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Abstract
The procedures used to assign values to certified reference gas mixtures and to evaluate their associated uncertainties, which 
are described in ISO 6143, and that were variously improved by Guenther and Possolo (Anal Bioanal Chem 399:489–500, 
2011. 10.1007/s00216-010-4379-z), are further enhanced by the following developments: (i) evaluating and propagating 
uncertainty contributions derived from comparisons with historical reference gas mixtures of similar nominal composition; 
(ii) recognizing and quantifying mutual inconsistency (dark uncertainty) between primary standard gas mixtures used for 
calibration; (iii) employing Bayesian procedures for calibration, value assignment, and uncertainty evaluations; and (iv) 
employing state-of-the-art methods of meta-analysis to combine cylinder-specific measurement results. These develop-
ments are illustrated in examples of certification of two gas mixture Standard Reference Materials developed by the National 
Institute of Standards and Technology (NIST, USA). These examples serve only to demonstrate the methods described in 
this contribution and do not replace any official measurement results delivered in the certificates of any reference materials 
developed by NIST.

Keywords Calibration · Gas mixture · Certified reference material · Errors-in-variables regression · Maximum likelihood · 
Bayesian methods · Homogeneity · Dark uncertainty · Prediction

Introduction

The certification of Stand ard Refer ence Mater ials® (SRMs) 
developed by the National Institute of Standards and Tech-
nology (NIST) of the U.S. involves the careful and accurate 
characterization of a chemical or physical property (measur-
and) of a material, evaluation of the associated measurement 
uncertainty, and assessment of the stability of the measure-
ment result during a specified period of validity of the cer-
tification [2].

NIST’s portfolio of gas mixture SRMs [6] supports meas-
urements made by government, industry, and academia, 
responding to international, national, and state regulations 
and agreements, addressing environmental concerns, char-
acterizing global climate change, and ensuring fair trade of 
natural and other gases. The collection of NIST SRMs with 
reference gas mixtures includes SRMs in series 1600, 1700, 
2600, and 2700, which are listed in the online NIST Store.

The Gas Sensing Metrology Group (of the Chemical 
Sciences Division in NIST’s Material Measurement Labo-
ratory) provides certified gas mixture SRMs, in aluminum 
cylinders, to customers worldwide. Since the compositions 
of these mixtures, usually expressed as amount fractions of 
specified analytes, are traceable to the international system 
of units (SI), these SRMs provide a link in the chain of com-
parisons that establishes traceability to the SI of the meas-
urement results obtained by NIST customers that use these 
SRMs as calibrants.

A gas mixture SRM typically comprises a set of cyl-
inders (lot) of nominally identical composition, filled by 
a specialty gas producer, and purchased and analyzed by 

All authors have contributed equally to this work.

 * Christina E. Cecelski 
 christina.cecelski@nist.gov

 Jennifer Carney 
 jennifer.carney@nist.gov

 Antonio Possolo 
 antonio.possolo@nist.gov

1 National Institute of Standards and Technology, 
Gaithersburg, MD, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00769-024-01614-w&domain=pdf
https://www.nist.gov/srm
https://shop.nist.gov/


 Accreditation and Quality Assurance

NIST. The certification of its composition includes the 
following key tasks: 

 (i) Assigning a value to each cylinder in the lot, using 
an analysis function derived from measurements of 
primary standard mixtures (PSMs) prepared gravi-
metrically at NIST, and evaluating the uncertainty 
that surrounds such value;

 (ii) Determining whether the lot is sufficiently homoge-
neous to warrant assigning a single value to all of its 
cylinders, or whether different cylinders should be 
assigned different values; and

 (iii) Assessing the stability of the lot, by comparing meas-
urements of its composition made at different epochs 
over a suitably long period of time.

The analysis functions used to assign values to these SRMs 
have been built during calibration as described by Guenther 
and Possolo [12], who extended the method described in 
ISO 6143 [17] to recognize the typically small number of 
instrumental readings obtained for each PSM used as a cali-
brant. This contribution describes further enhancements and 
refinements that have been developed in the intervening thir-
teen years, of which the following are particularly noteworthy:

• Employing rigorous model selection criteria to choose 
the form of the analysis function that is used for value 
assignment (section Analysis function);

• Evaluating and propagating uncertainty contributions 
based on intercomparisons between the new SRM 
being developed and previously certified reference gas 
mixtures with the same nominal composition as the 
new SRM (section Analysis function);

• Assessing the homogeneity of the measurement results 
for the individual cylinders in a lot, using statistical 
methods that are commonly used to determine whether 
the results of independent measurements of the same 
measurand are mutually consistent (section Lot homo-
geneity);

• Applying state-of-the-art consensus-building tech-
niques to combine cylinder-specific measurement 
results into a single measurement result for the whole 
lot, when such combination is warranted (section Con-
sensus value and uncertainty evaluation).

The techniques described in this contribution are illus-
trated using data obtained during certification of two par-
ticular SRM lots: one, which we will refer to as SN, is 
a mixture of sulfur dioxide in nitrogen; the other, which 
we will refer to as PA, is a mixture of propane in air. The 
measurands are the amount fractions of the analyte: sulfur 
dioxide in the case of SN, and propane in the case of PA. 
SN is used to illustrate all the steps of the data reduction 

workflow as they are presented, while the particular chal-
lenges posed by PA, and how they were addressed, are 
described in section Lot PA’s calibration challenge.

Over the years, NIST has developed several lots of 
mixtures similar to SN and PA, with various nominal 
amount fractions of the same analytes. For example, SRMs 
1661–1664, 1693, 1694, and 1696, all deliver certified val-
ues for amount fractions of sulfur dioxide in nitrogen, and 
SRMs 1665–1669 do likewise for amount fractions of pro-
pane in air.

The results for SN and PA are presented for purposes of 
illustration only and shall not be used as replacement for the 
certified values listed in the certificates of any SRMs that 
NIST has developed and delivered to customers, not even for 
those whose nominal or actual compositions are very close 
to SN’s or PA’s, as presented here.

Section Data acquisition and data reduction workflow sum-
marizes the acquisition of instrumental readings, and the sub-
sequent data reduction workflow. Section Diagnostics and data 
selection  describes diagnostic and data selection procedures 
used to ensure the quality of the experimental data and the reli-
ability of the results both for the construction of the analysis 
function and for value assignment to individual cylinders.

Section Analysis function reviews the criteria employed 
to select a model for the analysis function, discusses dark 
uncertainty that can be uncovered during construction of this 
function, and presents a novel, Bayesian statistical procedure 
to build the analysis function and to evaluate the associated 
uncertainty, which includes consideration of historical infor-
mation encapsulated in a prior distribution for what we call 
historical uncertainty.

Section  Measurement results for individual cylinders 
explains how the analysis function is used to assign values of 
the measurand to individual cylinders, and the corresponding 
uncertainty evaluations. Section Lot homogeneity presents the 
technique used to assess the homogeneity of the lot. And if 
the lot indeed is deemed to be sufficiently homogeneous for 
the purpose that the SRM is intended to serve, then a single, 
consensus value is computed as presented in section Consen-
sus value and uncertainty evaluation, and it is assigned to the 
whole lot. Also, a predictive interval is produced that, with 
specified probability, is believed to include the true amount 
fraction of the analyte in any cylinder in the lot that is shipped 
to a customer. Section Conclusions summarizes lessons 
learned and the corresponding best practices.

NotatioN aNd termiNology: A symbol like {xj} is short-
hand for x1,… , xn , when the order of these xj s is immaterial. 
Ordered sets appear in boldface, as in � = (�1,… , �n) , which 
denotes the coefficients of a polynomial used as analysis 
function. If G denotes a polynomial whose argument is r 
and whose coefficients are the elements of � , then we write 
G(r, �) to denote the value that the polynomial takes at r 
when the coefficients are the elements of � . The maximum 
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likelihood estimate of a parameter � is denoted �̂  , and Bayes-
ian estimates (posterior means, posterior medians, posterior 
standard deviations, etc.) are denoted �̃  . We use the term 
“standard error” as it is commonly understood in statistics: 
the standard deviation of a function of observations obtained 
under conditions of repeatability or of reproducibility, or, in 
the language of the Guide to the Expression of Uncertainty 
in Measurement (GUM) [19], as a Type A evaluation of the 
standard uncertainty of the same function.

Data acquisition and data reduction 
workflow

We employ a variety of analytical instruments to measure the 
amount fractions of different analytes in gas mixture SRMs: 
for example, a pulsed fluorescence analyzer to measure sul-
fur dioxide, or a gas chromatograph with flame ionization 
detection (GC-FID) to measure propane [6, Table 1].

