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Abstract Samples of green coffee
(Coffea arabica) produced in the
crop year 1999/2000 in Minas Gerais
state, Brazil, were analyzed for the
elements Al, Ba, Br, Ca, Cl, Co, Cs,
Cu, Fe, K, Mg, Mn, Na, Rb, S, Sc,
and Zn using instrumental neutron
activation analysis (INAA), in an at-
tempt to establish fingerprints of or-
ganically grown coffee. Using data
mining/KDD techniques the ele-
ments Br, Ca, Cs, Co, Mn, and Rb
were found to be suited as markers
for discrimination of organic from
conventional coffees.
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Introduction

During recent years, there has been an increasing con-
cern among consumers about new coffee quality attri-
butes associated with the absence of chemical contami-
nants, negative environmental impacts caused by the
production system and use of bad labor practices. This
concern is addressed, at least in part, by production
methods identified with the concepts organic, sustain-
able, ecological and biological. Because of this trend,
traditional coffee producers are increasing the supply of
organically cultivated coffees to meet the growing de-
mand of markets such as the EU, Japan, and the USA.
Importers, however, are facing numerous problems for

the discrimination of organic from conventional coffees
in order to discover and to avoid frauds.

The availability of reliable certification procedures
for organic coffee might facilitate and strengthen the in-
ternational trade of this product. Current certification
procedures rely, strongly, on process certification instead
of on product certification. The organic attribute is,
therefore, often designated to a coffee lot by an attached
certificate rather than demonstrated by objective proce-
dures. Because higher international prices are achieved
by organic coffee and certification relies on quality des-
ignation, there might be an incentive in the market to sell
conventional coffees or mixed coffees as being pure or-
ganic. This problem would be minimized if the intrinsic
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quality of the product could be objectively demonstrated
by means of fingerprints allowing its correct identifica-
tion. The idea of quality demonstration developed in this
research was inspired in measurement competence certi-
fication based on demonstration as suggested by De 
Bièvre and Taylor [1].

Several attempts have been devoted to either establish
the regional origin of coffee [2] or to differentiate be-
tween Arabica and Robusta varieties, both in green and
roasted coffees using elemental composition [2–4] and
chemical attributes (chlorogenic acid, caffeine, trigonel-
line, aqueous extract, amino acids, and polyphenols) [5].
The aroma fraction can successfully be employed to
characterize roasted coffees of different origins [6].

Appropriate identification of organic coffee means
protection to producers and consumers, as well as new
perspectives for international trade. It may be based on
the determination of the agrochemical compounds and
residues in the coffee beans, which is to some extent
troublesome due to the high costs and scarce availability
of the associated standards. Moreover, pesticides used in
coffee plants can be transformed during the roasting pro-
cess of coffee beans leading to misidentification.

This study provides an assessment on whether ele-
mental composition, measured by instrumental neutron
activation analysis (INAA), can discriminate organic
from conventional coffees. INAA is an advantageous
technique for this kind of study because of its multiele-
ment character, absence of a dissolution step and no need
for matrix-matching multielement standard [7]. The
analysis on the perspectives for discrimination consid-
ered samples of organic and conventional coffees from a
major production region in the Minas Gerais state, 
Brazil. The information from such samples was orga-
nized in a database and explored by a data mining/KDD
approach [8, 9] with the objective of looking for finger-
prints, which would allow the discrimination. The next
section provides some background information on organ-
ic agriculture and its definitions.

So what does organic mean?

Organic agriculture is growing worldwide. Currently
(2002) it has been practiced in more than 120 countries.
The total area certified as organic encompasses 20 mil-
lion hectares and the market of organic products is re-
sponsible for USD 20 billion. Italy has around 50,000
certified organic farmers, the largest number in a single
country, while Australia has the largest area covered
with 7.7 million certified organic hectares. Developing
countries also have a significant participation in the sec-
tor accounting for hundreds of thousands of farmers
practicing organic farming [10].

