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Abstract A nonparametric sign test
is implemented for assessment of
comparability of proficiency testing
(PT) results when their distribution
differs from the normal or other
known distribution. It allows testing
the null hypothesis about
insignificance of the bias of median
of results obtained in PT from the
traceable certified value of the
reference material used in PT as test
items, i.e., the hypothesis stating that
comparability of the PT results is
successful. Probability of type I error
of rejecting the null hypothesis when
it is true, and probability of type II

error of it not rejecting when it is
false (the alternative hypothesis about
unsuccessful comparability is true)
are considered. The test can be
helpful for PT providers and
laboratory accreditation bodies in
analysis of PT results when the
comparability criterion developed for
a normal results distribution (Accred.
Qual. Assur. 10:466–470) is not
applicable.
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Introduction

Comparability of analytical results obtained in proficiency
testing (PT) based on a metrological approach is discussed
in Ref. [1] for cases when hypothesis about normal distribu-
tion of the results is accepted. Since the approach implies
the use of a reference material or a spike with traceable
property value as test items/samples sent to laboratories
participating in PT, comparability was assessed by the bias
of the mean of PT result from the assigned/certified value
Ccert of the analyte concentration in the material, taking
into account standard uncertainty σ cert of this value and
standard deviation σ PT of the PT results.

The hypothesis on normal distribution of analytical re-
sults is widely used because of the central limit theorem.
According to the theorem, a sum of independent random
values/components, when their number is large enough, has
normal distribution, even if the components are distributed
arbitrarily. The condition is only that the components are
of the same order, i.e., none of them dominates [2, 3].
The reason is that analytical results obtained by a validated
method have uncertainty budget with a number of studied
components, which are under control [4]. Moreover, as fol-
lows from the central limit theorem, PT or other analytical

results calculated as means of some replicates should have
a distribution tending towards the normal one, even if the
original populations of the replicates are not normal [5].

However, the conditions of applicability of this theorem
are not always fulfilled. Such a situation is typical for anal-
yses made close to the range limits of the analyte content in
the material/substance under analysis [6, 7]. In particular,
it occurs at the limit of determination where zero and even
negative results (obtained by subtraction of a blank value,
due to interference, because of calibration inappropriate ex-
trapolation or by other reasons) are a part of the population.
Excluding unrealistic negative values leads to asymmetric
distributions in these cases [8]. Asymmetric distributions of
results in calibration curves are also described for analyte
concentrations that are far from the limit of determination
[9]. It is shown that deviation of a distribution of analytical
results from the normal one can be caused by the domi-
nating uncertainty source arising at any stage of analysis,
from aliquot measuring to result rounding [10, 11]. Analyte
heterogeneity in the material under analysis, use of differ-
ent lots of reagents (with different impurities) by different
laboratories, as well as drift of measuring instruments lead
to asymmetric and/or polymodal distributions of analytical
results [12, 13].
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Table 1 Probability P of the
events according to the
alternative hypothesis H11

γ �/σ PT P

0.4 0.50 0.69
0.7 0.75 0.77
1.0 1.04 0.85

For example, during validation of analytical methods
used in secondary nonferrous metallurgy (recycling scrap
and waste products) in the former USSR, performed under
my supervision in 1978–1990, more than 1,500 statistical
samples were tested. About 10% of them had distributions
that were significantly different from normal distributions.
Eight percent of the analytical data was obtained by spec-
tral methods and 21% obtained by chemical (wet) methods
[14].

In the book [15], about 1,900 statistical samples of results
of interlaboratory trials for certification of reference materi-
als of minerals are classified by chemical elements/analytes
as the class of symmetrical distributions, the class with the
left distribution asymmetry (at the limits of determination)
and the class with the right asymmetry (at the upper limit
of the concentration range).

It is a good case when sources of a deviation from nor-
mal distribution are identified and eliminated, or there are
theoretical reasons to use another distribution, such as log-
normal [16], uniform [12], Poisson’s [17], etc. However, in
many cases, statistical tests for goodness-of-fit of empir-
ical and theoretical distributions are not selective and do
not allow to prefer one of the known distributions [18]. In
these cases, nonparametric methods for statistical analysis
of analytical/chemical results can be useful [2].

