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Abstract The chaos that appears in the ship roll equation

in beam seas known as the escape equation has been

intensively investigated because it is closely related to

capsizing incidents. In particular, many applications of the

Melnikov integral formula have been reported in the lit-

erature; however, in all the analytical works concerning the

escape equation, the Melnikov integral is formulated uti-

lizing a separatrix for the Hamiltonian part or a numeri-

cally obtained heteroclinic orbit for the non-Hamiltonian

part of the original escape equation. To overcome such

limitations, this article attempts to utilise an analytical

expression for the non-Hamiltonian part. As a result, an

analytical procedure is provided that makes use of a het-

eroclinic orbit of the non-Hamiltonian part within the

framework of the Melnikov integral formula.

Keywords Escape equation � Chaos phenomenon �
Melnikov integral formula � Analytical formulae �
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1 Introduction

In the research field of nonlinear dynamical system theory,

it is well known that the Feigenbaum cascade of period-

doubling bifurcation can lead to chaos [1], and consider-

able research with regard to this phenomenon has been

reported. The chaotic behaviour of ship roll motion in

beam seas has been studied by Virgin [2], Thompson [3, 4],

and Kan and Taguchi [5, 6], among others. Thompson used

the escape equation with a second-order polynomial fitting

the restoring term and discussed the occurrence of capsize

(or escape) and chaos. Kan and Taguchi observed capsizing

phenomena caused by period-doubling bifurcation in their

model experiment [5]. Further, they investigated the escape

equation with a nonlinear cubic restoring term using

numerical time simulation and confirmed a close relation-

ship between capsize and chaos [6]. On the other hand,

Murashige and Aihara [7] calculated the Lyapunov expo-

nents from the measured time history of a flooded ship

model, and they confirmed that the ship rolling motion

could tend to a chaotic attractor. Moreover, they did

detailed numerical studies with a theoretical model [8].

The Melnikov integral formula enables us to test for the

existence of a transverse homoclinic connection of an

invariant manifold of a saddle [9, 10]. The existence of

such a connection implies the beginning of the fractal

metamorphosis and is one of the prerequisites of chaotic

behaviour. As an example of the direct application of this

method to the ship roll problem using the escape equation

with a cubic restoring term, Kan and Taguchi [6] analyti-

cally estimated the conditions of chaotic behaviour.

Although it is necessary to analytically or numerically

obtain the heteroclinic orbit in the time domain to calculate

the Melnikov integral of a highly dissipative system, an

analytical expression of the non-Hamiltonian part is not
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easily obtained in general. Therefore, Wu and McCue [11]

calculated the Melnikov integral using a numerically

obtained heteroclinic orbit. Although numerical integration

requires verification of its accuracy for infinite integrals, it

seems to be an extremely powerful technique even for

high-dimensional systems.

A general solution for nonlinear differential equations is

not always available. In the case of the escape equation

with a cubic restoring term, a general solution is not

available. Therefore, Kan and Taguchi [6] calculated the

Melnikov integral based on the separatrix of the Hamilto-

nian part of the escape equation as an alternative to solving

its non-Hamiltonian part. However, although we cannot

find a general solution of the escape equation, heteroclinic

orbits themselves can be obtained using a solution tech-

nique that is used for analysing nonlinear waves.

A heteroclinic orbit is an orbit connecting two saddles,

and such an orbit can be realized for certain parameters,

i.e., the set of heteroclinic bifurcation points [12]. For

instance, it is well known that the surf-riding threshold in

following and quartering seas can be represented as a

heteroclinic bifurcation point [13]. Considerable effort has

been expended on research of the surf-riding threshold,

and one of the current authors has proposed an analytical

technique for estimating this threshold. In this technique,

the sinusoidal periodic surge force induced by waves was

approximated using a third-order polynomial, and then an

analytical formula to estimate the surf-riding threshold

was obtained [14]. This approximated surge equation is

identical to the non-Hamiltonian part of the escape

equation. Therefore, in the present article, we attempt to

apply the same procedure to the escape equation in an

attempt to provide an analytical formula for the threshold

of chaos.

2 Escape equation

Uncoupled roll motion with wave excitation is modelled as

[6]:

I
d2U
dt2
þ N

dU
dt
þW � GM � U 1� U=UVð Þ 1þ U=UVð Þ

¼ Mrs þMr sin xt þ dð Þ ð1Þ

where U is roll the angle, I is the moment of inertia in roll,

N is the damping coefficient in roll, W is the ship mass, and

GM is the metacentric height. In the forcing term, i.e., the

right side of Eq. 1, Mrs denotes the second-order steady

wave-induced roll moment, whereas Mr denotes the

amplitude of the first-order wave-induced roll moment. It

is assumed that Mrs and Mr have relatively small values

compared to the terms on the left side of Eq. 1. Obviously,

U = ±UV are saddles. Here we divide Mrs into two parts:

Mrs ¼ M1 þM2 ð2Þ

This separation is done to create the heteroclinic orbit.

