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Abstract
Data processing of microbial enumeration expressed as colony counts requires the use of specific statistical approaches due 
to the particular aspect of the analyte and the consideration of the variability related to the growth of microorganisms. A 
challenging matter in the organization of proficiency testing (PT) schemes for water microbiology is to provide representa-
tive, homogeneous and stable enough samples with the aim of assessing participants’ performance but also characterizing 
the accuracy of measurement. As a consequence, the proficiency testing design may help to make clear distinction between 
the different sources of variation and facilitate the subsequent error analysis associated with the analytical procedures of 
the participants. Besides, the statistical tools may be selected to provide explicit outcomes which enable the participants to 
interpret the data in line with other existing indicators such as those arising from validation studies or measurement uncer-
tainty procedures in the laboratory quality assurance system. In this paper, the suitability of a Poisson–Gamma hierarchical 
generalized linear model is tested in order to evaluate the interlaboratory error, the batch homogeneity and the repeatability 
error from water microbiology PT. A probabilistic approach deriving from the negative binomial distribution is proposed 
for assessing the participating laboratories performance in terms of generalized z-score.

Keywords Colony count · Proficiency testing (PT) · Negative binomial distribution · Measurement uncertainty

Introduction

In water microbiology, the mathematical modeling of uncer-
tainty components started in the early 2000s [1]. The decom-
position of the analytical procedure into different steps that 
are evaluated individually is considered as a concrete com-
ponent approach (GUM approach) for the assessment of the 
measurement uncertainty associated with water microbio-
logical determinations [2].

For the external quality control (EQC) of routine labora-
tories, a thorough design of PT (proficiency testing) schemes 
can be developed as an experimental approach. The statis-
tical distinction between the sources of variability can be 
established using traditional analysis of variance when 
laboratory analysis results follow approximately a Gaussian 
distribution [3, 4]. However, microbial enumeration in water, 
expressed as colony counts, does not follow a Gaussian 

distribution. The particulate nature of microorganisms and 
their random distribution even in perfectly mixed waters lead 
to specific statistical considerations and inexorably limit the 
enumeration precision.

In this paper, the implementation of a hierarchical gener-
alized linear model (HGLM) for fitting microbial count data 
from a PT and the reliability of the outcomes are discussed. 
A generalized z-score is proposed to assess the analytical 
performance of laboratories. It is based on a specific proba-
bilistic approach to the distribution of colony count results 
on Petri dishes.

Model of measurement uncertainty 
for water microbiological determinations

The Poisson distribution is commonly used as a basic 
statistical model for the characterization of the random 
distribution of microorganisms in a suspension [5]. If addi-
tional variability corresponding to operational uncertainty 
is detected, the over-dispersion can be expressed using the 
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model of variance from the negative binomial distribution 
such as:

where x̄ is the mean number of colonies counted and u0 is the 
over-dispersion, the relative operational standard deviation.

The first part of the variance is due to the Poisson 
process, and the rest is due to the combined effect of all 
the random over-dispersion factors [6]. Figure 1 illus-
trates the variance-to-mean ratio in different cases of 
over-dispersion.

The relative variance u2
0
 is then the most appropriate 

expression of uncertainty in water microbiology. This 
over-dispersion constant is explicitly used by microbiolo-
gists to quantify the significant components of measure-
ment errors. In a global approach of MU (measurement 
uncertainty), the relative variance is considered, as a 
whole, the combination of all the uncertainties associated 
with technical steps of the analytical procedure [7]. The 
final expression of uncertainty can be defined as follows:

where uc,rel(y) is the combined relative standard uncer-
tainty, u2

0,rel
 is the relative operational uncertainty and u2

d, rel
 

is the relative distribution uncertainty (generally Poisson 
distribution).

In a bottom-up approach of MU (GUM), the combined 
operational relative variance is obtained as the sum of 

(1)s2 = x̄ + u2
0
x̄2

(2)uc, rel(y) =

√
u2
0,rel

+ u2
d,rel

the relative variances of the technical components of the 
method [2]:

where u2
rel,M

 is the matrix component, u2
rel,F

 is the dilution 
factor component, u2

rel,V
 is the test portion volume compo-

nent, u2
rel,I

 is the incubation effects component and u2
rel,L

 is the 
uncertainty of counting component.

