
A Feasibility Study of Automated Natural Language Requirements
Analysis in Market-Driven Development

Johan Natt och DagaJohan Natt och Daga, Bjorn Regnella, Björn Regnella, Par Carlshamreb, Pär Carlshamreb, Michael Anderssonc, Michael Anderssonc and Joachimand Joachim
KarlssondKarlssond

aDepartment of Communication Systems, Lund University, Sweden; bEricsson Radio Systems AB, Linköping, Sweden; cTelelogic Technologies AB,
Malmö, Sweden; dFocal Point AB, Linköping, Sweden

In market-driven software development there is a strong

need for support to handle congestion in the require-

ments engineering process, which may occur as the
demand for short time-to-market is combined with a

rapid arrival of new requirements from many different

sources. Automated analysis of the continuous flow of

incoming requirements provides an opportunity to

increase the efficiency of the requirements engineering

process. This paper presents empirical evaluations of the

benefit of automated similarity analysis of textual

requirements, where existing information retrieval
techniques are used to statistically measure require-

ments similarity. The results show that automated

analysis of similarity among textual requirements is a

promising technique that may provide effective support

in identifying relationships between requirements.

Keywords: Automated analysis; COTS; Duplicate
identification; Natural language; NLP; Similarity

1. Introduction

1.1. Background

The market-driven development organisation faces many
challenges that differ from those found in organisations
developing bespoke software. Software is developed for
a large market, rather than for a specific customer, new
versions are developed in a succession of releases, and
there is a high pressure on short time-to-market [1–3].

To meet market demands it is important to have an
effective and efficient requirements engineering process.
Special demands are set as requirements arrive con-
tinuously at a high rate from many different sources
during the whole development process [4]. As there is no
single specific customer to negotiate with, requirements
must be invented within the developing organisation
based on foreseen end-user needs [5]. These invented
requirements may come from sources such as marketing,
support, development, testing, usability evaluations and
technology forecasting, and are often collected for
storage in a database. The requirements engineering
activities are then focused on analysing and prioritising
the requirements in the database and on maintaining the
database for the future.

In this study we have focused on a large software
developing company, Telelogic AB, that develops a
CASE tool for the worldwide telecommunications
market. Their development process is described in
Regnell et al. [4] and its main properties are:

1. Releases are pipelined to enable a new release every
sixth month while each release takes 14 months to
complete.

2. Elicitation is continuously active and a requirement
may be issued at any time by an issuer that foresees a
market need.

3. Each requirement is stored in a database as an entity
described in natural language.

4. Each requirement has a life cycle progression through
specific states.

The Telelogic development process has shown to have
high resemblance to another market-driven development
process independently developed and used at an Ericsson
company [6].

Requirements Eng (2002) 7:20–33
Ownership and Copyright
� 2002 Springer-Verlag London Limited

Requirements
Engineering

Correspondence and offprint requests to: J. Natt och Dag, Dept. of
Communication Systems, Ole Römers v. 3, 223 63 Lund, Sweden.
Email: johan.nattochdag@telecom.lth.se



Requirements are continuously collected through a
web form and are stored in a database for further
analysis [4]. The requirements are described in natural
language and are of varying quality and nature. Some
requirements are brief ideas while others are detailed
descriptions of new features with accompanying code.
Many requirements are short-worded and poorly written.

During the development of a release the requirements
engineer (or analyst) must handle the diverse and large
set of requirements that is available in the database and
resolve ambiguities, find relationships, eliminate dupli-
cates, etc. As shown in a study of the Telelogic
requirements process [7], these activities are causing a
congestion that may be avoided by cutting down heavily
on the number of elicited requirements or making early
and strict prioritisation.

The trade-off between analysing only a subset of all
the collected requirements and not collecting that many
requirements to give time for proper analysis may be
difficult to make. Extra information could be extracted if
all requirements are collected (for example, duplicates
may indicate that certain issues are more important than
others). However, trying to handle all incoming
requirements may increase the risk of relationships
between requirements being overlooked or discovered
too late, which may cause problems in prioritisation [8]
and release planning [6].

Consequently, there is a wish to find requirements
relations early, without spending too much time on in-
depth analysis. These relationships should preferably be
found even when specification quality is low and even if
requirements are short, poorly worded or misspelled.
One possible approach, investigated in this paper, is to
assist the requirements engineer through automated
analysis of the textual information in the requirements.
This approach may help the requirements engineer to
handle the large set of requirements by automatically
finding and make suggestions on relationships between
requirements.

Two different automatic text-processing approaches
may be used to aid the requirements engineer in the
situation described above: the statistical approach or the
linguistic approach. In this paper we focus on the
statistical approach, which originates from the work by
H. P. Luhn [9]. There are several reasons that we choose
to explore this approach:

1. The ideas have not, as we far as we know, been
applied to analyse the type of requirements that is
collected in the situation we describe (see further
Section 1.2).

2. The statistical approach has been thoroughly tried and
examined and has been found fairly successful for
automatic text analysis [10].

3. The linguistic approach is still regarded as expensive
to implement and not always more effective than
well-executed statistical approaches [11].

4. Before proceeding with more advanced methods, the
statistical approach may help reveal the nature of the
requirements in a market-driven organisation.

5. A baseline produced from empirical investigation
using real industry requirements is needed to compare
against further improvements.

The results of the presented work show that, for a
particular set of requirements, a simple similarity
analyser that uses the statistical text-processing approach
identifies a large fraction of the requirements duplicate
pairs found by experts. The duplicates are important to
find to avoid doing the same job twice, assigning the
same requirement to different developers, or getting two
solutions to the same problem. The portion of
requirement pairs incorrectly identified as duplicates is
shown to have little negative impact on the value of the
method. Further effort may thus be fruitful to assist the
requirements engineer in handling the large set of
requirements found in a market-driven development
organisation.