For our measurements, neither do we use the instrumental 
readings directly, nor do we calibrate the instrument once 
and for all and then rely on the amount fractions that it out-
puts. Instead, we begin by designating a particular cylinder, 
in the lot of cylinders containing the reference mixture, as 
the lot standard (LS), which will serve as the analytical con-
trol, and will be sampled repeatedly by the instrument during 
the data acquisition phase of the certification process.

During data acquisition, we sample and obtain instru-
mental readings for the PSMs, and for the cylinders that will 
become the units in an SRM lot, in alternation with instru-
mental readings for the LS. Then, we form ratios between 
the readings for the PSMs and approximately contemporane-
ous readings for the LS and do the same with the readings 
for the SRM cylinders. Utilizing these ratios enables com-
pensation for any instrumental drift that may have occurred 
throughout the period when the PSMs and the cylinders in 
the lot are sampled [6].

Typically, one to three cylinders are sampled and ana-
lyzed between consecutive samplings and instrumental anal-
yses of the LS, in a random order determined by a computer-
operated gas analysis system (COGAS). The corresponding 
ratios are formed using a cylinder’s or a PSM’s instrumental 
reading as numerator, and the drift-corrected, approximately 
contemporaneous reading of the LS as denominator. Subsec-
tion Correlations between Ratios quantifies the correlations 
between these ratios, induced by their sharing instrumental 
indications obtained for the LS, and discusses the potential 
impact of such correlations.

The raw data comprise all ratios of instrumental indi-
cations obtained from multiple samplings of each PSM 
and of each cylinder in the SRM lot. For example, for 
SN, 11 replicated determinations of the ratio were made 
for each of four PSMs, and either 12 or 18 replicated 

determinations of the ratio were made for each of 32 cyl-
inders. (However, typically, we make between 6 and 10 
replicated determinations of each ratio.)

Both the calibration that yields the analysis function 
used for value assignment, and the actual value assignment 
and uncertainty evaluation are done offline, after all the 
relevant raw data have been collected.

The workflow to produce an SRM with either a single 
certified value of the measurand for the whole lot, or with 
an individually certified value for each cylinder in the lot, 
involves the following steps of data reduction applied to 
the ratios described above: 

W1 Identification and possible removal of apparently anom-
alous ratios of instrumental indications, either because 
they are deemed outliers, or because they correspond 
to a setting of a controllable, experimental factor (for 
example, day of data acquisition, or port of the COGAS 
system) that seems to be compromised (subsection Iden-
tifying anomalous ratios);

W2 Selection of the form for the analysis function, usually a 
polynomial of low degree, estimation of its coefficients, 
and evaluation of the associated uncertainty, which 
includes a contribution from historical uncertainty 
when relevant historical lot standards are available (sec-
tion Analysis function);

W3 Value assignment and uncertainty evaluation for the 
individual cylinders in the lot, recognizing the contribu-
tions from all identified sources of uncertainty, includ-
ing the contributions from any dark uncertainty (sub-
section Two sources of dark uncertainty) that may be 
detected, and from historical uncertainty (section Meas-
urement results for individual cylinders);

W4 Assessment of the homogeneity of the lot (section Lot 
homogeneity) according to whether:

• The probability distribution of values of the meas-
urand assigned to the different cylinders is uni-
modal (that is, the histogram of these values has a 
single maximum, or “peak”) or multimodal;

• The measurement results (cylinder-specific values of 
the measurand and their associated uncertainties) are 
mutually consistent as judged by Cochran’s Q [8] and 
Welch’s F [40] tests of homogeneity.

W5 Value assignment and uncertainty evaluation for the 
whole lot provided the lot has been found to be suf-
ficiently homogeneous (section Consensus value and 
uncertainty evaluation); and

W6 Value assignment and uncertainty evaluation for one or 
several lot standards (section Analysis function), which 
will be preserved and used in future stability tests and 
also for evaluations of historical uncertainty (subsec-
tion Two sources of dark uncertainty).
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Diagnostics and data selection

Identifying anomalous ratios

Figure 1 shows boxpl ots of the ratios for the PSMs used to 
build the analysis function for lot SN, and for the cylinders 
in the same lot, exposing the few, apparently anomalous 
ratios that are candidates for removal as outliers.

For each boxplot: the thick, horizontal line segment 
across the box indicates the median of the ratios for the 
corresponding cylinder; half of the ratios lie between the 
top and bottom of the box; the height of the box is the 
interquartile range (IQR); the whiskers extend from the 
top and bottom of the box to the outermost ratio not more 
than 1.5 × IQR away from the bottom or top of the box; the 
red dots indicate ratios more than 1.5 × IQR away from the 
bottom or top of the box.

According to Tukey’s rules [36] for the construction of 
boxplots, if the replicates are a sample from a Gaussian 
distribution, then the corresponding boxplot will (incor-
rectly) flag about 0.7 % of the replicates as apparent outli-
ers. If the replicates are a sample from a probability dis-
tribution whose tails are heavier than Gaussian tails, then 
the proportion of replicates thus flagged will be greater 
than that.

We set apparent outliers aside only for substantive cause, 
based on scientific judgment and concrete findings of such 

causes. Erring on the side of caution, by not setting aside all 
the apparent outliers that might warrant such action, is coun-
terbalanced by our reliance on robust statistical methods that 
are part of the process of value assignment (item (L2) in 
section Measurement results for individual cylinders), which 
provide safeguards against the undue influence of any appar-
ently anomalous ratio that will not have been set aside.

Correlations between ratios

As mentioned in section Data acquisition and data reduction 
workflow, correlations can arise when the same instrumen-
tal reading of the LS is used to form consecutive ratios for 
the same or different cylinders (i.e., PSMs or SRM units). 
The acquisition of data for the construction of the analy-
sis function used for lot SN followed this repeating pattern, 
L1P1L2P2L3 … , where the {Li} denote replicated instru-
mental readings for the LS, and the {Pi} denote replicated 
instrumental readings for the same PSM. Since the ratios 
corresponding to P1 and P2 are based on interpolated read-
ings of the adjacent readings for the LS, they share the same 
measurement error that affects L2 , hence they are correlated. 
For lot PA, the repeating pattern is L1A1B1L2 … , where the 
{Ai} and the {Bi} pertain to two different PSMs.

As explained in step (M6) of subsection Characterization 
of the analysis function, we use the averages of the replicates 
of the ratios to build the analysis function. For lot SN, each 
such average summarizes either 10 or 11 replicates. For lot 

(a) (b)

Fig. 1  left paNel: Boxplots (explained in the text) of ratios for PSMs 
used to build the analysis function for lot SN. right paNel: Boxplots 
of ratios for the cylinders in the same lot. Each boxplot in the left 
panel summarizes 11 replicates of the ratios, while the boxplots in 

the right panel summarize either 12 or 18 replicates of the ratios for 
the cylinders. Red dots indicate apparently anomalous values in each 
batch (color figure online)

https://en.wikipedia.org/wiki/Box_plot
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PA, each average ratio summarizes either 7 or 8 replicates. In 
this conformity, we have evaluated the correlations between 
averages of replicated ratios for the four PSMs used to build 
the analysis function for lot SN and done the same for the 
five PSMs used for lot PA, by application of a Monte Carlo 
method.

For lot SN, all of these correlations are between −0.019 
and 0.024 , and for lot PA they are between −0.020 and 0.022 . 
When either set of correlations is propagated to the values 
assigned to the lot — which involves replacing the n univari-
ate, rescaled and shifted Student’s t distributions specified in 
(M6) of subsection Characterization of the analysis function, 
with a multivariate (rescaled and shifted) Student’s t distri-
bution with the appropriate correlation matrix — the result-
ing uncertainty associated with the lot value, which we call 
xSRM in step (S1) of section Consensus value and uncertainty 
evaluation, is just about identical to its counterpart obtained 
assuming that all the correlations are zero.

For the same reasons, the replicates of the ratios for the 
individual cylinders in the lots also are correlated. These 
correlations can impact not only the uncertainty surrounding 
the lot value but also reduce the effective numbers of degrees 
of freedom supporting the evaluations of the uncertainty 
associated with the averages of the ratios.

Since there are so many more cylinders in either lot 
than there are PSMs underlying the corresponding analysis 
functions, the proportion of pairs of ratios that share the 
same instrumental reading of the LS is much smaller than 
for the PSMs, and in consequence, the correlation matrices 
for the cylinder-specific averages of the ratios have many 
zero entries. And the nonzero entries are of similarly small 
magnitudes as those, aforementioned, that were computed 
for the PSMs.

