
A Software Fault Tree Approach to Requirements Analysis of an
Intrusion Detection System

Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller and Robyn LutzGuy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller and Robyn Lutz
Department of Computer Science, Iowa State University, Ames, Iowa, USA

Requirements analysis for an intrusion detection system

(IDS) involves deriving requirements for the IDS from

analysis of the intrusion domain. When the IDS is, as

here, a collection of mobile agents that detect, classify,

and correlate system and network activities, the derived
requirements include what activities the agent software

should monitor, what intrusion characteristics the agents

should correlate, where the IDS agents should be placed

to feasibly detect the intrusions, and what counter-

measures the software should initiate. This paper

describes the use of software fault trees for requirements

identification and analysis in an IDS. Intrusions are

divided into seven stages (following Ruiu), and a fault
subtree is developed to model each of the seven stages

(reconnaissance, penetration, etc.). Two examples are

provided. This approach was found to support require-

ments evolution (as new intrusions were identified),

incremental development of the IDS, and prioritisation

of countermeasures.

Keywords: Coloured Petri nets; Intrusion detection
system; Mobile agents; Requirements analysis; Software
fault tree

1. Introduction

A secure computer system provides guarantees regarding
the confidentiality, integrity and availability of its
objects (such as data, processes or services). However,
systems generally contain design and implementation
flaws that result in security vulnerabilities. An intrusion
takes place when an attacker or group of attackers

exploit security vulnerabilities and thus violate the

confidentiality, integrity or availability guarantees of a

system. Intrusion detection systems (IDSs) detect some

set of intrusions and execute some predetermined action

when an intrusion is detected.

Intrusion detection systems use audit information

obtained from host systems and networks to determine

whether violations of a system’s security policy are

occurring or have occurred [1]. Our Multi-Agents

Intrusion Detection System (MAIDS) [2] uses mobile

agents [3] in a distributed system to obtain audit data,

correlate events and discover intrusions. The MAIDS

system comprises (1) stationary data-cleaning agents that

obtain information from system logs, audit data and

operational statistics and convert the information into a

common format, (2) low-level agents that monitor and

classify ongoing activities, classify events and pass on

their information to other agents, and (3) data-mining

agents that use machine learning to acquire predictive

rules for intrusion detection from system logs and audit

data.

However, we found the lack of a sound theoretical

model and systematic method for the construction to be

an impediment to development of the system in our early

work. Existing intrusion detection systems tend to be

built by selecting a set of data sources and developing a

classification system to identify some set of intrusions

using the selected data [2]. It is difficult to determine

exactly what data elements should be correlated to

determine whether an intrusion is taking place on a

distributed system. It is also difficult to determine what

data was necessary to discover intrusions. Verification of

the proper operation of the IDS was possible only

informally by executing the IDS and checking its results.

To bridge this gap, we started to look at IDS models.

A model of intrusion detection is necessary to describe

Requirements Eng (2002) 7:207–220
Ownership and Copyright
� 2002 Springer-Verlag London Limited

Requirements
Engineering

Correspondence and offprint requests to: G. Helmer, Department of
Computer Science, 226 Atanasoff Hall, Iowa State University, Ames,
Iowa 50011, USA. Email: ghelmer@cs.iastate.edu



how the data should flow through the system, determine
whether the system would be able to detect intrusions,
and potentially suggest points at which countermeasures
could be implemented. Such a model provides a formal
specification of how to describe intrusions, identify
intrusion characteristics and provably detect intrusions
based on observable characteristics. Our approach begins
with an analysis of intrusions to support a theoretical
model of intrusion detection that answers questions
about which intrusions are detectable, how they can be
detected, how the data from different sensors should be
correlated, and to what extent we can be assured that a
report of an intrusion or a non-intrusion is accurate.
Software Fault Tree Analysis (SFTA) [4] is used in

our approach to model intrusions and develop require-
ments for the IDS. SFTA is a method for identifying and
documenting the combinations of lower-level software
events that allow a top-level event (or root node) to
occur. When the root node is a hazard, the SFTA assists
in the requirements process by describing the known
ways in which the system can reach that unsafe state.
The safety requirements for the system can then be
derived from the software fault tree, either indirectly
[5,6] or directly via a shared model [7]. Software fault
trees are closely related to threat trees [8].
In the work described here, we use SFTA to assist in

determining and verifying the requirements for an
intrusion detection system. The root node of the top-
level SFTA is not strictly a hazard, as in a safety
analysis, but an intrusion. An intrusion is a violation of a
system’s security policy. Intrusions result in compromise
of exclusivity (unauthorised disclosure of data or use of
services), integrity (unauthorised modification of data) or
availability (denial of service). Whereas safety failures
are often accidental or unexpected, intrusions are
intentional, perpetrated by individuals and can be
expected to occur. Both safety and security failures
represent potentially significant or catastrophic losses.
Intrusions can occur in a variety of ways. The