1.2. Related Work

The role of natural language processing in requirements
engineering is discussed in Ryan [12], where the
conclusion is drawn that natural language-processing
techniques must be realistic and effort has to be made to
identify where such techniques may be useful. It is
argued that the validation of requirements still have to be
an informal, social process. Thus, an automated system
could or should not replace the human requirements
engineer. Such systems are still not feasible or cost-
effective to construct.

Various attempts have been made to use automated
techniques to assist the analysis of requirements written
in natural language:

1. Gervasi and Nuseibeh [13] use lightweight formal
methods (low cost, partial analysis) to partially
validate a syntactically correct NASA Software
Requirements Specification (SRS) document. A
glossary was manually produced from the SRS to
aid the method.

2. Ambriola and Gervasi [14] present a web-based
environment where Model–Action–Substitution rules
and a domain- and system-specific glossary are used
to extract abstractions and build models.

3. Rayson et al. [15] report on a project called

Automated Natural Language Requirements Analysis 21



REVERE, where statistical and probabilistic natural
language-processing methods are used to assist the
analysis of complex and voluminous texts.

4. Park et al. [16] present a system that uses a sliding
window model and a parser to support the analysis of
requirements using a similarity measuring technique.

5. Rolland and Proix [17] present an environment that
generates conceptual specifications from problem
space descriptions written as sentences in natural
language.

6. Osborne and MacNish [18] describe an approach to
resolve ambiguities where only a controlled language
is allowed when writing requirements in order to
facilitate for a lexicon and grammar-enabled parser.

7. Cybulski and Reed [19] describe an elicitation
method and a supporting management tool that help
in analysing and refining requirements by using a
parser, semantic networks, a domain-mapping the-
saurus, and faceted classification schemes to allow
proper formalisation of requirements written in
natural language.

8. Chen et al. [20] present ideas where concepts in texts
from electronic meetings are automatically classified
by using automatic indexing, cluster analysis and
hopfield net classification.

9. Landauer and Dumais [21] present the Latent
Semantic Analysis (LSA) computational model for
generation of a representation from large corpora.
The representation captures the similarity of mean-
ings of words and sets of words.

Although relevant and promising for several areas and
approaches in requirements engineering, the above
attempts do not address the situation described in the

previous section. The main concerns in the context of
this work are the following:

. Requirements are considered to be found in a separate
document that is to be analysed, quality assured and
produced before implementation begins. This is not
the situation in the market-driven organisation where
requirements arrive continuously and may, at any
time, affect previous, current and coming releases of
the software.

. The initial quality of the requirements is often
considered to be adequate for semantic parsing. This
may not be the case when requirements are collected

from many different sources and stored in a database.

. Real industrial requirements are not always used to

validate the methods or techniques presented. Accu-
racy and efficiency are not always reported.

. The semantic nature of invented requirements may not
share the properties of regular corpora used in many

linguistic approaches.

. Simple, robust methods can act as a baseline for better
understanding and further improvements and compar-
isons of techniques.

Several approaches seem promising but we believe that
more effort needs to be put into this field to reach
consensus on which methods, techniques, approaches
and tools may be appropriate for different types of
developing organisations. In this paper we focus on the
market-driven organisation and do not present a new
model or a full-featured approach. Rather, the feasibility
of using automated similarity analysis is empirically
investigated using real industrial requirements and a
benchmark is provided to which further effort may be
compared.

1.3. Paper Structure

The paper is structured as follows. In Section 2 the
situation of requirements similarity analysis in market-
driven development is described. Section 3 explains how
automated similarity analysis of natural language
requirements may be performed. Section 4 presents a
case study where actual requirements collected from
industry have been analysed. The case study explores the
quality of a simple automatic similarity analyser. In
Section 5, further applications of automated support are
presented together with a small study using the analyser
from Section 3 to investigate if similar requirements also
are interdependent. Section 6 identifies possible further
work and improvements. In the final section the results
are discussed and conclusions presented.

2. Requirements Similarity Analysis

Requirements carry information on which decisions are
based. This information can be either explicit or implicit.
The explicit information constitutes all the written text,
drawn charts and other artefacts that are used as the basis
for communicating requirements. The implicit informa-
tion consists of all the assumptions, rules, standards and
the domain knowledge possessed by the requirement
issuers and the requirements analyst. When natural
language requirements arrive at a rapid flow from many
different issuers, a quick analysis is required to
guarantee requirements’ quality before they are used as
a basis for further decisions. Although the linguistic
quality of the requirements may be low it is often left
unattended as the requirements make sense. Rather, the
information explicitly stated may not give sufficient
decision support. For this reason the requirements
engineer uses implicit and explicit information accom-
panied by personal skills to analyse the requirements for

22 J. Natt och Dag et al.



completeness, ambiguity, similarity, etc. Completeness
analysis is performed to ensure that enough information
is included in the requirements to enable further
refinement, such as setting priority, estimating effort
and deriving new requirements (see example require-
ments in Fig. 4). Ambiguity analysis is performed to
identify the risks of multiple interpretations among
requirements. Similarity analysis is discussed below.

If supplementary information is needed to accept the
requirement, the analyst may have to consult the issuer
to make sure that the issuer and the analyst share the
same interpretation. Thus, the requirements engineer acts
to assure the quality of each requirement before allowing
it to be further refined in the continuous requirements
engineering process [6]. The situation is illustrated in
Fig. 1, where example activities have been identified in
the quality gateway.

The activities in the quality gateway are typically
performed manually as there are few supportive tools
available. The activities are tedious and time-consuming,
but necessary in order to assure software quality and to
satisfy market needs. It would therefore be highly
beneficial if some of these tedious activities could be
partly automated.

