
J Mar Sci Technol (2004) 9:1–13
DOI 10.1007/s00773-003-0164-4

Original articles
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variability of environmental conditions with time was
limited at the time when the first-generation bottom-
mounted oil-platforms were designed, and even if a
platform is designed with a safe deck clearance initially,
this might be reduced over time. This reduction can be
caused either by settlement of the platform due to its
own weight, or by foundation subsidence and reservoir
compaction. Therefore, the deck may be subjected to
wave-induced loads that were not accounted for in the
original design. Owing to these uncertainties in the
safety level, it is important to obtain an accurate predic-
tion of the hydrodynamic loads on the structure induced
by wave impact underneath the decks of existing fixed
platforms. The significant level of subsidence at the
Ekofisk field revealed the need to reexamine all the
platforms in the area with respect to wave impact.4

When oil and gas production moves to deeper waters,
bottom-mounted platforms become less applicable. In
deep waters, floaters such as semisubmersibles are often
used. For floaters, it has generally been customary to
neglect any probability of waves reaching the deck by
relying on the deck height to provide a sufficient margin
of safety. The deck height of floaters is limited by weight
and stability considerations, and this makes the air-gap
a substantial cost drives for the platform. In the design
of new floaters, one might allow some extreme waves to
hit the deck structure. A reduction of the deck’s clear-
ance to the still-water level of existing floaters may oc-
cur involuntarily when they are in a damaged condition
or after a failure in their ballast systems. The deck clear-
ance of existing platforms may also be decreased if
higher production volumes are desired. Accordingly,
increased storage capacity and deck weight must be
compensated for by increased draft, and thus a smaller
deck clearance. This implies a higher risk of wave
impacts.

Water impacts underneath the decks of platforms
may roughly be categorized into global and local im-
pacts. The former occur when a massive wave reaches
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dimensional potential flow was assumed, and the resulting
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numerical methods, a method based on a generalization of the
impact theory by Wagner, and two different nonlinear bound-
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deck area increases, but poor results when the wetted area
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Introduction

Water impact loads on offshore structures have been of
concern to designers for the past 25 years. In the early
years, the main interest was focused on impact forces on
horizontal structural members located in the splash
zone, see e.g., Dalton and Nash,1 Faltinsen et al.,2 and
Sarpkaya.3 Water impact on the decks of platforms was
of less concern.

It is common practice to design the lower deck of
offshore platforms to be above the maximum predicted
wave level. Knowledge regarding wave heights and the
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the deck at one end and propagates along the deck. This
induces large loads on the deck, and it can be critical for
the global strength and overall stability of the platform.
In this case, a good structural deck design requires an
accurate assessment of both the wave kinematics and
hydrodynamic load responses due to wave impact. An
approximate solution for impact on a fixed horizontal
deck, based on Wagner’s solution,5 was presented by
Baarholm and Faltinsen,6 while Baarholm et al.7 extend
the approach to account for platform motion. Linear
wave-induced motion was generated from predescribed
transfer functions, while the water-impact-induced re-
sponse was solved and added to the linear motion to get
an estimate of the total platform response. The water
impact had a clear influence on the platform motion. A
boundary-element method for the perturbation velocity
potential due to impact was presented by Baarholm and
Faltinsen8 and Baarholm.9 Comparisons with experi-
ments show that this method yields a significant im-
provement compared with the Wagner-based method.
Nevertheless, the method has flaws, which prompted
the further developments presented here.

In addition to massive impact events, run-up of water
along platform legs may also cause water impacts
underneath the platform deck, and local wave amplifi-
cation due to wave diffraction from vertical platform
members can also cause water impact on the deck.
These impacts are localized in space, and are crucial to
local structural responses and to the comfort of the
platform crew, but they are less important in terms of
global effects.

The main topic of this article is the global loads on a
fixed horizontal deck due to the impact of a massive
wave. A synopsis of our previously published work on
the subject of wave-in-deck events, as well as the latest
developments are presented. Experiments on impacts
on an idealized horizontal deck have been performed.
A brief description of these experiments and some
observations are given. Furthermore, three theoretical
approaches are used to solve the wave-in-deck problem.
The first is a simplified Wagner-based method, while the
other two are boundary-element methods solving the
perturbation velocity potential due to the impact and
the total velocity potential, respectively. All three meth-
ods have been used to reproduce the experiments, and
comparisons of numerical and experimental results are
presented. Local impact events are not considered in
this work.

Experiments and physical observations

Experiments were performed to validate the theory and
numerical solution used to solve the wave-impact prob-
lem. Since the numerical modeling is based on physical

observations in the laboratory, the experimental part of
the work will be described before the theory and the
solution procedure.

The experiments were carried out in the flume at the
Department of Marine Hydrodynamics, NTNU. This is
a narrow wave flume, which is 13.5m long, 1.3m deep,
and 0.6m wide. It is designed for a water depth of 1.0m.
The flume walls are made of glass, which provides
good visual observations. An electronically operated,
computer-controlled, single-flap wave-maker is in-
stalled in the flume. The wave-maker is fitted with a
control system that allows the flap to damp out reflected
waves. The flap is hinged 0.10m above the bottom of the
flume. At the downstream end of the flume, a parabolic
beach is installed. These facilities allow for near 2-D
experiments to be performed. A box-shaped deck
model with no obstructions underneath was used in the
experiments. The deck covered the entire width of the
tank, and was stiff enough for hydroelastic effects to be
insignificant. Moreover, the model was fitted with
0.30m high side walls to keep water from flowing into
the model from above. The vertical load on the deck
was the primary parameter to be measured, but the
wetted area underneath the deck and the free-surface
elevation at different positions were also measured. The
bottom plate was 0.63m long and 0.56m wide, and the
clearance between the deck and the mean free surface
could easily be changed. The model was placed in the
middle of the flume, equally far from the wave-maker
and the beach. Figure 1 shows a sketch of the model and
the primary instrumentation used. A more detailed de-
scription of the experimental set-up is given elsewhere.9