software fault tree models the combinations and
sequences of events by which intrusions can occur.
The understanding and capture of domain knowledge
needed to accurately define the requirements on an IDS
is difficult. Questions such as what intrusions can be
feasibly detected by the IDS software, at what stage of
an intrusion the IDS software should detect each
intrusion, and what assurances can be given that the
IDS software detects intrusions must be addressed by the
requirements analysis. The goal is not to build a system
in which the root node never occurs, but to build an IDS
in which the root node never occurs undetected.
The primary contribution of the work described here is

to analyse the intrusion domain using software fault trees
in order to determine the requirements for an IDS. The

SFTA models the stages of intrusion in a structure that
supports discovery and reasoning about requirements. In
addition, the SFTA supports requirements evolution. The
fault tree can be updated as new intrusions are identified,
an essential feature for security applications. The SFTA
also allows incremental development of the IDS as
progressively more paths to the root node (or to the root
node of a subtree) are blocked by the software.
Inspection of the SFTA provides guidance as to where
software monitors in the IDS should be required. Finally,
path coverage metrics provide some verification that the
IDS requirements are correct.

The rest of the paper is organized as follows. Section 2
provides some background on SFTA and graph-based
IDS. Section 3 describes fault tree modelling of
intrusions. Section 4 elaborates two specific examples
from our experience with SFTA for the requirements
determination of an IDS. Section 5 discusses the results
of the use of SFTA in terms of requirements
identification and analysis, requirements evolution and
verification. Section 6 contains concluding remarks.

2. Background

2.1. Software Fault Tree Analysis

The SFTA used to model intrusions is a backward
search. It begins with a known hazard (here, an
intrusion) as the root node and traces back through the
possible parallel and serial combinations of events that
caused such an intrusion. The fault tree graphically
represents this information in a diagram of events and
logic gates leading to each hazard. Normally, the goals
of developing a software fault tree include identifying
contributing circumstances to an unsafe state and
demonstrating that a system cannot reach an unsafe
state or that unsafe states are reached with very low
probability [9]. In the intrusion domain, however, widely
deployed existing systems and protocols which are
unsafe (i.e., allow intrusions) are modelled in the
intrusion detection domain to enable reasoning about
the possible combinations of events that lead to
intrusions.

Figure 1 (a subset of available symbols [4]) shows
commonly used fault tree symbols. The procedure for
fault tree analysis starts with identifying a hazard. The
hazard becomes the root of the fault tree. Necessary
preconditions for the hazard are specified in the next
level of the tree and joined to the root with a logical
AND or a logical OR. Each precondition is similarly
expanded until all leaves are events that occur with some
calculable probability or cannot be further analysed.
Fault tree analysis is used at the system level to identify

208 G.Helmer et al.



high-level requirements for software safety. Software
fault tree analysis is then performed on code, design, or
requirements specifications [10]. The SAPHIRE soft-
ware from the Idaho National Engineering and Environ-
mental Lab was used to draw and edit the fault trees [11].

The OR gates in the fault trees shown are ‘true’ if any
input is true. The AND gates are ‘true’ if all inputs are
true in the current context, where the context may be a
virtual network connection, a user’s login session, a
series of related transactions or some other temporal
context. Child events of AND gates may take place in
any order (left-to-right representation has been used
where events occur in sequence, but the fault trees do not
enforce the order). (Hansen et al. [7] discuss the
ambiguities of traditionally accepted fault trees.)

A cut set is a set of basic events that causes the system to
fail [12]. A cut set is called a minimum cut set if no basic
event can be removed from the cut set and the root of the

tree is still true [12]. A minimum cut of a fault tree gives a
minimum set of successful events sufficient to satisfy the
root. A minimum cut of an intrusion fault tree describes a
scenario of a use case in which an attacker successfully
exploits security flaws to achieve the goal of compromis-
ing the system. Manian et al. [13] use Binary Decision
Diagrams as an alternative to cut set-based solutions of
fault trees for large, combinatorial solutions. However, in
our current work, the size of the fault trees has been
manageable using traditional cut set-based solutions.

2.2. Graph-Based Models of Intrusion Detection
Systems

Several graph-based modelling techniques for IDS exist,
but they model the intrusion detection system rather than
the intrusion itself. For example, GrIDS, the Graph-
based Intrusion Detection System, detects misuse in a
system by dynamically building graphs that model the
communication activities in a network [14]. The graph
depends on user-defined rules to identify suspicious
patterns and models intrusion detection, rather than
intrusions. ARMD, the Adaptable Real-time Misuse
Detection system, represents misuse signatures as
directed acyclic graphs [15]. Unlike the object/event
model used by GrIDS, the graphs are not amenable to
aggregation. IDIOT, Intrusion Detection In Our Time, is
an IDS that uses a custom language and a variant of
coloured Petri nets (CPNs) for misuse detection [16,17].

