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Fourier NUBS method to express ship hull form
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work, the weight functions are based on the sine func-
tion. For the weight function method, successful
changes to the ship hull depend on the type of weight
function, for instance, a weight function based on the
sine function does not seem to be able to modify a ship
hull while keeping the essential features of a practical
hull form. On the other hand, for a direct deformation
method, many researchers use a B-spline net to express
the hull form. For instance, Koyama et al.4 used a sur-
face B-spline net to design a ship hull form. Chen and
Huang5 also used a B-spline surface net to generate
the hull form when optimizing the wake of a ship, and
Ragab6 used a similar method to express a submerged
body. Peri et al.7 adopted a Bezier patch to modify a
ship hull. In their method, they added the patch to the
original ship hull to achieve deformation. In these cases,
the design parameters are the locations of the control
points. In general, one control point has three degrees
of freedom, and this may cause an increase in the
number of design parameters. To avoid this, we can use
some combination of mathematical functions. For
example, a Fourier series expansion is one choice for
generating an arbitrary shape. However, it is not easy to
express a curve with a large curvature, because unnatu-
ral wiggles are likely to occur. The B-spline curve has
the property of a convex hull. This property ensures that
the interpolated B-spline curve does not go outside the
convex hull surrounded by the control points. This
means that the B-spline curve can be used to give a
smoother function.

In the present method, the basic idea consists of a
combination of the favorable features of both methods.
A Fourier series expansion can approximately repre-
sent the girth line with some scalar coefficients under
mathematically assured accuracy, while the wiggles and
overshoot often found in a Fourier series expansion can
be avoided because of the convex hull property of the
B-spline function. In this work the nonuniform B-spline
(NUBS) function is used.

Abstract This article presents a method of numerical expres-
sion to draw ship hull forms. Recent developments in research
into ship hull optimization need a method to express ship hull
form as precisely as possible with a small number of design
parameters. This method is based on a combination of the
Fourier–sine series expansion and nonuniform B-spline
(NUBS) interpolation. The merit of the combination is that it
removes the wiggles which are often found when generating a
rectangular-type curve, such as the midship section of tanker
ship, with a simple Fourier series expansion. Here, the proce-
dure is explained, and then a tanker ship hull is generated.
Through the discussion, we show the effectiveness of the
method.
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Introduction

Recently, as computer models have improved, more
and more research into the optimization of ship hulls
has been carried out. In ship hull optimization, it is very
important to develop a method to express the ship hull
precisely with as few design parameters as possible, be-
cause any increase in the number of parameters results
in a large amount of computation time in the course of
the optimization.

Roughly speaking, there are two ways in which a ship
hull can be deformed. One is when the hull is changed
by use of weight functions that are applied to a known
ship hull, and the other is when the ship hull is deformed
directly. Suzuki and Iokamori,1 Hino,2 and Minami
and Hinatsu3 used the weight function method. In their
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In the following section, a method to fit a girth line is
presented, and its application to a tanker ship form is
shown. Then, the effectiveness of the method is clarified
in the discussion.

Body plan fitting with the Fourier NUBS method

Coordinate system

The coordinate system which explains the present
method is shown in Fig. 1. The y-axis is the breadth-wise
coordinate, and is positive toward starboard. The z-axis
is the vertical coordinate positive upward. In the figure,
a girth line is shown as a bold line. Here, the depth d0 is
arbitrary, and we may take it as the design load draft, or
as a much greater depth if we fit the girth line from
above the load water line to the bottom. b0 is the local
breadth at the deck top (including the case when z = 0).
The letter A indicates the bottom of the ship, and B
indicates the breadth of the ship. Then lines AC and BC
are the limiting lines to prevent unnatural wiggles when
expressing the hull form, as long as we treat common
ship hull forms only.

Coordinate transformation

We now consider the new coordinate system shown in
Fig. 1. The origin B¢ is set on the girth line on the y-axis.
Then the X¢-axis is chosen such that it goes from the
origin toward the point of the girth line on the ship’s
center plane, A¢. The Y¢-axis is normal to the X¢-axis.
Furthermore, the X¢,Y¢ coordinate system is normalized
by L, the length of A¢B¢, and the newly derived coordi-
nate system is written in the X,Y system, as shown in
Fig. 2.

