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Abstract In the research field of nonlinear dynamical

system theory, it is well known that a homoclinic/het-

eroclinic point leads to unpredictable motions, such as

chaos. Melnikov’s method enables us to judge whether the

system has a homoclinic/heteroclinic orbit. Therefore, in

order to assess a vessel’s safety with respect to capsizing,

Melnikov’s method has been applied for investigations of

the chaos that appears in beam sea rolling. This is because

chaos is closely related to capsizing incidents. In a previous

paper (Maki et al. in J Mar Sci Technol 15:102–106 2010),

a formula to predict the capsizing boundary by applying

Melnikov’s method to analytically obtain the non-Hamil-

tonian heteroclinic orbit was proposed. However, in that

paper, only limited numerical investigation was carried out.

Therefore, further comparative research between the ana-

lytical and numerical results is conducted, with the result

being that the formula is validated.

Keywords Melnikov’s method � Beam seas � Roll

motion � Non-Hamiltonian exact heteroclinic orbit

1 Introduction

Currently, investigations into chaos in cases of nonlinear

vessel rolling in beam seas have been extensively inves-

tigated [2–11], with Melnikov’s method being effectively

applied [12]. Melnikov’s method enables us to detect the

onset of the heteroclinic point, which assures the exis-

tence of the horseshoe map via the Smale–Birkhoff the-

orem [13]. For instance, Kan and Taguchi [5] implied that

the threshold of fractal metamorphoses in the control

plane obtained from the Melnikov analysis of the non-

biased roll equation could be applicable for a vessel’s

stability criterion. On the other hand, Spyrou et al. [11]

investigated the biased roll equation with an appropriate

variable transformation and performed the Melnikov

analysis using an analytically obtained homoclinic orbit.

A nonlinear system, however, is not necessarily solvable,

so in general it is difficult to analytically obtain the

separatrix closed loop. Consequently, Wu and McCue

[14] applied the extended Melnikov’s method [15] for a

numerically obtained heteroclinic orbit based upon Endo

and Chua’s work [16].

In order to apply Melnikov’s method, it is required to

obtain the separatrix closed loop for the autonomous part of

the full system. Thanks to recent advances in nonlinear

science, several solitary solutions have already been found

via methods using nonlinear equations [17]. Maki et al. [1]

pointed out that the escape equation used by Kan and

Taguchi [6] is identical with FHN (FitzHugh–Nagumo),

with the exception of some of the coefficients. They

investigated analytically the heteroclinic orbit in the time
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domain by using the solution technique that is originally

used for analysing nonlinear waves, and then extended

Melnikov’s method proposed by Salam [15] was applied.

The paper [1], however, mainly addresses the analytical

formulation, and limited numerical results were presented.

The objective of this paper is to numerically validate the

proposed formula, and carry out additional analysis of the

escape equation. This paper is structured as follows: firstly,

following the brief explanation of the formulation for the

biased roll equation, the analytical results of the hetero-

clinic orbit are validated by using numerical bifurcation

analysis. Then the results of the Melnikov integral are

shown, and the obtained threshold of fractal metamor-

phoses that appear in the control plane is compared with

numerical simulation result.

2 Non-Hamiltonian heteroclinic obit

In order to apply Melnikov’s method introduced by Salam

[15], it is necessary to obtain the non-Hamiltonian het-

eroclinic orbit. Although it is difficult to find the exact

solution of a nonlinear equation, the solutions of the

equation could be found by employing a solution technique

used in nonlinear waves. Maki et al. [1] applied this

technique for the escape equation, and then provided the

heteroclinic orbit and its condition. In this paper, the same

methodology is used, but the treatment of the bias term that

appears in the equation is slightly different from that pre-

sented in the previous paper [1]. Thus, it is shown that the

following brief reformulation is suitable for the numerical

validation.