3. Developing Fault Trees for Intrusions

Intrusion fault tree modelling draws from a variety of
sources. The standards used in current TCP/IP networks
are publicly available. Proposals and standards for IP
networks are published by the Internet Engineering Task
Force (IETF) as Requests for Comment (RFCs) and
Standards (STDs). Implementations of most network
protocols are freely available in software such as Linux,
FreeBSD and Apache, allowing public review for
security issues. Numerous researchers and hackers
actively discover and publish security vulnerabilities in
public forums including mail lists such as bugtraq and
web sites such as www.securityfocus.com.

Faults that are generally UNIX-centric are considered
in the fault trees, although many similar problems (e.g.,
buffer overflows) exist in software on other systems.
Rather than looking directly at the source code for these
systems, the immense body of publicly discussed
vulnerability information is used for development of
the sample fault trees discussed here.

Fig. 1. Relevant fault tree symbols.

A Software Fault Tree Approach to Requirements Analysis 209



3.1. Reasonable Fault Trees

Each successful intrusion can vary greatly from all other
intrusions, and attempts to analyse complete intrusions
are difficult. A monolithic fault tree that would attempt
to describe all intrusions would be huge, unwieldy and
less useful than several trees divided in a systematic
manner. A reasonable approach is to divide intrusions
into stages of intrusions that achieve intermediate goals
of the attacker, and to develop fault trees that model each
of the stages.
Ruiu’s analysis of intrusions [18] separates intrusions

into seven stages: (1) Reconnaissance, (2) Vulnerability
Identification, (3) Penetration, (4) Control, (5) Embed-
ding, (6) Data Extraction & Modification, and (7) Attack
Relay. We use each of the seven stages as a root node in
a SFTA, which has turned out to be a useful approach for
the intrusions we have analysed. Dividing stages in this
manner seems to have been beneficial in that common
subtrees can be identified and reused. Certain intrusion
techniques (e.g., buffer overflow or printf-style format-
string exploits) are often applied to many different
components in a system.

3.2. SFTAs for Intrusions

The sample fault trees do not represent all possible
combinations of events that make the root nodes true,
even for known intrusions, but represent the known
events in the documented intrusions against the systems
of interest at this time. An example of how paths in the
trees can describe a successful intrusion is discussed
below.

3.2.1. Reconnaissance

The reconnaissance phase identifies potential targets
within an organisation’s networks. Network targets
include not only multiuser hosts (e.g. UNIX or
Windows/NT systems) but also routers, intelligent
hubs and perhaps even modems. The services offered
by systems and names of users on the systems are
also useful information for an attacker. Figure 2
shows a sample fault tree for the reconnaissance
phase.

3.2.2. Vulnerability Identification

Vulnerability identification is closely related to
reconnaissance. In this phase, an attacker searches for
vulnerabilities that can lead to penetration. The attacker
sequentially scans many ports looking for versions of
remote control services known to be vulnerable to

intrusion (e.g. BackOffice or NetBus). Port scanning is
a ‘noisy’ monitorable intrusion, and is usually easy to
detect unless done very slowly. The software fault tree
in Fig. 3 models this vulnerability identification phase
of the intrusion (the FTPD node, number A5, is left
unexpanded to allow us to show the diagram in a
readable format). Other events, monitorable (such as
checking of operating system version identification
strings) and unmonitorable (such as off-site sniffing of
network traffic) may also be used for version
identification but were not included in Fig. 3 to make
it readable.

3.2.3. Penetration

Penetration occurs when an attacker obtains un-
authorised access to a system. Penetration methods
include exploitation of various network server daemon
vulnerabilities (poor authentication and buffer over-
flows), authenticating with illicitly obtained passwords
and TCP session hijacking. Figures 4–7 together
represent a sample fault tree for the penetration stage
of intrusions. An example of potential subtree reuse can
be seen in Fig. 4, where node C2 (Shell Via Buffer
Overflow) represents online access to a shell and also
could be duplicated under node B2 (Execute Shell Code)
where a shell could be used to execute a command.

3.2.4. Control

An attacker needs to gain sufficient privilege in a system
to continue to the next stages of the intrusion. Often an
attacker must obtain privileges equivalent to those of the
system administrator to gain sufficient control of a
system. If the penetration was particularly effective and
sufficient privilege was already gained, this step may not
be necessary.

Mechanisms traced in Fig. 8 include exploiting
buffer overflows in privileged local programs, exploit-
ing races in temporary files or signals, exploiting weak
permissions on critical files and devices, and cracking a
password for an administrator’s account.