This paper focuses on similarity analysis, which is
performed in order to find requirements that may be
merged, grouped, eliminated or linked. For example, two
similar requirements may be merged into one or may
simply be grouped together to make sure they are
handled simultaneously during development. A require-
ment may be similar to another to the extent that it is
regarded as a duplicate and thus eliminated. Further-
more, two requirements may be similar in a certain
aspect that establishes some kind of interrelationship
(such as dependencies between requirements and
requirement decompositions). The requirements engi-
neer may also find it desirable to split large requirements
into two or more requirements, which may become
similar or related to each other and other requirements in
the database.

When the requirements engineer decides whether two
requirements are similar or not, it is with regard to the

implications for further development. Of course these
decisions are made by humans, but computer analysis of
explicit information expressed in natural language may
supply the requirements engineer with information
regarding similarity to support these decisions.

3. Automated Similarity Measurement

Statistical approaches to automated similarity measure-
ment are widely used in information retrieval (IR),
which is a well-established discipline concerned with
automated storage and retrieval of documents written in
natural language [22]. The presented work is based on
existing IR techniques applicable in the analysis of
natural language requirements. Figure 2 provides an
overview of the steps in similarity measurement, where a
similarity metric SA,B is calculated for a pair of textual
requirements (A,B). The calculation of a similarity
measure (further described in Section 3.1) is made
subsequent to a number of pre-processing steps
(elaborated in Section 3.2). The assessment of similarity
metrics is described in Section 3.3.

3.1. Similarity Measures

In order to find relationships between requirements that
may be merged, grouped or eliminated, a quantification
of the degree of association between the requirements is
needed. Several similarity measures are available, but no
comparative studies exist that give a definite answer to
which one to choose in this particular situation. In this
paper we have therefore used three simple and well-
known similarity measures to calculate the similarity
between sentences: the Dice, Jaccard and cosine
coefficients [23]. These measures all take the words in
two sentences and calculate the similarity based on how
many words they have in common. The coefficients are
defined as follows, where A and B are requirements:

All three measures have the desired property of

normalisation, which imply that they give a value

between 0 and 1 to indicate how similar a pair of
Fig. 1. Requirements quality gateway with three examples of
quality assuring activities.

Automated Natural Language Requirements Analysis 23



sentences are, where 0 means that the sentences have no
words in common and 1 means that the sentences are
identical. The empirical investigation reported in Section
4 applies these measures to textual software require-
ments.

3.2. Preparing the Source Data

Before the similarity measure can be calculated the
words of each sentence have to be extracted. This is
achieved through lexical analysis, which takes an input
stream of characters and converts it into a stream of
words or tokens. This immediately raises the question of
what should count as a word or token. For example,
digits, hyphens, punctuation and letter case bring some
problems that have to be considered. It is not technically
difficult to solve these problems, but the chosen lexical
analysis policy will affect the similarity measure. For
example, preserving letter case will distinguish the
words like ‘System’ and ‘SYSTEM’ and thus produce
lower similarity measures. How to choose the policy
thus depends on what type of data is to be analysed and
the expected outcome.
Frequently occurring words like ‘a’, ‘the’, ‘of’, etc.,

will inadequately boost the similarity measures. These
words, known as stop words, are therefore filtered out
before similarity calculation. Which words to eliminate
again depends on the type of data. It is reasonable to start
out with a known stop word list that has been derived
from general text.
Another issue is the morphological variants of words,

i.e. the word forms. Words that are written in different
forms usually carry the same information and should
thus be considered equal. Therefore, words should be
reduced to their ground form so that an automated word
matcher would report a positive match. The technique
used to reduce words to their ground form is called
stemming and produces a stem from a word. For
example, both the words ‘replace’ and ‘replacement’
may result in the stem ‘replac’ and consequently the
words would be considered equal. There are several
ways to stem words, such as affix removal, successor
variety, table lookup, and n-gram [22]. In this paper we
have used an affix removal stemmer, the Porter

algorithm [24], which consists of a set of condition/
action rules. It is a compact algorithm that has been
shown to give good results in IR [22].

The similarity measure may be calculated by counting
the number of stems produced from each requirement
and the number of stems the requirements have in
common. The common stems may be found using exact

match or inexact match. Exact match requires the stem to
be exactly equal, whereas inexact match calculates the
similarity between the stems. Spelling errors may call for
inexact match but brings the difficulty of choosing a
good algorithm and a threshold level for match. The
analyser used in this paper is designed to require an
exact match between stems.

The low linguistic quality of the requirements will of
course affect the similarity measure. However, we have
chosen not to include spelling correction as we are
interested in the performance of using a simple
technique. It is also questionable if there is time for
manual pre-processing in industrial settings.

3.3. Assessing the Quality of Similarity Measures

In order to evaluate the technique used to suggest similar
requirements, a notion of quality is needed. We have
chosen to use a contingency table, which defines a
number of quality aspects in similarity measurement.
Assume that S(ri, rj) is a function that takes a pair of
requirements and gives a similarity measure between 0
and 1. In addition we select a threshold value t, which
acts as a selection criterion. If S(ri, rj) 5 t then (ri, rj) is
considered to be a suspected duplicate pair. Assume also
that there exists a set of pairs of requirements that are
identified as actual duplicate pairs. The similarity
measure hence provides an approximation of this set of
actual duplicate pairs, and the quality of the estimation
may be defined according to Fig. 3 [23].

The resulting pairs that have a similarity value above
or equal to the threshold level are regarded as duplicate
pairs suggested by the analyser. Matches between actual
duplicate pairs and those suggested by the analyser are

True positives = D/(C+D)
False positives rate = B/(A+B)
Accuracy = (A+D)/(A+B+C+C)

Fig. 3. Assessment scheme with contingency table.

Fig. 2. A functional view of automated similarity analysis between
requirement A and B, producing a measure SA,B ranging from 0
to 1.