In spite of the increasing interest for organic agricul-
ture, there is no single definition accepted worldwide for

this type of agriculture. The International Federation of
Organic Agriculture Movements (IFOAM) defines or-
ganic agriculture as “all agricultural systems that pro-
mote the environmentally, socially and economically
sound production of food and fibers” [11]. The joint
FAO/WHO Codex Alimentarius Commission, in the
Guidelines for the production, processing, labelling and
marketing of organically produced food (GL 32, 1999)
defines organic agriculture as “a holistic production
management system that promotes and enhances agro
ecosystem health, including biodiversity, biological cy-
cles, and soil biological activity” [12]. These general
definitions are formalized in technical guidelines/stan-
dards that specify the allowed practices for organic agri-
culture [11, 12].

In some countries, organic agriculture is also charac-
terized as ecological or biological agriculture. All these
traditions were taken into account by the European Com-
mission when drafting the EU-Regulation 2092/91, pro-
tecting the use of all three terms – organic, biological
and ecological – including abbreviations like bio or eco
in the EU official languages [10].

Experimental

Sample collection

Samples were collected in Santo Antonio do Amparo, Minas 
Gerais state, one of the pioneer cities in the production of organic
coffee in Brazil. Five Arabica coffee fields cultivated under differ-
ent systems were selected: two organic, two conventional and one
in-conversion, which is a field changing from conventional to or-
ganic system in a timeframe of at least 5 years. The organic cof-
fees were produced in accordance with the guidelines from the
Instituto Biodinâmico (IBD), an IFOAM accredited member, and
the Associação de Agricultura Orgânica (AAO), a Brazilian affili-
ate of IFOAM [11]. After harvesting, the coffee beans were pro-
cessed and stored in heavy fabric bags (60 kg), inside an ambient-
controlled warehouse, composing individual batches for each har-
vested field. Then, 25 samples of approximately 0.5 kg were taken
from each batch, totaling 125 samples.

Sample preparation

Sample preparation was carried out at the Radioisotopes Laborato-
ry, CENA/USP, Piracicaba, Brazil. Samples were oven-dried at 60
°C until constant weight, ground in alumina mill and test portions
of 500 mg placed in special polyethylene capsules for irradiation
(Vrije Universiteit Amsterdam). The moisture content was as-
sessed by replicates taken during capsules filling. Certified refer-
ence materials (NIST/SRM 1515 – Apple Leaves and NIST/RM
8433 – Corn Bran) were used for internal quality control.

Instrumental neutron activation analysis (INAA)

The samples were irradiated using the facilities of the 2 MW nu-
clear research reactor “Hoger Onderwijs Reactor” of the Interfac-
ulty Reactor Institute, Delft University of Technology. The INAA
Laboratory at this institute operates with an accredited quality
system since February 1993 (original accreditation by STERLAB
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for compliance with EN45001; nowadays by the Dutch Council
for Accreditation for compliance with ISO/IEC 17025).

Two irradiations and three measurements were performed for
the multielement determinations. First, elements based on short-
lived radionuclides were determined by irradiation for 30 s in the
fast rabbit system, under a thermal neutron flux of approximately
1.6×1013 cm s–1. After 1 min decay time, the induced activity was
measured for 5 min using a Ge detector (12% relative efficiency)
at a sample–detector distance of 5 cm. Metallic zinc foils irradiat-
ed together with the samples allowed to estimate the neutron flux;
the activity of the foil was measured after the measurement of the
sample. For the determination of elements based on medium and
long-lived radionuclides, samples were irradiated 4 h under a neu-
tron flux of approximately 5×1012 cm 2 s–1. Each irradiation con-
sisted of a batch of 14 samples, neutron flux monitors and internal
quality control samples. After 4–5 d decay time the induced activi-
ties were measured on a Ge detector (17% relative efficiency) for
1 h (sample–detector distance 5 cm), and after approximately 21 d
in a well-type Ge detector for 1 h. The neutron flux was again esti-
mated using Zn monitors. The elemental quantification is based on
the single comparator method. The element calibration constants
in this method have all been previously experimentally established
in the same irradiation and counting facilities, using working stan-
dards made from element compounds of known composition. Cor-
rection factors are being applied if changes in the neutron spec-
trum occur due to alterations of the reactor core configuration.
More details on the operation and quality assurance in this labora-
tory can be found elsewhere [13, 14].