Fourier expansion

The basic idea of this method is that the control points
of the NUBS function for expressing girth lines should
be evaluated by the Fourier series. In order to set the
control points for determining girth lines, we need
suitable initial values of the coefficients of the Fourier
series. In order to give suitable Fourier coefficients for
the girth lines, we expand the basic ship’s girth lines, say
Y = forig (X), into a Fourier series as follows:
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Note that forig (X) is the girth line of the basic ship in the
transformed coordinates X,Y, fapprox (X) represents the
approximate girth line, which may contain some
wiggles, and N is the number of terms of the Fourier
series expansion.

Set of control points for NUBS interpolation

We then set the control points of the NUBS curve to
approximate the girth line. The definition of a NUBS
function8,9 is
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where qi is the coordinates of the set of control points, m
is the order of the NUBS function, which is set to 4 in
this work, ti is the set of knot vectors, and P(t) is the
interpolated function. In this method, the X coordinates
of the control points are determined as described below.

z

X’

Y’

y

b0

d0

A

B

C

B’

A’
L

Fig. 1. Coordinate system to express the girth line
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1. Divide the 0 £ X £ 1 domain into N + 1 equilength
segments. Since the highest order of a Fourier series
expansion is N, the number of segments should suit
set N and not set N + 1. However, numerical trials
have shown that N + 1 divisions gives a much better
result. Then the control points are located on both
ends of each segment.

2. Near X = 0 and X = 1, Fourier series expansions may
not follow an original curve with a very large or small
gradient, and in order to protect against this draw-
back, more control points are put around these re-
gions. In this study, the ms and me segments adjacent
to X = 0 and X = 1 are set, and within in these
segments, the number of control points are set at
nc(ms) and nc(me), respectively (Fig. 3).

3. The region around a peak point with a large curva-
ture is also difficult to express without enough con-
trol points. In this work, only the region containing
the highest peak point is used to set an additional nc
(peak) control points. Here, the segment whose cen-
ter coincides with the peak point is found, and then
as additional nc (peak) control points are set in that
segment. It may be necessary to use 4 or 5 points
to reflect a sharp corner (Fig. 3). In this study, the
parameters ms and me are set to 2 for N £ 10, and
3 for N ≥ 11. In both cases, nc(ma) and nc(me) are
5 and nc (peak) is set to 4.

4. After determining all the X coordinates of the con-
trol points, the Y coordinates of the control points
can be computed by the first part of Eq. 1. In the
computation of Y, if a control point exceeds the lim-
iting lines AC or BC, the control point is reset on the
line. This process ensures that the computed girth
line does not pass over the limitation line owing to
the convex hull properties of B-spline interpolation.
After all the procedures are complete, the control
points are established and then we can compute the

girth lines with the NUBS functions in Eqs. 2 and 3.
In this study, a uniformly distributed knot vector
was used. Then the NUBS function becomes a simple
B-spline function. Alternatively, we can use the
equation9
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where n is the number of control points, m is the
order of NUBS, and si is the parameter of the given
points on which the NUBS curve passes. si is often
taken as the distance along the set of the given
points.

Inverse transformation of the coordinate system

After setting all the control points, a new girth line is
computed by the NUBS function. Then the computed
curve in X,Y space is inversely transformed so that the
Fourier NUBS-computed girth line can be obtained in
(y,z) space. In this method, note that one girth line can
be expressed with N + 2 design parameters, i.e., breadth
at the deck top b0, and depth d0, and N coefficients of the
Fourier sine series.

Limitation of the present method

Since we express the girth line using the Fourier series
in X,Y space, only the curve of a single-value function
can be fitted. Hence, we cannot interpolate a line such
as a twin-skeg stern form and a top-flat bulbous bow.
This is a limitation of the present method, but most
parts of an ordinary ship hull with a single propeller are
not likely to have such a property.