Regular waves were used in the experiments, and the
model was kept out of reach of the waves until a steady
state was reached. The deck was then lowered to the
desired deck height. Figure 2 shows sketches of the
impact process as a wave hits the deck. The sketches are
based on observations in the flume. As the wave hits the
front end of the deck, the wetted length increases
smoothly, and a pile-up of water and a thin jet are
formed on the upstream side of the model. Compared
with the undisturbed wave, a considerable pile-up of
water downstream of the wetted body caused by the
impact will be present. The profile of the free surface at
a small distance downstream of the wetted part of the
body is smooth, with moderate curvature. In Fig. 2c, the
upstream body/free surface intersection has just moved
around the front corner to the bottom plate of the deck.
The free surface near the intersection is characterized
by high curvature. As the flow reaches the aft end of the
deck, the fluid flow leaves the deck tangentially. This
implies that a fluid particle on the free surface at the
intersection has no vertical velocity. Spray and wave
breaking behind the body dissipate energy from the
system. After some time, the downstream intersection
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starts to move forward again, and finally the water de-
taches from the deck in the manner shown in the last
sketch. The duration of the water exit phase is longer
than that of the water entry phase. The time-history for
the vertical force on the deck is characterized by a posi-
tive upward-directed force peak during water entry, fol-
lowed by a negative force peak during water exit. The
magnitude of the negative force peak is usually larger
than the corresponding positive one.

A difference in the impact process when the first
wave hits the structure and impacts due to the following
waves was noted. The disturbance of the free surface
caused by the preceding impact process causes a double
slam event where the second impact occurs in the vicin-
ity of the final detachment of the preceding wave. This
gives a significant positive force peak of short duration.
This phenomenon has not been studied numerically, but
the physics was discussed previously.9

Theory and solution procedure

In the theoretical description of the wave-in-deck prob-
lem, an incompressible fluid in two-dimensional, irrota-
tional flow is assumed. Accordingly, potential flow is
applied and viscous effects are disregarded. For a real
platform, the approximation of two-dimensional flow
requires head or beam sea, and that the incident waves
are long relative to the diameter of the platform legs.
Further, the wetted length must be much smaller than

the wetted breadth. Moreover, the effects of hydro-
elasticity and surface tension are disregarded. A bound-
ary value problem for the total velocity potential F can
be set up. The two-dimensional Laplace equation be-
comes the governing equation in the fluid domain:
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The (x, z)-coordinate system has its origin in the mean
free surface with the z-axis pointing upwards. Boundary
conditions are required to solve the problem. In particu-
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follows from Bernoulli’s equation. SF is described by z =
z(x, t), where z is the free-surface elevation. A kine-
matic free-surface condition must also be imposed. This
condition states that fluid particles on the free surface
remain on the free surface, and it can be written as
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Another way of satisfying the kinematic free-surface
condition is to follow the track of free surface particles.

a b

Fig. 1. The model used in the experi-
mental work. a Fish-eye view and b
front view

a b c

d e f

Fig. 2. Behaviour of the physical
flow during the first wave impact on
the deck
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This procedure was used in this study. Furthermore, the
boundary condition

∂
∂
F
n

U Sn= on B (4)

which requires the body to be impermeable, must be
satisfied on the instantaneous wetted body surface, SB.
In Eq. 4, Un is the body’s velocity normal to its own
surface, and thus for a fixed body, as studied here, Un �
0, where ∂/∂n denotes the derivative along the normal
unit vector n, and n is defined as being positive when
pointing into the fluid domain. For finite water depths, a
similar condition must be imposed on the bottom, but in
this work the water depth was assumed to be sufficiently
large relative to the wavelength for the bottom condi-
tion to be omitted, since addition initial conditions
would be needed.

Three alternative theoretical approaches have been
used to study this problem: a Wagner-based method,
and two different approaches applying Greens’ second
identity. The former solves the perturbation velocity
potential due to the impact, and the latter solves the
total velocity potential.

Wagner-based method

The exact 2-D boundary value problem for the wave-in-
deck event is given above. In what follows, a few addi-
tional assumptions will be made, and a method based on
the impact theory by Wagner5 will be established. The
total velocity potential is now written as F = f + fI,
where f and fI are the perturbation potential due to the
impact and the velocity potential of the undisturbed
incident waves, respectively. The latter is assumed to be
known a priori, and the boundary-value problem (BVP)
for f is set up. Second-order regular incident waves are
assumed. The Laplace Eq. 1 becomes the governing
equation in the fluid domain. The effect of gravity is
neglected, and the high-frequency dynamic free-surface
condition, f = 0, is applied on the horizontal line z = 0.
The local (x, z)-coordinate system has its origin in the
center of the instantaneous wetted length of the deck,
with the positive x-axis in the direction of the waves,
and with the z-axis pointing upward. This free-surface
condition implies that no waves will be generated.
Futhermore, the body boundary condition is approxi-
mated as ∂f/∂z = -V0 - V1x, and it is imposed at |x| £ c(t)
and z = 0, where c(t) is the half-breadth of the wetted
length. The resulting BVP can be solved analytically for
each time-step. This yields
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for the perturbation velocity potential on the body,
and
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for the impact-induced vertical velocity on the free sur-
face. The evolution of c(t), which determines the wetted
length, is unknown, and must be solved numerically.
Water hits the front end first, and during the initial
increase in wetted length underneath the deck the aft
body/free surface intersection point propagates down-
stream, while the upstream intersection is fixed at the
front end of the deck. The free surface on the down-
stream side is discretized by fluid particles that are
tracked in time. Let superscripts j and i denote the time
instant and the fluid particle, respectively, so that Pi