Furthermore, the impact of any nonzero correlations 
between average ratios for the cylinders in the lot is even 
smaller than the impact of nonzero correlations between 
average ratios for the PSMs because historical uncertainty 
(subsection Two sources of dark uncertainty) and between-
cylinder differences make the largest contributions by far to 
the uncertainty associated with the lot value. For the same 
reasons, some over-estimation of the effective numbers of 
degrees of freedom is inconsequential in practice.

Gauging influence of experimental factors

The controllable experimental factors affecting the deter-
minations of the ratios for the cylinders are, for each ratio: 
(a) the identity, Cyl, of the cylinder the ratio pertains to; (b) 
the Port of the COGAS system that the cylinder was con-
nected to when the ratio was determined; (c) the Day when 
the ratio was determined; (d) its Break-Set, which is the set 
of instrumental indications obtained between consecutive 
changes of cylinder connections to the COGAS manifold; 

(e) its LS-Set, which is the set of ratios corresponding to 
instrumental indications obtained between consecutive read-
ings for the LS; and (f) the specific sequence of acquisition 
of the replicated instrumental readings, which impacts the 
correlations between individual replicates of the ratios, and 
the correlations between the averages of these replicates, as 
already discussed in subsection Correlations between ratios. 
The LS-Set is nested within the Break-Set, and the Break-
Set is either nested within or is identical to Day.

These factors are modeled as random effects, and their 
impact can be gauged in terms of the variance components 
that they contribute to the overall dispersion of the ratios. 
The variance component attributable to differences between 
cylinders provides a first indication about the homogeneity 
of the lot, which is addressed more rigorously as described 
in section Lot homogeneity. The variance components attrib-
utable to the other factors serve as diagnostics indicating 
potential anomalies during data acquisition: for example, 
whether a particular port of the COGAS manifold may have 
been malfunctioning, or whether the formation of the ratios 
may have been insufficient to correct for instrumental drift.

To evaluate the random effects aforementioned, we use a 
conventional, linear, Gaussian mixed effects model [25] fit-
ted to the replicates of the cylinder values using the method 
of restricted maximum likelihood (REML) [31] as imple-
mented in R function lmer defined in package lme4 [1, 
28].

The 384 replicates of the ratios from 32 cylinders in lot 
SN were arranged into 214 LS-Sets grouped into 36 Break-
Sets, which were measured in the course of 9 Days, using 
two COGAS Ports. The QQ-plots in Fig. 2 suggest that this 
model is adequate for the ratios obtained during certification 
of lot SN, and Table 1 lists the standard deviations of the 
random effects. Only differences between cylinders seem 
to make a contribution to the overall dispersion of the rep-
licates that is significantly larger than the dispersion of the 
residuals, thus not raising concerns about the influence of 
the experimental factors, but suggesting that the lot may not 
be homogeneous.

Analysis function

An analysis function, G , as defined in ISO 6143 [17], trans-
lates an instrumental indication, or a ratio r of instrumental 
indications in our case, into a value of the measurand, which 
is the amount fraction x = G(r) of sulfur dioxide in lot SN. 
The analysis function used for lot SN was based on 10 or 11 
replicates of each ratio obtained for each PSM (after remov-
ing any replicate that has been found to be unreliable, among 
those depicted in red in the left panel of Fig. 1) for each of 
n = 4 PSMs. Table 2 lists the calibration data used to build 
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the analysis function used for value assignment to the cyl-
inders in lot SN.

We model the analysis function for our gas mixture SRMs 
as a polynomial of low degree p − 1 for some integer p > 1 , 
whose coefficients are � = (�1,… , �p) . In general, however, 
the analysis function need not be a polynomial, in which 
case � denotes the parameters that identify the particular 
function that has been chosen to play the role of analysis 
function. The analysis function is fitted to the calibration 
data using an errors-in-variables (EIV) regression procedure 
[5, 11] comprising these simultaneous relations for each of 
j = 1,… , n PSMs:

where �j is the true value of the amount fraction of the ana-
lyte in PSM j , �j is the true value of the corresponding ratio 
of instrumental indications, xj is the measured value of �j , 
and r1,j,… , rmj,j

 are the mj replicates of the measured ratio 
for PSM j . The model also involves assumptions about the 
analysis function, and about the measurement errors {�j} and 
{�i,j} , which we describe next.

(1)�j = G(�j, �), xj = �j + �j + �j, ri,j = �j + �i,j,

It is usually assumed that the true analysis function can 
be closely approximated by a polynomial G , whose esti-
mate, Ĝ , is the analysis function used in practice. In other 
words, G is defined as G(�, �) = �1 + �2� +⋯ + �p�

p−1 
where � ⩾ 0 denotes the true value of a ratio of instru-
mental indications. Typically, all p terms of a polynomial 
of degree p − 1 are included in the model, but it is con-
ceivable that, in some applications, not all powers of the 
argument will be included: for example, p can be 4 and 
the quadratic term may be excluded from the polynomial 
during the process of model selection described in subsec-
tion Selection of degree for analysis function polynomial. 
Clause 5.1.c of ISO 6143 [17] lists other functional forms 
that can be selected for G.

The errors {�j} and {�i,j} are usually assumed to be non-
observable outcomes of independent random variables cen-
tered at 0. An assumption commonly made, which is implicit 
in the least squares criterion proposed in ISO 6143 [17] for 
fitting G to the calibration data, is that all these errors are 
like outcomes of mutually independent Gaussian random 
variables with possibly different standard deviations. We 
make the same assumption throughout this contribution 

Fig. 2  QQ-plots [41] for the 
random effects and residuals 
corresponding to the linear, 
Gaussian mixed effects model 
fitted to 384 replicates of the 
ratios determined for the cylin-
ders in lot SN. The fact that all 
the blue dots lie inside the 95% 
probability gray bands suggests 
that the assumptions are met 
that validate the model (color 
figure online)
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and verify its adequacy for the calibration data that we use 
in each application, after removing any observations whose 
reliability is questionable.

{�j} are PSM effects, assumed to be a sample from a prob-
ability distribution with mean 0 μmol/mol, and standard 
deviation �C , which is the component of dark uncertainty 
uncovered during calibration (hence the subscript “C”). If �C 
is greater than zero, then it means that the residuals {xj − �j} 
are more dispersed than the uncertainties {u(xj)} intimate 
that they should be. The next subsection Two sources of dark 
uncertainty, discusses this �C and yet another source of dark 
uncertainty, both of which arise fairly commonly during the 
development of gas mixture SRMs.

Two sources for dark uncertainty

The term “dark uncertainty” was introduced by Thompson 
and Ellison [35] in the context of interlaboratory studies 
involving scalar measurands. Cecelski et al [7] extended the 
concept to make it meaningful also in the context of EIV 
regression, and both Cecelski et al [7] and Viallon et al [38] 
applied it to quantify “excessive” dispersion of measurement 
results used to build analysis functions in gas metrology.

Our justification for using the term in this contribution 
is the following: First, we select an analysis function that is 
adequate for the calibration data (amount fractions, associ-
ated uncertainties, and supporting numbers of degrees of 
freedom), but then we find out that the calibration data yet 
are, to a significant extent, inconsistent with the apparently 
best model for the analysis function. This inconsistency 
manifests itself in the residuals from the fit being appreci-
ably larger than the reported uncertainties associated with 
the PSMs suggest that they should be, as the right-panels of 
Figs. 3 and 12 show.

And here, the same as in an interlaboratory study or 
key comparison whose results are mutually inconsistent, 
the inconsistency can be resolved by putting into play an 
“extra” uncertainty component, which we rightfully call 
“dark uncertainty” honoring the spirit and the letter of its 
introduction by Thompson and Ellison [35].

Regardless of whether the provenance of the “extra” 
uncertainty can be easily identified or not, this uncertainty 
component only becomes apparent when measurements are 
intercompared for the purpose of fitting a curve to them to 
form the analysis function, or when we reanalyze historical 
lot standards.

The standard deviation, �C , of the PSM effects {�j} in 
Equation (1) quantifies a source of dark uncertainty. In the 
present context, and for some SRM lots, for example SN, 
two sources of dark uncertainty can be identified, apparent 
in Fig. 3, which we explain next, following some preliminary 
remarks about historical lot standards.