The use of the negative binomial distribution as a suitable 
model for over-dispersed microbial counts has been widely 
demonstrated [8, 9].

The negative binomial distribution (NB) is generalized as 
a Poisson–Gamma mixture: Poisson (λ) distribution, where 
λ follows a Gamma distribution [10, 11]. The parameters 
of the different probability distribution functions used are 
summarized in Table 1.

Experimental design and statistical model 
for water microbiology PT

The objective of the PT planning in water microbiology can 
be multiple: to assess accuracy, including trueness and preci-
sion, but also to produce estimates of uncertainty that can be 
used by the profession [12]. Furthermore, specific accredita-
tion guidelines require that samples sent to laboratories be 
homogeneous [13]. Sample stability is another parameter 
that must be sufficiently controlled to avoid any interference 
with the EQC.

(3)u2
0,rel

= u2
rel,M

+ u2
rel,F

+ u2
rel,V

+ u2
rel,I

+ u2
rel,L

Fig. 1  Graphical representation of the over-dispersion in the model 
of variance derived from the negative binomial distribution. Dividing 
both sides of formula (1) by the mean number of colonies, x̄ yields 
an equation of a line. Its slope represents the relative operational 
variance u2

0
 . The solid line corresponds to the case where no over-

dispersion is observed, u2
0
= 0 . The property of the Poisson distri-

bution is verified, and the variance is equal to the mean. The dashed 
line, the dotted line and the dash-dotted line correspond to examples 
of increasing over-dispersion. In these cases, the variance becomes 
larger than the mean due to the technical over-dispersion
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To this end, the analysis in duplicate by each participant 
of several contaminated water samples from the same batch 
in a recommended short period of time to begin processing 
the samples (24 h to 48 h depending on the analytical param-
eter) can be an optimal PT design.

One of the data analysis methods that is generally cited 
for quantitative microbiological counts in PT scheme is the 
Poisson distribution, and therefore, the evaluation interval 
may be determined using a Poisson probabilities table, based 
on the average count for participants [14].

From a technical point of view, the Poisson distribution 
can only cover the case where the only source of variability 
of the PT is the randomness of the microorganisms in the 
samples. This model does not take into account any addi-
tional dispersion due to the technical steps when implement-
ing the analysis of the test samples by participants.

Another generally recommended statistical method is the 
use of the logarithmic normal distribution including a loga-
rithmic transformation of the counts as a first step in data 
processing [15].

The use of logarithmic transformation is expected to take 
into consideration the random effect of the microorganisms 
in suspension as well as the components of additional vari-
ability. However, the use of such a transformation leads to 
expression of variance in log unit that is not always explicit 
for environmental biologists in general [16] and for water 
microbiologists in particular who often treat slightly con-
taminated samples. In addition, for test samples where low 
counts are sought and technical over-dispersion is observed, 
the logarithmic normal distribution does not always properly 
fit the low and high tail-end statistical distribution of the 
counts.

A statistical model that takes into consideration the 
over-dispersion compared to the Poisson model and is 
capable of including the random effects of the chosen PT 
design is a Poisson–Gamma hierarchical generalized lin-
ear model. The Poisson–Gamma HGLM model, applied to 

quality control in microbiology, has been first introduced 
in [17] from a mathematical perspective. An example of 
applying the model to a theoretical distribution based on 
the product of independent generalized Gamma distribu-
tions is presented in this paper. However, the advantage of 
the Poisson–Gamma HGLM model for common use in the 
statistical processing of microbiological data is plural. The 
Poisson distribution included in the model as a base distri-
bution is valid when no other component of variability is 
significant in the PT design. It corresponds to the suitable 
model necessary to characterize the PT dispersion when 
no over-dispersion is observed. (No laboratory effect, no 
sample effect and no replicate effect are detected.) The 
use of a hierarchical model is appropriate for the selected 
PT design which is based on three nested factors: disper-
sion between replicates, dispersion between samples and 
dispersion between laboratories. Besides, when significant 
in the model, the effect of each factor can be assessed 
individually by using the Gamma distribution.