Consider the following biased roll equation with

linear damping and nonlinear cubic term in the

restoring force:

I
d2U
dt2
þ N

dU
dt
þW � GM � U 1� U=UVð Þ 1þ a � U=UVð Þ

¼ Mr cos xt þ dð Þ: ð1Þ

where a is the coefficient representing the bias of roll

equation, GM is the metacentric height, I is the moment of

inertia in roll, Mr is the amplitude of the 1st-order wave-

induced roll moment, N is the damping coefficient in roll,

t is time, W is the ship mass, U is the roll angle and UV is

the angle of vanishing stability. The appropriate non-

dimensionalization for Eq. 1 yields:

€/þ b _/þ l � / 1� /ð Þ 1þ a � /ð Þ ¼ c cos xt þ dð Þ; ð2Þ

where:

/ � U=UV

b � N=I; l � W � GM=I; c � Mr=IUV

(
: ð3Þ

In order to obtain the heteroclinic orbit of the

homogeneous part of Eq. 2, an addition of the parameter

for both sides of the equation are as follows:

€/þ b _/þ l � / 1� /ð Þ 1þ a � /ð Þ þ r
¼ rþ c cos xt þ dð Þ; ð4Þ

Here r can be calculated by using the procedure

described in the previous paper [1], and the results are

shown as follows:

~l
1

2
� ~a

� �
� ~b

ffiffiffi
~l
2

r
¼ 0; ð5Þ

where

~a � /2 � /1ð Þ= /3 � /1ð Þ
~b � b; ~l � al /3 � /1ð Þ2

(
; ð6Þ

and /1, /2, /3 are the solutions of the following equation.

l � / 1� /ð Þ 1þ a � /ð Þ þ r ¼ 0: ð7Þ

This is a third-order polynomial with respect to / and

can be factorised using Cardano’s method. In Eq. 5, a

positive or a negative sign corresponds to the trajectory on

the upper and/or lower phase plane, respectively. When the

condition of Eq. 5 is satisfied, a heteroclinic orbit is

realized, and it can be represented in the time domain as:

/0 tð Þ ¼ /1 þ
/3 � /1

1þ e�
ffiffiffiffiffiffiffi
0:5 ~l
p

t
: ð8Þ

Additionally, this is achieved by using the quadratic

function in the phase plane, thus

_/0 tð Þ ¼ �
ffiffiffi
~l
2

r
/0 tð Þ � /1ð Þ /0 tð Þ � /3ð Þ

/3 � /1

: ð9Þ

Note the double sign in the same order with Eq. 5 in

Eqs. 8 and 9. It is now possible to compare the results

using the proposed method and numerical bifurcation

analysis. In this paper, the numerical bifurcation analysis

proposed by Kawakami et al. [18] is employed for finding

the critical parameter r. Using this method, all the

conditions necessary for realizing the heteroclinic

bifurcation, i.e., the equilibrium of saddle points, their

eigenvalues, their eigenvectors, and the connection of both

trajectories at the intermediate point, are simultaneously

solved with Newton’s method. Using Kawakami’s method,

an allowable numerical displacement vector norm of 1.0-6

error is applied when using the Newton method. To further

retain the numerical accuracy, a 5th-order Runge–Kutta

integral scheme is also applied.

Figure 1 presents the comparison of the critical value r
for the non-biased escape equation, i.e., when a = 1,

obtained by using these two methods, whereas Fig. 2 pre-

sents the case in which the bias a = 0.9. Since only a small
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discrepancy can be observed in these figures, the proposed

analytical method is considered to be satisfactory. Fig-

ures 3 and 4 illustrate the heteroclinic orbits in phase plane

spanned by / and _/ obtained using these two methods.

Note that the analytically obtained heteroclinic orbit is a

quadratic function (Eq. 9). It can also be observed that the

two orbits are completely identical. Although the unique-

ness of a heteroclinic orbit for this system cannot be

proved, mutual agreement indicates Eq. 8 is locally con-

sistent and represents the heteroclinic orbit of Eq. 2. Since

this solution for obtaining the heteroclinic bifurcation point

is quite simple and robust, it can be used easily to calculate

the parameter set required, thus realizing the heteroclinic

bifurcation as shown in Fig. 5.

3 Critical forcing

If an heteroclinic orbit is obtained, Melnikov’s method is

analytically applicable. Next, the biased case is examined.