24 J. Natt och Dag et al.



denoted true positives. The actual duplicate pairs not
identified by the analyser are consequently denoted false

negatives, i.e. they were wrongly suggested as non-
duplicate pairs. The analyser may also suggest duplicate
pairs that actually were non-duplicate pairs. These are
denoted false positives. The rest are denoted true

negatives and constitute all the requirement pairs that
fell below the threshold level and were correctly
suggested as non-duplicate pairs. The accuracy of the
analyser is defined as the sum of the true negatives and
the true positives divided by the total number of possible
requirement pairs and indicates how well the actual
duplicate pairs and non-duplicate pairs are identified.
The total number of requirement pairs is calculated as
A + B + C + D, which is equal to (n . (n – 1))/2, when n is
the number of requirements.

The contingency table will help reveal the perfor-
mance of the method. In order to evaluate the feasibility
of the analyser, a deeper investigation of the requirement
pairs is needed. Taking any two identified pairs, they
may or may not involve the same particular require-
ments. For example, the requirement pairs (A, F) and (C,
F) share the requirement F. If the analyser assigns
similarity values above zero to each of these pairs and a
similarity value equal to zero to the pair (A, C) it would
nevertheless be interesting to look at the three involved
requirements together. We denote these preferred
groupings of requirements as n-clusters, where n is the
number of requirements in the cluster. The two single
pairs in the previous example will thus form a 3-cluster.
The cluster distribution can be derived by calculating the
transitive closure of a graph in which the nodes
correspond to requirements and edges correspond to
pairs of requirements (ri, rj) with S(ri, rj) 5 t.

The sizes of the clusters and the number of clusters
reveal the usefulness of the automated similarity
analysis. It may be desirable to have many requirements
grouped into n-clusters where n is the greatest number of
requirements that the requirements analyst is capable of
handling simultaneously. Example cluster distributions
are presented in Fig. 6.

4. Empirical Investigation

In order to investigate the potential benefits of automated
similarity analysis, we have applied the similarity
measures described in Section 3.1 to real industrial
requirements. The measures were used to see if
automated analysis can correctly determine if a certain
requirement is a duplicate of an already existing
requirement.

For the investigation we have developed a computer
program to perform the tasks specified in Fig. 2. The pre-

Fig. 4. Two example requirements from the database denoted
duplicates in the database. These two requirements were also
suggested as duplicates by the similarity calculator at the 0.75
threshold level using the cosine similarity measure.

Automated Natural Language Requirements Analysis 25



processing steps are handled by a lexical analyser, stop
word remover and stemmer (explained in Section 3). The
stop list remover excludes words with low discrimina-
tion value, and consists of 425 words derived from the
Brown corpus [25]. For the stemming of words, the
Porter algorithm is applied [24]. The similarity calcula-
tion produces a list of requirement pairs along with a
value for each pair representing the similarity measure.
Telelogic, a large software developer, has allowed us

restricted access to a requirements database of 1920
confidential requirements. Telelogic develops software
development tools for a wide market and handles
requirements arriving at a high rate from several
different stakeholders (about three requirements a day
[7]). The requirements are submitted through a web
interface and thereafter managed by requirements
engineers [4].
In Fig. 4, two examples of requirements from the

database are shown. Many of the attributes are set at
different stages in the requirements process, reflecting
the refinement of the requirement from submitted to
implemented or rejected [4]. The stage is represented by
the ‘Status’ and the possible stages are shown in the
leftmost column in Table 1. The table also shows, in the
second column, the distribution of the 1920 requirements
over the different stages.

4.1. Preparations

When a requirements engineer analyses a requirement,
the requirement is checked on many different properties.
Three related properties are (1) whether or not it is
regarded as a duplicate of another requirement already in
the database, (2) if it is possible to merge it with another
requirement and (3) if it should be split into two or more
requirements before further analysis. If a requirement
has one of these properties, it is assigned the ‘Duplicate’
status and an appropriate action is taken. When a
requirement is merged, all the information is added to
the requirement it is merged with. When a requirement is

split, the information is distributed over two or more new
requirements. When a requirement is a pure duplicate
(property 1 above), no further action is taken with the
information.

As shown in Table 1, 130 of the 1920 requirements
were either duplicates, merges or splits. In the analysis,
only those that are ‘true’ duplicates are considered, since
we know beforehand that merges and splits will match
partially and thus bias the result. When these were
removed, 101 requirements remained. The resulting set
is shown in column 3 of Table 1 (set Afull).

Some of the 101 duplicates involved more than one
requirement. This means that a requirement may be
denoted a duplicate of two other requirements. To
resolve this we parsed every identified duplicate and
constructed a set of unique duplicate pairs. However,
doing this creates a set of duplicate pairs that may be
related (which addresses the discussion about clusters at
the end of Section 3.3). Therefore, we calculated all
these relations and created new duplicate pairs to denote
the relation. For example, if requirement A initially was
denoted a duplicate of requirements B and C, and
requirement D was denoted a duplicate of requirement
C, we would first create the duplicates pairs (A, B), (A,
C) and (D, C). Then we would add the pairs (B, C), (A,
D) and (B, D) to fully reflect all possible relations. This
is acceptable since the duplicate relation is transitive.
That is, if both A and D are duplicates of C, then A would
also be a duplicate of D.

According to the requirements database manager, not
all the requirements having status New or Assigned had
been analysed for duplicates, and it was only certain that
those having priority 1 had been analysed. Therefore, we
considered removing all requirements with status ‘New’
or ‘Assigned’, not having priority 1. After doing this we
noticed that some duplicate pairs referred to the removed
requirements. Thus, we decided to analyse two sets: one
with all requirements and one with the ‘New’ and
‘Assigned’ requirements with priority not equal to 1
removed. As the second set does not include all the
requirements addressed in the duplicate pairs, those pairs
were removed from the duplicates pair set. The resulting
number of requirements and duplicate pairs are shown in
column 4 in Table 1 (set Areduced).

