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Abstract Combined uncertainty modelling in a concen-

tration range is an important task for laboratories. Despite

several models and regression methods reported, unsolved

problems remain, including variability and type of distri-

bution of combined uncertainty estimations and the

influence of these on modelling. Intralaboratory data of

eight trace elements in natural waters by flame atomic

absorption spectrometry and interlaboratory data from

some ISO standards were used as an experimental basis.

Starting from these and applying the bootstrap technique,

high relative variability of combined uncertainty estima-

tions (second-order uncertainty) was found, but normal

distributions or distributions with small deviations from

normality were encountered. Linear and/or variance mod-

els are appropriate for modelling the analyzed data when

ordinary weighted least-squares or repeat median robust

regression methods are applied. The influences of com-

bined uncertainty variability on modelling and the effect of

points that do not follow the general trend of the remaining

points are discussed. Some other guidelines are offered.

Keywords Uncertainty modelling �
Standard deviation modelling � Second-order uncertainty �
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Introduction

The concept of uncertainty already has a profound influ-

ence on many aspects of analytical chemistry, both

practically and theoretically. Nowadays it is involved in

validation [1], sampling [2], results reporting [3], specifi-

cation limits [4], and many other concepts and usual

laboratory activities. Several normative documents con-

cerning uncertainty and ways to estimate it have been

published [5–8]. Once the methodology is selected, it is

usual to estimate the uncertainty at different concentration

levels. These concentration levels are generally those

selected to study precision and bias during the validation of

the analytical procedure.

However, when an analytical procedure is used in

routine tasks, it is required to estimate uncertainties at

concentrations not studied during validation. To solve this,

a mathematical model is used in order to make predictions

at any concentration included in the application range of

the procedure. This mathematical relationship should be as

simple as possible, taking into account the supposed causal

nexus between concentration and combined uncertainty

(uc). In addition, it is indispensable to apply an adequate

method to estimate the regression coefficients of this

mathematical relationship. Usually, this is performed by

means of a numerical regression method, which should be

as simple as possible, for practical reasons.

The number of selected concentrations that are to be

used during the validation should be related to the valid

concentration range of the analytical procedure. Generally

this number is low, for economic and practical reasons.

This imposes additional limitations on the modelling

process because it is necessary to take decisions on the

basis of limited information. Another problem faced by

the analyst during the modelling process is the presence of
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experimental values of combined uncertainty that do not

follow the general tendency given by the causal nexus

previously assumed between combined uncertainty and

concentration.

Models for precision in a concentration range

Because of the practical importance of modelling precision

estimators as a function of concentration, several models

have been discussed in the literature. The models are pre-

sented in Table 1.

Zitter and God [9] proposed the linear model (Eq. 1)

and the variance model (Eq. 6) where r0 is interpreted as

the standard deviation at null concentration and H is the

rate of change of standard deviation, r, with concentration.

Thompson [10] used these models to investigate the rela-

tionship of the standard deviation, within batch

determination, with concentration for 25 elements in about

700 geochemical materials. He studied ordinary and

weighted linear squares as regression methods for Eq. 1.

As a basis for weighting, he found that the dispersion of the

standard deviation increases as standard deviation increa-

ses. He pointed out that the weighted regression represents

very well data for nearly all the analytes. The variance

model was processed by means of an iterative non-linear

weighted numerical method. No additional information is

offered concerning this method, but the author established

its complexity. However, similar results were obtained in

comparison with the weighted linear regression method of

Eq. 1.

In addition to the linear with intercept model, the ISO

5725 standard [11] also pointed out other alternatives. One

of these is the linear without intercept (Eq. 2) and the other

is the linear transformation of the exponential relationships

expressed by Eq. 3. It is difficult to ascribe analytical

meaning to the lack of intercepts of these models, because

it is very well known that standard deviation is not null at

zero concentration. However, they can be used far from the

detection limit. The same characteristics should be ascribed

to the models from the Horwitz’s Curve [12] (Eq. 4), and

to Hughes and Hurley’s proposal [13] (Eq. 5). The lack of

intercept makes these models non-valid for use in a con-

centration range that starts near the detection limit.

Rocke and Lorenzato [14] proposed a model (Eq. 7)

based on the physical characteristics of the measurement

process. They assumed that measurement variability is

approximately constant at low concentrations, but changes

in a continuous mathematical manner to a relationship in

which measurement variability increases as concentration

increases. The two-component model of Rocke and Lo-

renzato is supported on the basis of combination of additive

and multiplicative errors, an old idea presented in the lit-

erature. They used the maximum likelihood principle for

regression, something that is not justified on the basis of

differences in the variabilities of standard deviation and

concentration. Additionally, it involves some numerical

complexity which is not appropriate for routine practice.

So, this model is not going to be considered in this work.

Models for uncertainty in a concentration range

In principle, all the functional relationships presented in

Table 1 can be used to predict uncertainties in a concen-

tration range, because generally the main component of

combined uncertainty is the imprecision of measurements.