Data mining/KDD methodology

Data mining is a concept used by practitioners of artificial intelli-
gence, computer science, and statistics to indicate the process of
knowledge discovery in databases (KDD). Data mining or KDD re-
lies on multidimensional data visualization techniques, machine
learning and pattern recognition methods, as well as on standard sta-
tistical methods to perform the nontrivial extraction of implicit, previ-
ously unknown, and potentially useful information from data [8, 9].

A formal representation for the discrimination/pattern recogni-
tion problem investigated in this research is presented in the fol-
lowing paragraphs.

Let S be a coffee sample belonging to an unknown category of
interest (organic, conventional and in-conversion); CATi be a cate-
gory i from ΩCAT, a set of categories of interest; E(S) be a vector
(size n) of features (in this case elemental concentrations) in sample
S; R(E(S)) be a (multivariate) n×m function of the features (elemen-
tal concentrations); Nj be a particular subset j of the Rm space (m-di-
mensional space), associated with function R and vector of features
E. This subset j is an element of ΩN, the set of possible subsets.

A first issue of interest here is whether there would be an ap-
propriate definition of a function R(E(S)) of the elemental concen-
trations that would lead to meaningful information on the proba-
bilities of membership of this coffee sample S in a specific catego-
ry CATi, given the observation that R(E(S))∈Nj, that is, the func-
tion of the elemental concentrations presented a value within the
category of values Nj, or, algebraically:

(1)

Equation (1) can be represented (under Bayes rule) by:

(2)

In Eq. (2) the last term in the numerator represents the a priori
probability of having the coffee sample S classified in CATi with-
out any information on elemental concentrations. A comprehen-

sive database with information for each coffee sample, including
elemental concentrations and cultivation system category, might
facilitate the estimation of the conditional probabilities in Eq. (2).

A second issue of interest is the perspective that there might be
more than one function R(E(S)) of the elemental concentrations
able to provide useful information under the framework discussed
so far. It is possible, for instance, that the knowledge of elemental
concentrations from two different subsets of elements, {Na, Rb,
Sc} and {Br, Fe}, have comparable power in discriminating the
cultivation system. In this situation, cost-effectiveness issues
could be taken into consideration to facilitate the selection.

A number of parametric/nonparametric approaches could be
potentially helpful to provide insights into the pattern recogni-
tion/discrimination problem formalized in the previous para-
graphs. Some of these approaches (such as graphical analysis) do
not provide quantitative answers but contribute to a better under-
standing of this problem without unnecessary complications.

In this research, graphical analysis as well as nonparametric
methods (mostly), were used to investigate the feasibility and na-
ture of cost-effective solutions which might lead, with further re-
finement, to routine methods for discrimination of coffee attributes
or categories (organic, conventional, in-conversion), based on ele-
mental concentrations. These techniques include multivariate data
visualization methods, classification trees for categorical response,
and data driven Bayesian networks. Nonparametric techniques
were used because they are often more robust to outliers, less de-
pendent on strong distributional assumptions, and allow a more
straightforward treatment of missing values/incomplete informa-
tion, as well as nonlinearity, than their parametric counterparts.

The implementation of KDD methods required the organiza-
tion of the available information on coffee samples from known
categories in a database – generally speaking, a table readable in
digital format. This table includes in each line the available infor-
mation from each sample, including cultivation system category,
soil contamination category and elemental concentrations, orga-
nized in each column table.

Results and discussion

The mean concentrations and coefficients of variation of
Al, Ba, Br, Ca, Cl, Co, Cs, Cu, Fe, K, Mg, Mn, Na, Rb,
S, Sc, and Zn for the five cultivation systems/soil con-
tamination categories studied are shown in Table 1.