In practice, value M1 is determined by the condition of the

heteroclinic bifurcation described in the next section.

Factorisation yields:

W � GM � U 1� U=UVð Þ 1þ U=UVð Þ �M1

¼ W � GM U� U1ð Þ U2 � Uð Þ U� U3ð Þ=U2
V ð3Þ

where the relation U1 \U2 \U3 applies. Considering the

following transformation:

u ¼ U� U1

U3 � U1

ð4Þ

the restoring terms becomes:

W � GM U� U1ð Þ U2 � Uð Þ U� U3ð Þ
U2

V

¼ W � GM U3 � U1ð Þ3

U2
V

u u� U2 � U1

U3 � U1

� �
1� uð Þ ð5Þ

Therefore we have:

d2u
dt2
þ N

I

du
dt

þW � GM U3 � U1ð Þ2

IU2
V

u u� U2 � U1

U3 � U1

� �
1� uð Þ

¼ M2

I U3 � U1ð Þ þ
Mr

I U3 � U1ð Þ sin xt þ dð Þ ð6Þ

Defining new variables as:

~b � N=I; ~l � W � GM U3 � U1ð Þ2=IU2
V ;

~a � U2 � U1ð Þ= U3 � U1ð Þ
b0 � M2=I U3 � U1ð Þ; b � Mr=I U3 � U1ð Þ

8><
>: ð7Þ

yields the following equation:

d2u
dt2
þ ~b

du
dt
þ ~l � u 1� uð Þ u� ~að Þ ¼ b0 þ b sin xt þ dð Þ

ð8Þ

Note that if ~a ¼ 0:5; then the left side of this equation

becomes symmetrical. This equation is utilised for all the

considerations in this article.

3 Solution of the non-Hamiltonian heteroclinic orbit

Considering the case b0 = 0 and b = 0 in Eq. 8:

d2u
dt2
þ ~b

du
dt
þ ~l � u 1� uð Þ u� ~að Þ ¼ 0 ð9Þ

This equation is identical to the FitzHugh–Nagumo

(FHN) equation, [15, 16] except for some coefficients (see

Appendix 1), so that the solution method for nonlinear
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waves [17] to find a travelling wave is applicable. Here,

assuming that Eq. 9 has a heteroclinic orbit, then let us

postulate a non-Hamiltonian heteroclinic orbit:

_u ¼ ~cu 1� uð Þ ð10Þ

Differentiation of Eq. 10 with regard to time yields:

€u ¼ ~c
d u� u2ð Þ

dt
¼ ~c _u� 2u _uð Þ ¼ ~c _u 1� 2uð Þ

¼ ~c2u 1� uð Þ 1� 2uð Þ ð11Þ

If we substitute above equation into Eq. 9, then we

obtain:

~c2u 1� uð Þ 1� 2uð Þ þ ~b~cu 1� uð Þ þ ~l � u 1� uð Þ u� ~að Þ
¼ 0 ð12Þ

Here, taking a monomial order of 8u : u 2 0; 1ð Þ; then:

u ~l� 2~c2
� �

þ ~c2 þ ~b~c� ~l~a
� �

¼ 0 ð13Þ

In order to satisfy the above equation for 8u : u 2
0; 1ð Þ; the following relations are required:

~l� 2~c2 ¼ 0

~c2 þ ~b~c� ~l~a ¼ 0

(
ð14a; bÞ

From Eq. 14a we have:

~c ¼ �
ffiffiffiffiffiffiffiffi
~l=2

p
ð15Þ

The positive sign corresponds to a heteroclinic orbit

on the upper part of phase plane, whereas the negative

sign corresponds to an orbit on the lower part of the

phase plane. Substituting this condition into Eq. 14b, we

obtain:

~l
2
� ~b

ffiffiffi
~l
2

r
� ~l~a ¼ 0) ~l

1

2
� ~a

� �
� ~b

ffiffiffi
~l
2

r
¼ 0 ð16Þ

Here, the condition ~a [ 0:5 corresponds to the

heteroclinic orbit on the upper plane, whereas ~a\0:5

corresponds to that on the lower plane because positive roll

damping (~b [ 0) and a positive metacentric height (~l [ 0)

should apply to a normal intact ship in general.

Equation 16 can be solved using a simple iteration

procedure with respect to a single variable, such as M1,

when the bifurcation point is required as a function of M1.

