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Abstract In this article we describe the development of a

tool that allows planners to efficiently and effectively plan

space within valuable areas of a shipyard. Traditionally,

space is considered as resource; however, it is difficult to

accurately account for and plan its consumption with the

currently available planning software’s. The spatial

scheduling tool described in this article can be used by

planners to manually or automatically reserve space within

the shipyard for construction of large blocks over the entire

erection period of the ship. The software is coupled with a

heuristic optimization solver inspired by an algorithm used

for ‘‘3D bin-packing problems.’’ The result is the ability to

efficiently generate and compare multiple space allocation

alternatives in a reduced time with the ultimate goal of

maintaining the critical ship erection schedule. A better

solution than manual or semi-automatic allocation of

blocks can be obtained through the optimization module.

Keywords Space allocation � Optimization � Decision

making � Scheduling � Planning � Shipbuilding �
3D bin-packing

1 Introduction

1.1 Why space allocation is an issue for shipyards

The high complexity of ship production, due to the inter-

action of many different disciplines (hull construction,

electricity, fluids, interior fitting, propulsion, etc.) requires

an intensive design and a detailed production planning

where most of the tasks are carried out in parallel. Hugues

[1] highlighted that it is necessary to increase the number

of simultaneous tasks in order to obtain the best quality, the

lowest price, and the shortest manufacturing lead time

during the ship production process.

Today, shipyards change their design method in order to

increase the number of simultaneous tasks with the use of

more structural blocks (modular construction strategy).

Traditionally, the majority of the design decisions were

taken based on the experience and opinion of the designers.

These decisions have a strong influence on production

costs, but subsequently on the ship’s performance during

its life.

One of the most significant observations in the last

decades concerning shipbuilding is the increase in size of

the ships, as shown for passenger ships on Fig. 1. In

addition, making weld in a workshop is much cheaper than

creating the same weld in the dry dock (worse access

conditions, welding overhead, slower welding process,

etc.). The consequence is an increase of the block size and/

or the number of blocks while the working surface is

almost equal. Moreover, most of the time, it is not possible

to enlarge these working surfaces. It follows that a space

allocation problem develops.

The assembly of big elements requires a necessary

available area within the fabrication workshop to perform

the production. As the blocks become larger and heavier,
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4000 Liège, Belgium

e-mail: jd.caprace@ulg.ac.be; jcaprace@espol.edu.ec

C. Petcu

e-mail: cristian.petcu@ulg.ac.be

P. Rigo

e-mail: ph.rigo@ulg.ac.be

J.-D. Caprace � M. G. Velarde

FIMCBOR-Escuela Superior Politecnica del Litoral (ESPOL),

Guayaquil, Ecuador

M. G. Velarde

e-mail: mvelarde@espol.edu.ec

123

J Mar Sci Technol (2013) 18:404–417

DOI 10.1007/s00773-013-0217-2



production space in the shipyard becomes a constraint.

There are only limited spaces where the largest blocks can

be produced because of the lifting and handling require-

ments. For this reason, it is important to plan the space

accurately in these areas to ensure that blocks are moved

only when and where necessary to use the available space

efficiently. Unnecessary moves result in non-value-added

costs for the block. However, due to production constraints

and aggressive construction schedules, maximizing the

number of blocks in an area may result in unnecessary

moves, while minimizing unnecessary moves results in less

efficient use of the space. The limited space available in

shipyards, as we can see in Fig. 2 for the Uljanik shipyard

in Pula (Croatia), and the growth in the size of blocks and

sections force the planners to optimize the use of the

available surface within the workshops and storage areas.

1.2 Current practice

Spatial scheduling is still currently being done by small groups

of experienced people using tools such as Computer-Aided

Design (CAD), PowerPoint, or Excel and schedule informa-

tion from their planning systems. Although these ad-hoc tools

are relatively effective, they are cumbersome and require a

significant amount of time to update even for minor schedule

changes. In addition, scheduling practices and lessons learned

over time are only retained by the experts themselves.

Therefore, this knowledge is lost and must be reacquired by

yet another generation of new employees. Providing some

innovative solution to capture this knowledge and automate

the process with a ‘‘smarter tool’’ would provide more effi-

cient allocation of the valuable production space in each of the

construction areas facilities.

Research related to optimal block allocation scheduling

in shipbuilding is not prevalent, even though it is possible

to increase the productivity of shipyards and to decrease

the building cost of a ship through efficient use of space

resources. However, some recent research shows a growing

interest in improving shipyard space utilization inside

workshops.

In Korea, simulation-based production scheduling is

growing, which can contribute to improving production

scheduling, planning work and evaluating various produc-

tion scenarios [3]. To make the most use of the simulation,

coupling optimization with simulation is expected to be far

more effective to improve the planning quality as well as to

reduce the effort involved in production planning and

control [4, 5].

To solve the specific problem, various heuristic-based

algorithms have been developed to optimize the block

assignment and space allocation. Park et al. [6] presented a

scheduling algorithm using partial enumeration and

decomposition to generate a spatial allocation plan.

Okumoto and Iseki [7] proposed an optimization of block

allocation in the assembly area using a simulated annealing

method [8, 9], block allocation optimization in the

assembly area based on the constraint satisfaction tech-

nique (CST) and optimized block division planning using a

genetic algorithm and product model [10]. Similarly, Finke

et al. [11, 12] and Cho et al. [13] proposed a semi-auto-

mated scheduler to increase the utilization of work area

space. Utilizing the similarity of the two-dimensional

packing problem, Shin et al. [14] recently presented a

bottom-left-fill heuristic method for spatial planning of

block assemblies.