SN is one of several SRM lots that NIST has developed 
with 1000 μmol/mol nominal amount fraction of sulfur diox-
ide in nitrogen. Each of these SRMs has had its own LS, 
with the role already described in section Data acquisition 
and data reduction workflow. NIST usually keeps the cylin-
ders used as LSs, rather than sell them to customers, so that 
their composition can be measured at later dates, for sundry 
purposes, in particular for stability tests.

As of this writing, there are three such historical LSs 
with the same nominal amount fraction of sulfur dioxide 
as SN, which we denote X, Y, and Z in the right panel of 
Fig. 3. On the one hand, each of these historical LSs has 
the value, denoted x in the labels of the vertical axes in 
this figure, of the amount fraction of sulfur dioxide that 
was assigned to it when the corresponding SRM was last 
certified. On the other hand, ratios of instrumental indica-
tions from each of these historical LSs, relative to the LS 
for SN, were also determined as part of the workflow for 
SN. These ratios were then mapped into values of amount 
fraction of sulfur dioxide, �̂  , using the analysis function 
built for SN via maximum likelihood estimation of the EIV 
regression model specified in Equation (1).

Note that, in the right panel of Fig. 3, for PSMs C and D, 
the difference x − �̂  is more than one standard uncertainty, 

Table 1  Standard deviations of the random effects in the linear, 
Gaussian, mixed effects model fitted to the ratios obtained for the cer-
tification of lot SN.

The columns headed lwr95 and Upr95 list the endpoints of approxi-
mate 95 % confidence intervals for the standard deviations of the vari-
ance components, computed using the profile likelihood method [10]. 
Colons denote nesting, for example, Break-Set within Day. Only Cyl 
makes a contribution to the overall dispersion of the ratios that is sig-
nificantly larger than the residual dispersion

raNdom effect Std. dev. lwr95 Upr95 (∕10−4μmol∕mol)

Cyl 5.56 4.34 7.18
LS-Set:(Break-
Set:Day)

1.06 0.71 1.35

Break-Set:Day 1.05 0.49 1.64
Day 0.14 0.00 1.25
Port 0.18 0.00 1.63
Residual 1.61 1.44 1.83

Table 2  Data used  to select the degree of the polynomial that will 
serve as analysis function for lot SN

pSm x u(x) r u(r) �

∕(μmol∕mol)

A 806.16 0.25 0.8071269 0.0000550 9
B 907.04 0.26 0.9095385 0.0000335 10
C 1008.82 0.28 1.0126681 0.0000487 9
D 1108.30 0.46 1.1145633 0.000105 9
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u(x − �̂) , above or below the horizontal line at 0 μmol/mol. 
This means that these two PSMs are (almost imperceptibly 
in the left panel of the figure, yet quite visibly in the right 
panel) “misaligned” relative to A and B. This misalignment 
translates into an estimate �̂C = 0.21 μmol∕mol of a com-
ponent of dark uncertainty. The subscript “C” serves as a 
reminder of the fact that this component of dark uncertainty 
is uncovered during calibration.

This �̂C , which was evaluated as described next, cap-
tures the dispersion of the points representing the PSMs 
around the EIV regression curve depicted in the left panel 
of the same figure, above and beyond the dispersion that the 
u(x − �̂) intimate these points should have.

The value listed above for �̂C was computed as 
√
s2 − g2 , 

where s = 0.322 μmol∕mol denotes the standard deviation 
of the four differences {xA − �̂A, xB − �̂B, xC − �̂C, xD − �̂D} , 
and g = 0.241 μmol∕mol denotes the geome tric mean of the 
standard uncertainties associated with these differences, 
which were evaluated by application of the parametric 
bootstrap [9]. In Characterization of the analysis function, 
we will obtain a more reliable, model-based estimate of �C , 
which is listed in Table 4.

The ordinates of the letters X, Y, and Z, of three different 
colors, in the right panel of Fig. 3 represent replicated differ-
ences between the original estimates of the amount fraction 
of sulfur dioxide in the three available historical LSs, and the 
amount fractions estimated using the analysis function for 
SN. The abscissae of the same letters represent these amount 
fractions that were estimated based on the ratios relative to 
the LS for SN.

Both the ordinates and the abscissae of the letters depend 
on the measurements made of the PSMs that underlie the 
analysis function for the current lot of this SRM, and on the 
measurements made of the sets of PSMs that were used to 
build the analysis functions for the historical lots. The fact 
that, as a group, these letters are approximately centered 
(vertically) around the horizontal line at 0 μmol/mol, sug-
gests that the analysis function built for SN is an approxi-
mately unbiased estimator of the amount fraction of sulfur 
dioxide in the historical LSs.

The root mean square (RMS) of the ordinates of the 
colored letters, �̂H = 2.18 μmol∕mol , is an evaluation of a 
component of dark uncertainty different from �̂C introduced 
above. �H quantifies the component of dark uncertainty 
reflecting what we call historical uncertainty (hence its 

Fig. 3  left paNel: The (orange) solid diamonds represent the PSMs, 
which are labeled A, B, C, and D, and the blue segments represent 
r ± u(r) and x ± u(x) , except that the uncertainties are magnified 200 
times. The (red) sloping line represents the analysis function for lot 
SN (which is a polynomial of the first degree, hence p = 2 ). right 
paNel: The solid (dark red) dots labeled A, B, C, and D represent the 
residual amount fractions of sulfur dioxide for the four PSMs used 
to build the analysis function for lot SN. The vertical (light blue) 

line segments represent these residuals plus or minus their associ-
ated standard uncertainties, which were evaluated using the paramet-
ric bootstrap [9]. The letters X, Y, and Z (of three different colors) 
represent replicated differences between the values, x , of the amount 
fraction of sulfur dioxide in three historical lot standards, and the esti-
mates, �̂  , of their true values produced by the analysis function for lot 
SN (color figure online)

https://en.wikipedia.org/wiki/Geometric_mean
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subscript “H”), an uncertainty that could not be perceived 
by examining the results for SN alone, but that becomes 
apparent when independent, original estimates of the amount 
fractions of the historical LSs are compared with the cor-
responding estimates produced for them by SN’s analysis 
function. Therefore, the value of such �H , the aforementioned 
2.18 μmol/mol, is an “external” evaluation of a component 
of uncertainty that should be recognized when evaluating 
the uncertainty surrounding the estimates of the measurand 
in SN using SN’s analysis function.

This �H expresses not only lack of reproducibility when 
comparing gas mixtures nominally identical to the new mix-
ture, but it also quantifies a variety of uncertainty contribu-
tions beyond mere lack of reproducibility: it can include, 
for example, differences between the sets of primary stand-
ards or the instrumentation used for calibration, and it can 
also include differences related to “aging” of historical lot 
standards, i.e. long-term instability of the gas mixtures over 
extended periods of time.

These two components of dark uncertainty, �C and �H , are 
combined in quadrature to produce � = (�2

C
+ �2

H
)1∕2 , whose 

value will be assigned to the median of � ’s prior probabil-
ity distribution in the Bayesian procedure described in sub-
section Characterization of the analysis function, to fit the 
model in Equation (1) to the calibration data, thence to build 
the analysis function for the lot, and to evaluate the uncer-
tainty associated with it.

This prior distribution for � is the vehicle that we use to 
inject the knowledge about historical between-lot variability, 
similarly to how Lang et al [21] recognize and propagate 
historical information about between-method differences 
in the development of NIST SRMs that are single-element 
solutions or anion solutions.

Selection of degree for analysis function polynomial

Even though the construction of the analysis function, and 
the corresponding uncertainty evaluation (in particular rec-
ognizing the historical uncertainty), will be done using a 
Bayesian procedure described in subsection Characteriza-
tion of the analysis function, for the sake of expediency, we 
select the degree of the analysis function polynomial using 
classical (non-Bayesian) statistical methods.

The first step taken to build the analysis function is 
to select n PSMs of similar composition as the lot being 
certified, whose range of amount fractions of the analyte, 
x1,… , xn , brackets the nominal amount fraction of this lot. 
The standard uncertainties associated with the amount frac-
tions of the analyte in the PSMs, u(x1),… , u(xn) , evaluated 
during the gravimetry, are usually assumed to be based on 
very large (practically infinite) numbers of degrees of free-
dom, hence are treated as known constants.

For each of these PSMs, multiple ratios of instrumental 
indications, relative to the LS selected for the lot undergoing 
certification, are obtained. For the purpose of selecting the 
degree of the polynomial to be used for the analysis function, 
the replicates of the ratios for each PSM are summarized by 
their average and by the standard error of this average, which 
is the Type A evaluation of the standard uncertainty of an 
average of independent, identically distributed replicates.

