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Abstract
Proficiency testing schemes by interlaboratory comparisons are used to determine the performance of individual labora-
tories for specific tests or measurements. The international standard ISO 13528:2015 provides a description of statistical 
methods used for achieving this goal; one of these methods is the z score. The standard allows each participant to choose a 
measurement method and this can lead to inhomogeneity between participant variance known as heteroscedasticity. The ISO 
13528:2015 standard does not mention heteroscedasticity in its statistical procedures. This paper describes a new approach, 
based on residuals analysis, to assess the performance of an interlaboratory comparison for determining the presence of 
benzoic acid in orange juice. The results indicate that the conclusions (using z scores) and the proposed approach are differ-
ent for some laboratories. This occurs due to violation of the homoscedasticity assumption. The z score procedure does not 
consider this assumption violation while residual analysis can provide such information. Feasible generalized least squares 
allow one to deal with non-homoscedasticity.
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Introduction

Proficiency testing (PT) schemes are a powerful tool for 
the identification of interlaboratory differences that aim to 
evaluate measurement results performed under similar con-
ditions and assess the technical competence of participants 
to demonstrate the reliability of their measurement processes 
[1]. For this purpose, ISO 13528:2015 [1] presents four per-
formance statistics, namely z score, z′ score, zeta score and 
En score [2]. These statistics also may be used in interlabora-
tory comparisons. The first three statistics (z score, z′ score 
and zeta score) have an underlying assumption of normality 
of the measurement results. The En score does not have this 
assumption.

In statistics, the z score is used for either standardiza-
tion of data when they were obtained in different orders of 

magnitude or outlier detection procedure for univariate data 
set (if the data are normally distributed) [3]. Although ISO 
13528:2015 notes the normality assumption inherent in the 
z score, there is no mention about methods to handle hetero-
scedasticity. In PT schemes, heteroscedasticity is the inho-
mogeneity variance between laboratory participants. The 
PT participating laboratories may use different analytical 
methods to obtain their results [1], which may lead to inho-
mogeneous variance between the laboratory results. The ISO 
13528:2015 standard does not provide statistical procedures 
to deal with heteroscedasticity.

Different strategies have been proposed to deal with data 
sets from PT scheme instead of methodologies described in 
ISO 13528:2015 [4–7]. A modified z score was proposed 
in the Analytical Methods Committee document AMCTB 
No. 78 to evaluate participants’ performance. According 
to ISO 13528:2015, one way to obtain the assigned value 
is through the consensus of the participants results. The 
assigned value and individual results may be correlated if 
there is a small number of participants (less than 15) [4]. 
This effect might be reduced with z score weighted by the 
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number of laboratories. In other words, applying the finite 
population correction factor 1 − 1∕n to z score [4].

The consensus value may be affected by the presence 
of outliers and provides inadequate assigned values for PT 
scheme. Albano et al. [5] have suggested evaluating inter-
laboratory comparisons based on simple robust statistics 
mentioned in ISO 13528:2015. The authors suggest use the 
participants’ median results as assigned value and the nor-
malized interquartile range as standard deviation for pro-
ficiency assessment [5]. It should be noted that, although 
it is mentioned in the document, ISO 13528:2015 recom-
mends the use of more sophisticated robust estimators, such 
as algorithm A described in its annex C. In addition to the 
ISO 13528:2015 and the AMCTB document, researchers 
have proposed other metrics to evaluate the laboratories. 
Arvizu-Torres et al. [6] have proposed a relative quadratic 
mean error  (QMER) to evaluate the analytical competence 
of participating laboratories. The  QMER allows partici-
pants to evaluate the sources of declared uncertainty and 
makes reported results comparable to the certified value. 
This methodology is formulated by estimating the bias with 
respect to the reference value and that of the uncertainty of 
each laboratory’s result [8]. Thompson and Wood [7] have 
suggested an alternative score, namely Q-scoring, which 
is based on the relative bias. The participants’ results are 
evaluated by determining the percentage deviation from the 
assigned value [9]. The proficiency-testing provider defines 
this percentage in a discretionary manner.

This work proposes a new procedure to assess the per-
formance of interlaboratory comparisons that are different 
from the methodologies described in ISO 13528:2015 and 
the researchers mentioned above. A new methodology to 
evaluate the PT scheme presented in this paper is derived 
from the concepts of analysis of variance and multiple com-
parison tests. Residual analysis allows one to choose the 
more suitable analysis of variance model.