Fig. 1 Largest passenger ship size (GT) throughout the ages [2]

Fig. 2 Limited working space in Uljanik shipyard island (Pula,

Croatia)
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As presented before, a large spectrum of research has

been conducted to investigate various algorithms for opti-

mal configuration and develop decision support systems for

spatial scheduling of dynamic block assembly. However,

all the studies deal with a limited number of production

constraints, which hardly reflect the realistic production

situation. For instance, it can be desirable to keep some

blocks together during the assembly stage or to place some

blocks only in one type of assembly shop, at the exit gate or

near the ship that is currently being erected, etc.

The article is organized as follows. After a literature

review on relevant research work, a systematic framework

for a look-ahead scheduling mechanism is presented in

which a heuristic-based algorithm for optimizing the spa-

tial layout of block assemblies is developed. A case study

with a computational experiment is then presented to

demonstrate the proposed approaches.

2 Space allocation issue

2.1 Similarities with other theories

The dynamic allocation of space in the shipyard is an

immensely difficult and time-consuming effort. The diffi-

culty in scheduling floor space, or spatial scheduling, arises

because the space allocation for one block significantly

affects the availability of floor space for every other block.

Scheduling production space to satisfy an erection schedule

becomes even more complex when unexpected changes in

the schedule occur (e.g., upstream process delays, weather-

related delays or subcontractor timeliness) [11, 12]. This

illustrates the need for a tool that can assist planners in not

only generating efficient spatial layouts, but also modifying

these plans accordingly with minimal additional effort. Not

only is the practice of scheduling space a difficult problem,

but also the automatic or semi-automatic scheduling of the

space is even more difficult.

The space allocation issue looks like a cutting stock

problem. The cutting stock problem is a well understood

problem in the shipbuilding industry. Steel processing

facilities in almost every shipyard use nesting software to

determine the best allocation of steel plate area for cutting

out profiles. Having this technology, the allocation of steel

plate space is much more efficient and results in reduced

steel waste. Solution procedures to the two-dimensional

cutting stock problem have to and continue to be developed

to improve the efficiency and computation time of the plate

layout.

This issue can also be considered with the conventional

three-dimensional bin-packing problem (3D-BPP) where

cubes or solid boxes are ‘‘packed’’ into a larger empty

container in an effort to maximize the number of boxes in

the container; see Fig. 3 and in [15], for example. In the

shipbuilding context, the working area, platen, or shop

floor length, width and height are considered the X, Y and

Z dimensions of the container, and the t dimension is the

time schedule horizon. The problem is thus more complex

than a simple 3D bin-packing problem: there are three

geometric dimensions and in addition the time dimension.

In order to simplify the problem, only two geometrical

dimensions (floor length and width) are generally consid-

ered in addition to the time dimensions. The objective, as

defined by the shipyard managers, is thus to maximize the

number of building blocks produced in a given surface over

a certain time horizon. In the sequel, we refer to this

problem as the space and time allocation (STA) problem.

Only a few solution procedures have been developed for

these types of problems [8, 17–19], and optimal solutions

procedures have proved to be NP-complete because of the

exponential explosion of the solution space [20]. In other

words, an ‘‘optimal solution’’ for a large application cannot

be found within reasonable computing times. Therefore,

the user should accept obtaining a ‘‘nearly optimum’’

solution. An efficient tool should make use of modern

heuristics to find such results within short computing times.

There is one key difference between shipyard spatial

scheduling and the conventional bin-packing problem. In

the bin-packing problem, it is generally assumed that the

blocks to be packed are all available at time 0. In the

shipbuilding industry, the blocks become available for

placement at different times. Also, the general case of the

academic problem is not relevant in the practical sense due

to the fact that the real-world system has significantly more

Fig. 3 Three-dimensional bin-packing problem in a container [16]
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complex constraints than those in the general case. Some of

these constraints include preferred locations, spacing

between the units, schedule requirements and so forth.

The studies of Martello et al. [15], Brunetta and Greg-

oire [21], Foroe et al. [22] and Martello et al. [23] are

recent contributions that provide brief surveys of the lit-

erature on 3D-BPP. Since the problem is difficult, most

efficient approaches rely on local search metaheuristics for

the solution of large-scale situations. In particular, Faroe

et al. [22] have proposed a guided local search (GLS)

heuristic for 3D-BPP. In their computational experiments,

this approach appears to outperform the best available

heuristics for 3D-BPP. It also offers a high degree of

flexibility in its implementation, so that it can be easily

adapted to variants of the problem involving different

objective functions and/or additional constraints. There-

fore, the algorithm that we have developed for STA

explicitly builds with the aid of their work.

2.2 Challenges of space allocation issue

The dynamic allocation of blocks in shipyards is a huge,

difficult and time-consuming effort. The difficulty in space

allocation arises because:

• The allocation of space to one block significantly

affects the availability of floor space for the other

blocks [11]. Scheduling production space to satisfy an

erection schedule becomes even more complex when

unexpected changes in the schedule occur (e.g.,

upstream process delays, weather-related delays or

subcontractor timeliness).

• The allocation of space in an industrial environment is

an issue with different complex production constraints:

– Block height might be important because some-

times blocks have to be moved by a crane bridge

above others blocks.

– Spacing between blocks might be required for

safety and accessibility reasons.

– Spacing below blocks might be required for trans-

portation with skid platforms.

– Space above blocks might be required for the

movement of other blocks.

– The preferred location for some blocks might

require placing blocks close to specific tools or

equipment, etc.

This illustrates the need for a flexible tool that can assist

planners in not only generating optimal spatial layouts, but

also modifying these plans day after day according to the

variation of the initial schedule (delays, unplanned main-

tenance, etc.). The next section describes an approach that

has been developed to help in the allocation and planning

of floor space within the shipyard.