The purpose of the present paper is to develop in con-
tinuation of Ref. [1] a nonparametric test allowing a PT
provider and/or an accreditation body to assess compara-
bility of analytical results obtained in PT, when distribution
of the results differs from the normal or other known dis-
tribution, and it is impossible to determine and to remove
the causes of this difference.

The sign test of the hypotheses about comparability
of PT results

For unknown distributions differing from the normal one,
the median is more robust than the average, i.e., is better
reproduced on experiment repetition, being less sensitive
to extreme results/outliers. Besides, a confidence interval
to the median can be formulated not depending on the
results distribution [2, 5]. Therefore, when PT results are
not distributed normally, their median can be used just as
the mean was used in Ref. [1] for comparability assessment
of the results. In this case, the null hypothesis H0, assuming
that the PT results bias exceeds σ cert by a value which is
insignificant in comparison with random interlaboratory
errors of the analysis, has the following form:

H0: |MPT − Ccert| = [
(0.3σPT)2 + σ 2

cert

]1/2 = �, (1)

Table 2 A values (the bias norms)

N
α/2 5 10 15 20 30 40 50

0.025 – 1 3 5 9 13 17
0.05 0 1 3 5 10 14 18

where 0.3 is used according to known metrological rule
defining one standard deviation insignificant in compari-
son with other when the first one is not increasing one-
third of the second one (it means that the first variance is
smaller than the second one for an order); and MPT is the
median of PT results of hypothetically infinite number N
of participants, i.e., the population median.

If MPT ≥ Ccert, the null hypothesis H0 means that prob-
ability P of an event when a result Ci of i-th laboratory
participating in the PT exceeds the value Ccert + �, is
P{Ci>Ccert +�}≤ 1/2 according to the median definition.
If MPT<Ccert, the probability that Ci yields to the value
Ccert −� is also P{Ci<Ccert − �}≤ 1/2. The alternative
hypothesis H1 assumes that the bias exceeds σ cert signifi-
cantly and probabilities of the events described above are
P>1/2:

H1: |MPT − Ccert| > �, (2)

where � is the same as in Eq. (1). For example, by analogy
with [1 ]

H11: |MPT − Ccert| = 2.0�, (3)

Probabilities P of the events according to the alterna-
tive hypothesis H11 at normal distribution depending on
the permissible bias � (in σ PT units) at different ratio
σ cert/σ PT = γ values are shown in Table 1.

Since in practice the population median is unknown, and
N laboratories participating in PT form a statistical sample
(of size N) from the population results, the hypothesis H0
is not rejected when the upper limit of the median confi-
dence interval does not exceed Ccert +�, or the lower limit
does not yield to Ccert − �. The limits can be evaluated
based on the simplest nonparametric sign test [5]. Accord-
ing to this test, the number N+ of results Ci>Ccert + �
or the number N− of results Ci<Ccert −� should not ex-
ceed the critical value A (the bias norm) in order to not
reject H0. The A values are available in known statistical
handbooks, for example, in Ref. [19]. These values for
for N = 5–50 PT participants and two levels of confidence
0.975 (α/2 = 1 − 0.975 = 0.025) and 0.95 (α/2 = 0.05), are
shown in Table 2. The A value for less than six partici-
pants at α/2 = 0.025 cannot be determined, and therefore,
is absent from Table 2 for N = 5.

Reliability of the test

Reliability of the test is determined by the probabilities of
not rejecting the null hypothesis H0 when it is true, and
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Table 3 PT results of aluminum determination in SRM 2690 (simulated in percent by weight) ranked according to their increasing values

No. j Result Ci (%) Cj − Ccert (%) Sign No. j Result Ci (%) Cj − Ccert (%) Sign No. j Result Ci (%) Cj − Ccert (%) Sign