In that sense, the Eurachem/CITAC guide on uncertainty

has established a model for documenting uc which depends

on analytical level [6].

uc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
0 þ S2

1w2
B

q

ð8Þ

In this expression wB is the mass fraction or another

quantity used to express chemical measurement results of a

component B. Three possible cases are pointed out:

1. uncertainty not dependent on analytical level,

(S0 dominant);

2. uncertainty entirely dependent on analytical level,

(S1 dominant); and

3. intermediate dependence (neither S0 nor S1 dominant).

The general form of the graphical representation of

Eq. 8 shows curvature towards the combined uncertainty

axis at very low concentrations and straight behavior at

higher concentrations, in a linear scale on both axes. This

equation is essentially the variance model. The values of S0
2

and S1
2 can be estimated by ordinary least-squares regres-

sion (OLS) of uc
2 versus wB

2 .

Another way to estimate the coefficients of Eq. 8 is the

use of an iterative non-linear regression starting from

appropriate initial values of both coefficients. In that sense

Table 1 Proposed models for standard deviation as a function of

concentration

Model Function Equation

Linear with intercept r ¼ r0 þHwB 1

Linear without intercept r ¼ HwB 2

Exponential 1 r ¼ qwp
bðp\1Þ 3

Exponential 2 r ¼ 0:02w0:8495
B 4

Exponential 3 r ¼ Kw0:5
B 5

Variance r2 ¼ r2
0 þH2w2

B 6

Two-component r ¼ aþ bwBeg 7

wB mass fraction or another quantity used to express chemical mea-

surement results; r0,H, p, q, K, a, b, g are regression coefficients
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Heydorn and Anglov [15] developed a novel approach to

calculate coefficients of Eq. 8 to model calibration uncer-

tainty. They transformed Eq. 8 by means of logarithms and

applied non-linear regression using the Solver utility of

Microsoft Excel spreadsheet to the expression:

ln ucð Þ ¼ 0:5 ln S2
0 þ S2

1w2
B

� �

: ð9Þ

The approach was tested for the determination of Pb by

ICP-AES, demonstrating statistical control of analytical

results and absence of bias. They took into account

uncertainties of the measurements. The authors pointed

out that the logarithmic transformation makes the variances

of uc homoscedastic.

On the basis of a vectorial combination of independent

uncertainties at low and high concentration levels, Thom-

son and Wood [16] proposed a function with the form:

uc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wDL=2ð Þ2þA2w2
B

q

: ð10Þ

In this expression, wDL is the concentration at the

detection limit and A is a constant of proportionality, the

main factor which determines uc at high concentrations.

The authors called such a function an ‘‘uncertainty

function’’, the algebraic relationship describing how

uncertainty of measurement varies with the concentration

of the analyte in respect of a specific analytical procedure

applied to a certain class of material. The same authors

defined ‘‘characteristic function’’ as an uncertainty function

that describes performance (referring to the results

obtained by a specific analytical procedure in particular

circumstances). Evidently, this latter model is essentially

Eq. 6, also. The coefficients of Eq. 10 can be estimated

from intralaboratory validation results (precision

estimators, bias estimation, and detection limit). In that

sense, wDL is obtained from the estimated detection limit

and coefficient A is estimated from an empirical

relationship between the repeatability and reproducibility

standard deviations (rr/rR & 0.5), the last of which derived

from the Horwitz0s function [12]. When results of

reproducibility at different concentrations from

collaborative trials are available the coefficients can be

estimated by regression.

Some of the discussed models are inappropriate for

concentration ranges starting near the detection limit

because of the lack of an intercept (Eq. 2–5). The regres-

sion with others is mathematically complex and not so

appropriate for routine tasks (Eq. 6 with the mentioned

iterative method and Eq. 7 applying the maximum likeli-

hood principle for regression).

On the basis of professional judgment and from previous

experience [15], it is known that the variability of uc

increases with its value. It is, then, attractive to provide a

different experimental support of this assertion in order to

quantify how large in relative terms is this variability and

to determine if the statistical distribution of combined

uncertainty is normal or not. These characteristics have an

important influence on the modelling of uc by means of

regression along a concentration range. Additionally, it

could be useful to employ not previously reported tools and

resources for regression of uc on wB. Furthermore, the

analyst needs guidelines to handle cases that could be

presented in practical situations during modelling, such as a

low number of experimental values of combined uncer-

tainty and cases where there are points that do not follow

the general tendency shown by the other points.

The main goals of this work are:

1. to estimate, starting from an experimental basis, the

relative variability of combined uncertainty at different

levels of concentration, i.e., second-order uncertainty;

2. to draw conclusions about the type of distribution of uc

in the studied data;

3. to give an idea about the influence of these consider-

ations on modelling; and

4. to establish some guidelines in order to find appropri-

ate regression methods and models to describe the

behaviour of uc with concentration, making use of

some additional tools not employed previously.

For such purposes, inter and intralaboratory data starting

near the detection limit are used.

