1:2. Set the Pareto optimal set of labels to empty for

each vertex.

1:3. Designate the vertex corresponding to the point

of departure to Current.

1:4. Add a label corresponding to the initial condi-

tions to the Pareto optimal set of labels of

Current.

2. Evaluate edges from Current to neighbours.

2:1. Do the following for each neighbour of Current

and each label in the Pareto optimal set of labels

of Current.

2:1:1. Create a candidate label by evaluating

the journey between the Current vertex

and the selected neighbour, starting at

the time specified in the selected label,

using the ship performance model.

2:1:2. Add this candidate label to the Pareto

optimal set of labels of the neighbour if

the candidate label is not dominated in

that set. If the candidate label is added to

the set remove all labels in the set that

are dominated by it, thus maintaining a

Pareto optimal set.

3. Select next vertex for evaluation.

3:1. Select one of the vertices in the graph which has

had all edges leading to it evaluated already.

3:2. Set this vertex to Current.

3:3. If Current is the vertex corresponding to the

destination (the goal vertex) go to 4, else go to 2.

4. Generate the Pareto optimal solutions to the routing

problem from the Pareto optimal labels of Current.

Steps 2 and 3 above form the recursive part of the algo-

rithm and are illustrated in Fig. 2 where two edges leading

to the same vertex are evaluated and a Pareto optimal set of

labels for that vertex is established. In (a) the edges leading

to vertices A and B have already been evaluated and a

Pareto optimal set of labels (labels marked by ‘o’) exist for

both. In (b) the algorithm selects A as the next vertex to be

evaluated and proceeds to evaluate the travel between A

and C (indicated by the black edge) starting from each of

the conditions in the labels of A. This generates a set of

candidate labels (candidate labels marked by ‘x’) of C. All

candidates are kept since none is dominated by any other

and the initial set of labels of C was empty [these labels can

be seen marked with an ‘o’ in (c)]. In (c) B is selected as

the Current vertex and the algorithm proceeds to evaluate

the edge between B and C and a new set of candidate

labels of C are found. This time one of the candidates is

dominated by one of the existing labels of C (dominated

labels marked as red) and is, therefore, not added to the

Pareto optimal set of labels of C. Also, one of the existing

labels of C is dominated by one of the candidate labels and

is, therefore, removed from the Pareto optimal set of labels.

Now, in (d), remains only the final Pareto optimal set of

labels of C, since all edges leading to C have been evalu-

ated and no changes can be made. All edges leading away

from C (not shown in the illustration) may now be evalu-

ated, i.e. C may be set as Current by the algorithm.

Since edge costs are time dependent and fuel con-

sumption rates depend on the speed at which the vessel

travels it is important to allow for variations in velocity

during the optimization. To include variation of velocity

each evaluation along an edge is performed for a discrete

set of velocities, each evaluation generating a candidate

label.

3.5 Adaptation for use with ensemble forecasts

The adaptation of the presented optimization algorithm for

use with ensemble forecasts is relatively straightforward.

The Robustness, as introduced in [11] and defined above, is

included as an objective which is to be maximized. To

evaluate the robustness of a candidate label the voyage

along the edge is simulated in all ensemble members sep-

arately. In some members the voyage will be infeasible due

to some constraint and the number of members in which

the voyage is feasible is the Robustness of the candidate

label. The fuel consumption of the route may be calculated

as the arithmetic mean of the fuel consumption over the

feasible members. Each label stores which ensemble

members it was feasible in and when it is evaluated for

travel to the next vertex only those members in which it

was previously feasible are used to determine robustness

and fuel consumption of the resulting candidate label. Thus

the robustness of a candidate label will be less than or equal

to the robustness of the label from which it originated.

With the adaptations above some special care has to be

taken when determining the Pareto optimality of a label; a

simple greater than or equal to comparison of the robust-

ness objective may cause the algorithm to miss some Pa-

reto optimal solutions. This can easily be demonstrated.

Consider two different labels at the same vertex. They both

have the same arrival time and fuel consumption, but one

has a higher robustness. Since one clearly dominates the

other only the solution with the higher robustness should be

kept. However, this may not be the label which will result

in the most robust solution, since the two labels may be

feasible in different ensemble members. For example, label
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A is feasible in members 1–30 and label B is feasible in

members 31–50. Label A is clearly more robust, but as the

evaluation is continued it might be that members 1–30

forecast severe weather for the continuation of the journey

and members 31–50 forecast calm weather. Then it would

have been better to keep label B for further evaluation. This

also affects other objectives, such as the average fuel

consumption over the feasible members; consider again

two labels (A and B) of the same vertex. They have the

same arrival time and the same robustness, A being fea-

sible in members 1–25 and B in members 26–50, they do,

however, have different fuel consumption. If label A has a

lower fuel consumption than label B, then label A clearly

dominates label B. However, if the weather predicted by

members 26–50 forecast calmer weather it would have

been better to keep label B in the set of labels.