The analysis of variance (ANOVA) proposed to evaluate 
PT participating performance has normality and homosce-
dasticity assumptions of residuals [10]. Homoscedasticity 
means that there is no statistically significant difference 
between participating variances. Both assumptions of 
ANOVA need to be checked by residuals analysis (Fig. 1).

Residuals analysis

Residuals analysis is a statistical tool to investigate normal-
ity and homoscedasticity assumptions of linear models such 
as ANOVA [10]. In the PT scheme, residuals are fitted by 
subtracting the mean from each reported value for each par-
ticipating laboratory. Figure 1 presents the steps that need 
to be followed in residual analysis. The first step consists 
of verifying residual normality by relating the standard-
ized residuals to the fitted values [10] and Shapiro–Wilk 

test (Fig. 1a). The Shapiro–Wilk test has a low probabil-
ity of residuals misclassification [11]. The homoscedastic-
ity assumption is the second step, which is checked by the 
Koenker–Bassett test (Fig. 1b). This method is applicable 
even if residuals are not normal [12].

The first two stages of the residual analysis (Fig. 1a, b) 
allow choosing a suitable model to evaluate PT participating 
performance. ANOVA should be adopted in cases where 
the residuals are normal and homoscedastic parametric. 
The F-test from ANOVA (Fig. 1c) is an omnibus (overall) 
test which indicates the existence of any difference between 
participating measurements [10]. If the overall test from 
ANOVA indicates that there are no differences, then all 
participating laboratories are classified as acceptable. On 
the other hand, if the F-test indicates that there are statisti-
cally significant differences between laboratory results, it is 
necessary to use post hoc multiple comparison tests, such 
as Dunnett’s and Fisher’s least significant difference (LSD), 
to identify which results are different.

Following the above-mentioned flowchart, if residuals are 
normal (Fig. 1a), homoscedastic (Fig. 1b) and F-test from 
ANOVA (Fig. 1c) indicates differences between reported 
results the next step is to check the availability of the 
assigned value.

When the assigned value is available, in this methodol-
ogy, the participating results are evaluated by analysis of 
variance with one control where there is a “control treat-
ment” (reference laboratory) and the PT provider is inter-
ested in comparing each “treatment” (participating labora-
tory) with this “control”. It is suggested to use the Dunnett’s 
test [10] (Fig. 1d) to verify which participating results differ 
from the assigned value. If there are differences between 
the participating results and assigned value, the first result 
is classified as unacceptable, and the remaining results are 
considered acceptable.

If the assigned value is unavailable, all laboratories’ 
results are compared two by two to determine which ones 
are different, using the Fisher’s Least Significant Difference 
(LSD) [10] (Fig. 1e). A specific laboratory is classified as 
unacceptable if its results differ statistically from all the oth-
ers, otherwise it is classified as acceptable.

Some PT schemes may not have normal residuals (Fig. 1a) 
but homoscedastic (Fig. 1b). In this situation, nonparametric 
methods are used such as Kruskal–Wallis [13] (Fig. 1f). This 
test provides an overall evaluation of the differences among 
participating laboratories. All results are classified as accept-
able if Kruskal–Wallis test does not identify differences 
between the laboratory results. When there are differences, 
one should use the post hoc multiple comparison Dunn’s 
test [14]. Checking the availability of the assigned value 
according to the flowchart in Fig. 1, the Dunn’s test with 
one control (Fig. 1g) provides conclusions for this value. 
Laboratory results which differ from the assigned value are 
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classified as unacceptable (they are acceptable if they do 
not differ). In the case where the assigned value is unavail-
able, the Dunn’s test from Fig. 1h provides a two-by-two 
comparison for all participants. If the reported results by 
the participants differ from one another, then this laboratory 
is classified as unacceptable. If its results do not differ, the 
laboratory is classified as acceptable.