Materials and methods

Intralaboratory results

Validation data from determinations of traces of Cd, Co,

Cr, Cu, Fe, Mn, Pb, and Zn in natural waters by flame

atomic absorption spectrometry (FAAS) were used. The

procedures were written as standard operating procedures

starting from a series of internationally recognized stan-

dards [17]. Precision and bias were simultaneously

characterized by means of the same experiment. A fully

nested experimental design with three factors (days, ana-

lyst, and repeatability in the order of nesting) and ANOVA

model II were applied to decompose the total variance in

its components. So, standard deviations of intermediate

precision time different (sT), analyst different (sA) and

standard deviation of repeatability (sr) were obtained for

three levels of concentration. From these, the standard

deviation of intermediate precision time–analyst different

was obtained (sI(TA)) [18]. The principal uncertainty sour-

ces of sI(TA) are the uncertainty due to the analytical signal

and the calibration process. But some other sources, for

example aliquots and dilutions of synthetic ‘‘samples’’ to a

fixed volume are also included. For example, uncertainties
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due to these sources represent up to 8.8% of sI(TA), calcu-

lated according to Ref. [6]. So, the analytical procedure is

simple, but the uncertainty budget includes some sources of

uncertainty, not only uncertainty due to calibration. The

concentration levels of synthetic ‘‘samples’’ were 0.05, 0.5,

and 1.0 mg l-1 for Cd and Zn and 0.25, 1.5, and 4.0 mg l-1

for the rest of the elements. These concentrations were

prepared from laboratory primary standards of high purity

metals (Johnson–Matthey, UK), using calibrated glassware

and a calibrated analytical balance. Uncertainties of stan-

dard concentrations were estimated using the Eurachem/

CITAC approach [6] and a Microsoft Excel template rou-

tinely used in the laboratory for such purposes. Calibrations

were performed starting from primary standards different

from those used for synthetic ‘‘samples’’.

Calibration curves and blank tests were prepared and

measured independently by each analyst on each day. A

Philips PU 9100 FAAS was used with instrumental con-

ditions optimized for highest sensitivity. Calibrations were

performed with the Barnett’s algorithm to correct curvature

[19]. The concentrations of the blank assays were calcu-

lated for each element and the intermediate precision time-

analyst different was also obtained by means of ANOVA.

This standard deviation was considered as the combined

uncertainty for the blank concentration.

The bias was tested from recoveries according to Bar-

wick and Ellison [20]. Finally, an estimate of uncertainty

was obtained for each concentration level, by combining

the uncertainty due to the experiment to evaluate the bias

and the intermediate precision time-analyst different

according to Moroto and co-workers [21]. This additional

uncertainty source is included in the uncertainty budget.

All the above calculations were performed with Microsoft

Excel. These combined uncertainties should be considered

as more complete at the highest organizational level within

our laboratory. Additionally, this is the starting point to

estimate the combined uncertainty for the interlaboratory

organizational level [8].

In order to estimate the confidence intervals for uncer-

tainty associated with the concentration level it is necessary

to perform repetitions of the fully nested design. This is

impractical and to overcome this difficulty the bootstrap

technique was used [22, 23]. The replicate of the design

was generated taking samples at random with replacement

from the experimental absorbances of the reference solu-

tions obtained by each analyst on each day. This sampling

ensures that repeatability is the unique source of variability

included in each sample. The concentrations were calcu-

lated using the selected absorbances and the corresponding

calibration curve. An estimate of uc for each replicate of

the design was obtained in a similar way as experimental

data. The 95% confidence interval for combined uncer-

tainty was calculated according to:

2uc � P0:975� uc� 2uc þ P0:025 ð11Þ

where uc is the experimental combined uncertainty asso-

ciated with the level of concentration, P0.975 and P0.025 are

the 97.5 and 2.5% percentiles, respectively, of the 2000

simulated values of uc. This resource can be considered as

a type B evaluation of an uncertainty of a estimated

combined uncertainty.

In the case of the concentration of the blank assay the

above procedure is applied but only the confidence interval

for the precision time-analyst different is considered. All

the calculations for simulations were performed with a

program expressly written in MatLab [24].

Interlaboratory results

Numerical examples of results of two interlaboratory

studies reported in different parts of ISO 5725 [18, 25]

were selected. The fully nested [25] or the staggered-nested

[18] designs were used to obtain estimates of precision at

several concentration levels. In one of the examples [25]

the combined uncertainty was the combination of the

reproducibility standard deviation and uncertainty of bias

estimation, but this latter component was negligible due to

the experimental design used and the number of laborato-

ries involved. In the other example [18], only the

reproducibility standard deviation was considered for uc. In

both cases the confidence intervals for uc were calculated

with MatLab [24] taking samples at random with replace-

ment from the concentration reported by each laboratory by

means of the bootstrap technique. Equation 11 was used

for 2000 replicates of the design.

Others results of interlaboratory studies were also used

[26]. Unfortunately, only the final estimates of the standard

deviation of the reproducibility were reported and the

confidence interval could not be calculated because of the

impossibility of obtaining replicates of the design. This

example is exactly what the analyst usually has at hand,

when no confidence intervals of uc are available.