The textual information used to represent each
requirement was collected from the ‘Summary’ field,
which corresponds to a short requirement title, and the
‘Description’ field, which corresponds to a further
explanation (see the examples in Fig. 4). As these
fields were empty for a subset of the requirements, three
different requirement sets were prepared from each of
sets Afull and Areduced. The first set comprised all the
requirements that had a non-empty ‘Summary’ field. The
second set comprised all the requirements that had a

Table 1. Number of requirements in the database and in the
different sets prepared for analysis

Status Original Afull Areduced

New 406 406 12
Assigned 428 428 31
Classified 601 601 601
Implemented 252 252 252
Rejected 103 103 103
Duplicates 130 101 90
Total 1920 1891 1089
Duplicate pairs – 142 124

26 J. Natt och Dag et al.



non-empty ‘Description’ field. The third set comprised
all the requirements that had a non-empty ‘Summary’
field or a non-empty ‘Description’ field (NB. Not
exclusive or. Requirements having a non-empty ‘Sum-
mary’ field and a non-empty ‘Description’ field were
included in the last set). In the analysis of the sets using
both fields, the two fields were treated as one. Table 2
shows the number of requirements in each of the sets
after the requirements with the empty fields had been
removed.

4.2. Results

The similarity calculator was run once for each of the
prepared requirements sets to calculate the three
similarity coefficients described in Section 3.1. The
quality was assessed by producing contingency tables for
nine different threshold levels as explained in Section
3.3. The threshold levels ranged from 0 to 1 with a 0.125
interval. All the possible combinations resulted in 162
contingency tables (3 measurements . 2 sets . 3 fields . 9
thresholds = 162 tables).

In Table 3, nine contingency tables are shown for the
analysis on the ‘Summary’ field of set Bfull using the
cosine similarity measure. The number of possible
unique pair-wise comparisons, which is the same as
the total number of possible unique requirement pairs, is
denoted A + B + C + D in the contingency table in Fig. 3,
and corresponds to the sum of each column in Table 3.
The first row shows the number of correctly identified
duplicate pairs and decreases as the threshold increases.
Most requirement pairs are, correctly, considered as non-
duplicate as shown in the second row. Their number
increases with the threshold level. The third row shows
how many duplicate pairs the analyser identified that

actually were not identified as duplicate pairs by the
experts. Finally, in the fourth row are all the actual
duplicate pairs that the analyser did not find.

The number of false positives and negatives at
threshold level 1 may raise some questions. There may
be false negatives because requirements concerning
exactly the same issue may be worded differently. The
reasons that there may be false positives are several:

1. A requirement may be partially implemented and
result in new requirements. The implemented
requirement and the new requirements may then
have the same information in some textual attributes.
Since none of these requirements are marked as
duplicates in the database the automatic analyser may
produce a false positive.

2. The compared textual attributes may be wrong and
misleading, not reflecting the actual meaning of the
requirement.

3. Two requirements may be highly related and concern
the same issue and have the same information in one
textual attribute. Nevertheless, they do not have to be
duplicates.

4. If all non-matching words in two requirements
happen to be stop words, and thus eliminated before
the similarity calculation, the reduced requirements
may give a similarity measure of 1 but actually have
different wordings.

The rate of true positives, the rate of false positives and
the accuracy (see Section 3.3) were plotted to compare
the measurements and to see which would generate the
best result. In Fig. 5(a–d), four graphs are shown to
support the conclusions on:

. which measurements may be considered the best;

. whether or not the requirements with status ‘New’ or
‘Assigned’ and not priority 1 should be ignored;

Table 2. Final sets prepared for the analysis

Non-empty field Bfull Breduced

Requirements Duplicate pairs Requirements Duplicate pairs

Summary 1830 142 1085 124
Description 1570 99 915 86
Summary or description 1887 142 1088 124

Table 3. Contingency table data for the summary field coefficient in set Bfull using the cosine similarity measurement

0+ 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

True positives (D) 114 114 105 80 62 47 42 31 30
True negatives (A) 1,578,213 1,578,581 1,628,049 1,666,093 1,670,881 1,672,945 1,673,247 1,673,341 1,673,349
False positives (B) 95,180 94,849 46,555 8,111 2,864 449 146 52 44
False negatives (C) 28 28 35 61 80 93 100 111 112

Automated Natural Language Requirements Analysis 27



. which fields or combination of fields give the best
results.

The graphs show that the rate of correctly identified
duplicate pairs (the true positives rate) decreases from
80% or 90% at threshold level 0+ to about 20% at
threshold level 1. The lowest degree of similarity is
found when there is only one single word matching.
Each measure will then give a similarity value just above
0 and thus, using threshold level 0+, suggest exactly the
same set of duplicate pairs (every similarity measure but
zero between two requirements results in a suggested
duplicate pair). Correspondingly, the highest degree of
similarity is found when all words match. Each measure
will then give a similarity measure of 1 and produce
exactly the same set of duplicate pairs. Between these
threshold levels the curves differ slightly, which shows
that the similarity measures perform differently. The

Dice and cosine similarity coefficients show no
significant difference, but the Jaccard coefficient per-

forms slightly worse. Thus, for this particular set of
requirements, the Dice or cosine coefficient is preferable.

The false positive rate is very low, decreasing from

5.69% down to 0.01%. The accuracy of the similarity

analyser is as high as 94.3% at the lowest threshold level

and increases to near 100% at threshold level 1. This

curve suggests that the Jaccard coefficient is a better

choice, contradicting the choice based on the positives

rate.