j is
the position of particle i at t = tj (Fig. 3). The horizontal
velocity of particle i is disregarded, and the new inter-
section point cj+1 is determined a priori, while the time-
increment Dtj = tj+1 - tj is found from a local analysis of
the time that particle i needs to cover the vertical dis-
tance Dz. The time-increment can be written as Dtj = (dt/
dc)m(ci

j+1 - cj
i-1), where (dt/dc)m is found by matching a

local “corner flow” velocity potential valid in the vicin-
ity of the intersection point with Eq. 5, and averaging
over the time-increment. The local solution is intro-
duced because of the singular nature of the fluid veloc-
ity at the intersection points. The details of this
procedure are given elsewhere.9 Once the time-
increment is determined, the free surface particles are
moved with their local velocities due to both f and fI,
and the new free-surface position zj+1 is found. A fourth-
order Runge–Kutta scheme is used for the time integra-
tion. Velocities due to fI above the mean free surface
are found by a Taylor expansion consistent to second
order. Once the downstream intersection point has
reached the aft end of the deck, it is kept fixed there
during the water exit phase. In this phase, the upstream
intersection point is determined by a von Karman-type

Fig. 3. Stepping of the free surface in the Wagner-based
method. The figure shows a close-up of the body and the free
surface near the downstream intersection point. cj and cj+1 are
the chord length at time instants t j and t j+1, respectively
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approach, i.e., as the intersection between the deck and
the incident wave. A Wagner method will not give a
solution during the water exit phase. The vertical force
on the deck can be found from direct integration of the
pressure -r(∂f/∂t + ∂fI/∂t + gz), where z = 0 now refers
to the mean free surface, or from the formula

F
t

A V F ccBV c BV F3 33 0 3 0
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d I Irp rp˙ ˙ (7)

where A33
(•) = 0.5rpc2B is the high-frequency added mass

of the wetted deck area, F3I is the nonlinear Froude–
Kriloff and hydrostatic force, and B is the wetted
breadth. The term proportional to V0 is denoted as the
slamming force, and is governed by the rate of change
of the wetted area, while the second term is an added
mass force. In accordance with Kaplan,10 the slamming
term is set equal to zero during water exit. This method
converges nicely when the density of fluid particles is
increased.9

Boundary-element method for the perturbation
velocity potential

A common method for solving nonlinear free-surface
problems is to use Green’s second identity to establish
an integral equation for the velocity potential.11 When
incident waves are present, two alternative approaches
may be applied. One may solve the boundary value
problem for the total velocity potential, or one may split
the problem as F = f + fI and solve for the impact
potential. Both approaches are presented, starting with
the latter.

As in the Wagner-based method, the incident wave
velocity potential and elevation are described a priori
by second-order theory, and the perturbation velocity
potential f due to the presence of the body is solved.
The coordinate system used below has its origin in the
mean free surface with the vertical axis pointing upward
through the center line of the body. The incident waves
propagate in the direction of the positive x-axis. The
perturbation velocity potential due to wave impact, f, is
unknown and has to be determined. The exact dynamic
free-surface condition can be written according to a
Lagrangian description as
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Now, assuming that F = f + fI and z = zD + zI, where zD

is the surface elevation associated with the disturbance,
a dynamic free-surface condition for f can be expressed
as
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Terms involving fI are found by using a Taylor expan-
sion correct to the order O((kza)2), where za is the am-
plitude of the first-order incident wave.

In the Wagner based-method, only the wetted part of
the bottom plate was taken into account in the bound-
ary-value problem. This means that the wetting of the
vertical sides of the deck was neglected. Further, the
spatial variation in the impact velocity was approxi-
mated by a linear function. Here, the exact body bound-
ary condition according to Stokes’ second-order theory
is utilized, i.e.,

∂f
∂

∂f
∂n n

S= - I
Bon (10)

where SB is the instantaneous wetted part of the body.
As for the free-surface condition, a Taylor expansion
correct to second-order about z = 0 is used to find the
undisturbed velocities on the body.

As is customary in the mixed Eulerian–Lagrangian
method for free-surface flows, the problem is divided
into two steps, which are solved in sequence. These
steps are described elsewhere.11 In the first step, the
kinetic problem for the perturbation velocity potential
is solved with the specified mixed Dirichlet–Neumann
boundary conditions. In the second step, the free-
surface conditions are integrated in time to update the
geometry and the value of the perturbation velocity
potential on the free surface.

The kinetic problem for f is solved through Green’s
second identity. Inside the fluid domain, the velocity
potential can be represented in terms of boundary inte-
grals through Green’s second identity as
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Here, r x z= -( ) + -( )x h
2 2

, (x, z) is the field point
where f has to be evaluated, and (x, h) are integration
variables. S is a surface enclosing the fluid domain,
which comprises the instantaneous free surface SF and
body surface SB, and vertical control surfaces infinitely
far away from the body S•. The problem is solved in
time as a transient initial value problem, with initial
condition f = 0 on z = zI. S• is taken so far away from the
body that its contribution to the integral Eq. 11 is zero.
Far away from the body, the free-surface condition be-
comes f = 0 on z = zI. For |x| > xb, denoted as the far field
region, approximations are imposed. The free-surface
condition f = 0 is taken on z = 0. The magnitude of xb is
large compared with the wetted deck length. In the far
field region, the flow is almost unaffected by the details
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of the body, and f may be expressed as the sum of a
vertical dipole and a multipole at the origin, i.e.,
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The first and second terms account for dominating sym-
metric and antisymmetric disturbances, respectively. It
is now possible to integrate the contribution of far field
regions to the integral in Eq. 11 from SF analytically. A1

and A2 are unknown dipole and multipole strengths,
respectively.