Results and discussion

Results of simulations

For the intralaboratory results, the 95% confidence inter-

vals calculated from Eq. 11 show that the estimates of

combined uncertainty obtained have a high relative vari-

ability. This variability, expressed in percent as confident

interval over experimental uc, resulted about 22–65% for

the blank assay with a mean and median values of 43 and

48%, respectively. For the concentration levels the relative

variability was about 11–47% with a mean and median
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values of 27 and 26%, respectively. The difference

between the mean of the 2000 simulations and the exper-

imental value of uc associated with the level of

concentration or blank assay is the bias of the bootstrap.

This bias was less than 2% relative in all cases.

The distributions of simulated combined uncertainties

by means of the bootstrap were studied using Statgraphics

Plus for Windows [27]. A confidence level of a = 0.05 was

selected for the statistical tests. The frequency histogram,

quartile plot, normal probability plot, Kolmogorov-Smir-

nov, Kuiper V, Anderson-Darling A2 and some other

goodness-of-fit tests suggest that the results of the simu-

lations of the intralaboratory estimated values of uc are

normally distributed in about 2/3 of the cases. In the

remaining 1/3 the data are not normal. However, the

symmetry plots show that the majority of distributions are

only slightly asymmetric (negative skewed). For blank

assays, the results of simulated combined uncertainty fol-

low a clear non-normal distribution in 2/3 of the cases (of

Pb, Zn, Cd, Co, and Cr, the last three showed great devi-

ation from normality).

For interlaboratory results, the 95% confidence intervals

for uc are also wide. The bias of the bootstrap was less than

1% relative in all cases. The results of combined uncer-

tainty showed a high variability, also. This variability,

expressed in the same way as in the intralaboratory cases,

was from 16 to 49% with a mean and median values of 27

and 23%, respectively. About a half of the groups of

simulated combined uncertainties can be assumed to be

normally distributed, but the majority of them were slightly

asymmetric (negative skewed). Only one resulted some-

what positive skewed. The results of the bootstrap can be

consulted in the Electronic Supplemental Material.

Intralaboratory results

Statistical evidence of bias for all the elements during the

validation process was not found. A linear tendency of the

estimated value of uc with concentration is observed for all

the elements considered in the intralaboratory validation.

The plots of uc at the respective concentration levels of Cr

and Cu shown in Fig. 1 are typical examples. The plots

also contain the confidence intervals represented by a short

bar below and above the particular value of uc. Because, in

practice, it is frequent that samples have analyte concen-

tration between detection limit and the bottom end of the

mass concentration range considered in the validation, the

blanks were included in the plot in order to give an idea of

the behaviour of uc below this bottom end.

As starting point, the OLS regression was used to esti-

mate the coefficients of Eqs. 1 and 8 to model the

behaviour of uc with concentration. The values of the

combined uncertainty for blanks are also included in the fit.

In Fig. 1a, c the solid (Eq. 1) and broken (Eq. 8) lines are

the fitting results of both models to the data.

Equation 1 with the OLS fit represents well the data for

the mass concentration range considered in the validation.

The regression line passes inside all the confidence inter-

vals of uc which represents a criterion on statistical basis.

The value of the intercept r0 is a good estimation of the

experimental value of combined uncertainty for the blank

assay. Extrapolations at concentrations lower than the

concentration range considered in the validation can be

made because the behaviour of uc with concentration can

be assumed to be linear. The same was observed for the

rest of the elements, which are detailed in the Electronic

Supplemental Material.

Equation 8 with the OLS fit also represents well the data

for both elements in the mass concentration range of val-

idation. The regression curves pass through all the

confidence intervals of uc. For Cr, the value of S0 can be

considered a good estimation of the experimental com-

bined uncertainty for the blank assay. In the case of Cu, the

predicted value of uc for the blank is greater than expected

taking into account the variability of the experimental

value. Extrapolations with Eq. 8 at concentrations lower

than the first level of concentration could be made for Cr,

but is not recommended for Cu because there is a tendency

to overestimate uc.

For all the elements between the respective first and

third concentration levels, there are no significant dif-

ferences between the fits with Eq. 1 and 8, and both can

be used without distinction to make predictions of uc. It

was found in this work that when the first concentration

level is approximately greater than 3.5 times the detec-

tion limit (Cu, Co, and Mn) the extrapolations with Eq. 8

at concentrations lower than this level tend to overesti-

mate uc.

With respect to Eq. 9, the procedure indicated by

Thompson and Wood [16] to obtain coefficient A2 from

validation results cannot be applied. In that sense, it is

necessary to have precision estimates expressed as relative

standard deviation (RSD) at concentrations at least 50

times the detection limit. This requirement is only fulfilled

for the second and third concentration levels of Mn and Cu.

For those elements, there is a little difference between the

OLS estimates of the coefficients and the estimates from

the procedure proposed in reference [16].

As observed from confidence intervals in Fig. 1, the

absolute variability in uc increases with the value of uc.