1 11.86 − 0.49 − 18 12.44 0.09 0 35 12.53 0.18 0

2 11.88 − 0.47 − 19 12.44 0.09 0 36 12.55 0.20
+

3 11.90 − 0.45 − 20 12.45 0.10 0 37 12.56 0.21
+

4 11.91 − 0.44 − 21 12.46 0.11 0 38 12.57 0.22
+

5 11.93 − 0.42 − 22 12.46 0.11 0 39 12.60 0.25
+

6 11.96 − 0.39 − 23 12.47 0.12 0 40 12.61 0.26
+

7 11.96 − 0.39 − 24 12.48 0.13 0 41 12.64 0.29
+

8 11.97 − 0.38 − 25 12.49 0.14 0 42 12.66 0.31
+

9 11.98 − 0.37 − 26 12.49 0.14 0 43 12.67 0.32
+

10 11.99 − 0.36 − 27 12.50 0.15 0 44 12.68 0.33
+

11 12.03 − 0.32 − 28 12.50 0.15 0 45 12.69 0.34
+

12 12.07 − 0.28 − 29 12.51 0.16 0 46 12.76 0.41
+

13 12.17 − 0.18 0 30 12.51 0.16 0 47 12.81 0.46
+

14 12.19 − 0.16 0 31 12.52 0.17 0 48 12.84 0.49
+

15 12.20 − 0.15 0 32 12.52 0.17 0 49 12.90 0.55
+

16 12.34 − 0.01 0 33 12.53 0.18 0 50 12.96 0.61
+

17 12.43 0.08 0 34 12.53 0.18 0 N− = 12, N+ = 15

rejecting it when it is false (the alternative hypothesis H1 is
true). The test does not allow rejecting hypothesis H0 with
probability 1 −α/2, when it is true. Probability of an error
of type I by this test (to reject the H0 hypothesis when it is
true) is α/2. Probability Pt of rejecting H0, when it is false,
i.e., when the alternative hypothesis H1 is actually true (the
test power), is tabulated in Ref. [19]. The probability of an
error of type II (not rejecting the H0 when it is false) equals
β = 1 − Pt. The operational characteristics of the test Pt
and β are shown in Fig. 1 at α = 0.05 for the alternative
hypothesis H11 by formula (3) at different γ values and
different numbers N of the PT participants.

Example

The hypothesis about normal distribution of PT results in
the example discussed in Ref. [1] (regarding standard ref-
erence material SRM 2690 applicable for PT of aluminum
determination in coal fly ashes) was not tested because of
the small size of the statistical samples. Therefore, the sam-
ple size is increased here to N = 50: the simulated data are
presented in Table 3 (the simulation is performed by the

known method of successive approximations). Such sam-
ple size allows testing the hypothesis about the data normal
distribution applying the Cramer–von Mises ω2criterion
[18]:

ω2
N = −N − 2

N∑

j=1

{[(2 j − 1)/2N ] ln F(x j )

+[1 − (2 j − 1)/2N ] ln[1 − F(x j )]}, (4)

where j = 1, 2, . . ., N is the number of the PT result Cj
in the statistical sample ranked by an increasing C value
(C1 ≤ C2 ≤ · · · ≤ CN); xj = (Cj − CPT/av)/SPT is the normal-
ized value of the j-th result which is distributed with the
mean of 0 and the standard deviation of 1; CPT/av and SPT
are the natural average and the standard deviation of the
PT results (percent by weight); F(xj) is the function of the
normalized normal distribution.

The advantage of this criterion in comparison to the
classical Kolmogorov or Kolmogorov–Smirnov criteria for
goodness-of-fit distributions is the possibility to test a sta-
tistical sample of N ≥ 50 without dividing the data into
ranges according to their values. Therefore, ω2-criterion
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Fig. 1 Power Pt of the test and probability β of an error of type
II in dependence on the number N of laboratories participating in
PT, when probability of an error of type I is α/2 = 0.025, and the
null hypothesis H0 is tested against the alternative hypotheses H11 at
γ = 0.4, 0.7 and 1.0—curves 1, 2 and 3, correspondingly

uses the maximum information contained in the statistical
sample [18].

The probability that ω2
N = 1.95 calculated by formula (4)

is randomly exceeding the critical value 1.94 (for N = 50)
equals 0.10 [19 ]. Therefore, the hypothesis about normal
distribution of the data in Table 3 should be rejected at
the level of confidence of 0.90. The corresponding empiri-
cal histogram and the theoretical (normal) distribution are
shown in Fig. 2. It is clear that the empirical distribution
is a bimodal one, therefore no normal distribution can fit
it. Since other known distributions are also not suitable
here, let us apply the proposed nonparametric test for the
comparability assessment of the results.

