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Abstract Single measurements are widely used in

industry, trade and science, yet the problem of the esti-

mation of the accuracy of this type of measurements is

neither addressed nor even recognized in traditional

Metrology. In particular, the Guide to the Expression of

Uncertainty in Measurement is devoted to multiple mea-

surements only and does not mention single measurements.

This paper studies the problem of estimating the inaccuracy

of single measurements and describes solutions to this

problem. The proposed methods are based on metrological

characteristics of measuring instruments rated in accor-

dance with Recommendation R34 of International Org-

anization of Legal Metrology (OIML). These characteristics

are usually given in manufacturer certificates or provided

by calibration laboratories. This paper treats single mea-

surements as the basic type of measurement and multiple

measurements as sets of successive single measurements.

Keywords Single measurement � Measuring instrument �
Inaccuracy � Uncertainty � Limits of error

Introduction

The quality of a measurement is determined by its accu-

racy, which also often determines the measurement cost.

Accuracy is a ‘‘positive’’ characteristic of the measure-

ment but in reality is usually expressed with the help of a

‘‘negative’’ characteristic—inaccuracy—of that measure-

ment. The importance of knowing the accuracy of a mea-

surement is universally recognized. A knowledge of

measurement accuracy is required to compare the results of

measurements of the same physical quantity obtained by

different operators, to define safe ranges for parameters of

technological processes, and to estimate the reliability of

product quality control, as well as in almost all other

applications of measurements. It is also necessary at the

stage of planning a technological process and choosing

proper measuring instruments for that process.

Single measurements are the most common type of

measurements used in industry and trade. However, the

problem of the estimation of the accuracy of this type of

measurement is neither addressed nor even recognized in

traditional metrology. In particular, the Guide to the

Expression of Uncertainty in Measurement (GUM) [1] is

devoted to multiple measurements only and does not

mention single measurements.

Methods for calculating the inaccuracy of these mea-

surements are described in Measurement errors and

uncertainties: theory and practice [2] (and its earlier edi-

tions). These methods solve the problem of the estimation

of the accuracy of simple measurements but would be more

practical and more widely used in the form of step-by-step

recommendations. Moreover, single measurements must

also be considered as the basic type of measurement

because every multiple measurement (with the exception of

measurements in calibration) is in essence a set of repeated
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single measurements. Therefore, the inaccuracy of single

measurements forms an inevitable part of the inaccuracy of

multiple measurements, and must be taken into consider-

ation in the calculation of the inaccuracy of the latter. Thus,

a practical recommendation for estimating single mea-

surement inaccuracy would be useful not only for appli-

cations in industry and trade but also in science, where

multiple measurements are common.

The current paper presents first steps toward such a

recommendation, based on relevant parts of the general

theory of single measurements developed in my previous

work. In doing so, the current paper demonstrates that such

a recommendation is both necessary and possible. Of

course, the actual recommendation needs to be developed

by a standard body, and needs to be more detailed and

illustrated with examples. This future recommendation

could be incorporated into GUM [1].

Basic concepts

A single measurement is a measurement in which the

measuring instrument comes into contact with a physical

object only once, and only one reading is taken to obtain

the result of a measurement. Sometimes the above-men-

tioned contact is repeated two or three times but the goal of

these extra measurements is to avoid a blunder or to be sure

that the model of the physical object under study (e.g., the

assumption that the object is round so that it can be char-

acterized by its diameter) is applicable within the required

accuracy of the measurement.

The inaccuracy of a measurement is usually expressed

as an interval that covers the true value of the measurand.

The half-width of this interval is called uncertainty if it is

expressed as a confidence interval (i.e., that the interval

covers the true value with a certain probability) and as

limits of error if it does not have connection with any

probability.

The accuracy of a single measurement is determined

mainly by the accuracy of the measuring instrument(s)

involved. The latter is determined by the rated metrological

characteristics of this instrument(s) as listed in the manu-

facturer’s certificates, specifications, etc., and by the

environmental conditions under which the measurement is

made. These characteristics are rated according to rules

given by International Organization of Legal Metrology

(OIML) Recommendation R34 [3].

The environmental condition under which no influence

quantity disturbs the indication of a measuring instrument is

called the reference condition of the measuring instrument.

This reference condition provides the possibility of realizing

the highest accuracy of the measuring instrument. The error

of a measuring instrument under the reference condition is

called the intrinsic error of the instrument. The intrinsic

error is rated in the form of its permissible limits, which may

be verified or provided by calibration laboratories.