This suggests the use of weighted least-squares regression

(WLS) instead of OLS to estimate the coefficients of Eq. 1

and 8. Considering the results mentioned above and the

fact that, in practice, only an estimated point of uc is

obtained per concentration, the inverse of the square value

of uc, i.e. 1/uc
2, is used as weighting factor.
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For all the elements, the estimation of the coefficients of

Eq. 1 by WLS regression does not yield considerable dif-

ferences from those estimated by OLS regression. The

results are very similar (Table 2) and are also very similar

to the predicted values of combined uncertainty.

In the case of Eq. 8, the use of the WLS regression

yields differences with respect to OLS only for Cd, Co, Cu,

and Mn. A better estimation of the experimental combined

uncertainty of the blank assay for these elements is

obtained. An example can be seen for Cu in Fig. 1c (dotted

line). However, the predictions of uc near the first con-

centration level tend to be lower than expected despite the

high weight assigned to this level in the regression. For Cr

no noticeable difference between OLS and WLS is

observed.

A possible inconvenience in estimation of the coeffi-

cients of Eq. 8 by linear WLS regression is the previous

transformation of the data indicated in Ref. [6], that is, to

square both members of Eq. 8 prior to regression. Taking

this into account, the coefficients S0
2 and S1

2 are also esti-

mated by two different ways. One is the nonlinear weighted

regression (NLW) using the same weighting factor (1/uc
2) in

which no previous transformation of the data is needed.

The other is nonlinear regression of the logarithmic trans-

formation (NLLT) by mean of Eq. 9 suggested by Heydorn

and Anglov [15], in which no weights are assigned. In both

cases the Solver utility of Microsoft Excel spreadsheet was

used. As starting values for the coefficients, those obtained

by the WLS regression were taken, as indicated in

Ref. [15].

The results of the NLLT, NLW, and WLS are presented

in Fig. 1b, d by mean of the solid, broken, and dotted lines,

respectively. For Cr there are no differences between the

regression methods and for Cu the differences that appear

in the plot can be considered as not remarkable. For the rest

of elements similar behaviour was observed. Compared

with WLS, the use of the two nonlinear regressions does

not yield an improvement for Cu because the problem
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Fig. 1 Estimated values of uc

and their 95% confidence

intervals at different levels of

mass concentration (c) of Cr and

Cu. In a and c solid lines
represent the OLS fit of Eq. 1,

broken and dotted lines
represent, respectively, the OLS

and WLS fit of Eq. 8 to the data.

In b and d the solid, broken, and

dotted lines represent,

respectively, the NLLT, WLS,

and NLW fit of Eq. 8 to the data
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concerned with the predictions of uc near the first con-

centration level is still present. The same was observed for

Cd, Co, and Mn. From all the above results, it is concluded

that for our intralaboratory results the transformation

indicated in Ref. [6] has no influence on estimation of the

coefficients of Eq. 8. Moreover, Heydorn and Anglov [15]

pointed out that transformation of data using Eq. 9 results

in homogeneous variances and it is not necessary to use a

weighting factor when nonlinear regression is applied.

Figure 2 is a plot of the logarithmic transformation of uc

for Cr and Cu.

It is evident from Fig. 2 that the logarithmic transfor-

mation does not make the variability of uc constant. This

was statistically shown by means of the Cochran’s test. The

differences between confidence intervals are not so mani-

fest as in Fig. 1 but are still present. To investigate this in a

deeper way, the logarithmic transformation was applied to

the result of the bootstrap technique for all elements. The

variances of the new transformed data [ln(uc)] were sta-

tistically compared and in all the cases the variances were

statistically different. This transformation with the aim of

variance stabilization could be useful only if the relative

second-order combined uncertainty is constant. However,

compared with the variances of the non-transformed data,

the logarithmic transformation makes the differences

smaller but it does not eliminate them. In our cases, the

coincidence in the results of NLW and NLLT could be

explained by the fact that in the NLLT the starting values

of the coefficients were taken from WLS regression.

The problem of unequal variability associated with the

dependent variable uc justified the use of WLS instead of

OLS. In the case of Eq. 1 for all elements and for Eq. 8

with the exception of Cd, Co, Cu, and Mn, there are no

noticeable differences between the estimated values of the

coefficients obtained with both regression methods. So,

which of the regression methods should be selected? If

WLS and OLS are compared, in the former the confidence

intervals for coefficients are smaller and the confidence

intervals for prediction are more realistic [28]. In practice,

the main interest is to make point predictions of uc in a

defined concentration range and not to obtain a confidence

interval of the predictions (second-order uncertainty).

Taking this into account, the OLS regression can be

selected to estimate the coefficients of both models despite

the unequal variability observed in the values of uc used in

the modelling process.