Wu and McCue [14] used

€/þ b _/þ l /� /3
� �

¼ 1� að Þ /2 � /3
� �

þ c cos xt þ dð Þ ð10Þ
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based upon the assumption of small 1 - a, as an

alternative to directly manipulating Eq. 4, and then

Melnikov integral

M t0ð Þ ¼
Z1
�1

_/0 tð Þ c cos x t þ t0ð Þ þ r½

þ 1� að Þ /2
0 tð Þ � /3

0 tð Þ
� ��

e
~btdt

ð11Þ

is carried out for the heteroclinic orbit of the left-hand side

of Eq. 10. Note that the left-hand side of Eq. 10 is the non-

biased roll equation. By using the analytically obtained

heteroclinic orbit (Eq. 9), the critical forcing is obtained as

follows:

c ¼ 1� að Þ A0I0 þ A1I1 þ A2I2 þ A3I3ð Þ þ rI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
r þ I2

i

p : ð12Þ

In this equation, the values Ir, Ii, I0, I1, I2, I3 can be

calculated analytically as follows:

Ir � Re
1

4

Z1
�1

exp ~bt þ ixt
� 	

cosh2 ~ct=2ð Þ
dt

2
4

3
5

¼ Re
p ~bþ ix
� 	

csc p ~bþ ix
� 	

=~c
h i
~c2

2
4

3
5sgn~c

¼ �
2p ~b cosh xp=~cð Þ sin ~bp=~c

� 	
þ x cos ~bp=~c

� 	
sinh xp=~cð Þ

h i
~c2 cos 2~bp=~c

� 	
� cosh 2xp=~cð Þ

h i sgn~c

ð13Þ

Ii � Im
1

4

Z1
�1

exp ~bt þ ixt
� 	

cosh2 ~ct=2ð Þ
dt

2
4

3
5

¼ Im
p ~bþ ix
� 	

csc p ~bþ ix
� 	

=~c
h i
~c2

2
4

3
5sgn~c

¼
2p �x cosh xp=~cð Þ sin ~bp=~c

� 	
þ ~b cos ~bp=~c

� 	
sinh xp=~cð Þ

h i
~c2 cos 2~bp=~c

� 	
� cosh 2xp=~cð Þ

h i sgn~c

ð14Þ

I0 �
Z1
�1

exp ~bt þ ~ct
� 	

1þ exp ~ctð Þð Þ2
dt ¼

~bp

~c2 sin ~bp=~c
� 	 sgn~c ð15Þ

I1 �
Z1
�1

exp ~bt þ 2~ct
� 	

1þ exp ~ctð Þð Þ3
dt ¼

~b ~bþ ~c
� 	

p

2!~c3 sin ~bp=~c
� 	 sgn~c ð16Þ

I2 �
Z1
�1

exp ~bt þ 3~ct
� 	

1þ exp ~ctð Þð Þ4
dt ¼

~b ~bþ ~c
� 	

~bþ 2~c
� 	

p

3!~c4 sin ~bp=~c
� 	 sgn~c

ð17Þ

I3 �
Z1
�1

exp ~bt þ 4~ct
� 	

1þ exp ~ctð Þð Þ5
dt

¼
~b ~bþ ~c
� 	

~bþ 2~c
� 	

~bþ 3~c
� 	

p

4!~c5 sin ~bp=~c
� 	 sgn~c ð18Þ

A0 ¼ /2
1 1� /1ð Þ ð19Þ

A1 ¼ /2 /3 � /1ð Þ 2� 3/2ð Þ ð20Þ

A2 ¼ /3 � /1ð Þ2 1� 3/1ð Þ ð21Þ

A3 ¼ � /3 � /1ð Þ3 ð22Þ

where

~c � �
ffiffiffiffiffiffiffiffi
~l=2

p
: ð23Þ

In following figures, the results based on Eq. 12 are

plotted as ‘Formula of a non-biased heteroclinic orbit’.

On the other hand, the Melnikov integral can be carried

out without transposing the part of the restoring term to the

right side, since the non-biased roll equation is solved

analytically, as shown in the previous section. In this case,

the critical forcing can be obtained as:

c ¼ rI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
r þ I2

i

p : ð24Þ

The terms I0, Ir and Ii, are the same as those shown in

Eqs. 13–15. Note, for the calculation of I0, Ir and Ii, an

heteroclinic orbit with respect to the biased-roll equation

should be employed. In the following figures, the results

based on Eq. 24 are plotted as ‘Proposed formula’.
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Figure 6 shows the final results of the critical forcing c
for the non-biased case. In this figure, the results are

obtained by using the formula [14] given by:

c ¼ 2b
3
�

ffiffiffi
2
p

1� að Þ
3


 �
sinh px=

ffiffiffi
2
p� �

px
; ð25Þ

These are plotted as ‘Formula from Hamiltonian het-

eroclinic orbit’ for comparative purposes. Note that Eq. 25,

with a of 1.0, is identical with the formula obtained by Kan

and Taguchi [6]. From Fig. 6, it can be seen that there is

only a minor discrepancy between the two. Figure 7 indi-

cates comparative results of the critical forcing obtained by

using several methods, and it shows that the results of

critical forcing do not wholly depend upon an assumed

heteroclinic orbit. The reason is considered as follows. In

this study, the extended Melnikov method introduced by

Salam [15] is employed. The significant difference between

the original method and the extended method is whether or

not the damping term of a heteroclinic orbit is taken into

account. However, it is well known that roll dumping is

generally small, and that the contribution of its difference

also becomes small. The proposed calculation technique is

relatively complicated compared to that proposed by Kan

and Taguchi [6] and the method proposed by Spyrou et al.

[11], and these methods are considerably validated by

numerical simulation. Therefore, these two methods are

more practical and are thus recommended.

Finally, we confirm whether the obtained critical forcing

actually represents the bound of chaos or fractals. Since the

obtained values using the proposed method are: c of

0.06344, a of 0.975, b of 0.1 and x of 0.8, a numerical

calculation is carried out for c of 0.07. It is necessary to

magnify the figure significantly in order to clearly observed

fractal metamorphoses of basin boundary at c close to

0.06344. However, this magnification makes the figure

difficult to understand, since the drawn area is exceedingly

limited. Therefore, a value slightly above the critical

forcing, that is c of 0.07, is chosen for numerical calcula-

tion. Figure 8 shows the onset of a safe basin erosion near

this value. The black shaded part of the plot represents the

non-capsizing region while white non-shaded part is a

capsize region. From this figure it can be concluded that the

critical forcing obtained by using Melnikov’s integral for-

mula can approximately demonstrate the onset of chaos

and fractals.

Although this analysis is carried out for the escape

equation having only linear damping terms, the same

procedure is of course applicable for equations having

higher-order damping terms. As an example, in Appendix

1, the method employing the equation having linear and

quadratic damping terms is described, and an extended

analysis for a 1 DoF roll equation having 4th-order poly-

nomial restoring term and a quadratic polynomial damping
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term is described in Appendix 2. Furthermore, it is worth

noting that saddle-node bifurcation appears in the escape

equation and the relation to the Melnikov analysis is

demonstrated based on Yagasaki’s [19] work in a previous

paper [20].

4 Concluding remarks

The main conclusions to be drawn from this work can be

summarized as follows:

1. The proposed equation representing the heteroclinic

orbit from previous work is verified by numerical

results.

2. By using an analytically obtained heteroclinic orbit,

the Melnikov integral can be analytically evaluated. As

a result, it is concluded that, for the equation with a

small damping term, such as the escape equation,

whether or not the damping term is taken into account

the calculation of the separatrix does not strongly

influence the final result.
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Appendix 1

In this paper, the damping term in the state equation is

assumed as linear, but the critical forcing should be for-

mulated for a general case. Therefore, the formulation is

shown for the case of linear, quadratic and cubic

dumpling:

€uþ b _uþ b2 _u2sgn _uþ b3 _u3 þ u 1� uð Þ u� ~að Þ
¼ rþ F sin xt: ð26Þ

Manipulation of this equation easily leads to following

expression:

d

dt

u

_u

 !
¼

_u

� b _u� u 1� uð Þ u� ~að Þ

 !

þ
0

� b2 _u2sgn _u� b3 _u3 þ rþ F sin xt

 !