In the numerical solution, an integral equation based
on Eq. 11 is set up by letting (x, z) approach points on S
for each time-step. The free surface inside -xb < x < xb

and the instantaneous wetted body SB, are divided into
N straight line elements, where f and ∂f/∂n are set to be
constant over each segment, f is unknown on SB and
known on SF, and ∂f/∂n is unknown on SF and known on
SB. Equation 11 is satisfied at the midpoint of each
element. This yields a set of N linear equations. How-
ever, when the dipole and multipole strengths, A1(t) and
A2(t), are included, the total number of unknowns is N +
2. Two additional equations are obtained by requiring
continuity in the velocity potential at x = -xb and x = xb,
and a system of linear equations with the same number
of equations as unknowns is obtained. The linear equa-
tions are solved by a standard procedure. The equation
system is modified, as described later, when the Kutta
condition is imposed.

The kinematic problem involves updating the veloc-
ity potential on SF with time, and updating the instanta-
neous position of the free surface. This is done by
time-integration of the corresponding dynamic and
kinematic free-surface conditions. Special care is neces-
sary in describing the motion of the free surface, and a
time-integration procedure similar to the one described
by Zhao and Faltinsen12 is implemented. This method
ensures good conservation of fluid mass.

A precise evaluation of the wetted part of the body is
crucial for a correct determination of the load on the
body. This can be separated into two separate tasks:
determining the upstream and downstream body/free-
surface intersection points. Evaluation of the upstream
intersection point is most problematic in the short
phase, when the intersection point moves around the
corner from the front side of the deck to the underside
of the deck. The numerical scheme is based on careful
inspections of pictures and video recordings of this tran-
sition. As the fluid flow goes around the front corner of
the deck, the upstream intersection, Iup, is held fixed at
the corner until a > aF, where a is the angle between the
x-axis and the free-surface element next to the body on
the upstream side (Fig. 4). Iup is then set to propagate
freely downstream. The value of aF has to be chosen

properly. If aF is too small, Iup tends to move too quickly
when let free, and as a consequence the solution may
break down. aF = p/10 seems to yield stable solutions.
For the phase where is Iup kept fixed, numerical insta-
bilities/errors occur, but when it is set free to move, then
stability is regained. If small free-surface elements are
used locally, the transition phase has a short duration in
the numerical solution, and the global force is not sensi-
tive to the choice of aF. However, if details of the pres-
sure distribution around the front edge are studied, a
more accurate local method is needed. A more thor-
ough discussion of the choice of aF is given elsewhere.9

The very high curvature of the free surface as a conse-
quence of the free surface turning around the front edge
(see Fig. 1c) also occurred in a similar situation in the
numerical studies by Faltinsen et al.13 of bottom-slam-
ming on a very large floating structure (VLFS) with a
shallow draft. Then, a nonlinear boundary-element
method (BEM) was also used, but it was not necessary
to use the artificial procedure described previously.

The downstream body/free-surface intersection point
is denoted Idwn. During the water entry phase, i.e., when
Idwn propagates downstream along the bottom plate of
the deck, Idwn is found by extrapolation of the free sur-
face onto the body. This yields a time-history for the
wetted area that compares well with both experiments
and with the Wagner-based method. When Idwn reaches
the aft end corner of the deck, the fluid flow leaves the
deck tangentially. This can also be noted from the snap-
shot in Fig. 5a. The pictures show a close-up of the aft
end of the body and of the local free surface. The white
line indicates the free surface, and its intersection with
the body is located at the aft corner of the deck. As long
as the aft end of the underside of the horizontal deck is
wetted, the free surface at Idwn is horizontal. In the
numerical solution, this can be obtained by imposing a
condition that requires f to be continuous and the flow
to be horizontal at Idwn. This condition will henceforth
be denoted the Kutta condition. The integral Eq. 11 is
satisfied on the N element midpoints. However, since
an additional condition stating a continuous f at Idwn is
formulated, the integral equation cannot be satisfied at
more than N - 1 midpoints. Therefore, it was decided
to replace the body boundary condition at midpoint

Fig. 4. The numerical procedure for moving the upstream
body/free-surface intersection point around the front corner
of the deck. a The intersection point is kept fixed. b a > aF and
Iup can move freely

a b
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N1 + 1 (Fig. 6) with the Kutta condition. The Kutta
condition is written as
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where fi is the perturbation velocity potential at mid-
point i, and si is a curvilinear distance along the body
and the free surface, so that si is the distance from Idwn to
midpoint i. Note that fN1+1 and fN1+2 are unknowns, while
fN1 and fN1-1 are known quantities. Moreover, continuity
is required in the slope of the body and the free surface
at the intersection point. This procedure is analogous to
the one used by Faltinsen and Pettersen14 at the separa-
tion point for flow around blunt bodies. When the fluid
reaches the aft end of the deck, a new horizontal free-

surface element is introduced at the intersection. This
element is small initially, but is allowed to grow with the
speed of the local horizontal velocity of the fluid flow
until it is the same size as the neighboring free-surface
element. Thereafter, the element size is kept fixed. The
dynamic free surface condition is used to step the value
of fN1.