3.2.5. Embedding

Embedding involves the installation or modification of a
system so that even if the attacker is discovered and
steps are taken to recover the system, the attacker will
still be able to enter the system. For example, the system
bootstrap code could be modified to re-insert backdoors
if the system executable programs are restored from
backups or installation media. Typical embedding
techniques include installing Trojan horses, backdoor
and other rootkit programs, removing traces of the

210 G.Helmer et al.



Fig. 3. Vulnerability identification fault tree.

Fig. 2. Reconnaissance fault tree.

A Software Fault Tree Approach to Requirements Analysis 211



Fig. 4. Penetration fault tree.

Fig. 5. Penetration fault tree: using buffer overflows in network daemons.

212 G.Helmer et al.



Fig. 6. Penetration fault tree: gaining access by modifying configuration files.

Fig. 7. Penetration fault tree: gaining access through abuse of authentication methods.

A Software Fault Tree Approach to Requirements Analysis 213



intrusion from system logs and disabling detection
systems.
Figure 9 identifies two different rootkit installations

by matching particular sets of modified system files. A
rootkit is a collection of embedding programs that allow
an attacker to hide his activities and may include
programs for use in the next step, data extraction and
modification. If attackers do not typically install all the
embedding programs in their kit, Fig. 9 would need to be
refined to reflect this case.

3.2.6. Data Extraction and Modification

In the data extraction and modification phase, the
attacker gathers information about the configuration
and operation of the system. Covert channels may be
used to move discovered data from the compromised
system to the attacker’s base. Events in this phase of an
intrusion tend to resemble normal events (e.g. copying
files). Anomaly detection seems to be an ideal
application for detecting this stage of an intrusion. For
these reasons, we concentrated on the other stages of
intrusions and left this stage for later work.

3.2.7. Attack Relay

After a system is fully compromised, it may be used for
attack relaying. Intrusions can be launched against
affiliated (trusting) hosts to expand the number of hosts

under the attacker’s control. A system also may simply
be used to participate in distributed denial-of-service
attacks [19–22]. Figure 10 represents some basic faults
seen from Stacheldraht, Tribe Flood Network and Trinoo
distributed denial of service attacks. Many other forms
of attack relaying exist, including automated and manual
means.

4. Experience with Fault Trees for Intrusions

The relationship of the developed fault trees to the two
intrusions is examined in this section. Each intrusion
follows one of the multiple paths through each of the
staged subtrees in Figs 2–10. A portion of the fault tree
of Fig. 7, describing the FTP bounce attack, was selected
for further analysis. The FTP bounce attack subtree is
particularly interesting because it involves several time-
ordered steps which must take place for the intrusion to
be successful.

4.1. Example 1: FTP SITE EXEC Intrusion

The FTP SITE EXEC attack against the wuftpd daemon
is a buffer overflow attack [23]. When someone logs into
the wuftpd daemon as the user anonymous or ftp, the
daemon requests that the email address be entered as the
password. However, an attacker can instead send
malicious shell code in response to the password

Fig. 8. Control fault tree.

214 G.Helmer et al.



Fig. 9. Embedding fault tree.

Fig. 10. Attack relay fault tree.

A Software Fault Tree Approach to Requirements Analysis 215



prompt. Then, if the SITE EXEC command is enabled,

the attacker can send a SITE EXEC command with %-

formatting characters that cause a buffer to overflow

with data previously obtained as the password.

In the reconnaissance stage of the intrusion, an

intruder discovers an anonymous FTP server host by

using any one or more of the methods under the

‘HostDiscovery’ node in the reconnaissance tree in Fig.

2.

The intruder also discovers the availability of the FTP

server by one of the methods under the ‘TCP-Service-

Discovery’ node in the reconnaissance tree.

In the next stage of the intrusion, the intruder

identifies a vulnerability (a path through the subtree in

Fig. 3). The intruder may or may not take the time to

make a connection to the FTP server and verify that the

version number reported by the server is vulnerable to

the FTP SITE EXEC attack. (Known FTP vulnerabilities

are not expanded under the ‘FTPD’ node in the

vulnerability identification tree in Fig. 3.)

Figures 4–7 show the penetration fault tree as this

intrusion scenario continues (this scenario is shown in

detail by a path in the fault tree of Fig. 5). The intruder

can now connect to the FTP server, give ‘anonymous’ or

‘ftp’ as the user name, and enter malicious shell code as

the password. The intruder then issues a SITE EXEC

command containing printf-style substitution character

sequences. This is an attempt to overflow the character

buffer on the process stack with the data from the

previously entered ‘password’. If the overflow is

successful, the code provided by the intruder is executed

with root privileges. A successful FTP SITE EXEC

attack also gives the attacker control, so the attacker can

move on to the later stages of the intrusion. (In this

intrusion scenario, we assume the successful penetration

results in privileged access, so the control phase of the

intrusion may be bypassed.)