3 Approach

The objective of the tool described in this article is to

increase the utilization of the working area, while main-

taining production schedules. An innovative approach has

been developed in order to include the following features:

• The automatic allocation of activities (blocks, sections,

panels, etc.) in the workshops;

• The minimization of wasted surfaces;

• Long-term and day-to-day simulations in order to

determine how a delay impacts the global planning;

• The post-processing of the result in order to allow fast

decision-making (floor plan printing, display of work-

ing load and working force charts, display of surface

utilization charts, etc.).

This tool should thus provide planning proposals, i.e., a

location and a starting day for each block. Unfortunately, it

may be that the available surface in the assembly hall is not

sufficient to produce the entire set of blocks. The tool

should then try to help the user to make the most efficient

decision.

For simplification reasons, no details will be taken into

account regarding the production processes. It is also

assumed that blocks have their final shape during the

assembling process. We do not take the successive

assembly stages into account. In addition, a block is con-

sidered to have a parallelepiped shape. Many blocks are

indeed almost parallelepipeds, and other shapes can be

considered using the same optimization technique.

Dealing with simple data is more convenient, and we

know that a decision tool is only efficient if it keeps things

easy to use, even if complex methods are used to solve the

problem. Indeed, the software would lose part of its power

and efficiency if the time needed to prepare the data

becomes excessive. In addition, the ability to make changes

quickly and to view the impact of those changes in real

time provides a tool that will significantly reduce the cost

of planning and replanning.

The first phase of the tool’s development is creating a

graphical user interface (GUI) to assist the planner in his

tasks. The second phase of the tool development focuses on

capturing the planner’s knowledge and using it to imple-

ment an automated optimization module. The following

sections provide further details on these two phases of tool

development: the GUI and the automated optimization

scheduling procedure. Finally, we present an industrial

case study and a set of conclusions.

J Mar Sci Technol (2013) 18:404–417 407
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4 Required data for optimization

Both the data related to the shipyard’ facilities and to

production activities (ship blocks, sections, etc.) are

required in order to define the problem.

4.1 Shipyard facilities

The assembly surfaces in a shipyard often comprise more

than one working area Ak, for k ¼ 1; 2; . . .;m of rectangular

shape, such as section assembly halls, block assembly

areas, painting halls, outfitting areas, etc. Different activi-

ties on the block are processed in these areas. Each

working area could contain different preferential zones in

order to perform the activity in a specific place in the

workshop rather than another. Subsequently, three different

levels of information should be considered: the workshop,

the working area and the preferential zone.

The main information required about the shipyard

facilities are:

• The available space in the working areas (length

L, width W, height H) of the workshop; see Fig. 4;

• The crane capacities (maximum load, height under the

hook C);

• The definition of preferential zones q inside the

workshop (length, breadth, height, type of work, etc.);

• The position of the gates;

• The industrial calendar (working days for each ship);

• The personnel availability over time.

It is imperative to know the location of the gates in the

assembly hall and the crane bridge height. Indeed, it may

happen that a particular block cannot be taken out because

other high blocks are in its way to the gate, and the height

of the crane bridge may not be sufficient to pass over them

(crane hook constraint). If blocks are too heavy for the

crane bridge, they need to be driven out on a skid platform.

In this case, no block at all should remain in the way, and

supports for blocks have to be elevated in order to allow the

skid platform to get under the block.

4.2 Production activities

Basically, the input data of the software can be summarized

as a list of n ‘‘activities.’’ Each activity represents a certain

work to be done on a particular block j ¼ 1; 2; . . .; n:

Hence, the following information that can be provided by

the enterprise resource planning (ERP) system of the

shipyard is required:

• Description of the block: block identification, ship

identification, comments, etc.;

• Prismatic dimensions of each block: length lj, width

wj, height hj, for j ¼ 1; 2; . . .; n and related spaces

allocated to movements around the blocks. Blocks are

considered to be parallelepipeds. The major reason for

this assumption is that these data are very easily

available; it is easier to deal with basic shapes, and their

representations on a surface are more easily interpret-

able. This concept does not drastically affect the results

since most blocks indeed have an (almost) parallelepi-

ped shape. For accessibility and security reasons, a

certain distance may be required between nearby blocks

in the assembly hall. Therefore, an extra length, an

extra width and an extra height can be considered;

• Position of the block xj and yj: these parameters are

coordinates representing the position of the upper left

corner of block j in the selected area aj;

• Processing time tj: processing time interacts with two

aspects: the total amount of workforce needed for each

block and the duration of work. At this stage of the

planning, a precise processing time cannot be assessed;

therefore, the processing time has to be estimated. An

estimation of the total amount of man-time needed is

available; thus, the processing time is computed by

dividing this man-time by the available number of

workers. The workload assessments become more

precise over time. In addition to the processing time

of an activity, some time may be required to prepare the

appropriate surface and build up supports for blocks or

to dismantle them. This work has no effect on the start

Fig. 4 Working areas and blocks Fig. 5 Date and duration of an activity
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and the end date. Therefore, it has to be taken into

account separately;

• Date of production of each block: in this case, the

earliest starting date, also called the release date, rj, is

used (earliest date at which production can start

because the required parts are available for assembly),

and the latest end date, also called the due date, dj, is

the date at which the activity of the block has to be

delivered. See Fig. 5;

• Starting date sj 2 frj; . . .; dj � tjg: this parameter indi-

cates the starting date of the assembly of block j;

• Area aj 2 f1; 2; . . .;mg: this parameter indicates the

working area where the block j will be produced. In

some cases, the values may be restricted to a subset of

the sections, depending on block characteristics.