Set of the surface net of control points for surface
NUBS interpolation9

Consider the net of points on the surface Pi,j and the net
of control points qk,l. Then the NUBS surface interpola-
tion can be written as
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Here, mu and mv are the order of the spline functions in
the u and v directions, respectively, nu and nv are the
number of control points in the u and v directions, re-
spectively, and npu and npv are the number of points of
the Pi,j net in the u and v directions, respectively. ui and
vj are the parameters of Pi,j, which is often given as the

distance parameter. In Eq. 5, R N v qk j l mv j k l
l

nv

, , ,= ( )
=

-

Â
0

1

 is

1
X

Y

B’ A’

0

(N+1) segments

ma segments
nc(ma) control points

me segments
nc(me) control points

peak segment
nc(peak) control points

Location of control 
points in X coordinate

Transformed girth line

Fig. 3. Schematic figure for the location of control points on
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used. Then, if the surface points Pi,j are given, we can
compute the net of control points qk,l by inversing Eq. 5
in the following manner. First we solve the inverse
equation
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This equation shows that the computed Rk,j can be re-
garded as the control points for the isoparameter u line,
especially in this study, since it corresponds to each set
of control points along the girth line, and this process
can be skipped. Next we solve the inverse equation
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Then the surface net of control points can be evaluated.
However, in order to use the above method, we need to
adjust the number of control points for each girth line.
In the present method, we newly interpolate (N + 1) ¥
nc (peak) control points for each girth line using the
control points computed with the above-mentioned
process (Eqs. 1–4). After attaining the net of control
points, the hull surface interpolation can be carried out
by computing Eq. 5.

Results and discussion

In this work, a KVLCC2 tanker ship hull10 was used to
show the effectiveness of a new method. First, it is im-
portant to find an appropriate value for N. Generally, as
N gets larger, the accuracy of the girth line fitting should
become better. However, a large value of N is not satis-
factory when applying this method to a ship hull optimi-
zation. In order to investigate a suitable value for N, we
define the area error due to the discrepancy of the girth
lines as
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where Fapprox(x,z), Forig(x,z) are the breadths of the com-
puted and original girth lines at (x,z), respectively. This
value is the ratio of the small area surrounded by the
computed and original girth lines to the original sec-
tional area, and it may be regarded as an index of how
accurately this method can express the original girth
line. Although we may choose the standard deviation of
the discrepancy | Fapprox(x,z) - Forig(x,z) | as another in-
dex, the value defined by Eq. 8 gives the error relative to
the original sectional area, and we adopt this as the
accuracy index in this study. In this work, we used the

average of these indices of the three girth lines at
equidivided locations between x = -0.495 and 0.405 as
the index. Since these control points are evaluated by
using the expanded Fourier coefficients of the original
ship hull, in theory the computed girth lines do not
completely coincide with the original girth line. We now
realize the accuracy of the present method in expressing
a practical ship hull form through this index.

Figure 4 shows the change in this index as N varies
from 5 to 20. From this figure, N = 11 seems large
enough, since the reduction in the error becomes very
small above N = 11. Therefore, we can draw an accurate
girth line with a total of 13(=N + 2) unknown parame-
ters by this method.

Figure 5 shows the mapped girth lines with N = 11 at
x = -0.495, -0.045, and 0.405 in X,Y space, and corre-
sponds to Fig. 3. These lines can be regarded as typical
forms of the girth lines, and the agreement of the com-

Fig. 4. Accuracy of curve fitting for various numbers of
Fourier terms using NUBS functions

Fig. 5. Original and computed girth lines and control points of
NUBS on transformed coordinates for KVLCC2
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Table 1. Coefficients of a Fourier sine series to fit girth lines at
x = -0.495, -0.045, and 0.405

x -0.495 -0.045 0.405
Breadth b0 0.00922 0.09063 0.065
Depth d0 0.06282 0.06711 0.065

Fourier coefficients for different numbers of terms
1 0.32868 0.37302 0.00157
2 -0.01915 0.08879 -0.01342
3 -0.00383 -0.00267 0.05320
4 -0.02493 -0.02236 -0.01605
5 -0.01239 -0.01238 0.00752
6 -0.01673 0.00108 0.00225
7 -0.00505 0.00629 0.00133
8 -0.00569 0.00383 0.00013
9 0.00113 -0.00033 0.00203

10 -0.00020 -0.00206 4.14E-05
11 0.00278 -0.00127 0.00107

puted hull form generation with the original girth lines
can be regarded as satisfactory for the effectiveness of
this method, as is well shown in Fig. 5. The locations of
the control points are also suitably arranged to deal with
sharp corners such as the bilge circle and the portions
adjacent to the bottom and deck top near the bow sec-
tion (x = -0.495). Hence, this method is capable of ex-
pressing hull form numerically.