Table 1 provides a comparison of the critical values of rC

providing the heteroclinic orbit. Here rC denotes the non-

dimensionalized value M1 as r = M1/W � GM � UV.

Further calculation conditions were set to be the same as

those of Table 3 in Wu and McCue, [11] and the values rC

obtained by Wu and McCue are noted. Since the results

obtained by the present procedure agree well with the

numerical results of Wu and McCue [11], it is concluded

that the analytical method proposed here is verified and the

numerical results of Wu and McCue [11] have sufficiently

high accuracy. If we solve Eq. 10, we can easily obtain as a

solution in the time domain:

u0 tð Þ ¼ 1

1þ exp �~ct þ ~d
� � ¼ 1

2
þ 1

2
tanh

~ct � ~d

2

� �
ð17Þ

Here, ~d 2 �1; 1ð Þ denotes the arbitrary integral

constant determined by an initial condition. Taking

u = 0.5 at t = 0 yields ~d ¼ 0; then Eq. 17 becomes:

u0 tð Þ ¼ 1

2
þ 1

2
tanh

~ct

2
ð18Þ

This equation is utilized for calculating the Melnikov

integral in the next section. Moreover, for the rolling

equation with a fourth-order polynomial, we can similarly

obtain an analytical solution of the heteroclinic orbit in the

limiting condition. A separate publication describing this

approach is planned for the future.

If we consider the case ~a ¼ 0:5; the solution of Eq. 16 is
~b ¼ 0 or ~l ¼ 0: ~l ¼ 0 implies the non-existence of a

restoring term, so that this solution is not relevant to the

current problem. Therefore ~b ¼ 0 should be regarded as a

solution. If ~b ¼ 0; i.e., the Hamiltonian system applies, the

separatrix connecting u = 0 and u = 1 is realised only

when ~a ¼ 0:5: This can be easily proved as follows. If we

consider the case of ~b ¼ 0 in Eq. 9, simple manipulation

yields:

d2u
dt2
¼ ~l u3 � ~aþ 1ð Þu2 þ ~au

� 	
ð19Þ

Multiplying each side of Eq. 19 by du/dt and integrating

with regard to time t, we obtain:

du
dt
¼ �u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~l

1

4
u2 � ~aþ 1

3
uþ ~a

2

� �s
ð20Þ

Here, u = 0 at du/dt = 0 is assumed. Then, at u = 1,

du/dt takes the value of:

du
dt
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l

2~a� 1

6

� �s
ð21Þ

Table 1 Comparison between the numerical results of Wu and

McCue [11] and the present analytical results

~b rC (numerical results) rC (analytical results)

0.05 0.023577 0.023557

0.1 0.047036 0.047036

~b; (damping coefficient in roll)/(moment of inertia in roll), rC critical

value of non-dimensionalized value M1
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If we require du/dt = 0, the condition of ~a ¼ 0:5 is

necessary. Therefore the symmetrical equation has a

separatrix connecting two saddles only for the case
~b ¼ 0; otherwise the separatrix becomes a homoclinic

orbit.

Finally we briefly consider whether Eq. 10 with ~a 6¼
0:5 can represent all the heteroclinic orbits. Equation 16

denotes the set consisting of heteroclinic bifurcation

points in a parameter plane spanned by ~b and ~l as two

solution one-dimensional manifolds. The system has only

one heteroclinic orbit for certain parameter combinations

of ~b0 and ~l0 by the uniqueness of the solution. It cannot

be denied that there could exist other heteroclinic orbits

for other parameter combinations. The heteroclinic orbit

introduced here, however, becomes identical to Eq. A5

in Kan and Taguchi [6] when ~b is zero (see Appendix

2), so that it is supposed that the heteroclinic orbit in

which we are interested is realised for the parameter

combination of ~b and ~l obtained from Eq. 16. Therefore,

it is concluded that Eq. 16 is the required solution for

our analysis within the framework of the present

research.

4 Calculation of the Melnikov integral

Using the heteroclinic orbit obtained above and following

the methodology introduced by Salam [10], the Melnikov

integral can be calculated. State Eq. 8 can be rewritten in

vectorial representation as:

d

dt

u

_u

 !
¼

_u

� ~b _u� ~lu 1� uð Þ u� ~að Þ

 !

þ
0

b0 þ b sin xt

 !