To address this issue a change in the domination crite-

rion used for the ensemble routing is required. Instead of

doing a simple greater than or equal to comparison for the

robustness objective the set of ensemble members in which

the labels are feasible is used to determine domination

(together with the normal greater than or equal to condi-

tion of the other objectives). If the set of feasible members

of one label is a subset to the feasible members of the other

label, then, and only then is the robustness of the first label

considered to be less than that of the second. For the final

vertex the normal greater than or equal to criterion can be

used since the route ends there. This method of comparing

(c)

(a)

(d)

(b)

Fig. 2 Illustration of the

recursive part of the

optimization algorithm for a

problem with two objectives.

Detailed description may be

found in Sect. 3.4 a Initial state.

b Evaluation of edge AC.

c Evaluation of edge BC.

d Final state
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robustness results in more labels being kept for each vertex

in the graph; the set of labels will contain labels that are not

Pareto optimal solutions to the sub-problem as defined

above. However, the additional labels are potential candi-

dates to the set of Pareto optimal solutions to the full

routing problem. Since more labels are kept for each vertex

the computation time is increased. Introducing a lower

limit for the robustness will help to keep the computation

time within reasonable limits. Such a limit will not affect

the usefulness of the optimization as there will always be

some lower limit of robustness desired by the decision

maker.

The above solution is equivalent to replacing the

robustness objective with a binary feasibility objective for

each of the ensemble members and using the standard

Pareto-optimality definition alongside a constraint on the

sum over those objectives to ensure a minimal robustness

level. The reason for using the robustness objective instead

is that it is more intuitive and has been used previously in,

for example, [10].

4 Test cases and test details

To perform the comparison of deterministic and ensemble

weather routing the presented optimization algorithm is

implemented in Matlab� using a ship performance model,

provided by Seaware AB. The performance model is based

on Holtrop-Mennen [24] for calm water resistance, the

approximative methods presented in [25] for the added

resistance from waves and a propulsion model of the

engine and propeller system developed in-house. The

performance model considers wind speed and direction,

and the significant height, direction and mean period of

wind waves and swell when evaluating the added resis-

tance. The ship modelled in the tests is a panamax con-

tainer carrier with a design displacement of 68,000 tons,

the length between perpendiculars is 275 m and the design

speed of the vessel is 18 knots. As this study only focuses

on the qualitative difference between deterministic and

ensemble routing the accuracy of the performance model is

of limited importance as long as the performance charac-

teristics that are modelled by the performance model are

representative of some vessel of similar size and engine

power.

To compare the results from deterministic routing and

ensemble routing several test cases are considered. For

each test case two route optimizations are performed: one

with the deterministic weather forecast and one with the

ensemble weather forecast. Then the realised performance

of the routes from both routings is evaluated in the verified

weather. For this re-evaluation in the verified weather the

speed profile along the route, provided by the routing

solution, is not followed strictly; if the required engine

power is not achievable, due to greater than predicted

resistance, the speed will be reduced until the voyage is

possible. If a reduction in speed is needed the speed profile

for the remainder of the route is updated to attempt to

compensate for the delay. The adjustment in speed is

proportional to the current lateness. That is, the speed for

all remaining legs of the route is increased by a factor

proportional to the current deviation from the predicted

arrival at the current location. The flexibility of the speed

used during the re-evaluation in the verified weather is

included to more accurately capture the realistic operation

of a vessel travelling with a set arrival time.

No re-routing is performed during the re-evaluation of

the voyage in the verified weather and the ship is forced to

sail along the route dictated by the routing procedure. This

is of course not representative of real-life operations, but it

is deemed sufficient for this qualitative study.

All weather forecasts used for this study are products of

the European Centre for Medium Ranged Weather Fore-

casts, ECMWF, and contain 51 ensemble members

including the control. For the evaluation performed in this

paper the control member of the ensemble forecast is used

for the deterministic routing instead of the operational

forecast, and the verified weather is constructed from the

control members of consecutive forecasts.