In the final stage of water exit, Idwn will start to propa-
gate upstream until the water separates from the deck,
as shown in Fig. 2e. Video recordings show that the free
surface in the vicinity of Idwn is almost horizontal in this
case also. Therefore, the Kutta condition is used in this
phase. Idwn is allowed to propagate upstream when the
slope of element number N1 - 1 and the total vertical
velocity of the corresponding midpoint are both nega-
tive. The velocity of the intersection point is set to be

U
x x xIdwn

I= = +
∂
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∂f
∂
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F
(14)

This provides a stable solution that makes it possible to
simulate water exit until the deck becomes almost en-
tirely dry. Numerical instability may occur near the end
of the water exit process. This may be caused by ele-
ments on the body which are too small compared with
the nearby free-surface elements. Consequently, the
simulations are stopped before the deck is entirely dry.
However, in this phase, the force on the deck is small.

The reason why we have used the Kutta condition is
directly related to experimental flow observations. One
could say that the same is true about why the Kutta
condition is used for a lifting foil. This should also sug-
gest that the use of the Kutta condition is in some way
connected with the condition that the “angle of attack”
of the incident flow has to be small. This means that the
ambient horizontal velocity has to be large relative to
the vertical velocity. Further experimental studies are
needed to clarify this dependence. It should be noted
that the use of a Kutta condition in our case does not
mean that vortices are introduced, as is done to describe
the flow around a lifting foil.

The main purpose of these calculations was to deter-
mine the force of the waves and the resulting force
acting on the platform deck. The total force on the body
may be computed by using two alternative approaches,
direct pressure integration or conservation of fluid mo-
mentum. The total pressure on the body is found by
letting the total velocity potential F = f + fI satisfy
Bernoulli’s equation,

p p
t

gz- = - - — -0

21
2

r
∂
∂

r r
F

F (15)

where z is the vertical distance from the mean free
surface. An expression for the pressure on an element

Fig. 5. The fluid flow at the aft body–free-surface intersection
point. The flow leaves the deck almost tangentially. a Kutta
condition at aft and. b Kutta condition during the stage of final
water exit

a b

Fig. 6. Close-up of the body and the free surface close to Idwn.
The solid circles symbolize element midpoints where Eq. 11 is
satisfied. si is the curvilinear distance from Idwn to midpoint i.
a Kutta condition at the aft end corner. b Kutta condition
when Idwn moves upstream

condition
Kutta

condition
Kutta

a

b
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midpoint can be obtained by rewriting the ∂F/∂t term
using a generalization of the substantial derivative. If
the body is fixed, this becomes

p p
D
D t

U
s s

gz- = -
¢
¢

+ -
Ê
ËÁ

ˆ
¯̃

-0

2
1
2

r r
∂
∂

r
∂
∂

r
F F F

ms (16)

where D�/D�t yields the change with time when the
midpoint of an element is followed, ∂/∂s is the spatial
derivative along the body surface, and Ums is the tangen-
tial velocity of the element midpoint. Here, Ums is not
the fluid velocity, but the velocity obtained as a conse-
quence of the fact that the midpoints of elements
change position. Since the body is fixed, the midpoint
has zero normal velocity. Once the pressure distribution
on the body is determined, the resulting vertical force
on the platform deck can be evaluated by

F B p p n S
S

3 0 3= - -( )Ú d
B

(17)

Alternatively, the force on the deck can be found by
imposing the conservation of fluid momentum.11 For the
present case, the vertical force can be expressed as

F n

n

= +

+ — - —
Ê
ËÁ

ˆ
¯̃

+ +
Ú Ú

Ú
•

r r

r
∂
∂

B
t

dS B gz S

B
n

S

S S S S

S

d
d

d

d

F B F B

F

F
F

F
1
2

2
(18)

where S• comprises the vertical control surfaces, and
ranges from z = -• to z = 0 at |x| = xb, and SF is the
instantaneous free surface inside |x| < xb.

As a verification of the numerical method, one can
compare results for the force acting on the body based
on direct pressure integration and conservation of mo-
mentum. If the boundary-value problem is solved cor-
rectly, these alternative approaches yield the same force
on the body. Figure 7 shows a typical comparison. The
impact condition in this case is characterized by the
wave period T = 1.43s, wave height H = 0.12m, and deck
clearance above mean free surface hag = 0.06m. Initially,
the alternative force calculations compare very well.
This suggests that the integrations of the surface eleva-
tion and the velocity potential on the free surface were
done correctly. Moreover, it also suggests that the body/
free-surface intersection points are well predicted. Dur-
ing the final part of the water impact process, however,
the two force estimates diverge. This implies that the
solution of the boundary value problem at this stage has
become inaccurate.

An important error source is associated with the
theoretical modeling of the problem. The total velocity
potential is divided into a perturbation velocity poten-

tial and the incident velocity potential. This leads to the
body boundary condition given in Eq. 10, where ∂fI/∂n
on SB is found by a Taylor expansion about the mean
free surface. Strictly speaking, this condition is only
valid on the part of the body surface that intersects with
the incident wave. By imposing Eq. 10 on the entire
wetted body surface, continuity of fluid mass is violated.
This leads to nonphysical flows that will affect the force
calculations. Even though it is especially severe during
the water exit phase in the present problem, this di-
lemma will also occur for other nonlinear problems
when using the body boundary condition in Eq. 10.
Figure 8 is a sketch of the wave profile during the final
part of the impact process and the undisturbed wave.
The exact free surface is very different from the incident
wave described by fI. The body boundary condition
used may not be accurate enough at this stage of the
process.

Extensive convergence studies and comparisons
with experiments are presented elsewhere.9 The conver-
gence tests show that the method converges well when
the number of elements on the free surface and on the
wetted body surface are increased, and when the time-
increment used in the time integration is decreased.