Table 2 Estimated values of r0 (upper) and H (lower) for Eq. 1

obtained from OLS, WLS, and RMM

Element OLS WLS RMM

Cd 0.00353 0.00351 0.00353

0.02201 0.02178 0.02220

Co 0.01646 0.01577 0.01536

0.02201 0.02244 0.02225

Cr 0.02181 0.02224 0.02214

0.01723 0.01656 0.01723

Cu 0.00698 0.00564 0.00580

0.01410 0.01523 0.01443

Fe 0.03390 0.03512 0.03546

0.02033 0.01899 0.02036

Mn 0.01018 0.00753 0.01157

0.02023 0.02259 0.01977

Pb 0.04771 0.04777 0.04772

0.00726 0.00717 0.00725

Zn 0.00459 0.00482 0.00486

0.02434 0.02354 0.02258

r0 is expressed in mg l-1, H has no units
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Fig. 2 Natural logarithm of the

estimated values of uc and their

confidence intervals as a

function of natural logarithm of

mass concentration for Cr and

Cu. The solid line in the figure

is the result of non-linear fit [15]

of Eq. 9 to the data
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The OLS and WLS regression methods have one char-

acteristic in common: they are very sensitive to the

presence of outliers. That is, both regressions methods are

not robust. This means that outlier data can have a large

influence on the values of the estimated coefficients and, of

course, in the predicted values of the dependent variable.

The fact that in Fig. 1a both regression curves (OLS and

WLS with Eq. 8) can be considered similar is because there

is no an experimental value of uc out of the general ten-

dency described by Eq. 8.

Several robust regression methods have been developed.

Gao and co-workers [29] applied the iterative least-square

linear regression with the linear model (Eq. 1) to precision

data from trace element determinations in soil and water

deposit certified reference materials. However, the

numerical technique is complex and difficult to implement

in routine tasks. Other single robust regression methods

have been proposed [30]. The repeat median method

(RMM) proposed by Siegel [31] is very resistant to outliers

and easy to implement, for example, in a Microsoft Excel

spreadsheet. Compared with OLS and WLS regressions the

application of a RMM to Eq. 1 does not yield appreciable

changes in the estimated values of coefficients as can be

observed in Table 2. This is because the experimental

behaviour of uc with concentration is in concordance with

the relationship expressed by mean of Eq. 1 and none of

the values of uc can be considered far from that general

tendency.

The RMM can also be applied to Eq. 8. For this, the

method is applied to the linear model that results from uc
2

versus the square of concentration. In this case, it produces

noticeable changes in the estimated values of the coeffi-

cient, mainly in S0
2, only for Co, Cu, and Mn. These

changes are appreciable only with respect to WLS regres-

sion as can be seen in Fig. 3 for Co and Cu. The behaviour

of uc with concentration between the blank and the first

concentration level can not be assumed according to the

functional relationship established by Eq. 8 for low con-

centrations. In other words, the S0
2 coefficient cannot be

assumed as dominant in the relationship. The RMM does

not take into account the blank values of uc for Cu, Co, and

Mn during the respective regressions. It does not mean that

such values of uc are considered as outliers. To confirm if a

suspicious point is an outlier, it is necessary to perform a

specific statistical test with robust regressions [30]. How-

ever, the statistical test did not indicate these blanks as

outliers. For Cd, Co, Cu, and Mn, the application of WLS

in order to estimate the coefficients of Eq. 8 is not rec-

ommended because a high weight is assigned to an

experimental value that does not follow the tendency

described by the model. The RMM solves the problem of

the predictions of uc near the first concentration level

observed for the WLS. However, the tendency to

overestimate uc is also presented when it is necessary to

estimate combined uncertainties below the first concen-

tration level.

It is known that the RMM is not equivariant for trans-

formations of the independent variable [32]. Linearization

by means of squares of both sides of Eq. 8 produces a

magnification of uc variability, which could be problematic

during the application of robust regression. With the aim of

showing this fact and starting from results of the bootstrap,

squaring of uc doubles its relative variability. So, in the

case of Eq. 8, this regression method should be approached

with caution, but from a practical point of view.

Interlaboratory cases

The results of two collaborative studies reported as

examples in ISO 5725 [18, 25] are represented graphically

in Fig. 4. Figure 4a, b corresponds to the results of ISO

5725-3 (flame atomic absorption spectrometric determina-

tion of V in steel) while Fig. 4c, d correspond to the results

of ISO 5725-4 (flame atomic absorption determination of

Mn in iron ores). In the plots also appear the confidence

intervals for uc calculated from bootstrap technique. At first

sight, it is observed that in the two examples the values of

uc increase with concentration showing a linear trend.

However in both cases, the relative position of the value of

uc belonging to the higher concentration does not exactly

follow the linear tendency shown by the previous values of

uc. In the case of ISO 5725-3 it is a little above and in 5725-

4 a little below. So, these values should be considered out

of the general tendency of the rest of the points. Moreover,

this inconvenience could lead to assumption of apparent

curvature in the behaviour of uc with concentration in both

plots.

In principle, the models represented by Eqs. (1) and (8)

can be used to describe the experimental behaviour of uc

with concentration shown in Fig. 4. The problem is centred

on selection of the regression method to estimate the

coefficients. In that sense, the OLS, WLS, and RMM fits of

Eq. 8 are represented in Fig. 4a, c by solid, broken and

dotted lines, respectively. It is clear that the application of

OLS to Eq. 8 is not suitable. There is a noticeable tendency

to obtain very high or very low estimated values of uc when

concentration decreases. Moreover, unacceptable (nega-

tive) estimated values of uc are obtained in the case of ISO

5725-3. The results obtained with WLS and RMM are

much better than the obtained with OLS. Both regression

methods represent well the behaviour of uc in almost the

whole concentration range considered. The predicted val-

ues of combined uncertainties are acceptable considering

the high variability of experimental values of uc. The RMM

does not take into account the value of uc belonging to the

higher concentration. In both examples, the last point is
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Fig. 3 Estimated values of uc

and their confidence intervals at

different levels of mass

concentration of Co and Cu.