Besides intrinsic errors, rated metrological characteris-

tics include additional errors that reflect the effect of

influence quantities. Sometimes, instead of the additional

error caused by an influence quantity, the influence function

of this quantity is given. If the influence function is linear,

it is usually replaced by the corresponding influence coef-

ficient. The influence function is described as a nominal

function with permissible deviation. Accordingly, the

influence coefficient is also specified as a nominal value

with its permissible deviation. The influence function or the

influence coefficient and the limits of their inaccuracy

along with the value of the influence quantity allows the

experimenter to make corrections to the reading of a

measuring instrument and to calculate the limits of error of

this correction.

A measurement error may consist of a certain number of

component errors, which in turn may be divided into finer

components. The component errors that cannot be further

subdivided are called elementary errors. A typical case,

and the one we will most assume in this paper, is one-level

components, where a measurement error consists of a

certain number of elementary errors.

Accuracy of a single measurement involving a single

measuring instrument

The great majority of measuring instruments were created

for single measurements. Some of these instruments are so

simple that the inaccuracy of the corresponding measure-

ments can be estimated without calculation. For example,

the inaccuracy of the length measurement performed with a

ruler is determined simply by rounding off the readings on

the ruler. Also, calculating the inaccuracy of a measure-

ment is not necessary when it is known beforehand that the

accuracy of that measurement will be ‘‘good enough’’ for

the goal of this measurement. This includes most house-

hold measurements, such as weighing ingredients for a

cooking recipe or measuring the voltage of a car battery

with an industrial tester. In other measurements, the inac-

curacy must be calculated. This can be accomplished by

the following step-by-step procedure.

1. Identify all possible sources of elementary errors. This

list always includes the intrinsic error of the measuring

instrument and the time at which the last calibration of

the instrument was performed. Other sources include

influence quantities whose values fall outside the limits

of the reference condition, the interaction between the

measuring instrument and the object whose parameter
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is being measured, the discrepancy between the object

and its model, and so on.

2. Estimate all elementary errors. Note that for some

measuring instruments, their intrinsic errors depend on

the reading point, i.e., on the measurand value indi-

cated on the device. Frequently, the intrinsic error is

rated assuming a particular reading point, usually the

one with the smallest error. In these cases, the intrinsic

errors must be recalculated to the reading point of the

measuring instrument in the actual measurement in

question. Elementary errors are usually estimated in

the form of their limits but, in some cases, point esti-

mations can be found. For example, point estimations

are possible when one knows both the influence

function or influence coefficient of the measuring

instrument and the actual value of the influence

quantity. The concrete value of the error provides the

possibility of correcting the reading of the instrument.

However, the inaccuracy of the correction must then

be taken into consideration as an elementary error; this

inaccuracy is described by the limits of the residual

error. As a result of the above, we obtain the limits of

all elementary errors. Notably, this includes random

elementary errors such as the rounding error or the

variation in the indication of a measuring instrument,

which are also expressed in this case as permissible

limits rather than as standard deviation. Thus, the

resulting error of a single measurement is the sum of

all elementary errors presented by their limits.

3. Express the intrinsic error and all the elementary errors

in the same form, either as absolute or relative errors.

4. Calculate the inaccuracy of the measurement result.

This inaccuracy is usually calculated not for the actual

measuring instrument involved but rather for any

instrument of the same type.

In the simplest case, i.e., a measurement under reference

conditions, the inaccuracy of the measurement result is

equal to the intrinsic error h0 of the measuring instrument

involved, which, in accordance with OIML Recommenda-

tion R34 [3] is expressed as the limits of error. In other

cases, the inaccuracy must be calculated as the sum of all

the elementary errors and is typically expressed as uncer-

tainty. I will next describe the procedure for this calculation.

Let f be the measurement error, f0 be the intrinsic error

of the measuring instrument, and fi, i = 1,...,m, be the

additional errors. We have:

f ¼ f0 þ
Xm

i¼1

fi: ð1Þ

The problem is to find the limits for f given that we know

the limits h0 and hi of the elementary errors:

f0j j6h0 and fij j6hi:

Formally, the worst-case limits of the resulting error would

be obtained as the arithmetical sum of all elementary errors

limits. However, this worst-case error could occur only if

all elementary errors simultaneously reach their upper or

lower limits, which is practically impossible. A realistic

solution to this problem is provided by a probabilistic ap-

proach. For this purpose, a mathematical model of ele-

mentary errors is needed. It is possible to construct such a

model because, in addition to the known limits of ele-

mentary errors, we also know that, even though all mea-

suring instruments of the same type have the same limits of

their error, the actual error of each particular instrument

may be different. Therefore, we can consider these errors

as random quantities. Unfortunately, the distribution

function of these errors cannot be obtained experimentally

because this function is unstable [2]. However, given that

random quantities representing these errors have known

limits, in accordance with Shannon’s theory of informa-

tion, we can assume that this random quantity has a uni-

form (rectangular) distribution function. This is a

conservative assumption because it produces the distribu-

tion with the greatest uncertainty (in the common sense of

the word). A random quantity with uniform distribution is

now widely used as the mathematical model of errors rated

by their limits.