For yijk, the result of the count performed on replicate k 
of sample j by the laboratory i, the following model is used:

It is assumed that conditionally to the random effects e�i , e�ij 
and eijk , �ijk follows a Poisson distribution with parameter λijk. 
It is considered that e�i , e�ij and e�ijk follow Gamma distribu-
tions with respective shape parameters 1

u2
1

,
1

u2
2

 and 1

u2
3

 and 
expected value 1:

• e�i ∼ �
(

1

u2
1

,
1

u2
1

)
 represents the effect of laboratory i,

• e�ij ∼ �
(

1

u2
2

,
1

u2
2

)
 represents the effect of sample j of labo-

ratory i, and
• eijk ∼ �

(
1

u2
3

,
1

u2
3

)
 represents the measurement error 

between the replicates k of one sample.

(4)log �ijk = � + �i + �ij + �ijk

Table 1  Parameters and parameterizations of the different probability distribution functions used

Probability distribution function P (X = x) Expectation 
E(X)

Variance 
V(X)

Skewness 
Pearson 
coefficient β1

Kurtosis Pearson 
coefficient β2

Poisson distribution P(�)
P(X = x) = e

−�
⋅

(
�x

x!

)
λ λ 1

�
3 +

1

�

Negative binomial distribution 
NB

(
�, u2

)
P(X = x) = C

x

x+
1

u
2
−1
.

(
1

1+�⋅u2

) 1

u
2

⋅

(
�⋅u2

1+�⋅u2

)
x λ � + �2 ⋅ u2 (1+2⋅�⋅u2)

2

�+�2⋅u2
3 + 6 ⋅ u

2 +
1

�+�2⋅u2

Gamma distribution � (�, �)
P(X = x) = x

�−1
⋅

�� ⋅e−�x

�(�)

�

�

�

�2
4

�
3 +

6

�

Gamma distribution 
�
(

1

u
2
,

1

u
2

)
1 u2

4 ⋅ u
2

3 + 6 ⋅ u
2

Poisson–Gamma mixture 
P

(
� ⋅ �

(
1

u
2
,

1

u
2

))
P(X = x) =

�
(
x+

1

u
2

)

x!⋅�
(

1

u
2

) ⋅

(
1

1+�⋅u2

) 1

u
2

⋅

(
�⋅u2

1+�⋅u2

)
x λ � + �2 ⋅ u2 (1+2⋅�⋅u2)

2

�+�2⋅u2
3 + 6 ⋅ u

2 +
1

�+�2⋅u2
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The assigned value of the measurand is directly obtained 
from an estimate �̂� = e𝜇 , used as a consensus value.

The scale parameters of the random variables e�i , e�ij and 
e�ijk correspond, respectively, to the dispersion induced by 
the laboratory ( u2

1
 ), the sample ( u2

2
 ) and the replicate ( u2

3
 ). 

These parameters are unequivocal for the data user as they 
are expressed in the same metric as that used for the expres-
sion of MU for microbiological determinations.

It should be noted that the use of random effects in the 
model allows the assessments of u2

1
, u2

2
 and u2

3
 to be consid-

ered as generalizable and therefore applicable to the analysis 
of a given microorganism for the profession (including other 
laboratories than participants who took part in a given PT 
for example). This property of the model allows the use of 
the assessments according to the guidelines of the French 
technical reports on the expression of MU, based on external 
quality control data, for “general information on the profes-
sion” [7, 12].

Harmonization of the MU expression 
with EQC tools

From microbiological and technical points of view, the inter-
laboratory error e�i is due to:

• the definition of the measurand based on the viability 
of the analyte: a living microorganism that is defined 
taxonomically or, in some cases, by a less precise group 
designation than taxonomic definitions (e.g., coliforms);

• the method used by the different laboratories: type, pro-
ductivity and selectivity of the culture medium used;

• the experience and competence of the operator to detect 
and select the presumptive colonies before confirmation;

• the recovery of the whole detection set used (plate, set of 
plates, membrane filtration …); and

• the nature of the samples used: microorganisms occur-
ring in many different physiological states depending on 
the matrix (disinfectant stress in chlorinated water, nutri-
ent depletion in oligotrophic waters…).