Taking into account Ccert = 12.35%, σ cert = 0.14%,
σ PT = 0.38% by weight, and γ = 0.14/0.38 ≈ 0.4, one
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Fig. 2 Histogram of PT results (frequency F of a result value C)
(solid line), and the corresponding normal approximation (dotted
line)

can calculate �= 0.50·0.38 = 0.19% (see Table 1 for
γ = 0.4), Ccert +�= 12.54% and Ccert − �= 12.16%. The
values Cj>12.54% are marked in Table 3 by sym-
bol “ + ”, and the values Cj<12.16% by symbol “ − ”.
There are N+ = 15 and N− = 12 of such values, corre-
spondingly. Other N − N+ − N− = 23 values in the range
Ccert ±� are marked by symbol “0”. The sample median is
C25 = C26 = 12.49>Ccert = 12.35% and N+>N−, however,
N+ is less than the critical value A = 17 at α/2 = 0.025
and N = 50 (see Table 2). Therefore, the null hypothesis H0
about successful comparability of the results is not rejected.

Reliability of the assessment using the hypotheses H0
against H11 for this PT scheme (γ = 0.4) can be charac-
terized by (1) probability 1 −α/2 = 0.975 of correctly as-
sessing the comparability as successful (not rejecting the
null hypothesis when it is true) for any number N ≥ 6 of the
PT participants, and (2) probability Pt = 0.73 of correctly
assessing the comparability of N = 50 PT results as unsuc-
cessful (rejecting H0 when the alternative hypothesis H11
is true: see Fig. 1). Probability α/2 of an error of type I is
0.025 for any N ≥ 6, while probability β of type II error is
0.27 for N = 50.

Discussion

Since the sign test critical A values are determined for
N ≥ 4/8 at different probabilities α, and the test power is
calculated also only for N ≥ 6/8, the proposed comparabil-
ity assessment cannot be performed for a smaller sample
size. As already mentioned in paper [1], the power effi-
ciency of the sign test in relation to the t-test (ratio of the
sizes N of statistical samples from normal populations al-
lowing the same power) is from 0.96 for N = 5 to 0.64 for
infinite N. For example, practically the same power (0.73
and 0.75) was achieved in case of the sign test of compa-
rability of results for aluminum determination in coal fly
ashes at N = 50 discussed above, and using t-test for the
same purpose at N = 30 in Ref. [1]. The power efficiency
here is approximately 30/50 = 0.6. On the other hand, when
information about the distribution of PT results is limited
by small sizes of statistical samples of experimental data
(N<50), it is a problem to evaluate the goodness-of-fit em-
pirical and theoretical/normal distributions, a decrease of
the t-test power and the corresponding decrease of reliabil-
ity of the comparability assessment caused by deviation of
the empirical distribution from the normal one.

Of course, reliability of the assessment and probabili-
ties of erroneous decisions based on the sign test, as any
statistical criterion or test, depends on how the hypothe-
ses have been formulated. In particular, if γ<0.3 and the
null hypothesis is: |MPT − Ccert| ≤ 0.3σPT, the same power
requires a bigger sample size, i.e., N = 50/100 [20]. An-
other null hypothesis: |MPT − Ccert| ≤ 0.3 (σ 2

PT + σ 2
cert)

1/2

also leads to a test that is stricter than the one described
above. Such hypothesis is suitable for comparability as-
sessment of analytical results obtained in a crucial PT, or
may be in a key comparison when distribution of the results
differs from normal or other known distribution.
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The role of the adequacy of the reference material used,
of the ratio γ and of an alternative hypothesis (its “distance”
from the null hypothesis) is similar to the one shown in Ref.
[1] for the ttest.

Conclusions

1. A nonparametric sign test is formulated for assessment
of comparability of analytical results obtained in PT
based on a metrological approach, when distribution of
the results differs from a normal one. The test consists
of estimation of a null hypothesis about insignificance
of the bias of median of the PT results from the traceable
certified value of the reference material used in the PT,

against the alternative hypothesis about the bias signif-
icance. The reliability of the assessment is analyzed in
terms of probabilities of errors of type I and type II in
decisions concerning rejection or nonrejection the null
hypothesis.

2. In spite of smaller sign test power, in comparison with
power of the corresponding t-test, the former can be
more effective for cases when number of laboratories
participating in a PT is less than 50, and indication of
a deviation of the results’ empirical distribution from a
theoretical/normal distribution is problematic.

3. The sign test can be helpful for PT providers and
laboratory accreditation bodies in analysis of PT re-
sults without any special statistical software tools
available.
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