Lastly, regardless of normality assumption (Fig. 1a), 
if residuals are heteroscedastic (Fig. 1b), then the F-test 
from the feasible generalized least squares (FGLS) model 
in Fig. 1i is used to evaluate the measurement results. The 
F-test from the FGLS model (Fig. 1i) is an overall test that 
assesses the performance of the interlaboratory compari-
son. In the proposed methodology, all participants will have 
their results considered acceptable if the FGLS F-test does 
not identify differences between the reported values. None-
theless, if the F-test indicates differences between results 
it becomes necessary to identify which of the laboratory 
results differ by carrying out multiple comparison tests. 
The t-test from the FGLS model (Fig. 1j) may be used as 

a multiple-comparison test with one control if an assigned 
value is available. Laboratory results are considered unac-
ceptable if the t-test indicates a difference between the 
reported and assigned values; however, if there are no dif-
ferences, then the results are considered acceptable. Moreo-
ver, the FGLS t-test (Fig. 1j) may be used for pairwise (two 
by two) comparison. If a specific laboratory result differs 
from all other participants, then these results are classified 
as unacceptable, and if there are no differences, then the 
results are acceptable.

FGLS model

Heteroscedasticity is a common problem present in results 
reported by PT participating laboratories. The standard ISO 
13528:2015 allows each laboratory to choose its own measure-
ment method [1]. This can lead to inhomogeneity in the vari-
ability between laboratory results and lead to wrong conclu-
sions regarding which test (F-test from ANOVA in Fig. 1c and 
Kruskal–Wallis test in Fig. 1f) should be used in the proposed 

Fig. 1  Flowchart of the proposed residuals-analysis procedure
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methodology. The FGLS model assumes that normality and 
homoscedasticity criteria are met for the analysis-of-variance 
model.

The FGLS model provides an approach to estimate the 
unknown parameters in a linear regression model when either 
the error variance is not constant (heteroscedastic) or there 
is a certain degree of correlation between the residuals [15, 
16]. The FGLS method estimates are obtained from the matrix 
equation

where Ω̂ is the diagonal matrix where each matrix element is 
a suitable weight [15, 16]. The F-test from the FGLS model 
(Fig. 1i) provides an overall test and, if there are differences, 
the t-test (Fig. 1j) identifies (two by two) which of them are 
statistically significant.

When an assigned value is available, the FGLS t-test 
(Fig. 1j) may be used as a post-hoc multiple-comparisons 
test with one control to verify the null hypothesis. The lab-
oratory results xi do not differ from the assigned value xPT 
( H

0
∶ xi = xPT ) against the alternative hypothesis that they dif-

fer ( H
1
∶ xi ≠ xPT ). Failure to reject the null hypothesis (FTR 

H
0
 ) means that there are no differences between the reported 

and assigned values, thus the laboratory is classified as accept-
able. On the other hand, rejection of the null hypothesis means 
that laboratory result is classified as unacceptable.

If the assigned value is not available, the FGLS t-test 
(Fig. 1j) may be used as a pairwise (two by two) compari-
son to check the null hypothesis, namely the reported results 
by participant i do not differ from those of participant j 
( H

0
∶ xi = xj ) against the alternative hypothesis that they differ 

( H
1
∶ xi ≠ xj ). Considering m participating laboratories, if the 

results of a specific laboratory i differ from the m − 1 remain-
ing laboratories, then the null hypothesis is rejected for all 
m − 1 comparisons and its results are considered unacceptable, 
while the results will be acceptable if there is no difference.

For both cases mentioned above, the null hypothesis ( H
0
 ) 

is rejected if ||tobs|| > tn−2 where tobs = b∕s(b) and tn−2 is the 
quantile from the t-distribution with n − 2 degrees of free-
dom. The variance–covariance matrix of the parameters s2(b) 
is estimated by

where n is the number of observations and SQG is the gener-
alized sum of squares [15, 16] obtained by the matrix equa-
tion SQG = (Y − Xb)TΩ̂−1(Y − Xb).

b =
(
XΩ̂−1X

)−1

X�Ω̂−1y

s2(b) =
SQG

n − 2
⋅

(
XTΩ̂−1X

)−1

Statistical software

All statistical analyses were performed using the R statisti-
cal software, an open-source, free environment program for 
statistical computing [17]. The FGLS model was built using 
the package nlme. The confidence level of all tests was 95 %.

Materials and methods

Chemicals and reagents

The chemicals and reagents that were used were: pure ben-
zoic acid certified reference material from the National 
Institute of Standards and Technology (NIST, Gaithersburg, 
MD, USA), benzoic acid-D5 from Cambridge Isotope Labo-
ratories (Tewksbury, MA, USA), high-purity liquid-chro-
matography grade methanol and sulfuric acid from Tedia 
(Farfield, OH, USA), certified reference material of benzoic 
acid in orange juice from HSA, with a reference value of 
766 mg  kg−1 ± 52 mg  kg−1 (Outram Road, Singapore) [18].