The selection of the polynomial is thus based on n quintu-
plets (x1, u(x1), r1, u(r1), �1) , ..., (xn, u(xn), rn, u(rn), �n) , where 
rj is the average of mj ratios for PSM j, u(rj) is the corre-
sponding standard uncertainty, and �j = mj − 1 is the number 
of degrees of freedom that u(rj) is based on, for j = 1,… , n . 
The data used to select the degree of polynomial for the 
analysis function of lot SN are listed in Table 2.

The analysis function G  is a polynomial of 
degree p − 1 , for some integer p ⩾ 2 , of the form 
G(r, �) = �1 + �2r +… �pr

p−1 , where � = (�1,… , �p) is the 
coefficients of the polynomial used as analysis function. The 
maximum likelihood estimates of � , of the true values of the 
ratios, � = (�1,… , �n) , and of �C , can be obtained by maxi-
mizing a function L with respect to � , � , and �C , such that

where � denotes the probability density function of the 
Gaussian distribution with mean 0 and standard deviation 
1, and �� denotes the probability density function of Stu-
dent’s t distribution with � degrees of freedom. A Gaussian 
probability density is used for xj because u(xj) is assumed 
to be based on a very large number of degrees of freedom, 
while a rescaled and shifted Student’s t distribution is used 
for rj because u(rj) is based on only a fairly small number of 
degrees of freedom, the aforementioned �j , for j = 1,… , n.

Up to an additive constant that involves none of � , � , or 
�C , the function L is the logarithm of the likelihood func-
tion under the assumptions stated after Equation (1), that 
the {�j} , {�j} , and {�i,j} all have Gaussian distributions. The 
values of the parameters that maximize L are denoted �̂ , �̂ , 
and �̂C . In these circumstances, and according with Equa-
tion (1), we also have �̂j = G(�̂j, �̂) , for j = 1,… , n.

The candidate models for G are polynomials of degrees 
1,… , n − 2 (because a polynomial of degree n − 1 , which 
has n coefficients, would fit the n points that represent 
the calibration data exactly). These candidate models 
are fitted in sequence and evaluated using conventional 
model selection criteria: Akaike’s Information Criterion, 

(2)

L
�
�,�, �C

�
=

n�
j=1

log�

⎛
⎜⎜⎜⎝

xj − G(�j, �)�
�2
C
+ u2(xj)

⎞
⎟⎟⎟⎠

+

n�
j=1

log��j

�
rj − �j

u(rj)

�
−

n

2
log(�2

C
+ u2(xj)),
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AIC = 2p − 2 L(�̂, �̂, �̂C) , and the Bayesian Information Criterion, 
BIC = p log(n) − 2 L(�̂, �̂, �̂C) [3]. The smaller the values of these 
criteria the more adequate the model is for the calibration 
data, as illustrated in Table 3.

It is conceivable that leaving out one or more of the lower 
degree terms of a polynomial of degree p − 1 will produce 
a better model than when all the terms are included in the 
model. The same criteria, AIC and BIC, can be used to com-
pare such polynomials with those that include all the terms.

In addition to model selection criteria, the initial selection 
of the polynomial to represent G involves the examination of 
plots of residuals against fitted values to compare the magni-
tudes of the resulting residuals and any patterns in the rela-
tionship between residuals and fitted values. Figure 4 shows 
these plots for the two candidate polynomials intended to 
serve as analysis function for lot SN.

Characterization of the analysis function

Up until recently, NIST has been using the procedures 
that Guenther and Possolo [12] introduced to estimate the 
analysis function G and to evaluate its associated uncer-
tainty. Next, we describe the updated version of this pro-
cedure, to fit a polynomial (whose degree will have been 
selected previously, as described in subsection Selection of 
degree for analysis function polynomial), using a Bayesian 
approach that is best suited to incorporate relevant historical 

information into the uncertainty evaluation, via a suitably 
tuned prior probability distribution for the dark uncertainty, 
� , that comprises the contributions from both �C and �H.

Possolo and Meija [26, pp. 204–215] provide a brief, gen-
eral introduction to Bayesian models in metrology, which 
Cecelski et al [7] introduced in the context of EIV regres-
sion in gas metrology. It should be noted that, other than the 
prior distribution for � , the prior distributions used in this 
contribution generally do not necessarily reflect bona fide 
preexisting information about the unknown quantities (like 
the {�j} or the {�j} ), other than in the trivial sense that, based 
on long experience with these materials, we expect that the 
{�j} should be close to their maximum likelihood estimates, 
and the {�j} should be close to the corresponding, observed 
average ratios {rj} . Instead, the prior distributions adopted 
for parameters other than � serve merely as regularization 
prescriptions for what can be regarded as an elaborate opti-
mization procedure that explores the whole parameter space 
thoroughly. The use we make of the specific data obtained 
for SN and PA is merely to locate the priors in the scale of 
amount fractions, consistent with common practice in appli-
cations of Bayesian methods to measurement science [23].

The Bayesian version of the model in Equation (1), whose 
implementation in the probabilistic programming language 
Stan [4] is listed in Fig. 5, is specified next, where items 
(M1)–(M3) describe the prior distributions, and items 
(M5)–(M6) describe the terms that define the likelihood 
function.

The same as in all Bayesian models, prior distributions 
are chosen for all the parameters in the model, which are 
the {�j} (the elements of the ordered set � in Equation (2)), 
the {�j} (the elements of the ordered set � in the same 
equation), and � . (Since the {�j} are functions of the {�j} 

Table 3  Both the AIC and BIC 
model selection criteria suggest 
p = 2 for lot SN; hence, a 
polynomial of the first degree is 
chosen for the analysis function

p aic bic

2 2.12 0.895
3 2.85 1.011

Fig. 4  Residuals plotted against fitted values (blue dots), for the 
polynomials of first and second degree, corresponding to p = 2, 3 
in Table  3, that were fitted to the calibration data for lot SN, dur-
ing model selection. The red curves, which are inter polat ing splin 
es, serve only as visualization aids. The vertical (gray) line segments 
represent plus or minus U95%(xj) to enable comparing the sizes of the 

residuals with the expanded uncertainties associated with the amount 
fractions in the PSMs. Even though the residuals corresponding to 
p = 3 have absolute values slightly smaller than those that correspond 
to p = 2 , the model corresponding to the latter is favored by both the 
AIC and BIC model selection criteria listed in Table 3 (color figure 
online)

https://en.wikipedia.org/wiki/Spline_interpolation
https://en.wikipedia.org/wiki/Spline_interpolation
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and of the {�j} , their prior distributions are determined by 
the prior distributions of the {�j} and of the {�j} .) 

 (M1) {�j} , which are the true values of the coefficients of 
the polynomial used to represent the analysis func-
tion, are assumed to be independent a priori and to 
have Gaussian prior distributions with means equal to 
their EIV regression maximum likelihood estimates, 
and with standard deviations equal to three times the 
standard errors of the same estimates.

 (M2) {�j} , which are the true values of the ratios of instru-
mental indications for the PSMs used for calibration, 
are assumed to be independent a priori and to have 
Gaussian prior distributions with means equal to the 

averages of the corresponding batches of replicates of 
the ratios, and with standard deviations equal to the 
standard errors of these averages.

 (M3) The prior distribution chosen for the dark uncer-
tainty � is half-Cauchy, with median that depends on 
whether there is, or there is not, relevant historical 
information as described in subsection Two sources 
of dark uncertainty. This is how this prior median is 
chosen in these two cases:

• w/out hiStorical iNformatioN: If {�̂j} denote the 
maximum likelihood estimates of the true amount 
fractions of the analyte in the PSMs, then the prior 
median of � is �C , which is the square root of the dif-

Fig. 5  Stan code that implements the Bayesian version of the model for EIV regression, characterized in items (M1)–(M6), that is used to build 
the analysis function
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ference between the variance of the {xj − �̂j} and the 
square of the geometric average of the {u(xj)} when 
this difference is positive, or a value comparable to 
machine precision otherwise.