Solid, broken, and dotted lines
represent, respectively, the

OLS, WLS, and RMM fit of

Eq. 8 to the data

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8

w (V)/(mg/g)

u c
/(

m
g/

g)

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8

w (V)/(mg/g)

u c
/(

m
g/

g)

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30

w (Mn)/(mg/g)

u c
/(

m
g/

g)

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30

w (Mn)/(mg/g)

u c
/(

m
g/

g)

a b 

c d 

Fig. 4 Results of

interlaboratory studies reported

in ISO 5725-3 (a, b) and ISO

5725-4(c, d). In a and c solid,

broken, and dotted lines
represent, respectively, the

OLS, WLS, and RMM fit of

Eq. 8 to the data. In b and d
solid, broken and dotted lines
represent, respectively, the

NLLT, NLW and RMM fit of

Eq. 8 to the data
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identified as an outlier according to the statistical test

intended for that purpose [30]. A similar effect is produced

by WLS because the assignation of a low weight to the last

point for both plots. Practically, along the whole concen-

tration range the problems of underestimation or

overestimation are not presented. However, near the higher

concentration, the estimated values of uc can be considered

different from the experimental ones in the case of ISO

5725-4.

In Fig. 4b, d the results of the NLLT, NLW, and RMM

fit of Eq. 8 are presented by solid, broken and dotted lines,

respectively. As can be observed, there are no noticeable

differences between the two non-linear (NLLT and NLW)

and the RMM linear method for the Eq. 8 coefficient

estimation. Both, the NLLT and NLW do not seem to be so

sensitive to the presence of possible outliers. However, the

logarithmic transformation does not make the variability of

uc constant. As in intralaboratory examples, this transfor-

mation makes the differences among the variances smaller

but it does not eliminate them. So, the RMM is recom-

mended taking in to account its computational simplicity.

The OLS, WLS, and RMM fits of Eq. 1 to the same

interboratory results are represented in Fig. 5a (ISOI 5725-

3) and 5b (ISO 5725-4) by solid, broken, and dotted lines,

respectively. With the OLS regression, considerable

underestimates (ISO 5725-3) and overestimates (ISO 5725-

4) of values of uc below the respective third concentration

level are obtained. However, the results with WLS and

RMM are much better than those obtained with OLS;

practically along the whole concentration range the prob-

lems of underestimation or overestimation are not

presented. As in Eq. 8, in both examples the last point is

identified as an outlier. The results are represented in the

Fig. 5 on a log–log scale because this kind of representa-

tion has the advantage that nicely separates all points and

make easier the graphical representation along the whole

concentration range. If a linear scale were selected the

problems of lack of fit at lower concentrations with the

OLS regression could not be well appreciated.

Figure 6 consists of two plots with the results of an

interlaboratory study of determination of Mn in steel and

iron reported in ISO 10700 by FAAS [26]. This is a situ-

ation frequently found in practice, that is, there is no

information about the variability of estimated values of uc.

The intervals that appear in the plots represent 20% of the

experimental respective values of uc. Of course, this is

arbitrary, but roughly approximated to the results obtained

with the bootstrap technique for the former interlaboratory

results. The values of uc increase with concentration

showing a linear trend. The combined uncertainty

belonging to the fifth, sixth, and ninth concentration levels

seem to be apart from the behaviour of the remaining

points. These can be observed better in a linear scale but in

this kind of representation the first four concentration

levels practically overlap with the origin (see the Electronic

Supplemental Material to view the results with linear

scales).

Applying OLS fit to Eq. 1, (Fig. 6a, solid line) the ninth

point affects the regression and produces a marked over-

estimation of uc for the first four points However, the

application of WLS (broken line) to this model is not so

affected by the position of the ninth point because of the low

weight assigned during the regression. Although the

assigned weights to the fifth and sixth points are high, the

weights assigned to the first four points are higher. So

the effects of the fifth and sixth points are superseded or

compensated during the WLS fit. The RMM (dotted line) is

not affected at all by the relative position of these three

points that do not follow the general trend of the remaining

points. In this example, the ninth point is identified as
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Fig. 5 Results of

interlaboratory studies reported

in ISO 5725-3 (a) and ISO

5725-4 (b). Solid, broken, and

dotted lines represent,

respectively, the OLS, WLS,

and RMM fit of Eq. 1 to the

data
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outlier according to the statistical test [30]. Compared with

WLS the predictions of uc at higher concentrations are very

similar, but at lower concentrations the RMM produces

small overestimations of uc. In the original written standard

[26], the data were fitted through linear transformation of

Eq. 3 by means of logarithms and represented in a log–log

plot, something that can mask the lack of fit and be

misleading.