The homogeneity of the prepared batch of samples expressed 
in e�ij in the model is under control depending on:

• the nature of the microorganisms used and the tendency 
of microbial populations to form clumped distributions;

• the batch homogenization procedure when preparing test 
samples by the PT provider; and

• the ability to ensure randomness of replicate sample bot-
tle during filling from a batch of test material.

The measurement error in a laboratory e�ijk may be due to:

• a non-ideal mixing of the sample by the laboratory before 
inoculation;

• inappropriate repetition of the samples inoculations (test 
portion volume, water filtration system…);

• spatial heterogeneity of temperature during incuba-
tion (metrological control of the incubator, stacks of 
plates…).

The intensity of each parameter 
(
u2
1

)
,
(
u2
2

)
 and 

(
u2
3

)
 can be 

interpreted as indicators of PT variability in the same way 
that relative variance characterizes the operational uncer-
tainty for every standard microbiological method.

Suitability assessment of the Poisson–
Gamma HGLM by numerical simulation

A numerical simulation was used to study the Pois-
son–Gamma HGLM (hierarchical generalized linear model)  
suitability in the range of the most common situations 
encountered in routine water microbiology PT. For a fixed 
number of samples j = 2 and a fixed number of replicates 
k = 2, 2100, simulations were computed considering the fol-
lowing cases:

• number of participants (p): {20; 50; 150};
• assigned value (µ) for the number of observed colonies: 

{5; 10; 15; 20; 30; 150};
• laboratory effect ( u2

1
 ): {0.00; 0.05; 0.10; 0.15; 0.20; 0.25; 

0.40};
• sample effect ( u2

2
 ): {0.00; 0.01; 0.02; 0.05; 0.10}; and

• replicate effect ( u2
3
 ): {0.00; 0.01; 0.02; 0.05; 0.10}.

A complete factorial design including all combinations of µ, 
u2
1
, u2

2
 and u2

3
 was computed for p = 150 participants, which 

led to the first 1050 simulations. Secondly, 525 additional 
simulations were performed for each case where p = 20 and 
p = 50 participants, using the three assigned values µ = 10, 
µ = 20 and µ = 30 and all other combinations of u2

1
, u2

2
 and u2

3
.

The ratio �̂�
𝜇
 is expected to be equal to one when the out-

come of the assigned value �̂� from Poisson–Gamma HGLM 
is precisely the same as the simulation hypothesis. Similarly, 
the ratios û

2
1

u2
1

,
û2
2

u2
2

 and û
2
3

u2
3

 are expected to be equal to one for the 

laboratory effect, the between-sample effect and the replicate 
effect, respectively.

The simulation study results summarized in Table 2 
show that a statistically significant bias is detected for the 
ratio �̂�

𝜇
 , as neither the 95 % confidence interval nor the 99 % 

confidence interval includes the “reference” value of one. 
The order of magnitude of the bias was studied for differ-
ent values of u2 using a linear regression approach (see 
Fig.  2). Table 3 shows that the intercept of the linear 
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regression is not significantly different from the value of 
one. However, the slope is significantly different from the 
zero value, which shows that the larger the expression of 
u2, the greater the deviation of �̂� from the simulation 
hypothesis µ.

Although this deviation appears statistically significant, 
it can be considered quantitatively acceptable from a practi-
cal point of view, particularly with regard to the rounding 
of estimated assigned values that is generally applied when 

using the scale change from logarithmic to natural scale in 
routine microbiological PT schemes [15].

With respect to the dispersion parameters ( u2
1
 ), ( u2

2
 ) and ( u2

3
 ), 

the simulation study (Table 2) showed an unbiased estimate 
from Poisson–Gamma HGLM and a satisfactory assessment 
of the corresponding ratios.

Table 2  Simulation study 
results for the different 
parameters of the Poisson–
Gamma HGLM

Poisson–Gamma HGLM parameter/simu-
lation hypothesis parameter ratio

Median 95 % confidence interval 
of the median

99 % confidence 
interval of the 
median

�̂�

𝜇
0.9766 [0.9737; 0.9797] [0.9727; 0.9811]

û
2

1

u
2

1

1.0139 [1.0002; 1.0286] [0.9973; 1.0324]

û
2

2

u
2

2

1.0069 [0.9821; 1.0366] [0.9790; 1.0430]

û
2

3

u
2

3

1.0002 [0.9836; 1.0158] [0.9807; 1.0200]