• w/hiStorical iNformatioN: The prior information 
about the historical dispersion of values for the lot 
standard is expressed using a gently informative (in 
the sense described by Meija et al [23]) half-Cauchy 
distribution for the historical component of the dark 
uncertainty, �H , whose median was determined based 
on historical data, as follows: Suppose that there are 
nH historical LSs, whose original estimates of the 
amount fraction of the analyte are xH,1,… , xH,nH . 
Ratios relative to the LS for the SRM under devel-
opment have also been determined for each of these 
historical LSs, which we denote as {rH,i,j} for each 
historical LS j = 1,… , nH . (The numbers of such 
ratios can be different for different historical LSs.) 
For each such ratio i of each historical LS j , we 
compute the estimate of the measurand, �̂H,i,j , that 
corresponds to the maximum likelihood estimates 
of the coefficients of the analysis function, and then 
form the differences DH,i,j = xH,j − �̂H,i,j . (Note that 
the first term on the right-hand side is the same for 
all the ratios for historical LS j .) �H is the root mean 
square of all the {DH,i,j} , and the prior median of � is √
�2
H
+ �2

C
.

 (M4) Given � and � , the {�j} are Gaussian random variables 
with means {G(�j, �)} and standard deviation �.

 (M5) Conditionally upon the {�j} , {xj} are assumed to be 
outcomes of Gaussian random variables with means 
{�j} and standard deviations {u(xj)} (these standard 
deviations are assumed to be known).

 (M6) Conditionally upon �j , the average of the replicates 
of the ratios for PSM j is modeled as an observed 
value of a Student’s t distribution with �j degrees of 
freedom, rescaled to have standard deviation u(rj) and 
shifted to be centered at rj , for j = 1,… , n . This mod-
eling choice takes into account the small number of 
replicates that u(rj) is based on, while circumventing 
the need to estimate the true standard deviation of the 
replicates. It is based on the fact that if rj is an aver-
age of �j + 1 ratios that are a sample from a Gauss-
ian distribution whose mean is �j and whose standard 
deviation is unknown, then (rj − �j)∕u(rj) is Student’s 
t with �j degrees of freedom.

The Stan code listed in Fig. 5 was fitted to the calibration 
data for lot SN using facilities from package rstan for the 
R environment for statistical computing and graphics [29, 
33]. Four independent Markov Chain Monte Carlo (MCMC) 

samplers were run in parallel, all instances of the No-U-
Turn-Sampler (NUTS) [15] that is available in Stan. Each 
sampler took 250000 warm-up steps followed by 250000 
sampling steps, with the result of every 25th step having 
been recorded, to reduce the impact of auto-correlations. 
As a result, after merging the samples produced by the four 
samplers, we obtained a sample of size K = 40000 from the 
joint posterior distribution of the parameters.

The diagnostics for effective sample size, and for the 
convergence criterion rhat, all suggest that the sampler 
indeed was sampling from the joint posterior distribution of 
the parameters after the warm-up period. rhat is the ratio 
between the standard deviation of an estimate of a param-
eter derived from all the chains together, and the root mean 
square of the separate, within-chain standard deviations. If 
the chains have not reached their common equilibrium state, 
then this ratio will be greater than 1 [37]. Table 4 lists the 
posterior means and standard deviations of the samples of 
values of each of the parameters.

The Bayesian estimates of � listed in Table 4 are appre-
ciably different: one corresponds to the case where the 
information provided by the historical LSs is ignored 
( ̃� = 0.132 μmol∕mol ), the other to the case where it is 
taken into account ( ̃� = 0.458 μmol∕mol ). Figure 6 depicts 
the prior and posterior probability densities for � in both 
cases. Note that both prior probability densities (red curves) 
achieve their maxima at 0 μmol/mol, and that their posterior 
counterparts (blue curves) achieve their maxima away from 
0 μmol/mol, markedly more so for the posterior when his-
torical uncertainty is taken into account. These observations 
confirm previous findings: the component of dark uncer-
tainty attributable to mutual “misalignment” of the PSMs, 
quantified in �̂C , is much smaller than the component, �̂H , 
that captures historical uncertainty, and that, taken together, 
they add up to a composite Bayesian estimate of dark uncer-
tainty, �̃  , that is significantly greater than 0 μmol/mol.

The output of the MCMC procedure that samples the 
joint posterior distribution of all the parameters in the 
model, delivered K = 40000 sets of values of the coeffi-
cients of the analysis function, �1,… , �K (each of these is 
an ordered set with p elements), K sets of true values of the 
ratios for the PSMs, �1,… ,�K (each being an ordered set 
with n elements), and K values of the dark uncertainty, � . 
These samples are the raw materials from which uncertainty 
evaluations will be derived for the amount fractions of the 
cylinders in a lot, as will be described in section ̀ `Measure-
ment results for individual cylinders.

Even though the corresponding Bayesian estimates of �1 
and �2 listed in Table 4 are slightly different, their differences 
are not statistically significant, and they are indistinguish-
able as depicted in Fig. 7. The wider (dark gray) uncertainty 
band depicted in the same figure fully encloses 95 % of the 
40000 versions of the analysis function that corresponds to 
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the model that takes historical uncertainty into account. The 
narrower (light gray) band corresponds to the model that 
neglects historical uncertainty.

Measurement results for individual cylinders

The estimate of the amount fraction of the analyte in each 
cylinder and the evaluation of the associated uncertainty are 
derived from the results of applying the different versions 

of the analysis function obtained via MCMC sampling, 
G1,… ,GK , to the replicates of the ratios determined for the 
cylinder.

Suppose that the lot comprises L cylinders, and that 
m1,… ,mL denote the numbers of ratios determined for the 
different cylinders. We take the following steps for each cyl-
inder l = 1,… , L : 

 (L1) For each replicate of the ratio rl,i that has been deter-
mined for cylinder l , compute the amount fraction 
xl,i,k = max(0,Gk(rl,i) + zk) , where Gk denotes a ver-

Table 4  Posterior means and standard deviations of the parameters in the Bayesian version of the EIV regression model of Equation (1) for lot 
SN, either neglecting the information provided by the historical LSs (2nd and 3rd columns), or taking it into account (4th and 5th columns)

w/out hiStorical iNformatioN w/hiStorical iNformatioN

meaN Sd meaN Sd

�
1

11.95 1.40 12.06 1.92 ∕(μmol∕mol)

�
2

984.10 1.49 983.95 2.02 ∕(μmol∕mol)

�
1

0.80713 0.00004 0.80713 0.00004
�
2

0.90954 0.00002 0.90954 0.00002
�
3

1.01267 0.00003 1.01267 0.00003
�
4

1.11455 0.00007 1.11456 0.00007

� 0.13 0.16 0.46 0.49 ∕(μmol∕mol)

�
1

806.24 0.25 806.24 0.45 ∕(μmol∕mol)

�
2

907.03 0.18 907.01 0.37 ∕(μmol∕mol)

�
3

1008.52 0.22 1008.48 0.40 ∕(μmol∕mol)

�
4

1108.78 0.33 1108.73 0.51 ∕(μmol∕mol)

Fig. 6  Prior (red curves) and 
posterior (blue curves) prob-
ability densities of � , and cor-
responding medians (dots) for 
lot SN. left paNel: Neglecting 
the information provided by 
the historical LSs. right paNel: 
Considering the information 
provided by the historical LSs 
(color figure online)
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sion of the analysis function, and zk is drawn from 
a Gaussian distribution with mean 0 μmol/mol 
and standard deviation �k , for i = 1,… ,ml , and for 
k = 1,… ,K  . {xl,i,k ∶ i = 1,… ,mc, k = 1,… ,K} are 
Monte Carlo replicates of a prediction of a determina-
tion of the value of xl that can be made using a meas-
urement procedure comparable to the procedure used 
for the material’s certification, taking into account 
the dark uncertainty (either �̂C , when the historical 

uncertainty is neglected, or both �̂C and �̂H , when the 
historical uncertainty is taken into account).

 (L2) Compute the estimate, x̃l , of the amount fraction of 
the analyte in cylinder l , and the associated standard 
uncertainty, u(̃xl) , by applying R functions huberM 
and Qn , respectively, both defined in package 
robustbase [22], to the {xl,i,k} . The former delivers 
a robust summary of these Monte Carlo replicates of 
the amount fraction, in the form of an M-estimate of 
location [16], and the latter provides a robust estimate 
of the standard deviation of the replicates [30].

The amount fractions assigned to the individual cylinders of 
lot SN, and their associated uncertainties, which correspond 
to the case where one neglects the historical uncertainty, 
and to the case where the historical uncertainty is taken 
into account, are displayed side-by-side for each cylinder, 
in Fig. 8.

Lot homogeneity

The measured values of the amount fraction of the analyte 
in the individual cylinders, {xc} , are examined from different 
viewpoints, also considering their associated uncertainties, 
{u(xc,i)} , to ascertain whether the lot is sufficiently homoge-
neous to warrant assignment of a single value to the whole 
lot. If it is, then all its cylinders are assigned the same value 
and uncertainty. If it is not, then the lot may be split into suf-
ficiently homogeneous sub-lots, each with its own assigned 
value, or the different cylinders will be assigned different 
values and possibly different associated uncertainties.