With the above assumption that the components on the

right-hand side of Eq. (1) are uniformly distributed, if the

number of these components grows to infinity, the resulting

distribution approaches the normal distribution according

to Central Limit Theorem. In practice, the resulting dis-

tribution can be assumed to be normal when the number of

components is five or more. Then, the estimate of its var-

iance, Srd
2 , based on the rated elementary errors, is

S2
rd ¼ h2

0=3þ 1=3
Xm

i¼1

h2
i :

The limits of the uncertainty of a measurement are

equal to the limits of the confidence interval for the true

value of the measurand. For the normal distribution

function and the confidence probability P = 0.95, as is

well known, these limits are u0.95 = 1.96 Srd. For

P = 0.99, the uncertainty is u0.99 = 2.58 Srd. Those limits

define the uncertainty of a measurement. If the number of

items in Eq. 1 is less than 5, the resulting error limits are

given by the formula in Eq. 2:

up ¼ kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h2

0 þ
Xm

i¼1

h2
i

�s
: ð2Þ
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This formula was proposed and studied by Rabinovich

[2]. It was shown there that, for the most common confi-

dence probability P = 0.95, the coefficient k0.95 = 1.1 and,

remarkably, its value is independent of the number of items

n = m + 1. The inaccuracy of this calculation is less then

2%. On the other hand, for P = 0.99, if k0.99 = 1.4 and is

assumed constant, the inaccuracy of the calculation is +9%

for n = 2 and –6% for an infinite number of items. Thus, in

this case, the number of items influences the coefficient kp.

This shortcoming can be easily removed as shown by

Rabinovich [2]. However, when n = 2 and P = 0.99, the

sum of elementary errors is actually better obtained simply

as the arithmetical sum of their limits. This simplifies the

calculation and avoids overestimation of the inaccuracy

that results from the above calculations in this case, espe-

cially when the limits of the elementary errors are not

equal. In this case, as in the case in which inaccuracy is

determined by the intrinsic error only, the inaccuracy is

called limits of error and is obtained as

h ¼ h0 þ h1:

The confidence probability used today is almost always

P = 0.95. For this probability, as explained above, Eq. 2

can be used regardless of the number of items and thus can

be considered as universal:

u0:95 ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h2

0 þ
Xm

i¼1

h2
i

�s
: ð3Þ

The above calculations were derived assuming that

elementary errors, even if they are systematic errors and

thus constant for a given instrument, differ randomly from

one instrument to another. In some cases, however, the

magnitude of an elementary error is the same for all

measuring instruments of a given type. Although this error,

as always, has permissible limits, the probabilistic model

for it is unacceptable. For example, it is known that the

dependence between temperature and the electromotive

force (EMF) of a thermocouple is non-linear. This depen-

dence is often replaced with a sum of line segments. The

difference between the curve and the broken line for a

specific type of thermocouple is constant and has some

determined limits. The error caused by application of a

certain type of thermocouple in measurement will be the

same for all such thermocouples. Therefore, the probabi-

listic model cannot be taken for this error; it must be

considered as an absolutely constant elementary error. In-

stead, the limits of an absolutely constant error must be

arithmetically added to the calculated uncertainty of the

single measurement. Of course, this addition to the

uncertainty does not change its confidence probability.

It should be stressed that the rated characteristics of a

measuring instrument apply to all measuring instruments of

the same design. Therefore the measuring instrument in a

measurement can be replaced by another instrument of the

same design and the estimation of the inaccuracy of the

measurement will not change. However, if this estimation

is based on the individually rated characteristics of the

measuring instrument (for example, obtained by a cali-

bration laboratory), then this measuring instrument cannot

be replaced. Of course, the measurement in the latter case

is more accurate.

Accuracy of a single measurement involving a chain

of measuring instruments

There are a number of direct single measurements per-

formed by several measuring instruments connected in a

chain. An example of such a measurement is the mea-

surement of voltage with a potentiometer, a voltage di-

vider and a standard cell. If the potentiometer indication

is Np, the divide coefficient of the divider is Kd and the

EMF of the standard cell is Usc, then the measured

voltage is

Ux ¼ KdNpUsc: ð4Þ

Let the measurement be performed under the reference

condition; the inaccuracy of this measurement is then

determined by the intrinsic errors of all the measuring

instruments involved. These errors are rated by their limits.

To sum them up, we must first transform their limits into

limits of errors in the measurement result. This can be done

in many ways, most commonly using Taylor’s series. Ra-

binovich [2] describes this example in detail; in this case

the transformation was performed simply by the differen-

tiation of Eq. 4.