Looking at the two topmost graphs, which show the

results from using only the ‘Summary’ field, we can see

that there is no considerable difference between the

results for set Bfull and Breduced. This implies that either

(1) there are ‘New’ and ‘Assigned’ requirements with

lower priorities that have been analysed and found to be

Fig. 5. (a) Similarity analysis performance using the summary field in set Bfull. (b) Similarity analysis performance using the summary field in
set Breduced. (c) Similarity analysis performance using the description field in set Bfull. (d) Similarity analysis performance using the summary
and description fields in set Breduced.

28 J. Natt och Dag et al.



duplicates, of which some are identified by the program,
or (2) the requirements have not been analysed and few
matches were found by the program. Alternative 1 seems
more plausible and is also confirmed by the contingency
table – more duplicates are identified which must be
related to the ‘New’ and ‘Assigned’ requirements with
lower priorities.

The two leftmost graphs, showing the results from
using the ‘Summary’ or the ‘Description’ fields
respectively (from set Bfull), differs on the low and
high threshold levels. At threshold level 0+, the true
positives rates is as high as above 90% using a
combination of the ‘Summary’ and the ‘Description’
fields. However, the false positives rate is substantially
higher and the true negatives rate has also dropped
significantly. The conclusion from this comparison is
that using only the ‘Summary’ field gives more accurate
answers. The reason for this is that the ‘Description’
field contains too much noise that incorrectly boosts the
similarity measures.

Finally, the top left and the two bottommost graphs
support the rather evident: a combination of the
‘Summary’ and the ‘Description’ field results in a
combination of the results from using the ‘Summary’
and the ‘Description’ fields separately.

The high number of requirement pairs identified at
threshold level 0+ in Table 3 may at first seem very
discouraging. However, calculating the cluster distribu-
tion of all the positives (true and false) as explained in
Section 3.3 gives support to the following conclusions
and the usefulness of the result.

The cluster distributions for the Breduced set are shown
in Fig. 6(a,b). Each figure shows four graphs. The first
three show the cluster distribution using the cosine
measure on the ‘Summary’ and the ‘Summary’ +
‘Description’ fields respectively. The last graph in each
row shows the cluster distribution for the actual
duplicates found by the experts.

The graphs show that with increasing threshold the
number of clusters of larger size decreases. For example,
in Fig. 6(a) at threshold level 0.375 there is one very
large cluster involving 123 different requirements.

What is noteworthy about this is that the presented
study is made on a very large set of requirements but that
in reality the requirements arrive continuously, a few at a
time. The similarity analysis can thus be made
incrementally on a smaller set of requirements, avoiding
the need for interpreting the results of similarity analysis
of the entire set of requirements at one time. The cluster
distribution shows that if we analyse one randomly
selected requirement from the database (which may
represent a newly submitted requirement), the worst case
would be that the analyser suggests a cluster of 123
requirements to be identical (Fig. 6a, leftmost graph).
This is thus the maximum number of requirements the
requirement analyst must handle simultaneously. As the
number may seem too high for the lower thresholds, it is
reasonable to suggest that too large clusters may be
ignored as they are probably irrelevant.

Considering both performance and cluster distribution,
we may also conclude that the Dice and cosine measures
are superior. The true positives rate has already been

Fig. 6. (a) Requirements cluster distribution for the Breduced set using the cosine measure on the ‘Summary’ field. The three leftmost graphs
show the number of clusters of different sizes for various thresholds compared to the actual cluster distribution on the right. (b)
Requirements cluster distribution for the Breduced set using the cosine measure on the ‘Summary’ and the ‘Description’ fields. The three
leftmost graphs show the number of clusters of different sizes for various thresholds compared to the actual cluster distribution on the right.

Automated Natural Language Requirements Analysis 29



shown to be higher, and the higher false positives rate is

compensated by the suggestion of analysing a group of

related requirements simultaneously, instead of checking

each of the several thousand possible duplicate pairs.

Another interesting issue is whether the automated

analyser reveals duplicate pairs that the experts missed.

To explore this we let an expert analyse the 75 false

positives suggested when using the cosine measurement

on the ‘Summary’ field for set Bfull at threshold level

0.75. Table 4 shows the surprising result from the

analysis. It turned out that 37% of the suggested

duplicate pairs were actually missed by the experts!

For that threshold level, the true positives rate would

then increase from 26% (Fig. 5b) to almost 40%, the

already low false positives rate would decrease, and the

already high accuracy would increase. The analyst did

not regard two requirements in a pair as duplicate or

similar if they were to be implemented in different parts

of the software. The table also shows the additional

relationships identified, which thus imply that only 21 of

the 75 pairs identified would be completely wrong.

The manual analysis also indicated that the analyser

may have a problem when there are too few words in the

fields. One suggestion would then be to use the

‘Description’ field only when the ‘Summary’ field has

too few words.

Furthermore, the threshold value can be tuned based

on the requirements engineer’s consideration of the best

trade-off between few false positives and many true

positives.

In summary, it may be concluded that:

1. The similarity analysis technique gives reasonably

high accuracy considering its simplicity.

2. For incremental analysis of requirements, given that

related requirements are grouped into clusters, the

Dice and cosine may be considered the superior

measures.

3. A large explanatory field tends to give a worse result,

as the discrimination between requirements declines.

However, if one field has too few words it may be

worth using other lengthy fields.

4. The grouping of suggested duplicate requirements
into clusters reduces the analysis burden consider-
ably.

5. Further Applications

There are numerous conceivable applications of auto-
mated similarity analysis beyond identifying duplicates.
The following briefly describes some of these applica-
tion areas, of which we have only evaluated one so far.