For the flow-injection analysis with mass-spectrometry-
coupled (FIA-MS) method, stock solutions of the analyte 
(benzoic acid) were prepared in methanol at a concentration 
of approximately 2500 mg  kg−1 and stock solutions of the 
internal standard deuterated benzoic acid were prepared in 
methanol at a concentration of approximately 1500 mg  kg−1 
[18].

Preparation of the calibration standards

The FIA-MS analyses were performed in a Waters Acquity 
ultra-pure liquid chromatography I-Class system coupled 
to a Xevo TQ mass spectrometer. The system was adapted 
to the FIA by connecting the exit of the injection valve 
directly to the electrospray probe with a 50 cm PEEK tube 
with 1.59 mm of external diameter and 1.27 mm of internal 
diameter [18].

The carrier stream was composed of a 60/40 methanol/
water mixture flowing at a flow rate of 0.5 mL  min−1. The 
MS parameters were: electrospray in negative mode, capil-
lary voltage: 2.8 kV; cone voltage: 27 V; desolvation tem-
perature: 300 °C; desolvation gas flow: 650 L  h−1. The mass 
spectrometric analysis was performed in multiple reaction 
monitoring (MRM) mode for the transition 121 > 77 for the 
analyte and transition 126 > 82 for the internal standard, both 
with a collision energy of 10 eV. The injection volume was 
1.0 mL and total run time was 0.5 min [18].

PT preparation

For the participating laboratories, the concentration of ben-
zoic acid in the test item was introduced at intervals between 
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(100 and 1000) mg  L−1. The test items were prepared with 
3.1 kg of orange juice, which were transferred to a 5 L bot-
tle and a known amount of benzoic acid was weighted and 
added in this bottle. This solution was stirred at 50 °C for 
18 h. Afterwards, the solution was dispensed into a 100 mL 
amber crimp flask, so that each vial was filled with 30 mL of 
mixture. The vials were sealed and stored at (− 20 ± 3) °C. 
The refrigerator was filled 200 vials [18].

After packaging, the sample homogeneity was evaluated 
from 14 randomly selected bottles and analyzed by the FIA-
MS. The results were obtained in mg  kg−1; however, the 
laboratories participating in the PT measured their samples 
in mg  L−1, so the sample density had to be determined to 
convert the results [18].

Sample preparation

An aliquot of approximately 1 g of sample or calibration 
standard was gravimetrically blended approximately 1:1 
with D5-benzoic acid solution. An aliquot of 50 mL was 
then diluted with 1950 mL of methanol, filtered to 0.22 µm 
in a syringe filter and transferred to a 2.0 mL vial, which was 
analyzed in three injections per sub-sample. This technique 
was validated using the Health Sciences Authority (HSA) 
certified reference material (CRM) benzoic acid in orange 
juice [18].

Results and discussion

Laboratory proficiency testing

Proficiency testing with the participation of 13 food and 
beverage laboratories was carried out to verify the concen-
tration of benzoic acid in orange juice. Table 1 presents the 
measurement results for all the laboratories.

The homogeneity of the samples was evaluated from 14 
randomly selected bottles and analyzed using FIA-MS. From 
each bottle, a sub-sample of approximately 1 mL (considered 
to be sufficiently homogeneous) and homogeneity measure-
ments carried out by a reference laboratory (Table 1).

Figure 2 shows the distribution of the data mentioned 
in Table 1. The data set consists of 39 observations from 
the 3 replicates provided by the 13 participants plus the 14 
observations from the homogeneity study, making a total of 
53 observations (Fig. 2). The kernel density obtained from 
the information mentioned in Table 1 indicates that the data 
present a left skewed distribution (Fig. 2). The procedure to 
assess the performance of interlaboratory comparisons is 
based on the residual data analysis a not in the distribution 
of data. Thus, the data distribution, shown in Fig. 2, does 
not interfere with the methodology proposed in this paper 
to check the performance of laboratories.