Let the intrinsic error of the voltage divider be fd, the

intrinsic error of potentiometer indication be fp, and that of

the standard cell be fsc. After applying Taylor’s series

(which is widely used and not explained here), we obtain

the expression for the measurement error:

f ¼ wdfd þ wpfp þ wscfsc; ð5Þ

where wd, wp and wsc are the corresponding transformation

coefficients.

It is important to note that the relative form of errors

simplifies all calculations. In our example, in this case all

transformation coefficients will be the same and equal to 1:

w0d ¼ w0p ¼ w0sc ¼ 1:
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Thus, Eq. 5 with errors of measuring instruments in

relative form becomes

f0 ¼ f0d þ f0p þ f0sc

In general, the measuring chain may consist of m

instruments. Let us first consider the case where the mea-

surement is performed under reference conditions for all

instruments involved. The inaccuracy of all instruments in

this case is given by their intrinsic errors, which are rep-

resented as limits of permissible errors. The resulting

measurement error is expressed as

f ¼
Xm

j¼1

wj;0fj;0 ð6Þ

where fj,0 is the intrinsic error of the jth instrument (j = 1...

m), and wj,0 is the corresponding transformation coefficient.

As discussed above in the section on Accuracy of a single

measurement involving a single measuring instrument,

knowing the limits of all the elementary errors, we are able

to calculate the uncertainty of the measurement result.

Again, the approach uses the uniform distribution for

random quantities representing the instrument errors. If the

number of items in Eq. 6 is five or more, we can use the

normal distribution for the resulting distribution and its

variance can be estimated as

S2
rd ¼

1

3

Xm

j¼1

w2
j;0h

2
j;0:

Knowing the variance, the uncertainly of the measure-

ment result can then be calculated as described above for

single measurements involving a single measuring instru-

ment. The universal (i.e., applicable to any number of

items) formula now is

u0:95 ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

w2
j;0h

2
j;0

vuut :

If the measurement condition cannot be considered as

the reference condition, the errors of the measuring

instruments can no longer be viewed as elementary errors.

Each instrument error in this case may consist of its own

elementary errors due to the influence quantities. Instead of

calculating the error limits of each instrument, it is useful

to transform the elementary errors of each instrument di-

rectly into the elementary errors of the overall measure-

ment error. Doing so is beneficial because it increases the

number of elementary errors and thus provides more

grounds to consider the resulting error to be normally

distributed. Besides, this transformation allows us to con-

sider the components to be uniformly distributed, therefore

allowing use of the universal formula for uncertainty

similar to Eq. 3. As the result, Eq. 6 becomes

f ¼
Xm

j¼1

winstr;j

Xnj

i¼0

welem;j;ifj;i

( )
;

where f j,i is the ith elementary error of the jth instrument,

welem,j,i is the transformation coefficient of the above

elementary error, nj is the number of elementary errors of

the jth instrument, and winstr,j is the transformation coef-

ficient of the jth instrument.

Using again the approach for single measurements

involving a single measuring instrument discussed above, it

becomes possible to calculate the uncertainty of the mea-

surement result by assuming the elementary errors to be

uniformly distributed. The uncertainty in this case is

u0:95 ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

w2
instr;j

Xnj

i¼0

w2
elem;j;ih

2
j;i

( )vuut :

With at least five items (which in practice is always the

case in this situation), we can use the normal distribution

for the resulting distribution to estimate its variance as

S2
rd ¼

1

3

Xm

j¼1

w2
instr;j

Xnj

i¼0

w2
elem;j;ih

2
j;i

( )
;

and calculate the uncertainty from this variance as already

discussed.

Similar calculations can be also used for single indirect

measurements. While most indirect measurements are

multiple measurements, single indirect measurements do

occur. An example of a single indirect measurement is the

measurement of the area of a plot of land. If the model of

this plot is a rectangle, the estimation of this area is found

as the product of measurements of the length of both sides

of this plot. As an interesting side note, the inaccuracy of

this result is often determined not by the errors in the length

measurements but by the difference between the model of

the plot and its actual form.

Conclusion

This paper presents methods for estimating the inaccuracy

of single measurements based on the rated metrological

characteristics of the measuring instruments involved. The

paper formulates the view that single measurements con-

stitute the basic, fundamental type of measurement. This

position is supported not only by the fact that single
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measurements are the most common measurements in trade

and industry but also because multiple measurements are

essentially repeated single measurements.

This paper formulates practical methods for the esti-

mation of the accuracy of single measurements and sket-

ches a step-by-step procedure for the calculations involved.

It could become the starting point for a detailed recom-

mendation for the treatment of single measurements. I

believe it would be beneficial to develop this recommen-

dation as part of the next edition of GUM.
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