• Orientation oj 2 f0; 1; 2; 3g: this parameter indicates

the orientation of block j in selected area a. Blocks can

have four orientations, turning by 90�.

• Subcontractor possibility bj 2 f0; 1g: this parameter

indicates whether activity j will be produced inside the

shipyard (bj = 0) or whether it will be subcontracted

(bj = 1). During optimization, these blocks will pref-

erentially be selected to be produced in other work-

shops if the assembly area is overloaded;

The following optional additional information can be

defined by the user to improve the quality of the scheduling

solutions:

• Fictitious block cj 2 f0; 1g: this Boolean parameter

indicates that a block is a dummy. This option allows

the possibility to introduce zones temporarily reserved

for activities different from block-mounting operations

(e.g., storing the ship engines in the assembly shop,

temporary space required for cranes, etc.). The fictitious

blocks are only used to reduce the available space

during a definite time window.

• Target date fj: this option allows the user to give a

preferential start date for the optimization module. If

this date cannot be reached by the optimizer, the trend

will be to approach it as best as possible. On one hand,

if we put the target date on the early start date, we can

perform the space allocation with the ‘‘as soon as

possible’’ rule, and on the other hand, if we put the

target date on the latest start date, we perform the space

allocation with the ‘‘as late as possible’’ rule.

• Group of blocks gj: several blocks can be grouped so

that the optimizer will find a position for them as if they

are a single unit. The advantage is that we can simulate

the impact of the production of blocks nearby similar

ones. Thus, the optimization module takes into account

a group of blocks as a huge block. A snap tool was

implemented to link several blocks together.

• Preferential zone qj: this field indicates the preferred

zone to produce the blocks;

• Ship zone pj: this field indicates the zone of the ship to

which the blocks belong. During the optimization, we

are trying to group the block from the same ship zone

together to decrease the movements of the gantry crane;

5 The graphical user interface

The first part of the tool is an interface for the user (usually

a planner or construction manager) to interact with the

block attributes, schedule information and actual place-

ment of the units within a production working area. A color

code is used to show the different statuses of the blocks.

The main frame of the GUI is divided into two windows.

One is the spatial view of the workshop (top view of the

workshop on a given date); the other is the timeline view

(top view of the workshop with a dimension in space and a

dimension in time). These two frames interact in order to

display the situation of the workshop at different dates by

the dragging of the daily line in the timeline view.

5.1 Spatial view of the workshop

This frame (see Fig. 6a) simply shows a top overview of the

workshop at a selected date. It is possible that certain blocks

will appear or disappear depending on when those blocks were

placed and when they are scheduled to be complete.

The user can move blocks (drag and drop) inside space

(X and Y) for the day selected. The main block attributes,

such as length, width, height, weight and schedule infor-

mation, such as scheduled start date, planned duration,

(a)

(b)

Fig. 6 Main frame of the space allocation optimization tool
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earliest starting date, latest ending date and actual start, can

be edited in a properties windows.

5.2 Timeline view of the workshop

The timeline frame (see Fig. 6b) shows an overview of

each working area with an axis for the time (horizontal

axis) and another one for a dimension (X or Y-vertical

axis). The user can move blocks along the temporal and

spatial (X or Y) dimension by a simple drag and drop.

However, the displacement of the blocks is limited between

the earliest start date and the latest end date; see Fig. 5. The

vertical line can be placed on a precise day of the timeline

and shows the state of all areas at this date.

5.3 Detection of overlaps

The user is also notified of any collisions between over-

lapping blocks. The tool detects all the collisions and

overlaps between the blocks not only occurring at the

present time, but also for the entire planning period.

5.4 Towards the automated planning

While the spatial scheduling tool (GUI) provides a planner

with several features to generate efficient spatial plans

more rapidly, the actual method of allocating space is not

much different than current shipyard practices, where block

placement decisions are based on expert-user knowledge.

The following section describes a method to automatically

allocate and optimize space according to a heuristic algo-

rithm. While it is nearly impossible to capture the entire set

of rules, constraints and preferences used to generate a

near-optimal spatial layout, the automated scheduler can be

used to generate a valid baseline layout, and the end-user

can make modifications to this layout using the spatial

scheduling tool.

6 Optimization of space allocation

6.1 Optimization variable and objective function

The STA problem consists of orthogonally ordering the n

blocks into the m rectangular areas, without overlapping, so

as to respect the time constraints, with the objective to

produce the largest possible number of building blocks.

To achieve this, we defined the following decision

variables for each block j ¼ 1; 2; . . .; n :

• Position of the block xj and yj;

• Starting date of the activity sj 2 frj; . . .; dj � tjg;
• The block orientation oj 2 f0; 1; 2; 3g;

• The working area aj 2 f1; 2; . . .;mg;
• Subcontractor possibility bj 2 f0; 1g:

In addition, each variable can be fixed so that the opti-

mization algorithm does not have the opportunity to

modify the value. For example, this feature is used to

define the daily production situation of the workshop (real

block position inside the workshop).

A solution, that is to say, an assignment of values to the

above variables, is feasible if the individual and the col-

lective constraints are met. We call individual constraints

those that bear on one block only, regardless of the other

blocks. The individual constraints can be modeled as follows:

1. each block must fit within the width of an area aj:

xj C 0 and xj þ ½ojwj þ ð1� ojÞlj� �W ;

2. each block must fit within the length of an area aj:

yj C 0 and yj þ ½ojlj þ ð1� ojÞwj� � L;

3. each block must fit in its time window: sj C rj and

sj ? tj B dj

On the other hand, collective constraints deal with the

interaction between the positions of different blocks.

Unless we say otherwise, the only collective constraint is

that the blocks may not overlap.