� F xð Þ þG tð Þ: ð27Þ

Then the Melnikov integral becomes:

M t0ð Þ ¼
Z1
�1

F u0 tð Þ
� �

^G tþ t0ð Þ � exp �
Z t

0

trDF xð Þds

0
@

1
Adt

¼ �sgn~c

Z1
�1

b2~c3 u0 tð Þ
� �3

1� u0 tð Þ
� �3� exp

Z t

0

bds

0
@

1
Adt

�
Z1
�1

b3~c4 u0 tð Þ
� �4

1� u0 tð Þ
� �4� exp

Z t

0

bds

0
@

1
Adt

þ
Z1
�1

F sin x tþ t0ð Þ~cu0 tð Þ 1� u0 tð Þ
� �

� exp

Z t

0

bds

0
@

1
Adt

þ
Z1
�1

r~cu0 tð Þ 1� u0 tð Þ
� �

� exp

Z t

0

bds

0
@

1
Adt

¼ F~c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
r þ I2

i

q
sin xt0 þ tan�1 Ii=Irð Þ
� �

þ r~cI 0ð Þ � b2~c3K2sgn~c� b3~c4K3:

ð28Þ

Here I, K2 and K3 are defined as follows:

I xð Þ �
Z1
�1

u0 tð Þ 1� u0 tð Þ
� �

e
~bteixtdt; ð29Þ

K2 �
Z1
�1

u0 tð Þ
� �3

1� u0 tð Þ
� �3� exp

Z t

0

~bds

0
@

1
Adt; ð30Þ

K3 �
Z1
�1

u0 tð Þ
� �4

1� u0 tð Þ
� �4� exp

Z t

0

~bds

0
@

1
Adt; ð31Þ

where we put Ir = Re[I] and Ii = Im[I]. K2 and K3 can be

calculated via Cauchy’s integral theorem as follows:

K2 �
pb b2 � 4~c2
� �

b2 � ~c2
� �

5!~c6 sin pb=~cð Þ sgn~c ð32Þ

K3 �
�pb b2 � 9~c2

� �
b2 � 4~c2
� �

b2 � ~c2
� �

7!~c8 sin pb=~cð Þ sgn~c: ð33Þ

Note that a singular point of the Eq. 30, i.e.,

t ¼ pi 2nþ 1ð Þ=~c, is a pole of order 6. Here n denotes the

arbitrary integer. Therefore, the following condition must

be held.

rI 0ð Þ � b2~c2K2sgn~c� b3~c3K3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
r þ I2

i

p \F ð34Þ

Appendix 2

In the main section, the 1 DoF roll equation with cubic,

quadratic and linear restoring term is carried out. In this

appendix, the study for the 1 DoF roll equation is shown,
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with a 4th-order polynomial restoring term and a quadratic

polynomial damping term.

€xþ ~b1 _xþ ~b2 _x2 þ ~cx 1� xð Þ x� kð Þ x� s1ð Þ ¼ 0: ð35Þ

The reason why these terms are represented by a higher-

order polynomial is to fit their original curves. Taking the

following as a solution in the time domain:

x ¼ a0= e�c0t þ b0ð Þ; ð36Þ

and substituting Eq. 36 into 35, yields:

a0 �~ca3
0 þ ~ca2

0b0 þ ~cka2
0b0 þ ~cs1a2

0b0 � ~cka0b2
0

�
�~cs1a0b2

0 � ~cks1a0b2
0 þ ~cks1b3

0

�
þ a0e�c0t ~ca2

0 þ ~cka2
0 þ ~cs1a2

0 � 2~cka0b0 � 2~cs1a0b0

�
�2~cks1a0b0 þ 3~cks1a0b0 þ 3~cks1b2

0 þ ~b1b2
0c0 � b2

0c2
0

	
þ a0e�2c0t �~cka0 � ~cs1a0 � ~cks1a0 þ 3~cks1a0b0ð

þ2~b1b0c0 þ ~b2a0c2
0

	
þ a0e�3c0t ~cks1 þ ~b1c0 þ c2

0

� 	
¼ 0:

ð37Þ

Comparing both sides of the equation when considering:

a0 ¼ b0 ¼ 1; ð38Þ

we can obtain the following equations:

~c� ~ck � ~cs1 þ ~cks1 þ ~b1c0 � c2
0 ¼ 0

� ~ck � ~cs1 þ 2~cks1 þ 2~b1c0 þ ~b2c2
0 ¼ 0

~cks1 þ ~b1c0 þ c2
0 ¼ 0:

8>><
>>: ð39a; b; cÞ

Solving Eq. 39c with respect to ~b1 yields:

~b1 ¼
�~cks1 � c2

0

c0

: ð40Þ

Substituting the above in to Eq. 39a and 39b, we can

obtain:

~c� ~ck � ~cs1 � 2c2
0 ¼ 0

� ~ck � ~cs1 þ ~b2c2
0 � 2c2

0 ¼ 0

(
: ð41a; bÞ

Eqiation 41b can be rewritten as:

c2
0 ¼

~ck þ ~cs1

�2þ ~b2

; ð42Þ

so that, substituting the above expression into Eq. 41a, the

following relationship is obtained:

�
~c 2þ ~b2 �1þ k þ s1ð Þ
h i

�2þ ~b2

¼ 0: ð43Þ

Solving the above equation with respect to ~b2 and

assuming ~b2 6¼ �2, we can obtain

~b2 ¼ �
2

�1þ k þ s1

: ð44Þ

If this relationship is satisfied, the solution with regard

to polynomial approximated equation is determined as

follows:

x ¼ 1= 1þ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~c �1þ k þ s1ð Þ

p
ffiffiffi
2
p t

" #( )
: ð45Þ

Here c0 is assumed as a positive value as:

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~c �1þ k þ s1ð Þ

2

r
; ð46Þ

so that, substitution of above equation into Eq. 40 yields:

~b1 ¼
~c �1þ k þ s1 � 2ks1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2~c �1þ k þ s1ð Þ

p : ð47Þ

This is the condition of heteroclinic bifurcation.

Obviously, the condition ~c\0 and s1 [ 0, or,

~c[ 0 and s1\0 is required. Here we briefly consider the

heteroclinic orbit. Eliminating the time t from Eq. 45 yields

the trajectory in the phase plane consists of x and _x as

quadratic equations. However, if we substitute the

trajectory having a quadratic form into Eq. 35, this

equation is not satisfied. This is because the Eq. 47 is

only defined between the two saddle points. Note that

Eqs. 44 and 47 should be simultaneously satisfied, and it

implies that the solution surface is formed in a

4-dimensional parameter plane consisting of
~b1;

~b2; k; s1k. Note, therefore, that the obtained

heteroclinic trajectory cannot represent the all the

trajectories of Eq. 35.

Using the quadratic form of the trajectory in the time

domain, chaos that appears in Eq. 35 can be studied.

Considering the following relationships:

F q0 tð Þ
� �

^G t þ t0ð Þ ¼ _u b0 þ b sin xtð Þ ð48Þ

trDF xð Þ ¼ �~b1 � 2~b2 _x ð50Þ

DF xð Þ ¼ 0 1

~c 4x3 � 3 k þ s1 þ 1ð Þx2 þ 2 ks1 þ k þ s1ð Þx� ks1½ � �~b1 � 2~b2 _x

� �
ð49Þ
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then the Melnikov integral becomes:

Mðt0Þ ¼
Z1
�1

F(u0(t)) ^G(t + t0)� exp( -

Z t

0

trDF(x)ds)dt

¼
Z1
�1

b sin xðt + t0Þ~cu0ðtÞð1 - u0ðtÞÞ

� expð
Z t

0

ð~b1 - 2~b2 _xÞdsÞdt

þ
Z1
�1

b0~cu0ðtÞð1 - u0ðtÞÞ � expð
Z t

0

ð~b1 - 2~b2 _xÞdsÞdt

¼ b~cðI0i cos xt0 þ I0r sin xt0Þ þ b0~cI0ð0Þ

¼ b~c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I02r þ I02i

q
sinðxt0 þ tan�1ðI0i

�
I0rÞÞ þ b~cI0ð0Þ

ð51Þ

where I(x) is defined with the following Fourier

transformation:

I xð Þ �
Z1
�1

u0 tð Þ 1� u0 tð Þ
� �

e
~b1t�2 ~b2u

0 tð Þeixtdt: ð52Þ

This equation has a form shown as follows:

I xð Þ ¼ 1

4

Z1
�1

exp ~b1t � 2 ~b2

1þexp �~ctð Þ þ ixt
� 	

cosh2 ~ct=2ð Þ
dt

¼ 1

4

Z1
�1

exp ~b1t � ~b2 � ~b2 tanh ~ct=2ð Þ þ ixt
� 	

cosh2 ~ct=2ð Þ
dt;

ð53Þ

However, further analytical manipulation is considered

to be difficult.
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