� F xð Þ þG tð Þ ð22Þ

As shown above, the solution for b0 = 0 and b = 0 can

be obtained as Eq. 21. Here, we apply the Melnikov

integral method:

DF xð Þ ¼ 0 1

~l 3u2 � 2 ~aþ 1ð Þuþ ~a½ � �~b

� �
ð23Þ

yields

trDF xð Þ ¼ �~b ð24Þ

Note that the wedge product is defined as

a ^ b ¼ a1b2 � a2b1. Then F q0 tð Þð Þ ^G t þ t0ð Þ can be

calculated as:

F q0 tð Þ
� �

^G t þ t0ð Þ ¼ _u b0 þ b sin x t þ t0ð Þð Þ ð25Þ

Therefore, Melnikov function M(t0) is determined as:

M t0ð Þ ¼
Z1

�1

F u0 tð Þ
� �

^G t þ t0ð Þ � exp �
Z t

0

trDF xð Þds

0
@

1
Adt

¼
Z1

�1

b sin x t þ t0ð Þ~cu0 tð Þ 1� u0 tð Þ
� �

� exp

Z t

0

~bds

0
@

1
Adt

þ
Z1

�1

b0~cu0 tð Þ 1� u0 tð Þ
� �

� exp

Z t

0

~bds

0
@

1
Adt

¼ b~c Ii cos xt0 þ Ir sin xt0ð Þ þ b0~cI 0ð Þ

¼ b~c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
r þ I2

i

q
sin xt0 þ tan�1 Ii=Irð Þ
� �

þ b0~cI 0ð Þ ð26Þ

Here, I(x) is defined as the following Fourier

transformation:

I xð Þ �
Z1

�1

u0 tð Þ 1� u0 tð Þ
� �

e
~bteixtdt ð27Þ

where we put Ir = Re[I] and Ii = Im[I]. The condition

having the simple zero of Eq. 26 can be represented as:

I 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
r þ I2

i

p ¼ b=b0 ð28Þ

Each component can be calculated by using Cauchy’s

integral theorem (see Appendix 3). Equations 18 and 34

provide the condition of the onset of chaos in the escape

equation discussed here.

5 Concluding remarks

A fully analytical solution of the heteroclinic orbit was

used for calculating the Melnikov integral to estimate the

onset of chaotic behaviour of the escape equation. This

approach is an alternative to the technique using a separ-

atrix of the Hamiltonian part of the escape equation or a

numerically obtained heteroclinic orbit of its non-Hamil-

tonian part. Verification of the proposed technique was

achieved by comparison with the results from existing

numerical work. The uniqueness of the heteroclinic orbit

having the form of Eq. 10 should be mathematically

examined in the future.
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Appendix 1

Hodgkin and Huxley [18] have shown that the shape and

speed of pulses in the nerve of a squid are well-
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approximated by numerical solution of the Hodgkin–

Huxley equation. Other closely related models were dis-

cussed by Fitzhugh and Nagumo [16]. Nagumo et al. [15]

simplified the Hodgkin–Huxley equation as follows:

oe

ot
¼ o2e

ox2
þ e 1� eð Þ e� að Þ � b

Z
edt ð29Þ

where e is a function of x and t, and 0 \ a \ 1. Assuming

that b = 0 and e(x, t) = e(x ? ct) yields:

d2e

dt2
� c

de

dt
þ e 1� eð Þ e� að Þ ¼ 0 ð30Þ

This equation is identical to Eq. 9, except for some of

the coefficients.

Appendix 2

We explain that for ~b ¼ 0; Eq. 21 leads to Eq. A5 in Kan

and Taguchi [6]. As mentioned above, ~d is an arbitrary

constant. Putting ~d ¼ 0 and taking ~c ¼
ffiffiffiffiffiffiffiffi
~l=2

p
in Eq. 15,

then the following equation can be obtained:

u ¼ 1

2
þ 1

2
tanh

t
ffiffiffi
~l
p

2
ffiffiffi
2
p

� �
ð31Þ

This orbit is defined within the open set u 2 0; 1ð Þ, so

that utilizing the change of variable u = (w ? 1)/2 yields:

w ¼ tanh

ffiffiffi
l
2

r
t

� �
ð32Þ

This result is identical with Eq. A5 in Kan and Taguchi

[6].

Appendix 3

Here we briefly consider an integral having the form of

Eq. 27. This equation can be rewritten as follows:

I xð Þ ¼ 1

4

Z1

�1

exp ~bt þ ixt
� �

cosh2 ~ct=2ð Þ
dt ð33Þ

Taking the integral route as shown in Fig. 1, Cauchy’s

integral theorem easily leads to the following result:

I xð Þ ¼
p ~bþ ix
� �

csc p ~bþ ix
� �

=~c
h i

~c2sgn~c
ð34Þ

Note that a singular point of Eq. 33, i.e., t ¼
pi 2nþ 1ð Þ=~c; is a pole of order 2. Here n denotes an

arbitrary integer.
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