6.2 Algorithm

As previously mentioned, our developments are based on

the solutions presented by Forae et al. [22] for the 3D-BPP

problem.

6.2.1 General approach

Let X be any solution of the STA problem, that is, any

assignment of values to the variables aj, xj, yj, oj and sj for

j ¼ 1; 2; . . .; n: We implicitly assume that bj = 1 for all j.

While trying to find a feasible schedule, our local heuristic

search strictly enforces the individual block constraints,

meaning that X always satisfies the constraints (1)–(3). On

the other hand, we do not enforce the collective constraints,

but we measure the extent of their violation, and these

measures are summed in an auxiliary objective function to

be minimized. Without additional real-life collective con-

straints, the extent of the violations can be measured by the

total ‘‘volume’’ ½m2 � days� of pairwise overlaps between the

n blocks. Thus, if we denote by overlapsij(X) the volume of the

overlap between blocks i and j, then the auxiliary objective

function can be formulated as shown in Eq. 1.

f ðXÞ ¼
X

1� i\j� n

overlapijðXÞ ð1Þ

Starting from an arbitrary infeasible solution where

blocks can overlap, searching for a feasible solution can be

410 J Mar Sci Technol (2013) 18:404–417
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achieved by minimizing the function f, since an objective

value of zero indicates that all the collective constraints are

satisfied; see Fig. 7.

A typical local search procedure starts by moving from

the current solution X to another X0 in a neighborhood m(X)

whenever this move improves the value of the objective

function. Slightly adapting the framework of Faroe et al.

[22], who do not allow rotating the boxes, we define the

neighborhood m(X) as the set of all solutions that can be

obtained by translating any single block along the coordi-

nate axes or along the timeline, or by a move of the same

relative position in another area of the working surface, or

by a ±90� rotation of a block around one of its four cor-

ners. A neighbor of X is therefore constructed by assigning

a new value to exactly one of the variables xj, yj, sj, aj or oj.

It is clear that this definition allows to move from any

solution to any other solution through a sequence of

neighbors.

It is well known that local search procedures may easily

get stuck in a local minimum of poor quality. Another

difficulty with local search procedures is that the neigh-

borhood of any given solution may be quite large, and

therefore, exploring the neighborhood to find an improving

move can be very costly in computation time. To deal with

the above issues, we rely on the GLS heuristic and its

accompanying neighborhood reduction scheme called fast

local search (FLS).

6.2.2 Guided local search

Generally speaking, GLS augments the objective function f

of a problem to include a set of penalty terms associated

with ‘‘undesirable features’’ of a solution, and it considers

the new function h, instead of the original one, for mini-

mization by a local search procedure. This procedure is

confined by the penalty terms and focuses attention on

promising regions of the search space. Each time the local

search procedure gets caught in a local minimum, penalties

are modified and the local search procedure is called again

to minimize the modified objective function. This general

scheme has been adapted to 3D-BPP by Faroe et al. [22]. In

their precedure, the features of a solution X are the Boolean

variables IijðXÞ 2 0; 1; which indicate whether blocks i and

j overlap Iij(X) = 1 or not Iij(X) = 0. The value of the

overlapij (X) measures the impact of the corresponding

feature on the solution X. The number of times an ‘‘active’’

feature has been penalized is denoted by pij, which is ini-

tially zero. Thus, the augmented objective function takes

the form shown in Eq. 2, where k is a parameter—the only

one in this method—that has to be chosen experimentally.

hðXÞ ¼ f ðXÞ þ k
X

1� i\j� n

pijIijðXÞ

¼
X

1� i\j� n

overlapijðXÞ þ k
X

1� i\j� n

pijIijðXÞ
ð2Þ

Intuitively speaking, GLS attempts to penalize the

features associated with a large overlap, but that have not

been penalized very often in the past. More formally, we

define a utility function lij(X) = overlapij(X) / (1 ? pij) for

each pair of blocks (i, j). At each iteration, the procedure

adds one unit to the penalty pij, corresponding to the pair of

blocks with maximum utility, then calls the local search

procedure; see Fig. 8. In a sense, the search procedure

forced setting a higher priority on these features. Since

Fig. 7 Optimization flow of the STA problem —where XH is the best

available solution, X0 is the initial solution, f ðXHÞ ¼ 0 represents a

solution without overlaps, t measures the runtime, T is the runtime

limit, and GLS is the Guided Local Search

Fig. 8 Optimization flow of the GLS (X, T)—where X is the current

solution, XH is the best available solution, X0 is the initial solution,

t measures the runtime, T is the runtime limit, FLS is the fast local

search, pij is the penalty for all pairs of blocks, (i, j) is a pair of blocks,

and h(X) is defined in Eq. 2
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features with maximum utility keep changing all the time,

this guiding principle prevents GLS from getting stuck in

local minima.

The adaptation of the algorithm has been numerically

validated and tested for several standard test cases and

published in Langer et al. [24] and Bay et al. [25].

6.2.3 Fast local search

The main objective of FLS is to reduce the size of the

neighborhoods explored in the local search phase by an

appropriate selection of moves that are likely to reduce the

overlaps with maximum utility.

To describe the FLS, consider any solution X and any

variable m among the variables xj, yj, sj, aj, oj with j 2
½1; . . .; n�: Informally, FLS selects at random a variable m

within a list of activate variables; as long as this list is not

empty, active variables are those that are most likely to

lead to an improvement of the current solution. The FLS

searches within the domain of m for an improvement of the

objective function. If no improvement is found, then the

variable m becomes inactive and is removed from the list

until the end of the current call of FLS.