The “dip” statistical test of unimodality [13] serves to 
evaluate whether there are significantly different, multiple 
peaks (or modes) in a probability density estimate of the 

Fig. 7  Analysis function (thin, black sloping line) for lot SN and 
uncertainty bands, whose vertical thickness is magnified 25 times, for 
95  % coverage. The (dark gray) wider band expresses contributions 
from the two kinds of dark uncertainty, �C and �H , which were dis-
cussed in subsection Two sources of dark uncertainty and illustrated 
in Fig.  3. The (light gray) narrower band does not include the con-
tribution from historical uncertainty. The (white) dots represent the 
values of the averages of the replicates of the ratios and of the amount 
fractions for the PSMs used for calibration. The small, blue crosses 
centered on these dots represent measured values plus or minus one 
standard uncertainty, also magnified 25 times (color figure online)

Fig. 8  Cylinder values (solid 
diamonds), {x̃l} , and associated 
standard uncertainties, where 
the vertical line segments repre-
sent {x̃l ± u(̃xl)} , that corre-
spond to the case where the his-
torical uncertainty is neglected 
(blue, shorter segments), and to 
the case where it is taken into 
account (red, longer segments), 
side-by-side for each cylinder, 
for the 32 cylinders in lot SN 
(color figure online)
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{xc} . If there are, then this speaks in favor of splitting the lot. 
However, this test does not take the uncertainties, {u(xc)} , 
into account. The “dip” test for lot SN (Fig. 9) does not 
reject the hypothesis of unimodality.

Cochran’s Q test [8], also known as the chi-squared test 
of homogeneity, has been widely used to assess whether 
multiple, independent measurement results (measured values 
and associated uncertainties) for the same measurand are 
mutually consistent, even if its shortcomings are well-known 
[14]. Iyer et al [18] discussed several alternative tests for the 
same purpose, among them Welch’s F test [40], which takes 
into account the numbers of degrees of freedom that the 
uncertainties are based on. Figure 10 presents R code that 
implements both Cochran’s Q and Welch’s F tests.

Mutual consistency or homogeneity in this context 
means that the measured values can be regarded as values 
drawn from probability distributions with the same mean, 
but possibly different standard deviations. Both Cochran’s 
Q test and Welch’s F test assume that these distributions 
are approximately Gaussian. Cochran’s Q test assumes fur-
ther that the uncertainty evaluations are based on very large 
(practically infinite) numbers of degrees of freedom.

Note that the assumption of independence made by both 
tests, for the measurement results for the different cylin-
ders, is questionable because they all share the same errors 
that affect the analysis function. Applied to the measure-
ment results for lot SN that are depicted in Fig. 8, neither 
Cochran’s Q test (p-value 0.26) nor Welch’s F test (p-value 
0.31) reject the hypothesis of mutual consistency, thus war-
ranting the assignment of a single value to lot SN.

Consensus value and uncertainty evaluation

If the lot is sufficiently homogeneous, particularly once the 
cylinder values will have been qualified with an uncertainty 
evaluation that includes the contribution from historical 
uncertainty, then the value assigned to the SRM is a con-
sensus of the values assigned to the individual cylinders, 
{xc} , computed taking into account their associated uncer-
tainties {u(xc)}.

The NIST Decision Tree (NDT) [27] is a flexible, easy-
to-use, web-based application that offers suggestions about 
how to combine measurement results for the same measur-
and, obtained independently of one another. In particular, it 
can be applied to the measurement results for the individual 

Fig. 9  The kernel estimate [32] of the probability density of the cyl-
inder values in lot SN reveals several “bumps” (local maxima), which 
the “dip” statistical test [13], yielding p-value 0.2, suggests are not 
significant, thus not rejecting the hypothesis of unimodality

Fig. 10  R code that implements 
Cochran’s Q test and Welch’s 
F test of mutual consistency of 
measurement results. Note that 
in Equation (2.5) of Milliken 
and Johnson [24], where they 
describe Welsh’s test, where 
it says “ (t − 1) ” it should have 
said “ (t − 2) ” instead

https://decisiontree.nist.gov
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cylinders obtained as described in section Measurement 
results for individual cylinders.

To use the NDT in practice, when there is more than a 
handful of cylinders in a lot, the best way involves preparing 
a CSV file with as many rows as there are cylinders in the 
lot, and with four entries per row: cylinder label, measured 
valued xc , associated standard uncertainty u(xc) , and effec-
tive number of degrees of freedom, �c , that u(xc) is based 
on, with the headers specified in the NDT’s user’s manual, 
which is available for download from the NDT’s web site. 
Since the previously described workflow does not provide 
values for the {�c} , these can all be set equal to 60.4, which 
corresponds to the conventional coverage factor k = 2 as 
recommended by Taylor and Kuyatt [34, §6.5] for use at 
NIST.

The following steps are taken to assign a single value, 
xSRM , to the SRM, and to evaluate the corresponding uncer-
tainty, u(xSRM) . This uncertainty is a prediction uncertainty, 
so that about 95 % of the individual cylinder values will 
differ from the value assigned to the SRM by less than the 
corresponding expanded uncertainty, U95%(xSRM) : 

 (S1) Determine the value, xSRM , to be assigned to the lot, as 
the consensus value computed using the NIST Deci-
sion Tree (or, alternatively, using the NIST Consensus 
Builder [20], or facilities implemented in R package 
metafor [39], among many others), and the asso-
ciated uncertainty, u(xSRM) . Since the same analysis 
function is used to assign values to the different cyl-
inders, the cylinder values are correlated. However, 
the NDT ignores such correlations when it computes 
xSRM.

 (S2) A predi ction  inter val for the amount fraction of the 
analyte in any cylinder in the lot can be built using 
a sample comprising a large number, K , of sets of 
values of the parameters in the model, drawn from 
the poste rior predi ctive  distr ibuti on that corresponds 
to the Bayesian model described in the foregoing, as 
follows: 

 (S2a) First, repeat these steps for i = 1,… , I , where 
I denotes a large, positive integer of the same 
order of magnitude as K : (i) draw a value, r∗ , 
uniformly at random from the set of all ratios 
that were determined for all cylinders in the lot; 
(ii) draw a value �∗ , also uniformly at random, 
from the MCMC sample of values of the coef-
ficients of the polynomial generated by the Stan 
code in Fig. 5; (iii) similarly draw a value �∗ from 
the MCMC sample of values of � ; (iv) draw a 
residual e∗ uniformly at random from the set of 
all differences {xj − �̃j,k} ; (v) simulate a drawing 
from a Gaussian distribution with mean G(r∗, �∗) 

and with standard deviation �∗ , and add e∗ to it, 
to obtain x∗

i
.

 (S2b) Determine the endpoints of an interval centered 
at the consensus value for all the cylinders, xSRM 
from (S1), that includes 95 % of the {x∗

i
} simu-

lated in (S2a).

The NIST Decision Tree recommends the adaptive-weighted 
average (AWA, which is a modified version of the DerSimo-
nian-Laird procedure described by Koepke et al [20]) for 
combining the cylinder-specific measurement results for lot 
SN, which are depicted in Fig. 8, into a consensus value.

We have overridden this recommendation and used the 
hierarchical Bayesian model with Gaussian laboratory 
effects and Gaussian measurement errors instead (often 
referred to as HGG, where H means “hierarchical”, the first 
G indicates that the laboratory effects are Gaussian, and the 
second G indicates that the measurement errors are Gauss-
ian). This modeling choice is more closely aligned with the 
Bayesian approach than the AWA, even though it produces 
results that are very close to those produced by the AWA.

The HGG procedure produces the estimate xSN = 985.8(1) 
μmol∕mol , and a 95 % credible interval for its true value 
ranges from 985.6 μmol∕mol to 986.0 μmol∕mol . Figure 11 
depicts the measurement results for the individual cylin-
ders in Fig. 8, as well as the consensus value for the lot, the 
associated uncertainty, and a 95 % prediction interval built 
as described above, under (S2), which ranges from 983.7 
μmol∕mol to 987.9 μmol∕mol.

Lot PA’s calibration challenge

PA is one of several SRM lots that NIST has developed 
with 50 μmol/mol nominal amount fraction of propane in 
air. Each of these SRMs has had its own LS, with the role 
already described in section Data acquisition and data reduc-
tion workflow. Currently, there are six such historical LSs 
with the same nominal amount fraction of propane as PA, 
which we denote U, ..., Z in the right panel of Fig. 12.