Fig. 7. Comparison of the results from direct-pressure inte-
gration and the conservation of fluid momentum when the
boundary-value problem is solved for the perturbation veloc-
ity potential. T = 1.43s, H = 0.12 m, and hag = 0.06m

Fig. 8. A sketch of the exact and undisturbed wave profiles
during the final stage of water exit
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From sensitivity studies, it is concluded that fF = p/10 is
a good value to use. Figure 9 shows a typical comparison
between experiments and numerical simulations. Two
experimental time-series are shown to indicate the
experimental accuracy. The force from the boundary
element method (BEM) is found by direct pressure in-
tegration. One can see that the Wagner-based method
(WBM) provides good predictions for both the magni-
tude and the duration of the water entry force, while the
results for the water exit phase are less satisfactory. In
general, the WBM overestimates the magnitude and
underestimates the duration of the water exit force. The
latter is caused by the von Karman approach being
applied to describe water exit. The BEM proves to be a
significant improvement. The duration of the water im-
pact process is well predicted for most of the impact
cases tested, and the numerical and experimental force
histories also compare well for the entire water entry/

water exit process. For water exit in particular, the
BEM is superior to the WBM, although instabilities
occur in the final part of this phase. However, the force
on the body is small at this stage. More comparisons are
given elsewhere.8,9

There are different reasons why the BEM gives better
predictions then the WBM during the water exit phase.
One is the inclusion of the Kutta condition. Another
reason is that the dynamic free-surface condition f = 0 is
valid in a limited initial time-period, and becomes less
accurate during the water exit phase. In fact there is an
inconsistency in the WBM during the water exit phase.
Using the kinematic free-surface condition which is
consistent with f = 0 on the free surface to find the body
free-surface intersection during the water exit phase
does not give a solution. That is why we have to use a
von Karman-type approach during the water exit phase
when the WBM is used. The dynamic free-surface con-
dition used in the BEM tells us how f is changing on the
free surface. One of the contributions is due to gravity.
An obvious way to study the effect of including gravity
in the boundary value problem is to solve it with and
without gravity included, and to compare the results
directly. This was not possible with the present bound-
ary element method. If gravity is turned off, the jet at
the upstream side wall does not come back down. Thus,
the computer code cannot handle the flow around the
front edge without the aid of gravity. Gravity allows
wave-making to occur, which is in accordance with ob-
servations in the laboratory. When a linear hydrody-
namic system is studied, the body’s ability to create
waves is directly connected to its damping properties.
Even if our hydrodynamic system is nonlinear, the study
of a related linear hydrodynamic problem can assess
the importance of the generation of free-surface waves.
The importance of gravity can thus be studied by an
evaluation of the damping coefficient.

Figure 10 shows both theoretical and experimental
results for the two-dimensional heave-damping coeffi-
cient, B33

(2D), for a rectangular cylinder of shallow draft.
Vugts15 reported numerical and experimental results
for the beam–draft ratio, b/D, equal to 2, 4, and 8. His
experimental results agreed well with the numerical re-
sults, but only the numerical results are presented in
Fig. 10. For the impact problem, D = 0, an extrapolation
of Vugts’ results to zero draft is included in the figure.
MacCamy16 derived theoretical results for the heave-
damping for a thin plate. The figure also contains ex-
perimental results presented elsewhere.9 These were
found by measuring the heave excitation force on a
fixed rectangular cylinder in regular waves of amplitude
za, and the simple relation

F
g

B3
2

2

33
2

,exc
D

a
D( ) ( )= z

r
w

(19)
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Fig. 9. Comparison between experiments and numerical re-
sults from the Wagner-based method and the boundary-
element methods for perturbation potential. T = 1.25s,
H = 0.12m and hag = 0.04m
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derived by Newman17 gives the damping coefficient,
where F3,

(2
ex
D)

c is the two-dimensional heave excitation
force amplitude. The experiments were performed with
b/D = 16 and 65, and the results seem reasonable when
compared with the theoretical results by Vugts and
MacCamy. We applied these results to our impact
problem by considering a thin plate with b equal to
0.63m. The oscillation period T = 1.25s then gives
w b g2 0 90ª . , which means that the damping coef-
ficient that is close the maximum value on the curve for
D = 0. This implies that considerable wave-making
should be expected when the deck used in this study
gets fully wetted. However, it should be noted that the
previous results are for steady-state conditions, while
our case includes the effects of the initial conditions,
and a duration less than the period of oscillation, as well
as a changing wetted length.

Intuitively, the ratio between the duration of the wa-
ter impact process and the wave period will affect the
significance of gravity. The longer the duration is rela-
tive to the period of oscillation, the larger the influence
from wave-making will be. For the impact event shown
in Fig. 9, this ratio is approximately 0.65. This suggests
that gravity is important during the water exit phase.
Conversely, Ge18 found gravity to be of minor impor-
tance during water exit for water impact on a wetdeck
of a catamaran. This means that a theory neglecting
gravity and based on the Wagner/Von Karman method
agreed reasonably well with experiments in both the
water entry and the water exit phases. In the most se-
vere slamming case in her study w b g2 1 14ª . , and

one would expect from Fig. 10 that wave-making should
occur, although the ratio between the duration and the
wave period was less than 20%.

Boundary-element method for the total
velocity potential

As discussed above, solving the problem for the pertur-
bation velocity potential leads to inconsistencies, and
the solution during the final part of water exit is not
good. Therefore, we attempted to solve the problem for
the total velocity potential instead. This method is very
similar to the one described above, but a few modifica-
tions are required. The boundary value problem is
solved as an initial value problem with an initial condi-
tion F = fI on z = zI, where fI and zI denote the velocity
potential and the elevation of the incident waves, re-
spectively. The inside of the fluid domain F is repre-
sented by Green’s second identity (with Eq. 11, with f
replaced by F). The enclosing surface S = SB + SF + S•,
where S• comprises the vertical control surfaces at x =
±xb. If the control surface is placed sufficiently far from
the body, one can assume that the flow is undisturbed,
and one can set F = fI and ∂F/∂n = ∂fI/∂n on S•. Thus,
the integration over S• in Eq. 11 is straightforward nu-
merically. As before, F is known and ∂F/∂n in unknown
on the free surface, while F is unknown and ∂F/∂n is
known on the body surface. The time-integration and
the evaluation of the body/free surface intersection
points are performed in the same manner as in the
former boundary-element method. The Kutta condition
is also imposed in the same way as before.