In Table 1 shows 13 parameters corresponding to the
three girth lines in Fig. 5. For girth lines around the
ship’s stern and mid-ship, only the first coefficient is
relatively large, while for the line near the bow, all
coefficients are of similar magnitude.

A comparison of the original and computed girth
lines with the Fourier NUBS method is shown in Fig. 6.
In this figure, the case where N = 11 is shown. The
computed girth lines agree well with the original lines.
Furthermore, no wiggles appear in the computed lines.
We can also draw the girth line from the deck top, as
shown in Fig. 7. In this case, the breadth at the load
water line is determined by a combination of the Fou-
rier coefficients. In other words, in this case the breadth
at the load water line is implicitly determined. Since the
breadth at the deck top could easily be given in advance
by comparing it with that of the load water line, b0 at the
deck top may be regarded as a given parameter, and
then the total number of design parameters for ship hull
optimization decreases from N + 2 to N + 1.

From the control points at each girth line, we can set
the surface net of control points using the method given
above. Figure 8 and 9 show the front and aft views of the
surface of an interpolated ship’s hull. Although the bul-
bous bow and the stern end are not drawn here, the
other parts can be expressed without any unnatural
wiggles. Therefore, we can see that this method could

Fig. 6. Comparison of girth lines obtained by the present
method with original lines (KVLCC2, N = 11, from the bottom
to the full-load waterline)

Fig. 7. Comparison of girth lines obtained by the present
method with original lines (KVLCC2, N = 11, from the bottom
to above the full-load waterline)

Fig. 8. Hull surface obtained by the present method (view
from bow)
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Fig. 9. Hull surface obtained by the present method (view
from stern)

be useful to express a practical hull form by a set of
parameters.

Lastly, we show the sensitivity of the Fourier coeffi-
cients to changes in the ship’s hull form. This gives
important information about how good the present
method is for hull shape optimization. Here, we
changed the first three Fourier coefficients by multiply-
ing by constants

¢( ) = ( ) =( )A n f A n nn , , ,1 2 3 (9)

where A¢(n) is the new Fourier coefficient, fn is the
multiplier, and A(n) is the original Fourier coefficient.
Figure 10 shows the case where f1 = 1.2, f2 = 1.5, and
f3 = 1.5. The original girth lines around the ship stern are
modified into a U- or T-shape. Figure 11 shows the case
where f1 = 1.2, f2 = 0.5, and f3 = 0.5. The original girth
lines around the ship stern are then modified into a V-
shape. Therefore, for the optimization of the ship stern

Fig. 10. Deformation of girth lines by changing the first three
Fourier coefficients (KVLCC2, N = 11, f1 = 1.2, f2 = 1.5, f3 = 1.5)

Fig. 11. Deformation of girth lines by changing the first three
Fourier coefficients (KVLCC2, N = 11, f1 = 1.2, f2 = 0.5, f3 = 0.5)

shape, A(2) and A(3), could be used as the main design
parameters. In this case, the number of design param-
eters for each girth line is only two.

On the other hand, the above combination only
makes the bow broad. In order to make the bow slen-
der, it is necessary to make A(1) decrease. Figure 12
shows the case where f1 = 0.8, f2 = 0.5, and f3 = 0.5. In this
case, the bow frame line becomes a V-shape. However,
the decrease in A(1) makes hull shape extremely fine,
and this choice should be limited to either the bow or
the stern only. From these figures, typical changes in the
girth lines around the bow and stern can be obtained by
changing the first three Fourier coefficients only. This
means that only three design parameters are required.
Therefore, when we use four girth lines to modify the
aft or bow part of a ship hull form, for instance, we need
a total of 12 design parameters. This number seems to

Fig. 12. Deformation of girth lines by changing the first three
Fourier coefficients (KVLCC2, N = 11, f1 = 0.8, f2 = 0.5, f3 = 0.5)
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be practical. Therefore, we believe that the present
method is promising for hull form modification in ship
hull optimizations.

Conclusions

A new method based on a combination of the Fourier
series and a NUBS function is introduced to express a
ship hull form numerically. By using this combined Fou-
rier NUBS method, we can express a practical hull form
with acceptable accuracy. By changing the first three
Fourier coefficient terms, we can modify a ship hull
form from a V-shape to a U- or T-shape. This means
that the method can be expected to be a promising tool
for hull form expression in ship hull form optimization.
In future, a hull form expression including both the bow
and stern end portions should be developed.
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