On the one hand, each of these historical LSs has the 
value of the amount fraction of propane that was assigned 
to it when the corresponding SRM was last certified. On 
the other hand, ratios between instrumental indications 
obtained during the analysis of these historical LSs, and 
the instrumental indications obtained for the LS of PA, 
were also determined as part of the workflow for PA. 
These ratios were then mapped into values of the amount 
fraction of propane, �̂  , using the analysis function built for 
PA via maximum likelihood estimation of the parameters 
of the EIV regression model specified in Equation (1).

https://decisiontree.nist.gov
https://decisiontree.nist.gov
https://consensus.nist.gov
https://consensus.nist.gov
https://en.wikipedia.org/wiki/Prediction_interval
https://en.wikipedia.org/wiki/Posterior_predictive_distribution
https://decisiontree.nist.gov
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Note that, for PSMs B and C in the right panel of Fig. 12, 
the difference x − �̂  is more than two standard uncertainties 

above or below the horizontal line at 0 μmol/mol. This 
means that these two PSMs are (almost imperceptibly on 
the left panel of the figure, yet statistically significantly) 

Fig. 11  Cylinder values (diamonds), {x̃c} , and associated standard 
uncertainties, for lot SN, where the thick (green) vertical line seg-
ments represent {x̃c ± u(̃xc)} , that correspond to the case where the 
historical uncertainty is taken into account. The thin (dark blue) ver-
tical line segments represent {x̃c ± (�2

C
+ u2 (̃xc))

1∕2} . The thin (dark 

brown), horizontal line indicates the consensus value, xSRM , with the 
height of the (yellow) band around it representing xSRM ± u(xSRM) . 
The thin (light blue) horizontal lines indicate the endpoints of the 
corresponding, 95 % prediction interval (color figure online)

Fig. 12  left paNel: The (orange) solid diamonds represent the PSMs, 
which are labeled A, ..., E, the blue segments represent r ± u(r) and 
x ± u(x) , except that the uncertainties are magnified 200 times, and 
the (red) sloping line represents the analysis function for lot PA 
(which is a quadratic polynomial). right paNel: The solid (dark red) 
dots labeled A, ..., E represent the residual amount fractions of pro-
pane for the five PSMs used to build the analysis function for lot PA, 

and the vertical (light blue) line segments represent these residuals 
plus or minus the corresponding standard uncertainties of the amount 
fractions of propane in these PSMs. The letters U, ..., Z, of six differ-
ent colors, represent replicated differences between the values, x , of 
the amount fraction of propane in six historical lot standards, and the 
estimates, �̂  , of the amount fraction of propane in them produced by 
the analysis function for lot PA (color figure online)
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“misaligned” relative to the other three. This misalignment 
translates into an estimate �̂C = 0.015 μmol∕mol of the 
component of dark uncertainty attributable to calibration, 
estimated as already described for lot SN in subsection Two 
sources of dark uncertainty.

The ordinates of the letters U, ..., Z, of six different colors, 
in the right panel of Fig. 12 represent replicated differences 
x − �̂  between the original estimates of the amount fraction 
of propane in historical LSs, and the amount fractions esti-
mated using the analysis function for PA. The abscissae of 
those letters represent these estimates.

Here, differently from Fig. 3, all the differences x − �̂  are 
negative. That is, PA’s analysis function appears to overes-
timate the amount fractions of propane in the historical LSs 
labeled U, ..., Z. The PSMs used to calibrate the analysis 
functions for all these historical lots had propane in a bal-
ance of nitrogen, while the PSMs used for PA had propane 
in a balance of air.

We have observed biases apparently related to the nature 
of the balance gas (air versus nitrogen) in mixtures similar 
to PA, which sometimes are positive and other times are 
negative, but, in either case, we recognize and propagate the 
corresponding uncertainty via the historical component of 
dark uncertainty, �H.

Consistent with the provisions of the GUM, reflecting 
“the concept that there is no inherent difference between 
an uncertainty component arising from a random effect and 
one arising from a [...] systematic effect” [19, E.1.1], the 
apparent bias affecting PA is taken into account together 
with the dispersion of the values of the historical lot stand-
ards, and the historical uncertainty is evaluated as the 
root mean square (RMS) of the ordinates of the letters, 
�̂H = 0.062 μmol∕mol.

Combining the contributions from these two sources of 
dark uncertainty that were evaluated in the foregoing, �̂C 
and �̂H , in root sum of squares, yields �̂ = 0.063 μmol∕mol 
for the prior median of the dark uncertainty specified in step 
(M3) of subsection Characterization of the analysis func-
tion. Figure 13 depicts the prior and posterior distributions 
of the composite dark uncertainty � when the information 
provided by the historical LSs is neglected or taken into 
account. For this lot PA, � is significantly greater than 0 μ
mol/mol both when historical uncertainty is considered and 
when it is disregarded, unlike their counterparts for lot SN, 
whose posterior distributions are depicted in Fig. 6.

Conclusions

One of the greatest challenges in certifying a reference gas 
mixture is ensuring that the uncertainty associated with the 
assigned value is realistic (cf. [19, E.1]) and will remain 
valid for the duration of the period of validity [2], which 
for most gas mixture SRMs developed at NIST ranges from 
4 to 8 years [6, Table 4]. The procedures described in this 
contribution serve this purpose, being the result of refine-
ments and improvements of the procedures for certifying 
reference gas mixtures, and for the evaluation of the associ-
ated uncertainty, that were originally presented by Guenther 
and Possolo [12] thirteen years ago.

The principal novelty of this contribution is the rigorous 
evaluation of historical uncertainty in the determination of 
the analysis function, and its propagation to the uncertainty 
surrounding this function. Historical uncertainty captures 
the historical dispersion of results for gas mixtures nomi-
nally identical to the mixture being certified, for reasons that 
may remain unexplained but that become apparent and can 

Fig. 13  Prior (red curves) 
and posterior (blue curves) 
probability densities of � , and 
corresponding medians (dots) 
for lot PA. left paNel: Neglect-
ing the information provided by 
the historical LSs. right paNel: 
Considering the information 
provided by the historical LSs 
(color figure online)
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be quantified when historical lot standards are remeasured 
against the lot standard of the SRM currently in develop-
ment, and corresponding measured values are compared for 
these lot standards.

In general, the incorporation of such historical informa-
tion produces larger, more realistic uncertainties than when 
such information is either not available or is neglected. This 
effect is the opposite of the effect that the incorporation 
of prior information typically induces, which is to reduce 
uncertainty. However, it is the desired and proper effect 
because, in our long experience developing these reference 
materials, the classical estimate of the amount fraction of a 
particular gas in a mixture of gases often appears to be sur-
rounded by an uncertainty that is unrealistically small. In 
response, ad hoc “corrections” to the evaluated uncertainty 
have traditionally been applied, to enhance the credibility of 
the reported uncertainty.

Our contribution — and this indeed is its key aspect — 
dispenses with such ad hoc “corrections”, and offers an 
honest assessment that recognizes explicitly that the con-
ventional uncertainty evaluations can be overoptimistic, and 
takes into account historical information that, in most cases, 
suggests that the actual uncertainty should to be larger than 
what a classical evaluation indicates.

Other improvements over the procedure described by 
Guenther and Possolo [12] include:

• Recognizing that, during calibration of the analysis 
function, which is used for value assignment to the units 
of the SRM, mutual inconsistencies may be uncovered 
between the PSMs, which can be quantified using the 
concept of dark uncertainty for EIV regression that 
Cecelski et al [7] described in detail.

• Developing and applying a Bayesian version of the EIV 
regression model used by Guenther and Possolo [12] and 
described in ISO 6143 [17], which provides not only an 
estimate of the analysis function, but also the elements 
necessary to characterize the uncertainty that surrounds 
it. Not only does this improvement integrate the pro-
cesses of estimation and uncertainty evaluation (for the 
analysis function), it also has the side-effect of reducing 
the computational run-time very substantially, by com-
parison with the Monte Carlo uncertainty evaluation that 
Guenther and Possolo [12] proposed originally.

• Employing state-of-the-art methods and tools, originally 
developed to reduce data from interlaboratory studies and 
meta-analyses, to combine the cylinder-specific measure-
ment results, when these are sufficiently mutually con-
sistent to warrant the assignment of a single value, and 
associated prediction value and uncertainty, to the SRM 
as a whole.
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