More formally, we define mm(X) as the set of all solutions

that differ from X only by the value of variable m. The

neighborhood m(X) is thus divided into a number of smaller

sub-neighborhoods, as shown in Eq. 3.

mðXÞ ¼
[

m

mmðXÞ ð3Þ

Each of the sub-neighborhoods mm(X) can be either

active or inactive. Initially, only some sub-neighborhoods

are active. FLS now continuously visits the active sub-

neighborhoods in random order; see Fig. 9. If a solution Xm

exists within the sub-neighborhood mm(X) such that

h(Xm) \ h(X), then X becomes Xm; otherwise, we suppose

that the selected sub-neighborhood will provide no more

significant improvements at this step, and thus it becomes

inactive. When no active sub-neighborhoods are left, the

FLS procedure is terminated, and the best solution found is

returned to GLS.

The size of the sub-neighborhoods related to the aj and

the oj variables are relatively small; therefore, FLS is set to

test all the neighbors of these sets. On the other hand, using

an enumerative method for testing the translations along

the x, y and s axes would be very time consuming, espe-

cially when areas and/or time windows are large. We may

observe, however, that only certain coordinates of such

neighborhoods need to be investigated. Indeed, as pointed

out by Faroe et al. [22], all overlapij(x) functions (respec-

tively overlapij(y), overlapij(s) are piecewise linear func-

tions and will for that reason always reach their minimum

in one of their breakpoints or at the limits of their domains.

Thinking of the geometry of the 3D-BPP, we can easily

understand that a best packing arises either when the boxes

touch each other along their faces or when they touch the

sides of the bins; see Fig. 10. As results, FLS only needs to

compute the values of f(x) (respectively, f(y), f(s)) for

x (respectively, y, s) at breakpoints or extreme values. In

fact, there are at most four breakpoints for each overlap

function, and only the first and the last are evaluated.

Once all active moves have been deactivated by the

FLS, two possibilities remain. If the total objective is null,

the process is finished. In the other case all the moves will

become inactive, because no more improving moves exist.

A local minimum is reached, and the FLS iteration is fin-

ished. The process starts again at the first step, and as those

overlaps cannot be solved, they will sometimes be selected

Fig. 9 Optimization flow of the FLS (X, (i, j))—where X is the

current solution, (i, j) is a pair of blocks, activelist is the list of the

variables associated with the moves applicable to blocks i and j, and

to the blocks overlapping either i or j, mH is the best value of m, i.e.,

the best move reducing the objective function more, Xm is the solution

obtained by setting m :¼ mH in X, and h(X) is defined in Eq. 2

Fig. 10 Illustration of FLS neighborhood size reduction
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as the pair having the maximum utility. When this

occurs, moves of these blocks are reactivated, and their

penalties are increased. So, if we add the penalties to the

objective function, the objective function value of the

actual solution will enlarge, and moves improving the

objective function will appear, even if the result is worse

in terms of overlap. But now we have left the local

optimum, and a better solution can be found after several

iterations.

6.2.4 Selecting the blocks

In the previous sections, we described a GLS heuristic to

find a feasible solution to the STA problem. If GLS works

as expected, then it should return a space and time allo-

cation with zero overlap, i.e., a feasible solution, when

there is one. In general, however, no such feasible solution

may exist for the set of blocks initially included in the

instance, and we face the problem of selecting a maximum

subset of blocks to be scheduled for assembly. In order to

solve this problem, we rely on the following assumption,

describing that if GLS cannot find a feasible solution of

STA within a predetermined amount of computation time

T, then the heuristic assumption is that the instance is

probably infeasible.

A procedure has been developed allowing to add and

remove blocks from the current set; see Fig. 11. Thus,

assume that, at any iteration of the procedure, X is a

solution (feasible or not) involving some subset of blocks.

If the solution GLS(X, T) returned by GLS is feasible, then

this solution is a candidate to be the final optimal solution.

So, we record it if it is better than the best incumbent

solution X*, and we try to include an additional block in

the set. On the other hand, if GLS(X, T) is not feasible, then

a fast post-processing step is performed to produce a fea-

sible solution X0: this is achieved by simply removing

blocks in a greedy fashion until all overlaps are cancelled.

The solution X0 is recorded if it is better than the incumbent

X*; then, we remove an overlapping block from

GLS(X, T), and the process is repeated. The procedure is

stopped after a predetermined amount of computation time,

or by any more sophisticated stopping criterion, and returns

the feasible solution X* involving the largest collection of

blocks.

6.2.5 Additional constraints

The general case of the academic problem is not relevant in

the practical sense due to the fact that the shipbuilding

industry has significantly more complex constraints than

those of the general case. Various side constraints have to

be considered in order to increase the practical relevance of

the STA model. Fortunately, the GLS framework proved

flexible enough to incorporate most of these constraints

without too much additional effort.

For example, in practice, it may be necessary to restrict

or to impose the position of certain blocks, e.g., because

these blocks are already in process when the planning

process is launched, or because some required handling or

production equipment is only available in a particular area,

etc. Such individual constraints on blocks are easily han-

dled by the GLS algorithm: forbidden positions and

infeasible neighbors are simply not generated during the

search. Thus, in practice, the end-user may fix the value or

reduce the domain of any variable when using the software.

For instance, he may prohibit the rotation of some blocks

and/or their translations and/or the working area.

Another industrial constraint that can occur is to allocate

the preferential zones qj defined in Sect. 4.2 for some

specific blocks. In other terms, the GLS will allocate the

block taking into account a certain priority instead of using

a random selection of the blocks. Other priorities can easily

be defined taking into account other parameters such as the

block weight, block size or block complexity.