The next step in the proficiency test was to define the 
assigned value. The assigned value xPT = 721 mg/L was 
the average value of the results obtained in the homoge-
neity study (reference laboratory). The uncertainty of the 
assigned value was calculated from the homogeneity test 

Table 1  Results reported by the laboratory participants and summa-
rized reference laboratory result

a Summarized reference laboratory measurement (homogeneity study)
b Minimum and maximum of 14 (bottles) homogeneity measures
c Mean of 14 homogeneity measures (assigned value)

Lab Concentration measurements (mg/L)

Replicate 1 Replicate 2 Replicate 3

04 125.7 125.7 125.7
27 722.8 721.1 721.4
39 830 806 782
41 529.7 527.8 529.8
44 605 599 602.6
59 593 593.5 592.7
61 802.5 798.9 800.1
63 676.3 675.5 680.2
69 733.2 711.4 711.5
77 632.1 645.7 654.4
83 723.2 722.2 717.3
88 715.9 751.8 761.1
98 711.8 714.6 712.9
Ref  laba Minimumb Meanc Maximumb

706.63 721 731.43

Fig. 2  Gaussian kernel density plot obtained from data set mentioned 
in Table 1
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data set, while also considering the sources of uncertainty 
from the analysis method.

The standard deviation for the proficiency assessment was 
�PT = 43.1 mg/L, which was calculated by a general model 
according to ISO 13528:2015. The model adopted for this 
purpose was based on the Horwitz curve which expresses 
interlaboratory precision in terms of a standard deviation of 
reproducibility [1]. For this PT scheme, the Horwitz curve 
equation was

where k is the average value from homogeneity study in mg/
kg and d is the density (d = 1.04 g/cm3).

Residuals analysis

For the proposed methodology, the PT scheme is consid-
ered as a one-way fixed effects analysis-of-variance prob-
lem where the participating and reference laboratories rep-
resent levels of a single factor. Table 1 values represent the 
information taken under factor level. From these values, the 
appropriate model may be chosen following the flowchart 
scheme described in Fig. 1.

According to the proposed methodology, the first model 
assumption which is checked is the residuals normality 
(Fig. 1a). This assumption is rejected by the Shapiro–Wilk 
test (p value of 5.2×10−5) considering a 5 % significance 
level. The second assumption is the homoscedasticity 
(Fig. 1b). The residual plot in Fig. 3a shows evidence of 
heteroscedasticity (“funnel shaped”). It is expected that the 
residuals plot will not have any kind of pattern [10, 12, 13]. 
The assumption of normality homoscedasticity is rejected by 
the Koenker–Bassett test at 5 % significance level (p value 
of 0.03).

Both assumptions of residual normality and homosce-
dasticity are not met from the data showed in Table 1. The 
proposed flowchart in Fig. 1 indicates the need to fit the 
FGLS model to the data from Table 1 (Fig. 1i). Figure 3b 
shows that the FGLS model provided a better residual pat-
tern, which is not funnel shaped. The residuals for the FGLS 
model are normal (p value of 0.93) and homoscedastic (p 
value of 0.71) considering a 5 % significance level. Thus, 
FGLS is a more appropriate model to assess the laboratory 
performance.

FGLS model versus z score

The assigned value obtained from the homogeneity study 
and the standard deviation for proficiency assessment cal-
culated by the Horwitz curve allows estimation of z score zi 
which is interpreted as follows: ||zi|| ≤ 2 the laboratory result 
is considered acceptable, ||zi|| ≥ 3 the result is considered 

�
PT

=
((

0.02
(
k ⋅ 10−6

)0.8495)
10

6

)
d

unacceptable (or action signal) and 2 < ||zi
|| < 3 is consid-

ered a ‘warning signal’ [1]. The z score and its interpretation 
are provided in Table 2. Nine laboratories were classified as 
acceptable, two as warning signals, and two as unacceptable 
(Table 2).

The residual analysis indicates that FGLS is a suitable 
model for dealing with violations of analysis of variance. 
The F-test from the FGLS (Fig. 1i) model indicates that 
there are differences between the laboratory concentrations 
(p value <  10−4) at 5 % significance level. Thus, t-test from 
FGLS model (Fig. 1j) should be used to check which labora-
tory results differ statistically from the assigned value.