A preliminary analysis considered an R implementa-
tion [15–17] of univariate data visualization methods
(with box plots) to explore features of the elemental con-
centrations for each category of interest (C, conventional
coffee; O, organic coffee; T, transition or in-conversion).
A typical box plot presents the data between “hinges”
roughly associated with the quartiles 1, 2, 3, and 4, with
the central hinge being the median. Samples suggested
as outliers are plotted as circles, off the quartile ranges.

Figure 1 presents box plots for elemental concentra-
tions found in the database of samples, for each category
of interest. The organic (O) category aggregates the sam-
ples from the two organic sources available. The conven-
tional (C) category includes samples with and without
soil contamination. Concentrations of Br, Ca, Mn, and
Rb for organic samples tended to be substantially lower
or higher than those for other samples. Lower concentra-
tions of Cs were observed for category in-conversion
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(T). Concentrations of Co appear to be helpful in the
separation of all three categories C, O, and T.

The box plots were remade excluding the soil-con-
taminated samples (Fig. 2). It can be seen that the plots
for Br, Ca, Mn, and Rb are similar to those including the
soil-contaminated samples (Fig. 1). The concentrations
of Cs and K appear to help the discrimination of conven-
tional coffee while Fe helps the discrimination of in-con-
version samples, which was not possible when soil-con-
taminated samples were included (Fig. 1).

The analysis was further refined using a multivariate
data visualization method considering an R scatterplot

[15–17]. This is depicted in Fig. 3, for medium/long-
lived nuclides, and Fig. 4, for short-lived nuclides, for
samples from the categories organic (O) and convention-
al (C) with respect to each possible pair of elemental
concentrations. The plots suggest that both categories of
coffee samples can be well discriminated by pairs of ele-
mental concentrations.

In the following step (Fig. 5), a statistical learning
technique called classification tree was applied to sum-
marize the information within the coffee database into an
easily understandable representation for insights in class
discrimination. Classification trees are often used in bot-

Table 1 Mean elemental concentrations (µg g–1) of coffee beans

Category Al Ba Br Ca Cl Co Cs Cu Fe K Mg Mn Na Rb S Sc Zn

Conventional Mean 31 2.3 0.45 1120 157 0.21 0.10 17 27 17,200 2160 25 2.8 33 1510 0.00086 6.1
CV (%) 62 22 11 5 9 20 8 6 4 3 4 15 12 12 14 27 13

Conventional+soil Mean 340 2.8 0.55 1070 256 0.37 0.042 19 276 19,600 2330 23 4.6 40 1950 0.063 5.8
CV (%) 53 21 12 5 8 29 12 12 73 2 5 7 11 2 22 76 6

In-conversion Mean 48 3.5 0.44 1080 191 0.054 0.029 19 32 19,400 2200 24 4.0 30 1580 0.00067 6.0
CV (%) 22 12 3 6 7 6 6 6 3 2 5 5 7 2 21 14 3

Organic 1 Mean 39 2.8 0.22 1480 166 0.14 0.049 18 26 19,600 2130 15 2.7 23 1510 0.00048 5.3
CV (%) 24 18 4 4 6 4 6 7 3 2 5 6 6 3 19 21 2

Organic 2 Mean 29 2.7 0.25 1370 156 0.11 0.054 17 27 19,200 2030 15 3.3 22 1400 0.00061 5.5
CV (%) 30 22 4 6 6 6 7 4 7 1 2 4 9 2 14 30 6

Fig. 1 Box plots of elemental
concentrations (µg g–1) for each
category (includes the soil-con-
taminated samples in the con-
ventional category)
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any, medicine, entomology and artificial intelligence, but
are less familiar to statisticians. The technique was im-
plemented considering the Gini index as the criterion to
guide the data split process. Additional details can be
found in the specialized literature [17, 18].