Fig. 2  Quality of the estimate 
�̂� from the Poisson–Gamma 
HGLM depending on the u2. 
Each cross corresponds to a 
simulation point of the simula-
tion plan. In the range u2 ∈ [0; 
0.4], which corresponds to the 
most common over-dispersion 
range, the minimum devia-
tion is about 0.2 %, when no 
over-dispersion is detected 
(u2 = 0.0000). The maximum 
deviation from the simula-
tion hypothesis is observed for 
u2 = 0.4000 with a correspond-
ing value of 4.4 %

Table 3  Linear regression 
coefficients and confidence 
intervals for the quality of the 
estimate �̂�

Linear regression coef-
ficient

95 % confidence interval 99 % confidence interval

Slope − 0.1043 [− 0.1270; − 0.0815] [− 0.1341; − 0.0744]
Intercept 0.9977 [0.9915; 1.0039] [0.9896; 1.0058]
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Laboratory performance evaluation 
and scoring

The bias assessment for each laboratory participating in a PT is 
generally expressed in terms of z-score. Applied to the specific 
discrete distribution of microbial counts, the standardized posi-
tion of each laboratory result can be derived from the quantiles 
of the negative binomial probability distribution.

Us ing  t he  fo l lowing  re -pa ramete r i za t ion : 
� �

(
�, u2

)
= � ⋅ �

(
1

u2
,
1

u2

)

Assume a PT including p laboratories that perform n 
repeated measurements for q samples. (yijk is the result of the 
count performed on replicate k of sample j by the laboratory i.)

Following the Gamma distribution properties, the distribu-
tion of the sums of the n repeated measurements per sample in 
one laboratory can be written as follows:

Similarly, for the sums of the n repeated measurements 
obtained for the q samples in one laboratory:

The implementation of the near-exact distribution for the 
product of independent generalized Gamma random varia-
bles [17] may be applied to the sum of counts. From a 

(5)

n∑
k=1

yijk ∼ P

(
n ⋅ � ⋅ � �

(
1,

u2
3

n

)
⋅ � �

(
1, u2

2

)
⋅ � �

(
1, u2

1

))

(6)
q�
j=1

n�
k=1

yijk ≈ P

⎛⎜⎜⎝
n ⋅ q ⋅ � ⋅ � �

⎛⎜⎜⎝
1,

u2
3

n
+ u2

2

q

⎞⎟⎟⎠
⋅ � �

�
1, u2

1

�⎞⎟⎟⎠

practical point of view, the approximation error induced in 
Eq. 6 (product of two Gamma distributions considered as a 
Gamma distribution) does not represent more than 0.02 in 
terms of cumulative probability derived from the distribu-
tion function for the sum 

∑q

j=1

∑n

k=1
yijk.Then, the total num-

ber of colonies observed by one laboratory approximately 
follows a NB distribution:

We defined the generalized z-score as the normalized posi-
tion of the sum of the counts of each laboratory, based on 
the corresponding cumulative probability of the NB distribu-
tion. As the NB cumulative distribution function provides 
the probability related to the sum of the counts of each labo-
ratory, each calculated probability can finally be transformed 
into a standard normal distribution probability used to derive 
the generalized z-score (see Fig. 3). The generalized z-score 
can be interpreted conventionally using the limits of ± 2.0 
and ± 3.0 as a warning and action signal, respectively.

Table 4 provides an example of generalized z-score cal-
culation for a data set on aerobic flora culturable at 36 °C of 
routine PT on indicator germs in bacteriologically controlled 
waters. This type of external quality assessment is intended 
for hospital and environmental laboratories that use an enu-
meration method of counting all the colonies present after 
filtering a volume of 100 ml on a 0.45-µm pore size mem-
brane and depositing the filter on a non-selective culture 
medium such as “Plate Count Agar—PCA.” For this PT, 
taking into account the assigned value (λ = 58.43) and the 

(7)
q∑
j=1

n∑
k=1

yijk ≈ NB

(
n ⋅ q ⋅ �,

u2
3

n ⋅ q
+

u2
2

q
+ u2

1

)