In the embedding stage, the intruder can install the

Linux Rootkit version 4, which replaces a number of

programs with Trojaned implementations that hide the

attacker’s activities. Figure 9 shows the fault tree that

matches the changes to the file system that result from

the installation of the Linux Rootkit version 4.

In the data extraction stage, the intruder installs and

runs a password sniffer that takes user names and

passwords from telnet and ftp sessions on the LAN.

In the final stage of the intrusion, shown as a path

through the intrusion fault tree in Fig. 10, the intruder

installs and runs a distributed denial of service agent,

such as Trinoo, TFN or Stacheldraht. The intruder can

then use the system to execute attacks against other

networked sites.

4.1.1. Derived IDS Requirements

The software fault trees involved in this intrusion helped
identify the software requirements for the mobile agent
software tasked with detecting the FTP SITE EXEC
intrusion. Examination of the penetration subtree shows
that it is feasible to detect the FTP SITE EXEC attack in
software.

4.1.2. Countermeasures for the FTP SITE EXEC
intrusion

Based on the derived requirements, an intrusion
detection system should monitor PASS commands in
an FTP session for data that does not represent a valid
sequence of printable characters. That is, an invalid
sequence of characters, including a number of characters
beyond the maximum allowed password size or a
password containing non-printable characters, is an
event in any minimum cut set. The analysis does not
say anything about how the monitoring should be
implemented or performed; it merely leads to require-
ments for the intrusion detection system for stopping this
particular intrusion.

4.2. Example 2: FTP Bounce Intrusion

The FTP bounce attack can be used to transfer data to a
network port to which an attacker does not normally
have access [24]. One way to exploit this problem is to
send data to a remote shell server that trusts the FTP host
via the FTP server. After an attacker discovers an FTP
server and a host running rsh that might trust the FTP
server, the attacker tries this exploit:

1. Uploads a specially formatted file to the FTP
server.

2. Issues an FTP PORT command that directs the FTP
server to send its next download to port 514 on the
target host.

3. Issues an FTP GET command to ‘download’ the
contents of the previously uploaded file into port
514 on the target; the GET command opens a
connection from the FTP server on port 20 to the
rsh daemon on the target.

4. If the target trusts the FTP server, the rsh daemon
will accept the contents of the file as if it were user
input and execute the given command.

The following steps in an intrusion based on an FTP
bounce attack show how the trees relate to the entire
intrusion.

In the Reconnaissance stage of the intrusion, the
intruder discovers an FTP server host and a target host,
using any one or more of the methods under the

216 G.Helmer et al.



‘HostDiscovery’ node in the reconnaissance tree. The

intruder also discovers the availability of the FTP server

and RSH server by one of the methods under the ‘TCP-

Service-Discovery’ node in the reconnaissance tree.

As in the intrusion discussed in Section 4.1, during the

Vulnerability Identification stage, the intruder may or

may not take the time to make a connection to the FTP

server and verify that the version number reported by the

server is vulnerable to the FTP bounce attack. In this

path through the subtree, the intruder also needs a

directory on the FTP server to which he may upload a

file; if the intruder has no access to the FTP server other

than ‘anonymous’, the intruder will have to search for

such a directory. The large number of known FTP

vulnerabilities has not yet been expanded under the

‘FTPD’ node in the vulnerability identification tree.

The intruder will likely have to assume that the target

host trusts the FTP server host, unless the intruder

already has some access to the target host and can read

the /etc/hosts.equiv or root/.rhosts files. We have not

considered ‘insider access’ in the vulnerability identifi-

cation tree.

The intrusion continues through the penetration

subtree, with the intruder uploading the shell command

file to the FTP server and issuing the appropriate FTP

commands to cause the FTP server to ‘download’ the file

into the target’s RSH service. The ‘FTP-Bounce’ subtree

of Fig. 7 shows the required FTP commands and

responses. The structure of the subtree enforces the

order of the events in the FTP command/response

stream.

The successful FTP bounce intrusion mounted against

a privileged account on the target also gives the attacker

control, so the attacker can move on to the later stages of

the intrusion. These later stages are omitted here for

reasons of space since the path at this point is identical to

that of the previously described intrusion.

4.2.1. Derived IDS Requirements

Analysis of the subtree concerning the FTP bounce

attack shows that, in order to detect the intrusion, the

IDS needs to monitor commands and responses in an

FTP session, to monitor rsh connections, and to correlate

outputs from the two monitors to determine whether an

FTP bounce attack was attempted and whether the

intrusion was successful. As before, the analysis does not

say anything about how the monitoring should be

implemented or performed, but merely yields require-

ments for the intrusion detection system to stop or

identify this particular intrusion.