The classification task was rather easy given the clear
separation of categories already diagnosed by the direct
visualization techniques. Figure 5 presents a classifica-
tion tree in which all element concentrations available
were considered for the tree building process. It resulted
that only cobalt was needed for a complete classification.
This tree reads as following: if the Co concentration is
greater than or equal to 0.147 µg g–1, go to the left and
the sample is conventional (C), otherwise go to the right;
if the Co concentration is greater than or equal to 0.079
µg g–1, go to left and the sample is organic (O); other-
wise the sample is from the in-conversion (T) category.
The numbers depicted below the tree show the number
of samples classified in each category. The indication
50/0/0 below the branch at the extreme left shows 50
samples classified by the rule in the category conven-
tional, 0 in the category organic and 0 in the category in-
conversion. Figure 6 shows a classification tree that ex-
cludes the possibility of using Co. In this case, Rb and

Cs were the best elements selected for the classification
(100% correct).

Finally, a Bayesian network was constructed using
data-driven techniques to evaluate the information in the
database. This technique takes into account the probabi-
listic framework introduced by Eqs. (1) and (2), being a
solid foundation for expert systems aimed at diagnosis
and discrimination. Details on this technique are present-
ed elsewhere [19, 20]. The structure of the network con-
sidered here is very simple, assuming (in most cases)
that the marginal probability distributions of elemental
concentrations are conditionally independent, given the
“true” category of the sample and knowledge on soil
contamination. An arrow from one node (called parent
node) to another node (called a child node) indicates that
the values/categories of the child are probabilistic condi-
tioned by the parent. Only four discrete categories of
concentration values were defined for each element in
this simplified network (associated with the quartile
ranges observed in the database for each element con-
centration).

The computational implementation was developed
with the software Netica (Norsys), which provides a con-
venient user interface for exploration and diagnosis us-

Fig. 2 Box plots of elemental
concentrations (µg g–1) for each
category (without soil-contami-
nated samples in the conven-
tional category)
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ing the network. Of 125 samples, 102 were randomly se-
lected for the estimation of the conditional and uncondi-
tional probabilities in the network considering the fre-
quency of cases in the database with the appropriate fea-
tures. The network was adjusted in such a way that all
possible events would have nonzero probability, to ac-

Fig. 3 Coffee samples (black,
organic, gray, conventional)
and pairs of elemental concen-
trations (µg g–1) – w/o soil con-
tamination samples (medi-
um/long-lived nuclides)

Fig. 4 Coffee samples (black, organic, gray, conventional) and
pairs of elemental concentrations (µg g–1) – w/o soil contamina-
tion (short-lived nuclides)

Fig. 5 Classification tree for soil-contaminated and noncontami-
nated samples (all elements allowed)
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count for a priori knowledge not reflected in the sample
database. The conditional probability for each category
was then computed by the system using Bayes rule.

Figures 7–10 show the conditional probabilities of
each category of cultivation system (in the node 
Pmethod) and soil contamination (in the node Soil) given
the available information on elemental concentrations
measured in a certain sample.

Figure 7 shows the probability of each category
when there is no information on the elemental concen-
trations in a specific coffee sample. These probabilities
are associated with the frequency of samples in the dat-
abase within each category of cultivation system (C, O,
T) and soil contamination (yes or no), in this imple-
mentation.

In Fig. 8, only the information on K, Ca, and Fe con-
centrations for a particular sample is assumed as known.
The nodes associated with these elements are shown in a
darker grey and the category of observed measurement
set to probability 100 %. Elemental concentrations for
other nodes (associated with other elements) are as-
sumed as unknown. The probabilities shown in these
nodes are the conditional probabilities for each category
of elemental concentration for the sample given the ob-
served concentrations for K, Ca, and Fe. The conditional
probabilities for the cultivation system and soil contami-
nation categories given the observed concentrations for
K, Ca, and Fe are: 67.0 % for the sample being conven-
tional, 31.7 % being organic, 1.38 % being transition (or
in-conversion), and 91.6 % being noncontaminated by
soil. The information on K, Ca, and Fe in this sample
produced conditional probabilities for each category of
cultivation system and soil contamination showing con-
siderable uncertainty. Discrimination was not entirely
satisfactory in such case.