No explicit modelling of safety or comfort is per-

formed for the tests presented in this paper and the only

constraints on the optimization are arrival before the latest

allowed arrival time, 180 h after departure, and achiev-

able engine power output. For the ensemble routing a

minimum robustness of 80 % is used as an additional

constraint. That is, routes must be feasible in at least

80 % of the ensemble members. The ensemble forecasts

used in this paper contain 51 members but as the control

member is used as a deterministic reference only 50

members are used for the ensemble routing, which

translates to a minimum robustness of 40 members. The

test cases used are listed in Table 1 and the graph used

for the optimization is illustrated in Fig. 3. The speeds

allowed during the optimization are 70, 80, 90, 100 and

110 % of the design speed.

5 Results

The results of the comparison between deterministic and

ensemble routing are broken down into three parts. First,

the routing results and the re-evaluated results from both

deterministic and ensemble routing are presented for two

representative test cases. Second, an evaluation of the risk

of late arrival for all test cases is presented. Third, an
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evaluation of fuel consumption prediction error is pre-

sented for all test cases.

5.1 Routing results

The test cases are divided into two groups: the first four use

weather data from winter months and the last four use

weather data from summer months. The weather for test

cases 1–4 is generally harsher than the weather for test

cases 5–8. The difference between the deterministic and

ensemble routing results is small for test cases 5–8 as the

weather is relatively stable and the ensemble members do

not diverge drastically or predict harsh weather. For test

cases 1–4 the difference is much more pronounced, as is

the difference between predicted results and re-evaluated

results. In Fig. 4 the predicted performance for routes from

both deterministic and ensemble routing, as well as the re-

evaluated performance of those routes, is presented for two

representative test cases.

The predicted performance of the solutions calculated

by the deterministic routing is generally better than the

predicted performance of the solutions calculated by the

ensemble routing. The re-evaluated performance of the

routes indicates no such clear advantage, except that the

routes which achieve the fastest arrival times are from the

deterministic routing. Since the ensemble routing is con-

strained to solutions with a robustness greater than or equal

to 40 it will generally not find solutions with as fast arrival

times as the deterministic routing.

The ensemble solutions constitute a three-dimensional

Pareto front, with the additional objective being robustness,

which produces a ‘cloud’ of solutions in the 2D-plots in

Fig. 4. Ensemble solutions that appear to be dominated by

other ensemble solutions are in fact more robust and thus

not dominated. When the solutions are re-evaluated in the

verified weather the results are no longer a Pareto front as

the values for fuel consumption and arrival time changes

for each solution.

Table 1 Definition of test cases Tmax is the latest allowed time of arrival in hours after departure

Test # Departure time Departure point Arrival point Tmax (h) Smax (m) WWmax (m)

1 2012-01-01 00:00 N35�, W15� N35�, W75� 180 4.9 5.9

2 2012-01-14 00:00 N35�, W15� N35�, W75� 180 4.8 6.3

3 2012-02-07 00:00 N48�, W6� N38�, W73� 180 4.1 4.7

4 2012-01-19 00:00 N48�, W6� N38�, W73� 180 5.4 5.2

5 2012-07-02 00:00 N48�, W6� N38�, W73� 180 1.7 1.5

6 2012-07-14 00:00 N48�, W6� N38�, W73� 180 1.8 2.7

7 2012-07-26 00:00 N48�, W6� N38�, W73� 180 1.7 1.5

8 2012-08-07 00:00 N48�, W6� N38�, W73� 180 2.1 1.5

Smax and WWmax are the predicted maximum encountered wave heights of swell and wind waves, respectively, for a journey along the great

circle route travelling at the ship design speed. The prediction is based on the control member of the ensemble forecast issued at the time of

departure

 75 ° W 
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 45° W  30° W 

 15°  W 

  0
°

 30 ° N 

 45 ° N 

 60 ° N 

Fig. 3 The graph used by the

optimization algorithm for test

cases 3–8, the graph used for

test cases 1 and 2 has a similar

structure but is located further

south. The number of possible

different geographical routes

through the graph is roughly

45,000 and the number of

different possible routes

including a choice of five

different speeds for each edge is

roughly 1013. The map

projection is equidistant conic
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5.2 Arrival on time

In Figs. 5 and 6, histograms of the lateness of routes from

both deterministic and ensemble routings are presented for

all the test cases. Here lateness is defined as the difference

between predicted arrival time and achieved arrival time

for a route. In Table 2 the arithmetic mean and the median

of the lateness of the deterministic and ensemble routing

solutions are presented.