4.2.2. Countermeasures for the FTP Bounce
Attack

Each of the steps in the intrusion detailed above is part of
a scenario which fits a minimum cut of the correspond-
ing fault tree. Inspecting the minimum cuts for each
intrusion leads us to the best point at which to apply
countermeasures. Countermeasures in intrusion detec-
tion systems typically include alerts to the system
manager (via email, paging or simply log messages),
termination of network connections or logins and
disabling user accounts.

We examined the minimum cut from the penetration
tree for the FTP Bounce Attack and informally
considered the cost of applying countermeasures at
each node. The cost included the complexity of the
software required and the effect on the legitimate users
of the system. It appears that the lowest-cost counter-
measure is to kill the TCP connection made from the
FTP server to the RSH server; countermeasures at other
nodes would either be prohibitive to implement, prevent
legitimate uses of the FTP or RSH services, or be too late
to terminate the FTP bounce intrusion.

5. Discussion of Results

Software fault trees for intrusions explore the sufficient
combinations of events that lead to exploitation of a
vulnerability. Development of fault trees for intrusions
enabled a variety of discovery and verification activities.
We summarise these briefly here and refer the reader to
the previous section for examples.

5.1. Requirements Identification and Analysis

Fault trees document properties of intrusions and allow
for analysis of intrusion properties.

Domain Understanding and Documentation. Cap-
turing this domain understanding is frequently difficult
in the security arena. Software fault trees provide a
standard, easy-to-use format for documenting properties
of intrusions by system and network experts.

Determining Requirements. Each minimum cut
models an intrusion scenario that the software may be
required to recognise. Identification of leaf events in the
fault tree illustrates what components of a distributed
system must be monitored to detect the intrusion. In
addition, analysis of intrusion fault trees exposes
conditions where countermeasures may be successfully
applied by an intrusion detection system to intervene
before the intrusion is successful.

Fault Detectability Analysis. This refers to the ability
of the system to detect the problem if it appears during

A Software Fault Tree Approach to Requirements Analysis 217



system operation [25]. Determining which characteris-
tics of intrusions can be monitored is an essential part of
the requirements analysis for an IDS. For example, there
exist certain intrusive events that do not have any
discernible effect on a site’s distributed system. Such
events include ‘DNS zone transfers’ from off-site
secondary name servers and passive password sniffing.
Marking these events appropriately in the fault tree
allows analysis of which intrusions would be particularly
difficult to detect, and may give hints regarding ways to
prevent such intrusions from occurring.

5.2. Requirements Evolution and Incremental
Development

Software fault trees support intrusion detection system
development and maintenance activities.
Prioritisation of Requirements. The addition of

historical likelihood and severity information [4] or
risk vs. reward information [8] on the nodes (not
addressed in this paper) assists in prioritising require-
ments. In addition, based on this additional information
from the fault trees, alert priorities may be encoded in an
intrusion detection system. For example, most of the
intrusions in the reconnaissance and vulnerability
identification SFTAs have a low severity and high
likelihood and are given a low alert priority. Conversely,
the intrusions in the penetration and control SFTAs have
a high severity and are given a high alert priority.
New intrusions. Newly discovered intrusions need to

be integrated into the intrusion fault tree. Such new
information may encourage reorganisation of the fault
tree, as when a new intrusion depends on a set of
circumstances that is already diagrammed in the fault
tree, or the addition of a subtree (either new or reused).
The changes necessary in the intrusion fault tree to
incorporate information about newly discovered intru-
sions will then guide the necessary modifications of the
intrusion detection requirements and design to detect the
new intrusions.

5.3. Verification

Once confidence is established in a software fault tree,
primarily through expert review, the design of the
intrusion detection can then be traced to the software
fault tree to determine its completeness and correctness.
Based on the testing strategy of Puketza et al. [26] the

SFTA can be used to test the design and implementation
of an IDS. Given a subtree of an SFTA that describes
related intrusive events, define the subtree to be an
equivalence class for the set of intrusions. Select one or
more representative minimum cuts of the subtree to be

tested. Then, given scenarios which are positive and
negative examples of the intrusions, execute the
intrusions and determine whether the subtree accurately
matches the events. The scenarios form a set of
representative test cases for the equivalence class.

We do not interpret the fault tree directly as
requirements, unlike the approach used by Hansen et
al. [7], where the fault tree has a formal semantics. A less
formal approach was desired in the intrusion application
because we want the fault tree to be developed and
maintained by system support personnel rather than by
experts in formal specification. It is primarily the support
personnel’s knowledge of the system and its vulner-
abilities that the fault tree is intended to capture. To
understand this, a brief description of the larger IDS
system is in order.