The application of OLS (Fig. 6c, solid line) to Eq. 8 is

not suitable and also predicts overestimated values of uc

near the bottom end of the concentration range. The

overestimation is greater than in Eq. 1 as can be seen

comparing Fig. 6a, b. The application of WLS fit (Fig. 6b,

broken line) dramatically improves predictions in all the

concentration range, principally in the lower part. Similar

results were obtained with the RMM (Fig. 6b, dotted line).

Compared with Eq. 1, the differences in predictions

between WLS and RMM with Eq. 8 are greater. As in the

intralaboratory and the above interlaboratory examples, the

results obtained with the NLLT and NLW (not shown) are

very similar to the obtained with WLS and RMM. So,

RMM is also recommended because it is computational

simplicity.

The fact that the use of WLS with both models is more

appropriated (if compared with OLS fit) is not a conse-

quence of taking in to account the unequal variability of

experimental values of uc in the regression. It is a conse-

quence of the position inside the concentration range of the

points that show a different tendency of the rest. That is, if

such points are positioned at the upper part of the con-

centration range, the low assigned weight confers some

‘‘robustness’’ to WLS. On the other hand, if those points

are positioned at low concentrations WLS is not recom-

mended. The application of the RMM to the models

represented by Eqs. (1) and (8) confirms that in the

examples the points considered as suspicious are apart

from the general tendency shown by the rest of the points.

This robust method does not take into account these points

in the respective regressions. The differences in predictions

between WLS and RMM along the concentration range are

magnified with Eq. 8, if compared with Eq. 1. It is an

additional argument about the sensitivity of the variance

model to departures of experimental values of uc from the

general behaviour of the rest of the values.

Despite the mentioned limitations of RMM with Eq. 8,

its application to the studied cases produced good results. A

Microsoft Excel template for robust regression by means of

the RMM is included in the Electronic Supplemental

Material.

Conclusions

The process of modelling combined uncertainty in a con-

centration range is not always a single task. Several aspects

should be considered for the selection of the appropriate

model. It should be as simple as possible, taking into

consideration the supposed causal nexus between concen-

tration and combined uncertainty. Despite the diversity of

available proposed models, none can be considered as a

universal solution for all the possible cases. In that sense,

the linear model and/or the variance model were success-

fully selected for the cases discussed in this work.

The selected regression method should be as simple as

possible. In that sense, OLS is attractive. It is based on the

fact that the dependent variable is normally distributed with

a constant variability. In the examples studied, only slight

departures from normality were observed. The magnitudes

of these departures do not seem enough to compromise the

underlying hypotheses of OLS. On the other hand, in this
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interlaboratory studies reported

in ISO 10700. Solid, broken,

and dotted lines represent,

respectively, the OLS, WLS,

and RMM fit of Eq. 1 (a) and

Eq. 8 (b) to the data
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work high relative variability of uc estimates was found.

This is in agreement with the statements of GUM [5] that

only one or two significant figures should be used to

express uc. With OLS the hypothesis concerning constant

variability of the dependent variable is clearly violated. As

alternative, WLS takes into account the lack of constancy

of uc variability. But, when the points follow the relation-

ship expressed by the previous selected model, there are no

real differences between the results of predictions made

with OLS and WLS. The fundamental goal during mod-

elling uc versus concentration is to perform point

predictions of combined uncertainty. The variability of

those predictions, i.e., the second-order uncertainty,

something for which WLS is more realistic than OLS, does

not matter.

However, both regression methods are very sensitive to

outliers, something that is necessary to keep in mind in

some cases. If there are points that do not follow the

relationship expressed by the selected model, the predic-

tions of uc could deteriorate. If the suspicious point is at the

high part of the concentration range, the use of WLS could

be a proper way for modelling due to the low weight

assigned to such a point. In contrast, if the suspicious point

is at the lower end, because of the high assigned weight, the

regression with WLS could not be favourable.

However, there are several additional tools that can be

useful. In addition to the OLS and WLS, robust regression

seems promising for solving some cases. The diagnosis of

outliers can throw some light during the modelling process,

a topic that has not been explored before. It is difficult to

consider as an outlier a point obtained from a high number

of independent experimental results, as used in the exper-

imental designs applied in intra or interlaboratory

conditions. However, in some cases it seems that there are

objective bases to consider some points as outliers, taking

into account the high variability of uc estimates.

An important fact that it is necessary to consider is the

sensitivity of the variance model to outliers, if compared

with the linear model. Nonlinear regression of the loga-

rithmic transformation (NLLT) could be a solution to that

problem because the results of predictions of uc with NLLT

are very similar to those obtained with RMM. However,

NLLT is complex computationally, does not really make

the variability of uc constant, and compared with RMM

does not yield a considerable improvement in predictions.

Finally, if the above guidelines do not solve the problem

at hand, it is preferable to provide overestimations of uc,

which are more realistic estimates of combined uncertainty

instead of underestimations which provide a false impres-

sion about the laboratories’ measurement capabilities.
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