The results clearly show that the ensemble routing

solutions have a significantly lower risk of arriving late for

all test cases. The histograms show that the weight of the

distribution for the ensemble solution is shifted to the left

(lower lateness) compared to the distribution for the

deterministic solution. For test cases 7 and 8, where the

overall lateness is quite small, there are still solutions from

the deterministic routing with a significant lateness, up to 5

hours. By looking at the routing and re-evaluation results in

Fig. 4 it is clear that the minimum time routes from the

deterministic routing are too optimistic, when re-evaluated

in the verified weather the routes achieve a significantly

later arrival time. The mean and median lateness presented

in Table 2 quantifies the difference between deterministic

and ensemble routing and shows that ensemble routing

performs better for all test cases and that for at least test

cases 3 and 4 the difference is very significant. Since the

deterministic routing is not limited by the robustness con-

straint it will in general generate more routes with earlier

arrival times and, as discussed above, these routes are

likely to be too optimistic. However, these routes are not

the only ones to contribute to the difference in the risk of

arriving late between the set of solutions from the two

routings. Test case 3 serves as a good example to illustrate

this; the difference in lateness is significant and the fastest

route from the deterministic routing estimates arrival times

as early as 157 h after departure, whereas the fastest

solutions from the ensemble routing estimates arrival at

168 h after departure (see Fig. 4). Intuitively it is this

difference that should account for most of the difference in

lateness; however, if only solutions with arrival times

between 180 and 170 h after departure are considered (see

Fig. 7) there is still a significant difference in lateness. For

the ensemble solutions the mean and median lateness for

this restricted set of solutions is roughly the same. For the

deterministic solutions the mean and median lateness are

higher, increased from 7.5 to 7.8 and from 7.9 to 9.7 h,
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Fig. 4 Routing results and re-

evaluation results for test cases

3 and 8. Each data point is the

result from one of the routes

from the deterministic or

ensemble routings
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respectively. Most notably the routes that are most late are

among these ‘slower’ routes: two routes from the deter-

ministic routing which predict arrival around 178 h after

departure and achieve an arrival time around 192 h after

departure in the verified weather, a lateness of roughly

14 h.

5.3 Fuel consumption

In Table 3 the mean absolute percentage error (MAPE) of

the fuel consumption prediction is presented for all test

cases. The percentage error is calculated as the difference

between predicted fuel consumption and fuel consumption

in the verified weather divided by the fuel consumption in

the verified weather. The MAPE is the arithmetic mean of

the absolute values of the percentage errors. In Table 4 the

same values are presented but only for routes that achieved

their estimated arrival time. As the speed correction used

during the re-evaluation is somewhat simplistic no, or very

few, routes achieve their arrival time perfectly for some of

the test cases, and a small lateness (1 h) is tolerated for this

comparison.

The results presented in Tables 3 and 4 indicate that the

ensemble routing method is slightly better at estimating the

fuel consumption of a voyage. The likely cause of the

difference in fuel consumption prediction error is that the

average fuel consumption over several ensemble members,

in which the route is feasible, is a better estimator than

using only the deterministic forecast. However, there is

reason to be cautious about such conclusions as the errors

are calculated for different sets of routes for the deter-

ministic and ensemble estimations.

5.4 Error sources

The following discussion is intended to highlight some of

the more important sources of uncertainty and their effect

on the results but is not a complete list of possible error

sources.

The same resolution is used in both the deterministic

and ensemble routing to avoid different resolutions
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Fig. 5 Histograms comparing lateness of solutions from ensemble and deterministic routing results re-evaluated in verified weather. Test cases

1–4. Note that the scaling of the horizontal axis is different for all plots
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affecting the results of the comparison. It can be argued

that the deterministic routing should be allowed a higher

resolution since it requires less time to compute the

solutions, but since the focus here is on the overall

potential benefits of ensemble routing this is not

considered.