The intrusion fault tree work described here is the
requirements phase of a larger effort to provide a more
formal framework for building IDS [27–29]. The IDS
will use mobile agents in a distributed system to collect
audit data, classify it, correlate information from the
different mobile agents and detect intrusions. The
intrusion fault tree drives the requirements for these
mobile agents and the intrusion detection system. The
fault tree is mapped, by a correctness-preserving
transformation, into CPNs that serve as the design
specification of the mobile agents in the IDS. Interactive
simulation of these CPNs gives additional verification
that the design satisfies the requirements (i.e., blocks the
relevant path(s) in the intrusion fault tree). Code for the
IDS mobile agents is generated from the CPNs and
tested using, among other scenarios, the minimum cuts
through the intrusion fault tree. Currently, prototypes
exist of each of these phases (i.e., some CPNs and some
mobile agents for some intrusions) with work ongoing to
partially automate the code generation.

6. Summary and Future Work

The use of software fault tree analysis to model
intrusions to support requirements identification and
analysis for an IDS has been presented with supporting
examples and illustrative uses. Division of fault trees for
intrusions into seven stages was examined, and sample
fault trees for the intrusion stages were described. Using
these staged subtrees, two intrusions were examined and
software requirements for detection of the intrusions
were derived from examination of the trees and
associated minimum cut sets. An example use of
SFTA for guiding countermeasures requirements analy-
sis was also described.

SFTAs enable structured analysis of intrusions and
may be able to support both requirements evolution as

218 G.Helmer et al.



new intrusions are added and to enable prioritised,
incremental development of a distributed, agent-based
IDS.

For our IDS prototypes, there has been no require-
ments specification. Instead, the intrusion fault trees
have been interpreted as specifications of the combina-
tions of events that must be detected. That is, the IDS
requirements are that each of the intrusion sequences
possible in the fault tree should be detected as soon (low
in the tree) as possible. The leaf events describe what
components of a distributed system must be monitored
by the mobile agent software. No separate requirements
specification document has been developed. Software
fault tree models of intrusions provide an indirect
requirements description for the design of the IDS. The
resulting design is modelled on CPNs and implemen-
table in mobile agents. SFTA models of intrusions may
also assist the verification process by providing test case
scenarios (paths of intrusion) that the IDS is required to
detect. Our ongoing research will determine the long-
term effectiveness of SFTA in an IDS development cycle
while automating the development process from require-
ments engineering through implementation. An example
of the progress in this area is Slagell’s technical report
[28].

We have begun to formalise the use of the developed
software fault trees to drive the development of an
intrusion detection design. We are examining extending
SFTAs with additional information. Without this
additional system-specific information, the IDS yields
many false positives, detecting intrusions where, in a
specific network, there is none. More information on
these constraints is available in Helmer’s dissertation
[27].

The SFTAs developed in this work deal with known,
staged misuse intrusions. Ideas for future research in the
same view include developing models of anomaly
intrusions and non-staged misuse intrusions. Non-
staged misuse intrusions include intrusions such as
denials of service. Such intrusions do not follow the
seven stages of an intrusion but violate the availability,
confidentiality or integrity of a computing system. Some
of these intrusions have been exceedingly effective but
difficult to detect and counter. Developing a model of
these intrusions may assist the development of detection
and countermeasures.

Detecting as-yet-unknown misuse intrusions may be
assisted by SFTA. As an expert constructs a fault tree, he
or she should consider reasonable (but as yet unnoticed)
events that could contribute to an intrusion. An
interesting possibility for further research would be to
build an SFTA in this way and evaluate it against
existing systems to determine whether hypothesised
vulnerabilities do, in fact, exist.

A related aspect of SFTA development is the tedious,
detailed work and expert analysis required. We are
interested in researching machine learning approaches to
support automated development of SFTA.

Anomaly intrusion detection systems are a subject of
current research activity, but as with misuse IDSs, tend
to start with a particular data source and match an
intrusion detection approach to the data. Analysis and
modelling of anomaly intrusions may assist and improve
the development of anomaly IDSs.

Acknowledgments. This work was funded in part by the Department
of Defense. It was performed in part by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA,
funded in part by NASA’s Code Q Software Program Center
Initiative, UPN 323-08. The assistance of Palisade Systems, Inc. is
gratefully acknowledged. An earlier version of the paper was
presented at the First Symposium on Requirements Engineering for
Information Security, 2001, Indianapolis, Indiana, USA.