From the FGLS model t-test (Fig. 1j), a p value greater 
than or equal to the pre-established significance level (5 % 

Fig. 3  Variation of the a standardized residuals with respect to the fit-
ted values for the linear model and b FGLS model
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for example) means that the laboratory measures do not dif-
fer statistically from the assigned value and their results are 
classified as acceptable. Table 2 shows that five laboratories 
were classified as acceptable (for a 5 % significance level). 
The remaining laboratories had a p value of less than 5 %, 
so these results were considered unacceptable.

One difficult issue to be addressed in multiple compari-
son tests is the potential accumulation of decision errors. 
As the number of tests increases, the probability of mak-
ing at least one type of classification error (i.e., where a 
laboratory is classified as unacceptable when, indeed, it is 
acceptable) also increases. Benjamini and Hochberg [19] 
and Benjamini–Yekutieli [20] have proposed a procedure 
to deal with this issue. There are no restrictions for Benja-
mini–Yekutieli procedure [20] so p values from the FGLS 
model are adjusted by this method (Table 2).

Table 2 shows that the FGLS model and z score provide 
the same conclusion for seven participating laboratories. 
For the rest of the participants, the conclusions were dif-
ferent. Laboratories 77, 63, 61, and 39 were classified as 
acceptable by z score and unacceptable by the FGLS model. 

Laboratories 59 and 44 were classified as a warning signal 
by the z score but the FGLS model considered the results 
unacceptable.

Methodology validation

The dataset extracted from Banzatto and Kronka [21] was 
used to validate the proposed methodology. The data have 
heteroscedastic residuals [21] and were adapted to be con-
sidered from a hypothetical proficiency test (Table 3).

The data show right skewed distribution. Through the 
Anderson–Darling test, it was concluded that the data are 
compatible with the gamma probability distribution with 
parameters shape 0.87 and rate  10−3 (p value 0.47). This fea-
ture does not influence the methodology described in Fig. 1.

In the example shown in Table 3, a proficiency testing 
was considered in which each of the 4 participants provided 
6 measurements of a given analyte. Additionally, it was 
considered that the proficiency testing provider performed 
a homogeneity study on 6 samples (Ref lab in Table 3).

Finally, the assigned value xPT = 527.17 and the standard 
deviation for the proficiency assessment �PT = 227.04 were 
obtained using algorithm A from ISO 13528:2015 [1].

Following the flowchart proposed in Fig. 1, both assump-
tions of residual normality (p value of 6.7×10−3) and homo-
scedasticity (p value of 1.2×10−3) are rejected considering a 
5 % significance level. The residual plot shows evidence of 
heteroscedasticity due “funnel shaped” (Fig. 4a).

The FGLS model provided a better residual pattern (no 
funnel shaped in Fig. 4b) and the residuals are normal (p 
value of 0.11) and homoscedastic (p value of 0.59) consider-
ing a 5 % significance level.

According to the proposed methodology, the FGLS more 
is a more suitable to assess the laboratory performance. The 
F-test (Fig. 1i) shows that there are differences between the 
laboratory’s results (p value <  10−4) at 5 % significance level. 
The t-test (Fig. 1j) indicates that all laboratory’s results dif-
fer statistically from the assigned value (p value of less 
than 0.05). Thus, all of them are considered unacceptable 
(Table 4).

To compare the proposed methodology with the perfor-
mance statistics described in the ISO 13528:2015 standard, 

Table 2  Comparison of results using the FGLS model and z score 
procedure

a p values were adjusted by the Benjamini–Yekutieli procedure

Lab z score procedure FGLS model

z score Interpretation t-value p  valuea Interpretation

04 − 13.81 Unacceptable − 231.36 3.4×10−61 Unacceptable
41 − 4.45 Unacceptable − 72.87 5.5×10−42 Unacceptable
59 − 2.97 Warning signal − 47.53 5.3×10−35 Unacceptable
44 − 2.76 Warning signal − 43.94 8.1×10−34 Unacceptable
77 − 1.79 Acceptable − 17.13 6.6×10−19 Unacceptable
63 − 1.01 Acceptable − 15.3 2.7×10−17 Unacceptable
98 − 0.18 Acceptable − 2.68 0.05 Acceptable
69 − 0.05 Acceptable − 0.4 1 Acceptable
83 − 0.002 Acceptable − 0.07 1 Acceptable
27 0.02 Acceptable 0.22 1 Acceptable
88 0.51 Acceptable 1.78 0.34 Acceptable
61 1.85 Acceptable 22.54 4.7×10−23 Unacceptable
39 1.97 Acceptable 5 6.5×10−05 Unacceptable