5.1. Requirements Interdependencies

Requirements interdependencies are important to identi-
fy and keep track of for requirements prioritisation and
release planning purposes, as interdependencies may
govern what partitions of a particular set of requirements
are allowed from a functional perspective, or eligible
from a cost/value perspective. Carlshamre et al. [6]
describe a number of salient interdependencies found in
a study of empirical data The relationship between
similarity and interdependency is evident in the case
where we have two requirements R1 and R2, with the
exact same ‘Sum-mary’ field. This would be a true
duplicate pair in the previous sense, but it would also
represent an OR interdependency, which imply that
either one of the requirements could be implemented.
The existence of common keywords may indicate other
types of interdependencies as well. For example, if there
are several requirements that include the word ‘sorting’,
it may be wise to consider implementing these together
to save development resources, which would represent
an interdependency regarding cost of implementation.

To investigate whether the similarity measurement
technique could be used to support the identification of
interdependencies in a set of requirements, we applied
the same analysis technique as described in Section 3.1
to five different sets of 20 high-priority requirements,
previously studied manually by experts (for further
information on the results of the manual study, see
Carlshamre et al. [26]). Among the total of 100
requirements, there were in total 155 pair-wise inter-
dependencies manually identified by experts from each
of the five organisations.

5.1.1. Results

Each set of 20 requirement slogans were relieved of stop
words and reduced to stems, before being separately fed
to the similarity calculator using the cosine coefficient.
The automatic analyser reported 70 similar pairs on a 0+
threshold (9, 18, 21, 10 and 12 pairs in each set
respectively), of which 25 were true positives. Table 5

Table 4. Result of expert analysis of the false positives for the set
Bfull at the threshold 0.75 using the cosine measure on the
summary field

Relationship Count

Duplicate 28
Similar 13
Related 8
Part of 5
Not related 21

30 J. Natt och Dag et al.



shows the frequencies of actual dependencies in relation
to the similarity measure using the assessment scheme
presented in Table 1.

A chi-square test [27] gives a p-value less than 0.0001,
which shows that the similarity measure varies sig-
nificantly with actual dependencies.

Thus, by checking for lexical similarity, this particular
case demonstrates that it is a promising technique to
support the interdependency identification process by
automatic analysis. Although the accuracy may not
suffice for this technique to be used on its own,
automatic lexical analysis may be used in conjunction
with other techniques to reduce the effort of identifying
interdependencies.

5.2. Requirements Gathering

When a stakeholder is proposing a new requirement, it
may be valuable to know if a similar requirement has
already been implemented and, if so, in what release. If a
similar requirement has not been implemented, it may be
desirable to know if a similar requirement has been
proposed.

5.3. Strategic Fit

A company may define key areas that are of specific
importance for the requirements work (e.g., usability,
decision-making features or invoicing capabilities).
When such requirements are proposed, they can be
identified by a similarity analysis approach and thus
more easily be given the appropriate management
attention.

5.4. Defect Tracking

Companies with mature software products that have
gone through series of releases often have many defects
to track and analyse. As new defects are reported, a
similarity analysis approach can aid testers to identify if
similar defects have been reported earlier.

5.5. Support Issues

Some companies allow their customers to get feedback
on support issues through their web sites. Similarity
analysis approaches can help the customer to enter
questions in natural language and more easily analyse
the questions and find suitable answers.

6. Further Improvements

There are a number of potential improvements that can
be made to the presented requirements similarity
measurement method, including the following sugges-
tions to be evaluated in further research:

. Process issues such as when similarity analysis should
be used, who should perform the analysis and how the
analysis is cost-efficient to perform.

. How different ways of representing requirements
affect the results. Which representation is best suited
for high precision in automatic similarity analysis?

. Different attributes’ impact on similarities. Use of
other attributes may increase precision.

. Improve method accuracy. Examples include: the use
of a domain-specific stop list, a thesaurus with general
synonym words, spelling correction prior to the
automated similarity analysis and by not discriminat-
ing between words with a short editing distance.

. Smart algorithms: some words may be over-repre-
sented in the set of false positives. Removing these
words may improve the precision. This is an example
of where it may be possible to make the algorithm
self-adjustable based on human corrections.

. Evaluate linguistic methods that may provide more
precise analysis of natural language requirements on a
semantic level. This may include the use of ontologies
or word nets.

. Ways of visualising the results from automated
similarity analysis and supporting the requirements
engineer in the navigation among related require-
ments.

In order to make these improvements and to make the
methods more general it is of course desirable to apply
the methods to other requirement sets from industry.

Also, it is of great interest to compare different
approaches and combinations of approaches. The
implementation cost and computational effort needed
for statistical methods, linguistic methods and other
computational models (such as the LSA approach [21])
is of much interest for applications aimed at market-
driven organisations.

Table 5. Contingency table for dependencies and similarities

Similarity = 0 Similarity > 0 Total

Actual non-dependencies 750 45 795
Actual dependencies 130 25 155
Total 880 70 950

Automated Natural Language Requirements Analysis 31



7. Conclusions

Automated similarity analysis is a promising technique
for supporting requirements engineers to identify
requirements duplicates and interdependencies. This
conclusion is drawn on the basis of empirical studies
on industrial requirements. Automated analysis is, in the
particular cases of the presented investigations, able to
identify as many as 80% of the actual duplicates and still
only incorrectly classify about 6% of all the possible
requirement pairs.
When using automated similarity analysis for inter-

dependency identification, a significant correlation was
found between similarity and interdependency. The
results show a correct classification of 16% of the
actual interdependencies.
We do not believe that the presented technique can

replace human judgement, but our results suggest that
automated similarity analysis on a syntactic level using
information retrieval techniques may be effective in
pinpointing true duplicates and interdependencies.
Further studies are needed in order to increase the
understanding of the benefits and limits of automated
analysis of natural language requirements [12]. It is
especially important to conduct further research in real
situations, where new requirements are continuously
arriving from multiple sources, and where requirements
are analysed incrementally by a requirements engineer
with domain expertise. In these investigations it is also
of importance to consider the relationship between effort
needed to put a method to work in a market-driven
company and the efficiency of the method. Conducting
real-world studies is a necessary means for valid
assessments of the benefits and costs of decision support
systems in a market-driven requirements engineering
context.