Fig. 3  Calculation example of generalized z-score derivation using 
NB distribution. For a total number of 249 colonies observed by the 
laboratory code 26 (dashed circle) in Table  4, the corresponding 
probability from the NB distribution is 0.61 (a). The vertical and hori-

zontal arrow dashed line corresponds to the probability “shift” from 
the NB distribution toward the standard normal distribution. The gen-
eralized z-score (solid circle) calculated for the given laboratory is 
then + 0.29 (b)
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estimated dispersion parameters 
(
u2
1

)
,
(
u2
2

)
 and 

(
u2
3

)
 , a recom-

mendation of performance to be monitored due to a possible 
underestimation of the bacterial load would be referred to 
laboratories coded 3 and 22 whose results appear statistically 
questionable (generalized z-score < −2).

Conclusion

The statistical model tested, based on the methodological 
principles of microbial enumeration in terms of distribu-
tion of microorganisms in suspension and extra-analytical 

variations observed in PT, showed satisfactory performance 
with regard to the reliability of the estimation of the various 
parameters.

The model provides estimates of parameters that are 
directly usable to express the measurement uncertainty, 
under interlaboratory conditions, for the needs of the pro-
fession. This uncertainty, capitalized on successive PTs, can 
be used by health authorities who would like to evaluate 
the maximum variability around a result of analysis of a 
regulatory microbiological parameter. The expression of the 
estimated parameters u2 can also be considered as concrete 
EQC indicators in relation to method characterization and 
measurement uncertainty ISO standards.

Table 4  Generalized z-score calculated for a data set obtained for culturable microorganisms at 36 °C by membrane filtration method

Sample 1 Sample 2
Laboratory

code
Replicate 

1 
Replicate 

2 
Replicate 

1 
Replicate 

2 
Sum of 
counts

Corresponding
cumulative 

probability

Generalized 
z-score

1 51 58 67 71 247 0.6000 +0.25
2 68 62 52 57 239 0.5466 +0.12
3 33 31 31 39 134 0.0209 -2.04
4 52 54 49 47 202 0.2896 -0.55
5 86 83 88 95 352 0.9662 +1.83
6 61 65 75 64 265 0.7089 +0.55
7 53 56 64 53 226 0.4559 -0.11
8 82 78 68 79 307 0.8841 +1.20
9 65 70 62 55 252 0.6320 +0.34
10 59 66 50 56 231 0.4912 -0.02
11 61 59 48 49 217 0.3923 -0.27
12 66 64 73 62 265 0.7089 +0.55
13 54 41 37 38 170 0.1145 -1.20
14 39 46 40 26 151 0.0519 -1.63
15 70 72 62 60 264 0.7033 +0.53
16 67 71 61 69 268 0.7252 +0.60
17 51 69 54 63 237 0.5329 +0.08
18 58 57 50 53 218 0.3993 -0.26
19 78 74 60 60 272 0.7460 +0.66
20 61 58 51 56 226 0.4559 -0.11
21 43 53 45 52 193 0.2328 -0.73
22 27 28 25 30 110 0.0037 -2.68
23 55 45 62 57 219 0.4064 -0.24
24 91 80 75 79 325 0.9272 +1.45
25 55 57 45 42 199 0.2701 -0.61
26 65 55 62 67 249 0.6130 +0.29
27 52 67 50 55 224 0.4418 -0.15

The PT was conducted with the following design: n = 2, q = 2 and p = 27
The following parameters were obtained from the HGLM model: λ = 58.43, u2

1
= 0.0368, u

2

2
= 0.0036 and u2

3
= 0.0000

The sum of the n·q colony counts of the participants follows a NB distribution of estimated parameters: n ⋅ q ⋅ � = 233.72 and 
u
2

3

n⋅q

+

u
2

2

q

+ u
2

1
= 0.0386

The NB cumulative distribution function provides the probability related to the sum of the counts from each laboratory code. The generalized 
z-score is derived as detailed in Fig. 3. The generalized z-score for questionable results is highlighted in bold text
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The derivation of a generalized z-score from correspond-
ing NB probability distribution gives the advantage of rely-
ing on dispersion which reflects the colony growth of bac-
teria while at the same time using common interpretation of 
the laboratory performance. The approach could make the 
bias estimate more reliable, especially in the detection of a 
significant underestimation or overestimation of the bacte-
rial load.
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