In Fig. 9, only Br and Na concentrations are assumed
to be known for the same sample. Now the conditional
probabilities are 96.6 % for the sample being conven-
tional, 2.74 % being organic, 0.7 % being transition, and
96.9 % being noncontaminated by soil. The discrimina-
tion was more satisfactory in this case.

In Fig. 10, it is assumed that all elemental concentra-
tions are known for the sample. Thus, the conditional
probabilities are close to 100 % for the sample being
conventional, 0 % being organic, 0 % being transition
and 98.6 % being noncontaminated by soil. Uncertainty

Fig. 6 Classification tree for soil-contaminated and noncontami-
nated samples (all elements allowed except Co)

Fig. 7 Bayesian network with-
out element concentrations set
to specific levels (see text for
details)
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on the true category of cultivation system and soil con-
tamination for the coffee sample was considerably re-
duced in this situation.

Finally, the discrimination accuracy of the network
was tested with 23 samples not used in the network esti-
mation (or learning) procedure. For each of these sam-

ples, all available elemental concentrations were in-
formed to the network, in a situation similar to that indi-
cated in Fig. 10. Table 2 shows the conditional probabili-
ties for each category estimated by the network, given
the elemental concentrations. Only the sample 10 was
given a larger probability for the “wrong” cultivation

Fig. 8 Bayesian network with
K, Ca, and Fe concentrations
(µg g–1) set to specific levels
(see text for details)

Fig. 9 Bayesian network with
Br and Na concentrations 
(µg g–1) set to specific levels
(see text for details)
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system category (in this case Transition). Organic was
the presumed category for this sample. For the other 22
samples the presumed cultivation system category was
given the highest probability (often close to 100%).
Samples 14–18, known to be soil-contaminated, were

correctly discriminated in this category with probability
higher than 99 %. Samples 8 and 11 suffered from miss-
ing information on some elemental concentrations but
still the higher probability was given to the presumed
categories.

Fig. 10 Bayesian network with
all element concentrations 
(µg g–1) set to specific levels
(see text for details)

Table 2 Conditional probabili-
ties estimated for a testing set
of coffee samples not used to
construct the Bayesian network
(sample 10 was misclassified –
right category is organic)

Sample Conditional probabilities (%) from Bayesian network, Sample category
number given the elemental concentrations

Cultivation system Soil contamination

C O T Yes No

1 0 0 100 2 98 T No
2 0 0 100 5 95 T No
3 0 0 100 2 98 T No
4 0 0 100 3 97 T No
5 0 0 100 9 91 T No
6 0 100 0 7 93 O No
7 0 100 0 5 95 O No
8 0 100 0 10 90 O No
9 0 100 0 12 88 O No

10 0 13 87 6 94 O No
11 0 100 0 40 60 O No
12 0 100 0 20 80 O No
13 0 100 0 8 92 O No
14 100 0 0 99 1 C Yes
15 100 0 0 99 1 C Yes
16 100 0 0 99 1 C Yes
17 100 0 0 99 1 C Yes
18 100 0 0 99 1 C Yes
19 100 0 0 0 100 C No
20 100 0 0 0 100 C No
21 99 1 0 0 99 C No
22 100 0 0 0 99 C No
23 100 0 0 0 99 C No
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Concluding remarks

Results indicated a positive perspective for the use of el-
emental concentrations for the discrimination of organic
from conventional green coffees. Since the nature of the
database used in this research includes coffees from only
one production region and harvest, the conclusions can-
not be extrapolated into a more general context and need
to be interpreted with caution. At this point, effort is be-
ing made towards the construction of a comprehensive
database with information from conventional and organ-
ic coffee samples from other regions, harvests and coffee
species (Arabica vs. Robusta). An evaluation of the dis-
crimination performed by elemental concentrations

based on the information from this new comprehensive
database might suggest additional steps towards the de-
velopment of a reliable methodology for coffee quality
demonstration, concerning the organic and conventional
attributes. Finally, research aimed at clarifying the causal
mechanism associated with the differences observed in
elemental concentrations, for organic and conventional
coffees, is strongly recommended.
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