As no modelling of safety or comfort is performed for

this study the only constraints that affect the optimization

are arrival on time and achievable engine power. This is
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Fig. 6 Histograms comparing lateness of solutions from ensemble and deterministic routing results re-evaluated in verified weather. Test cases

5–8. Note that the scaling of the horizontal axis is different for all plots

Table 2 Arithmetic mean and median value of lateness for deter-

ministic and ensemble routing solutions

Test

case #

Deterministic

mean (h)

Ensemble

mean (h)

Deterministic

median (h)

Ensemble

median (h)

1 0.092 0.024 0 0

2 0.8 0.38 0.76 0.02

3 7.5 2.3 7.9 1.4

4 2.5 0.91 2.9 0.97

5 0.25 0.18 0 0

6 0.46 0.1 0 0

7 0.68 0.25 0 0

8 0.61 0.016 0 0 0 5 10 15
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Fig. 7 Histogram of lateness for test case 3. Only solutions with

estimated arrival times between 170 and 180 hours after departure are

included
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likely to bias the results toward the deterministic routing as

robustness will be less important, although to what extent is

not investigated. For example, if a comfort constraint

related to slamming is introduced, there will likely be more

cases where the ship is forced to slow down to conform to

the constraint for routes determined by the deterministic

routing than the ensemble routing. It is important that

future studies consider more constraints than the ones used

in this paper.

The test cases used for this paper treat voyages that take

approximately one week to complete. During the evalua-

tion of the voyage in the verified weather no re-routing is

performed, only speed adjustments due to constraints on

the power output of the engine. This is not a realistic

representation of how weather routing is used, especially

for voyages through rough weather, and will likely bias the

results in favour of ensemble routing.

6 Conclusion and future work

The goal of this paper was to explore the potential of using

ensemble weather forecasts for weather routing of ocean

going vessels. To achieve this goal a method for route

optimization is developed with the necessary adaptations

for ensemble routing. The method is based on a dynamic

programming algorithm and computes Pareto optimal

solutions to a multi-objective routing problem. The method

is adapted for use with ensemble weather forecasts by

adding Robustness as an additional objective and using the

average of the fuel consumption predicted in several

ensemble members as an estimator for fuel consumption

instead of using only the fuel consumption predicted using

the deterministic forecast.

Eight test cases are used to study the difference in

performance between routes from deterministic and

ensemble weather routing. The routes calculated by the

deterministic and ensemble routings are re-evaluated in

verified weather to estimate the realised performance of the

routes. During the re-evaluation the speed of a route is

adapted to ensure that the engine power constraint is not

violated and to attempt to compensate for any potential

delay.

Two performance factors were considered when com-

paring the routes from the deterministic and ensemble

routings, risk of late arrival and error in fuel consumption

prediction. For both these measures the ensemble routing

performs better in all test cases, and for two of the test

cases the risk of late arrival is significantly lower for the

routes from the ensemble routing. The potential of

ensemble routing techniques to reduce the risk of late

arrival is concluded to be very promising, as arrival on time

is important for planning purposes and can affect the

operational costs significantly.

For future exploration of the possible benefits of

ensemble routing it is important to include re-routing

during the voyage. Also it is important to introduce a more

complete set of constraints on the operation of the vessel,

including safety and comfort levels. Future studies should

also consider several different vessels as sensitivity to

weather varies widely depending on the size and type of the

vessel.

As performing route optimization using the entire

ensemble forecast may be too costly in terms of compu-

tational effort an exploration of alternative methods of

utilizing the data from ensemble forecasts for weather

routing is interesting. One such method could be post

processing of routing results from a deterministic routing

by re-evaluating the performance of the routes in the

ensemble forecast. A post-processing using the ensemble

forecast will require significantly less computational effort

than routing using the full ensemble and may provide the

decision maker with important information about the per-

formance and risk associated with different routes.

Another interesting area of research is to study the

possible application of stochastic programming techniques

to weather routing using ensemble weather forecasts, in

Table 3 Mean absolute percentage error for fuel consumption

prediction

Test case # Deterministic routing (%) Ensemble routing (%)

1 1.4 0.55

2 3.3 2.4

3 1.6 0.32

4 2.6 1.2

5 0.86 0.37

6 1.4 1.1

7 1.5 1.2

8 1.8 0.24

Table 4 Mean absolute percentage error for fuel consumption pre-

diction of routes that achieved an arrival time no more than 1 h

greater than predicted. No solutions achieved requisite arrival time for

test case 3

Test case # Deterministic routing (%) Ensemble routing (%)

1 1.4 0.55

2 2.6 2.2

3 undefined undefined

4 1.5 1.9

5 0.45 0.33

6 1.3 1.1

7 0.4 0.95

8 1.1 0.24
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particular studying two-stage (or multi-stage) optimization

based on clustered ensemble weather forecasts. This is

closely linked to the work of Allsopp, Philpott and Mason

[6, 7]. The availability of clustered sea weather forecasts is

at the time limited, but the possible benefits and relative

simplicity of these methods make them an interesting area

of study.
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