To ensure undisturbed conditions at the far field con-
trol surfaces, damping layers are included on the free
surface close to these surfaces. Artificial damping
(sponge layer) of the parts of the velocity potential and
wave elevation that are different from Stokes waves is
applied. An artificial dissipative term is added explicitly
to the free-surface condition so that the disturbance
is absorbed with as little wave reflection as possible.
Damping layers are discussed elsewhere.19 With dissipa-
tive terms added, the kinematic and dynamic free-sur-
face conditions can be written as

D
Dt x z

g x
F F F

F=
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

È
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- - ( ) -( )1
2

2 2
∂
∂

∂
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z n fI (20)

and

∂z
∂

∂
∂

∂
∂

∂z
∂

n z z
t z x x

x= - - ( ) -( )F F
I (21)

respectively, where the Rayleigh damping terms n(x)
(F - fI) and n(x)(z - zI) are specified to be nonzero in

Fig. 10. The two-dimensional damping coefficient B33
(2D) in

heave for a rectangular cylinder oscillating in a free surface.
The figure comprises experimental values for small drafts
(from Baarholm9), theoretical results by Vugts15 and
MacCamy,16 and an extrapolation of Vugts’ results to zero
draft. b and D are cylinder breadth and draft, respectively
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the damping zone and zero elsewhere, n(x) is taken to
be a linear function that increases from zero at the
beginning of the damping zone to a given positive value
at the end of the zone (Fig. 11), and n has dimension
frequency, and its maximum value in this work is given
by n lnmax = C g  (where Cn = 0.5 and l is the wave
length). The length of the damping layer is set to be
equal to the wavelength. The results do not seem to be
very sensitive to the damping layer.

To obtain accurate results, the discretization of the
problem must be chosen carefully. It is important that
the density of the elements is high in regions where the
spatial variation of the field variables is high. In the
present problem, this is especially the case on the free
surface in the vicinity of the body, and on the wetted
body surface itself. On the body, a high density of ele-
ments is necessary close to its intersections with the free
surface. “Far” away from the body, the density of free-
surface elements can be lower than close to the body,
but a relatively high number of elements is still needed
per wavelength to propagate the wave accurately. Far-
ther than half a wavelength away from the body, a con-
stant element size is used in the computer program.
Small elements on the control surfaces are chosen near
the free surface where the velocity potential and the
fluid velocities vary greatly with the vertical coordinate.
Farther down in the fluid, longer elements can be used.

In the two former methods, second-order theory was
used to describe the incident waves. In reality, wave
impact may occur for very steep waves, and second-
order theory may not be sufficient to obtain reliable
estimates of the wave kinematics in the crest. A higher-
order theory is therefore desirable. For deep-water
(Stokes) waves for which the dispersion and the non-
linear modification are in balance, analytical solutions
in the form of perturbation expansions exist for two-
dimensional water waves of permanent shape. The
fifth-order Stokes wave is much used for engineering
purposes. A number of computer-based methods have
been developed to extend the wave to even higher
orders by using numerical schemes. A review of such
methods is given elsewhere.20 In this work, the method
proposed by Bryant21 is used to describe the “exact”
profile and velocity potential of the undisturbed waves.
Bryant represents deep-water Stokes waves by trun-

Fig. 11. Damping layer with linearly increasing artificial vis-
cosity coefficient n(x)

cated Fourier series for fI and zI. On dimensionless
form, the Fourier series looks like

z I = -( )( )
=

Âa k x ctk
k

N

cos
1

(22)

and

fI = -( )( )
=

Âb e k x ctk
kz

k

N

cos
1

(23)

where ( x , z , z
I) = 2p(x, z, z)/l, t t g= 2p l , and

f f p lI I= 2 2H . The number of harmonics used is
determined by trial and error, so that the set of Fourier
coefficients includes all the amplitudes greater than
some prescribed value. When all the coefficients in Eqs.
22 and 23 are known, deriving similar expressions for
the water particle velocities and accelerations, and the
dynamic pressure in the fluid is straightforward. A
major advantage when using this approach compared
to the second-order Stokes theory is that one does not
have to use a Taylor expansion to get estimates for
values of physical quantities above the mean free sur-
face. Equation 23 is valid all the way up to z  = z . For
the cases studied in this work, the error made by using
second-order theory for the incident wave compared
with the more exact formulation is insignificant. Figure
12 shows a typical comparison for the vertical force on
the deck computed by direct pressure integration and
by conservation of momentum. The wave period and
height are 1.25s and 0.10m, respectively, while the deck
clearance in calm water is 0.04m. Good agreement
between the two alternative methods can be seen for
the entire impact process. Figure 13 shows comparisons

Fig. 12. Comparison between direct-pressure integration and
conservation of momentum when solving the boundary-value
problem for the total potential. T = 1.25 s, H = 0.10m, and
hag = 0.04m
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between theory and experiments for the wetted length
and the vertical force for the same impact conditions.
The theoretical forces are evaluated by direct-pressure
integration. The method presented here gives results
that are in excellent agreement with experiments.