References

1. Amoroso E. Intrusion detection: intrusion. Net Books, Sparta, NJ,
1999

2. Helmer G, Wong JSK, Honavar V, Miller L. Intelligent agents for
intrusion detection. In: Proceedings, IEEE information technol-
ogy conference, Syracuse, NY, September 1998, pp 121–124

3. Bradshaw JM (ed). An introduction to software agents. MIT
Press, Cambridge, MA, 1997

4. Leveson NG. Safeware: system safety and computers. Adion-
Wesey, Reading, MA, 1995

5. De Lemos R, Saeed A, Anderson T. Analyzing safety
requirements for process-control systems. IEEE Software
1995;12(3):42–53

6. Lutz R, Woodhouse RM. Requirements analysis using forward
and backward search. Ann Software Eng 1997;3:459–475

7. Hansen KM, Ravn AP, Stavridou V. From safety analysis to
software requirements. IEEE Trans Software Eng
1998;24(7):573–584

8. Amoroso E. Fundamentals of computer security technology.
Prenice-Hall, Upper Saddle River, NJ, 1994

9. Leveson NG, Cha SS, Shimeall TJ. Safety verification of Ada
programs using software fault trees. IEEE Software
1991;8(4):48–59

10. Lutz RR. Targeting safety-related errors during software
requirements analysis. J Syst Software 1996;34:223–230

11. Idaho National Engineering and Environmental Laboratory.
SAPHIRE – systems analysis programs for hands-on integrated
reliability evaluations. Online at http://saphire.inel.gov/ [2000]

12. Raheja DG. Assurance technologies: principles and practices.
McGraw-Hill Engineering and Technology Management Series.
McGraw-Hill, New York, 1991

13. Manian R, Dugan JB, Coppit D, Sullivan KJ. Combining various
solution techniques for dynamic fault tree analysis of computer
systems. In: Third IEEE international high-assurance systems
engineering symposium, IEEE Computer Society, 1998, pp 21–28

14. Staniford-Chen S, Cheung S, Crawford R et al. GrIDS: a graph
based intrusion detection system for large networks. In: 19th
national information systems security conference proceedings,
October 1996, pp 361–370

15. Lin J-L, Wang XS, Jajodia S. Abstraction-based misuse detection:
high-level specifications and adaptable strategies. In: Proceed-
ings, IEEE computer security foundations workshop, Rockport,
MA, June 1998, pp 190–201

A Software Fault Tree Approach to Requirements Analysis 219



16. Kumar S, Spafford EH. A pattern matching model for misuse
intrusion detection. In: Proceedings of the 17th national computer
security conference, Baltimore, MD, October 1994, pp 11–21

17. Kumar S. Classification and detection of computer intrusions.
PhD thesis, Purdue University, West Lafayette, IN, August 1995

18. Ruiu D. Cautionary tales: stealth coordinated attack howto.
Online at http://www.nswc.navy.mil/ISSEC/CID/Stealth_Coordi-
nated_Attack.html [July 1999]

19. Dittrich D, Weaver G, Dietrich S, Long N. The ‘mstream’
distributed denial of service attack tool. Online at http://
staff.washington.edu/dittrich/misc/mstream.analysis.txt [May
2000]

20. Dittrich D. The ‘stacheldraht’ distributed denial of service attack
tool. Online at http://staff.washington.edu/dittrich/misc/stachel-
draht.analysis.txt [December 1999]

21. Dittrich D. The ‘tribe flood network’ distributed denial of service
attack tool. Online at http://staff.washington.edu/dittrich/misc/
tfn.analysis.txt [October 1999]

22. Dittrich D. The DoS Project’s ‘trinoo’ distributed denial of
service attack tool. Online at http://staff.washington.edu/dittrich/
misc/trinoo.analysis.txt [October 1999]

23. CERT Coordination Center. Two input validation problems in
FTPD. Online at http://www.cert.org/advisories/CA-2000-
13.html [July 2000]

24. CERT Coordination Center. FTP bounce. Online at http://
www.cert.org/advisories/CA-97.27.FTP_bounce.html [December
1997]

25. Del Gobbo D, Cukic B, Napolitano MR, Easterbrook S. Fault
detectability analysis for requirements validation of fault tolerant
systems. In: Fourth IEEE international high-assurance systems
engineering symposium, IEEE Computer Society, 1999, pp 231–
238

26. Puketza NJ, Zhang K, Chung M, Mukherjee B, Olsson RA. A
methodology for testing intrusion detection systems. IEEE Trans
Software Eng 1996;22(10):719–729

27. Helmer G. Intelligent multi-agent system for intrusion detection
and countermeasures. PhD thesis, Iowa State University, Ames,
IA, December 2000

28. Slagell M. The design and implementation of MAIDS (mobile
agent intrusion detection system). Technial report TR01-07, Iowa
State University Department of Computer Science, Ames, IA,
2001

29. Helmer G, Wong J, Honavar V, Miller L. Lightweight agents for
intrusion detection. J Syst Software 2003 (to appear)

220 G.Helmer et al.