Acknowledgements. This work is partly funded by the National
Board of Industrial and Technical Development (NUTEK), Sweden,
within the REMARKS project (Requirements Engineering for
Market-Driven Software Development) grant 1K1P-97-09690. A
previous version of this paper was published at the Seventh
International Workshop on Requirements Engineering: Foundations
for Software Quality (REFSQ’2001). We would like to direct warm
thanks to Per Runeson, Martin Höst and Thomas Olsson, all at the
Department of Communication Systems, Lund, for their valuable
input and enthusiastic suggestions.

References

1. Sawyer P, Sommerville I, Kotonya G. Improving market-driven
RE processes. In: Proceedings of the international conference on
product focused software process improvement (PROFES’99),
Oulu, Finland, June 1999

2. Lubars M, Potts C, Richer C. A review of the state of the practice

in requirements modeling. In: Proceedings of the first IEEE
symposium on requirements engineering (RE’93), San Diego,
USA, January 1993

3. Deifel B. A process model for requirements engineering of
CCOTS. In: Proceedings of the first international workshop on the
requirements engineering process (REP’99), Florence, Italy,
September 1999

4. Regnell B, Beremark P, Eklundh O. A market-driven require-
ments engineering process: results from an industrial process
improvement programme. Requirements Eng 1998;3(2):121–129

5. Potts C. Invented requirements and imagined customers:
requirements engineering for off-the-shelf software. In: Proceed-
ings of the second IEEE international symposium on require-
ments engineering (RE’95), York, UK, March 1995

6. Carlshamre P, Regnell B. Requirements lifecycle management
and release planning in market-driven requirements engineering
processes. In: Proceedings of the second IEEE international
workshop on the requirements engineering process (REP’2000),
Greenwich, UK, September 2000

7. Höst M, Regnell B, Natt och Dag J, Nedstam, J, Nyberg C.
Exploring bottlenecks in market-driven requirements manage-
ment processes with discrete event simulations. In: Proceedings
of the workshop on software process simulation and modeling
(PROSIM’2000), London, UK, July 2000

8. Karlsson J, Ryan K. A cost–value approach for prioritizing
requirements. IEEE Software 1997;14(5):67–74

9. Luhn HP. A statistical approach to mechanized encoding and
searching of literary information. IBM J Res Devel 1957;
1(4):309–317

10. van Rijsbergen C J. Information retrieval, 2nd edn. Butterworths,
London, 1979

11. Mitra M, Buckley C, Singhal A, Cardie C. An Analysis of
statistical and syntactic phrases. In: Proceedings of the fifth
international conference on computer-assisted information
searching on the Internet (RIAO’97), Montreal, Canada, June
1997

12. Ryan K. The role of natural language in requirements
engineering. In: Proceedings of the first IEEE international
symposium on requirements engineering (RE’93), San Diego,
USA, 1993

13. Gervasi V, Nuseibeh B. Lightweight validation of natural
language requirements. In: Proceedings of the fourth IEEE
international conference on requirements engineering
(ICRE’2000), Schaumburg, USA, June 2000

14. Ambriola V, Gervasi V. Processing natural language require-
ments. In: Proceedings of the twelfth international conference on
automated software engineering (ASE’97), Lake Tahoe, USA,
November 1997

15. Rayson P, Emmet L, Garside R, Sawyer P. The REVERE project:
experiments with the application of probabilistic NLP to systems
engineering. In: Proceedings of the fifth international conference
on applications of natural language to information systems
(NLDB’2000), Versailles, France, June 2000

16. Park S, Kim H, Ko Y, Seo J. Implementation of an efficient
requirements-analysis supporting system using similarity measure
techniques. Inform Software Technol 2000;42(6):429–438

17. Rolland C, Proix C. A natural language approach for require-
ments engineering. In: Proceedings of the fourth international
conference of advanced information systems engineering
(CAiSE’92), Manchester, UK, May 1992

18. Osborne M, MacNish CK. Processing natural language software
requirement specifications. In: Proceedings of the second IEEE
international conference on requirements engineering (ICRE’96),
Colorado Springs, USA, April 1996

19. Cybulski JL, Reed K. Computer assisted analysis and refinement
of informal software requirements documents. In: Proceedings of
the fifth Asia–Pacific software engineering conference
(APSEC’98), Taipei, Taiwan, December 1998

20. Chen H, Hsu P, Orwig R, Hoopes L, Nunamaker JF. Automatic
concept classification of text from electronic meetings. Commun
ACM 1994;37(10):56–73

32 J. Natt och Dag et al.



21. Landauer TK, Dumais ST. A solution to Plato’s problem: the
latent semantic analysis theory of the acquisition, induction, and
representation of knowledge. Psychol Rev 1997;104:211–240

22. Frakes WB, Baeza-Yates R. Information retrieval: data structures
and algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1992

23. Salton G. Automatic text processing: the transformation, analysis,
and retrieval of information by computer. Addison-Wesley,
Reading, MA, 1989

24. Porter MF. An algorithm for suffix stripping. Program 1980;
14(3):130–137

25. Francis WN, Kucera H. Frequency analysis of English usage.
Hougton Mifflin, New York, 1982

26. Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J.
An industrial survey of requirements interdependencies in
software product release planning. In: Proceedings of the fifth
IEEE international symposium on requirements engineering
(RE’01), Toronto, Canada, 2001

27. Siegel S, Castellan NJ. Nonparametric statistics for the
behavioural sciences, 2nd edn. McGraw-Hill, New York, 1988

Automated Natural Language Requirements Analysis 33