Conclusions

Water impact on a platform deck may be divided into
the water entry phase and the water exit phase. A posi-
tive slamming force dominates the former phase, while
a negative added mass force dominates the latter. Ex-
cept from the most violent impact events studied in the
experiments, the magnitude of the negative force peak
is greater than that of the positive force peak for two-
dimensional flow conditions. Thus, the water exit phase
is important for global effects. However, the largest
averaged pressures occur during the initial water entry
phase, which is the most important for local structural
effects.

Three numerical methods have been used to assess
the vertical impact force on the deck due to regular
incident waves. Theoretical results have been compared
with experimental results. The Wagner-based method
which neglects gravity yields satisfactory results for
water entry, but poor results for both the magnitude of
the force and the duration of the water exit phase. A von
Karman approach was used during water exit. The
boundary-elements methods provide good results for
the time-history of the wetting of the deck and the verti-
cal impact force for the entire impact process. For the
water exit phase in particular, they offer important im-
provements over the Wagner-based method. The Kutta
condition imposed at the aft end of the deck is crucial in
order to get good results, and it is shown that by also
using this condition in the final part of the exit phase,
when the downstream intersection point propagates
upstream, it is possible to obtain stable results almost
until the deck is dry. The method in which the total
velocity potential is solved is more consistent, and

better results are obtained for the final part of water exit.
In this phase, however, the load on the deck is small.

An obvious weakness of the present methods is that
they all assume two-dimensional flow. In reality, three-
dimensional effects are important, and one should con-
sider extending the method to three dimensions. In
principle, this is straightforward, but one needs to re-
flect carefully on how to impose the Kutta condition in
a three-dimensional model.

References

1. Dalton C, Nash JM (1976) Wave slam on horizontal members of
an offshore platform. In: Proc of the 8th Offshore Technology
Conference. Offshore Technology Conference, Houston, pp 749–
758

2. Faltinsen OM, Kjærland O, Nøttveit A (1977) Wave impact loads
and dynamic response of horizontal cylinders in offshore struc-
tures. In: Proc of the 9th Offshore Technology Conference. Off-
shore Technology Conference, Houston, pp 119–126

3. Sarpkaya T (1978) Wave impact loads on cylinders. In: Proc of
the 10th Offshore Technology Conference. Offshore Technology
Conference, Houston, pp 169–176

4. Broughton P, Horn E (1987) Ekofisk platform 2/4C: re-analysis
due to subsidence. Proc Inst Civ Eng Part 1: 949–979

5. Wagner H (1932) Uber Stoss- und Gleitvorgange an der
Oberflache von Flussigkeiten. ZAMM 12:192–214

6. Baarholm R, Faltinsen OM (2000) Experimental and theoretical
studies of wave impact on an idealized platform deck. In: Proc of
the 4th Int Conf on Hydrodynamics (ICDH 2000). ICHD 2000
Local Organizing Committee, Yokohama

7. Baarholm R, Faltinsen OM, Herfjord K (2001) Water impact
on decks of floating platforms. In: Proc of the 8th Int Symp on
Practical Design of Ships and other Floating Structures
(PRADS2001). Elsevier, Oxford

8. Baarholm R, Faltinsen OM (2001) A boundary-element method
for solving water impact on a platform deck. In: Proc the 20th
Offshore and Arctic Engineering Conference (OMAE 2002).
ASME, New York

9. Baarholm R (2001) Theoretical and experimental studies of wave
impact underneath decks of offshore platforms. PhD Thesis, Nor-
wegian University of Science and Technology, Trondheim

10. Kaplan P (1992) Wave impact on offshore structures: re-
examination and new interpretations. In: Proc of the 24th Off-
shore Technology Conference. Offshore Technology Conference,
Houston, pp 79–86

11. Faltinsen OM (1977) Numerical solutions of transient nonlinear
free-surface motions outside or inside moving bodies. In: Proc of

Fig. 13. Comparisons between ex-
periments and boundary-element
methods that solve the boundary
value problem for perturbation po-
tential (previous) and for total veloc-
ity potential (present). T = 1.25 s, H =
0.10m, and hag = 0.04m



13R. Baarholm and O.M. Faltinsen: Wave impact underneath horizontal decks

the 2nd Int Conference of Numerical Ship Hydrodynamics, Uni-
versity Extension Publications, University of California, Berkeley

12. Zhao R, Faltinsen OM (1993) Water entry of two-dimensional
bodies. J Fluid Mech 246:593–612

13. Faltinsen OM, Greco M, Landrini M (2003) Green water and
slamming on a VLFS with shallow draft. 4th Int Workshop on
Very Large Floating Structures, Tokyo

14. Faltinsen OM, Pettersen B (1987) Application of a vortex track-
ing method to separated flow around marine structures. J Fluid
Struct 1:217–237

15. Vugts JH (1968) The hydrodynamic coefficients for a swaying,
heaving and rolling cylinder on a free surface. Technical Report
112 S, Netherlands Ship Research Centre TNO, Technological
University Delft

16. MacCamy RC (1961) On the heaving motion of a cylinder of
shallow draft. J Ship Res 5(4):34–42

17. Newman JN (1962) Exciting forces on fixed bodies in waves. J
Ship Res 6(4):10–17

18. Ge C (2002) Global hydroelastic response of catamarans due to
wetdeck slamming. PhD Thesis, Norwegian University of Science
and Technology, Trondheim

19. Israeli M, Orszag SA (1981) Approximation of radiation bound-
ary conditions. J Comp Phys 41:115–135

20. Schwartz LW, Fenton JD (1982) Strongly nonlinear waves. Annu
Rev Fluid Mech 14:39–60

21. Bryant JP (1983) Waves and wave groups in deep water. In:
Debnath L (ed) Nonlinear waves. Cambridge University Press,
Cambridge