More complex collective constraints also appeared in

the real-life situation. In particular, for the assembly halls,

each working area has a single door, and the crane bridge

can only carry the blocks up to a certain height C; see

Fig. 12. As a result, it may happen that a tall block

obstructs the door or stands otherwise in the way, and some

blocks may not be delivered in time because there is no

feasible passageway to carry them out of the hall. Here

again, the GLS approach proved ‘‘generic’’ enough to deal

Fig. 11 Optimization flow of the block selection—where X is the

current solution, XH is the best available solution, X0 is a feasible

solution generated by GLS, X0 is the initial solution, t measures the

runtime, T is the runtime limit for GLS, and Tmax is the global runtime

limit of the optimization
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with this issue. For each generated solution X, we added to

the objective function h(X) a new penalty term that

accounts for exit difficulties as shown in Eq. 4, where

exitij(X) measures the overlap between block i and the ‘‘exit

path’’ for block j.

gðXÞ ¼ hðXÞ þ eðXÞ
¼
X

i\j

overlapijðXÞ þ k
X

i\j

pijIijðXÞ þ
X

i\j

exitijðXÞ

ð4Þ
The exit path for j is restricted by security constraints,

which impose the use of a straight path, and thus it is

determined by:

• the longitudinal interval ½xj; xj þ ojwj þ ð1� ojÞlj�;
• the transversal interval ½0; yj þ ð1� ojÞwj þ ojlj�; as the

doors are at position y = 0;

• the vertical interval ½C � hj;C�; since each block can be

carried up to the height of the crane;

• the completion date sj ? tj of block j;

• the area aj where block j is produced.

Note that the value of the exit terms could somehow be

scaled in relation to the h(X) values, but this did not appear

to be useful in our procedure, as the new penalty terms

proved sufficient to drive the objective function to zero.

Additional collective constraints arise when a family of

related blocks have to be produced for a ship. For example,

all the blocks that include emergency boats require similar

production equipment, and it is convenient to allocate them

to the same zone of the working area. In a similar way, two

blocks that are adjacent in the ship structure may need to be

produced next to each other in the assembly area so as to

allow fine positioning of connecting elements such as

structural members or piping tracks. An easy way to cope

with the latter requirement is to define a super block that

includes the two (or more) adjacent blocks and to replace

the individual blocks by this super block in the data of the

problem. With the variable gj described in Sect. 4.2, several

blocks can be grouped so that the GLS will find a position

for them as if they are a single unit. This parameter does

not directly affect the GLS algorithm, but it increases the

end-user flexibility considerably. For the first situation,

however, this method is too restrictive, and we preferred

instead to define a ‘‘distance’’ constraint. With the variable

pj described in Sect. 4.2, GLS will minimize the relative

distance between two blocks in order to reduce the unde-

sired movement of the gantry crane.

Other collective constraints could certainly be included

in the model by taking full advantage of the flexibility of

the GLS framework.

6.2.6 Robustness

The GLS procedure always starts from an initial solution X0. A

drawback of this approach is that the structure of X0 can

confine the GLS to an area of the solution space that can be

difficult to escape (especially for small values of k); therefore,

the search process may not reach the very best solution.

However, in a dynamic industrial setting, this apparent

drawback turns out to be an advantage. Indeed, it may be

very costly or practically impossible for the company to

readjust the schedules and the allocation of blocks to the

working areas frequently. By generating new solutions

from previous ones, the GLS procedure actually ensures

that the structure of previous solutions can be preserved

when the production plans are updated. This is to be con-

trasted with various methods proposed for rectangle

packing problems, which typically rely on construction

strategies and for which a slight modification of the data

may lead to major perturbations of the solution. As a

consequence, it may prove rewarding to run GLS with a

relatively small value of k in the industrial context.

7 Case study

7.1 Presentation

This case study focuses on the assembly shop of a Euro-

pean shipyard where relatively small sections

(60–120 tons) are joined together to form huge blocks

(550–750 tons). Typically, the ship is then erected in the

dry dock block-by-block until the ship is finished using a

gantry crane.

The modeling of this workshop contains four working

areas (see Fig. 13) as well as the dry dock. The ‘‘bin’’ is an

additional area where blocks are temporary placed if they

are not allocated.

A data set of 268 blocks has been considered where 61

blocks are fictitious and mainly represent part of the ships

Fig. 12 Illustration of overlaps due to crane movements
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in construction in the dry dock, 51 blocks are fixed and

represent the actual situation of the working areas, and

finally 156 blocks should be allocated to solve the STA

problem. The surface of the blocks to be allocated varyies

between 200 m2 and 1,800 m2, with an average of 750 m2.

The dimensions of the blocks to be allocated (width and

length) vary between 8.5 and 50 m with an average of 28

m. The time period of the data set is about 1.5 year. The

working duration of the blocks varies between 15 and 68

days with an average of 40 days. This data set corre-

sponded to a highly constrained shipyard STA problem

where the space available inside the workshop is quite

similar or superior to the sum of the block surface.

7.2 Manual and automatic scheduling

7.2.1 Manual allocation of activities

Manually, the user can drag and drop a non-allocated block

from the ‘‘bin’’ area into an empty working area. Even if an

area seems to be void, another block may have been allo-

cated to this place some days later. The software auto-

matically detects such conflicts: critical blocks will directly

change color. A double click on any block shows all block

attributes directly. Multi-selection is also available to

change the value of any parameters for several blocks.

7.2.2 Allocation of activities with the optimization module

In practice, allocating blocks with the optimization tool

ensures that there is no collision. The optimizer tool always

gives a feasible solution.

While it is nearly impossible to capture the entire set of

rules, constraints, and preferences used by the planner, the

optimization module can be used to generate a valid

baseline layout, and the end-user can make modifications to

this layout using the GUI. The tool of overlapping detec-

tion is very powerful in this case of manual adjustment of

the final optimized solution.