Table 3  Hypothetical 
proficiency testing

a Measurements by the proficiency testing provider (homogeneity study)

Lab Measurements (number of aphids)

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6

A 2370 1687 2592 2283 2910 3020
B 1282 1527 871 1025 825 920
C 173 127 132 150 129 227
D 193 71 82 62 96 44
Ref  laba 562 321 636 317 485 842
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the z score was calculated, whose assigned value and stand-
ard deviation for proficiency assessment were obtained by 
algorithm A. Two laboratories were classified as acceptable, 
one as warning signal, and one as unacceptable (Table 4).

The preliminary results discussed in this section (real and 
hypothetical proficiency testing) allow us to infer that the 
proposed methodology is more sensitive to detecting differ-
ences among participating results and assigned value when 
compared to z score.

Conclusion

A new approach is presented to assess the laboratory per-
formance of proficiency testing by interlaboratory compari-
sons based on residual analysis. This methodology considers 
aspects such as assumptions of normality and homoscedas-
ticity. It is worth mentioning that the latter assumption is 
not considered by the z score procedure describe in ISO 
13528:2015. The proposed methodology derives concepts 
from the one-way, fixed-effects analysis of variance followed 
by post-hoc multiple comparison tests.

Proficiency testing for estimating benzoic acid concentra-
tion in orange juice was conducted by National Institute of 
Metrology, Quality and Technology (INMETRO). Homo-
geneity and stability studies were performed beforehand to 
ensure that the samples that were sent to participating labo-
ratories were fit for the interlaboratory comparison. Thir-
teen food and beverage analysis laboratories participated 
in the PT study, in which their analytical competence was 
evaluated by z score, as described in ISO 13528:2015. This 
performance standard compares laboratory results against 
assigned value of xPT , which was obtained from homogene-
ity studies. The standard deviation for proficiency assess-
ment was computed by the Horwitz equation.

The proposed procedure to evaluate PT laboratory results 
followed the flowchart scheme suggested in Fig. 1. Assump-
tions of normality) and homoscedasticity (were checked and 
the FGLS model proved to be more suitable for the data 
analysis. The F-test from the FGLS model (Fig. 1i) indicated 
statistically significant differences between participating 
laboratory results and the assigned value. The t-test showed 
which of these results differed from xPT.

The FGLS model and z score provided different conclu-
sions for six participating. Four of them were classified as 
acceptable by the z score and unacceptable by the FGLS 
model. Two participating were classified as a warning signal 
by the z score and unacceptable by the FGLS model.

The z score procedure did not take into consideration 
heteroscedasticity between participating laboratories while 
the FGLS model provided tools to deal with laboratory 
heteroscedasticity. Due to z score limitations, the residual 
analysis scheme may be considered an alternative to assess 

Fig. 4  Variation of the a standardized residuals with respect to the fit-
ted values for the linear model and b FGLS model

Table 4  Comparison of results using the FGLS model and z score 
procedure

a p values were adjusted by the Benjamini–Yekutieli procedure

Lab z score procedure FGLS model

z score Interpretation t-value p  valuea Interpretation

04 8.59 Unacceptable 6.81 2.39×10−06 Unacceptable
41 2.41 Warning signal 5.41 2.72×10−05 Unacceptable
59 − 1.63 Acceptable − 5.55 2.49×10−05 Unacceptable
44 − 1.92 Acceptable − 6.65 2.39×10−06 Unacceptable



357Accreditation and Quality Assurance (2022) 27:349–357 

1 3

the performance of the participants. For this proposed meth-
odology, when an assigned value is available, it is recom-
mended to use more observations for the laboratory which 
provides the assigned value, i.e., “control treatment” ( np ), 
than for the other laboratory, i.e., “treatments” ( n ). For this 
case, the ratio np∕n should be chosen to approximately equal 
the square root of the total number of “treatments” [10].

The validation of the methodology was carried out 
through a set of data which had previously been known 
about heteroscedasticity. In general, it was observed that in 
the proposed methodology more laboratories were classified 
as unacceptable when compared to z score. This provides 
evidence that heteroscedasticity influences performance 
assessment in interlaboratory comparisons.
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