If no feasible solution is found by the optimization

algorithm, the user can directly see which blocks lead to

problems and then choose an adapted solution. The user

can identify the production surface utilization problems

that may happen for the actual data (basically the fact that

not all blocks can be produced in time). He may for

example raise the workforce availability or subcontract

some blocks.

7.2.3 Day-to-day optimization

The difficulty in space allocation, or spatial scheduling,

arises because the allocation of space to one block signif-

icantly affects the availability of floor space to the other

blocks. Scheduling production space to satisfy an erection

schedule becomes even more complex when unexpected

changes to the schedule occur (modification of block

duration, production delays, etc.).

In order to take this constraint into account, we imple-

mented the possibility to fix the attribute of some blocks so

that they cannot be moved by the optimizer. This func-

tionality is useful to define the starting state of the work-

shop: blocks already in the workshop cannot be moved

during the optimization!

7.2.4 Data connection

A link between the current enterprise resource planning

(ERP) system of the shipyard and the software was also

implemented to update all attributes of blocks before an

optimization. When a modification occurs inside the

planning (activities duration, block dimensions, production

delays, etc.), the latest information is always available for

the optimization.

7.3 Results and achievements

A comparison between the manual allocation of activities

and the optimization algorithm was done by a planner in

the shipyard. The planner used a simplistic allocation rule

such as the allocation of the first block in one corner and

processing by rows or by columns. Nevertheless, we con-

sidered some additional constraints such as the safe dis-

tance between the blocks or the possibility to rotate the

blocks in order to improve the solution.

The main problem during the allocation of the blocks is

that the planner does not foresee the scheduling of the

blocks along time. For an optimal allocation of the activ-

ities, the optimization algorithm is really helpful.

Table 1 as well as Fig. 14 show the relative gains

between the manual and the automatic allocation of the

blocks (optimization algorithm).

We observe in Table 1 that the working surfaces are

better used (gain of 12.7 %) because more blocks have

been allocated during the same considered period (137

Fig. 13 Layout of the assembly shop considered for the case study
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blocks instead of 118 blocks). In the case of the optimized

schedule, only 19 blocks have not been allocated, while for

the manual solution, 38 blocks have not been placed.

However, the planner should find a solution to allocate the

remaining 19 blocks that cannot be produced in time. He

may for example raise the workforce availability to reduce

the working duration or subcontract some blocks. Fur-

thermore, the average utilization of the working areas has

been improved, as shown in Fig. 14d.

Both of the solutions, i.e., the manual scheduling and the

automatic scheduling, were considered feasible by the

shipyard planner. Nevertheless, he corrected 3 % of the

position of the blocks for the optimized solution taking into

account additional constraints.

In addition, the scheduling time is drastically reduced

(hours instead of days). This is probably the most interesting

advantage of the developed tool. The planner considered that

the tool can contribute to improving production scheduling

works and appreciate particularly that he is now able to

evaluate various production scenarios in a short time.

For small problems, when the space available inside the

workshop is largely superior to the sum of the block sur-

faces, computation times are between 30 and 150 s for

*250 blocks. For more constrained problems, when the

space available inside the workshop is quite similar to the

sum of the block surfaces, the time required to find an

optimized solution increases from 5 min to 1 h.

Without the tool, such planning could take several days.

Consequently, another advantage of the tool is that dif-

ferent schedules can be tested. For instance, if any pro-

duction parameter is changed, such as the block splitting or

the number of ships to produce simultaneously, the impact

on the total production time can easily be studied. These

kinds of studies were not possible manually.

8 Conclusions

In this article, we have presented a space and time allo-

cation problem arising in large shipyards, and we have

modeled it as a three-dimensional bin-packing problem.

We have demonstrated the main advantages of the GLS

to solve the STA problem:

• Good correspondence between results obtained and

industrial constraints;

• Low computation time (some minutes);

• Four-dimensional problems are solved (three spatial

dimensions and one temporal dimension);

• The solution obtained is always feasible;

• If a schedule modification arises and causes an overlap

between blocks, the algorithm will only be able to solve

the issue locally without modifying the global solution.

Table 1 Gain between the manual and the automatic allocation

Description Unit Manual Optimized Gain (%)

Surface used m2 9 days 3593324 4115958 12.7

Block placed # 118 137 13.8

Block not placed # 38 19 50

# Represents the cardinality of a set

(a) (b)

(c)

(d)

Fig. 14 Comparison of the timeline results between the manual and

automatic allocation, where a and b present the timeline view where

the vertical axis is the spatial X dimension and the horizontal axis the

timeline, and c and d present respectively the number of blocks and

the surface utilization ratio in the function of time
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The proposed innovative approach allows more efficient

scheduling for the shipyard. The planner can test more

alternatives and rapidly modify the scheduling to find the

best one. But the preparation and verification of data for the

simulation remain a major stage to ensure the reliability of

the results.

Gains obtained for the shipyard are substantial. By using

the new concept, the workshop productivity is increased as

less time is needed for scheduling and better space utili-

zation is achieved.

This generic approach allows incorporating various real-

life constraints and leads to the successful implementation

of a flexible and robust application for the shipbuilding

industry, but potentially also for other industries.

9 Future work

The work outlined in this article presents a new promising

method for shipyard spatial scheduling. Nevertheless,

several improvements or integrations of new constraints

could be performed:

• An extension of the rectangular shapes for workshops

and/or blocks to any shapes. However, this would

require a complete overhaul of the software and its

optimization method.

• An implementation of a tool to fit and smooth the

workload of the workshop to the workforce available. It

could be done during the optimization phase as a multi-

objective optimization.

• Development of a tool to consider predecessors and

successors for the different activities to be allocated.
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