
Rationale-Based Use Case Specification

Allen H. DutoitaAllen H. Dutoita and Barbara Paechband Barbara Paechb

aTechnische Universität München, Institut für Informatik, Munich, Germany; bFraunhofer Institute for Experimental Software Engineering, Kaiserslautern,
Germany

The requirements specification – as outcome of the

requirements engineering process – falls short of

capturing other useful information generated during

this process, such as the justification for selected

requirements, trade-offs negotiated by stakeholders and

alternative requirements that were discarded. In the

context of evolving systems and distributed development,
this information is essential. Rationale methods focus on

capturing and structuring this missing information. In

this paper, we propose an integrated process with

dedicated guidance for capturing requirements and their

rationale, discuss its tool support and describe the

experiences we made during several case studies with

students. Although the idea of integrating rationale

methods with requirements engineering is not new, few
research projects so far have focused on smooth

integration, dedicated tool support and detailed gui-

dance for such methods.

Keywords: QOC; Qualitative case studies; Rationale
management; Requirements specification; Use cases

1. Introduction

There is a wide variety of techniques for the elicitation,
specification, validation and management of require-
ments, but only a few of them are used in industry. For
example, at a recent seminar given to around 100
developers in the car industry (suppliers and procurers),
90% of the participants used natural language text edited
in MS Word for the requirements specification [1]. Also,
the experience from several industry projects, in which

the authors were involved, shows that even the quality of
requirements documents that adhere to some standard is
often fundamentally flawed, because:

. they do not contain the information needed by the
people who have to rely on them;

. this information is often inconsistent, ill-structured,
and imprecise;

. the authors of the specification did not find an
adequate level of abstraction that enables them to
avoid design decisions while capturing all relevant
requirements details.

The reasons for these flaws are manifold and typically
depend on the context. However, in general, three issues
seem to be essential for a successful requirements
engineering process:

. Smooth integration among the techniques applied.
The lack of integration among techniques is the most
critical of these three issues. For example, there is no
integrated method established for the simultaneous
usage of use cases and class models.

. Dedicated tool support. Although there exist model-
ling and requirements management tools, these tools
are general purpose and do not support specific tasks.
Again, this holds true, for example, for use cases,
where there is no established tool support for the
capture and management of use cases.

. Detailed guidance for participants. Most techniques
suggested from academia are not sufficiently well
explained to be usable by persons other than their
inventors. Similarly, this holds true for established
techniques like use cases, where, for example, there is
almost no guidance regarding the right level of
abstraction adequate for certain project contexts.

In this paper, we describe the integration into a single
process of two techniques, use case specification and
rationale capture, along with their associated tool

Requirements Eng (2002) 7:3–19
Ownership and Copyright
� 2002 Springer-Verlag London Limited

Requirements
Engineering

Correspondence and offprint requests to: B. Paech, Fraunhofer
Institute for Experimental Software Engineering, Saueriesen 6, 67661
Kaiserslautern, Germany. Email: paech@iese.fhg.de



support and guidance. Use case specification enables
developers to specify a system in terms of sequences of
interactions between users and the system. Rationale
methods enable developers to capture the justification of
their decisions and the related decision-making ele-
ments. Hence, integrating both techniques should yield a
method that captures all information appropriate for all
stakeholders, that supports stakeholders for negotiating
and refining the level of detail of this information, and
that enables stakeholders to evolve this information as a
response to change. We have incrementally developed
this process and its associated tool support and guidance,
by continuously evaluating and improving them in the
context of case studies with students. Student case
studies are clearly insufficient for demonstrating the
usefulness of this process for industry. However, the use
of novice subjects has enabled us to develop guidance
and supporting material that, in our view, will make this
process more easily transferable to clients and practi-
tioners during field trials and, later, widespread use.
The rest of the paper is structured as follows. First, we

describe our process for use case specification and
rationale capture. Then we provide an overview of the
tool support. The fourth section summarises the lessons
learned so far. In the fifth section we discuss related
work. We conclude in the sixth section. Throughout the
paper we use the well-known meeting scheduler example
[2].

2. Process Overview

Use cases are a popular addition to object-oriented
software development. They have first been proposed by
Jacobson [3] and are now part of the (Rational) Unified
Software Development Process [4]. One of the main
difficulties with writing use cases is their granularity [5],
that is, the partitioning of system functionality into
individual use cases and the level of detail for writing
each use case. Ideally, the partitioning of the specifica-
tion into a set of use cases and the level of detail should
be such that the resulting specification accurately reflects
the customers’ and users’ goals. This can usually only be
attained through an iterative process of negotiation and
refinement with the customer.
Rationale methods aim at capturing, representing and

maintaining records about why developers have made
the decisions they have [6]. Rationale includes the
problems developers encountered, the options they
investigated, the criteria they selected to evaluate options
and, most important, the debate that led to making
decisions. Rationale can be used to support negotiation
(increasing the quality of the decisions made) and to
capture contextual information (facilitating future

changes to system requirements) [7]. Rationale methods
are currently not widespread because of their low
acceptance among developers and their cost: under
time pressure, it is difficult to justify the capture and
documentation of additional information that will only
be useful downstream to other, unknown project
participants.

Our ultimate research goal is to support the evolution
of software by providing an integrated process for use
case specification and rationale capture [8]. By providing
templates and guidance for use case writing, we hope to
address common issues about granularity and facilitate
the communication between customers and developers.
By providing an explicit rationale process supporting the
negotiation among customers, users and developers, we
aim to facilitate decisions about system requirements
and use case granularity. By creating a short-term
incentive for this rationale process, we also aim to
opportunistically capture rationale information that is
useful for the longer term (i.e., evolution). Finally, to
further decrease the overhead of capturing rationale for
the developer, we introduce a new role, the rationale
maintainer, whose task is to augment, filter and structure
the rationale for longer-term use.

However, before we can focus on the support for
evolution, we first need to understand the details of
applying use case specification and rationale capture to a
realistic problem. We have done this by incrementally
refining and evaluating our process, together with its
guidance and tool support, in the context of case studies.
In the remainder of this section, we describe in more
detail the products and activities of our process aimed at
writing use cases and capturing rationale.

2.1. Products

We describe the functional aspects of a requirements
specification using five types of elements: actors, user
tasks, use cases, system services and glossary entries:

. Actors are external entities that interact with the
system. Examples of actors include a user role (e.g., a
bank customer) or another system (e.g., a central
database).

. A user task is a unit of work that is meaningful to the
user. It includes the environment in which the system
operates and is often a step in an encompassing
business process. Thus, user tasks are similar to
Cockburn’s Summary Goal Use Cases [9]. We use the
term user task because we rely on techniques from
task analysis for their identification [10]. Only by
knowing the user tasks in detail can a system with

4 A.H. Dutoit and B. Paech



maximal support to the user be designed [11]. Table 1
depicts as an example the user task ‘Manage
Interaction Among Participants’.

. A use case describes how a user task can be achieved
with a sequence of interactions with the system. This
corresponds to Cockburn’s User Goal Use Case [9].
We use the essential use cases of Constantine and
Lockwood [5], where each use case step has a number,
and actor and system steps alternate. Table 2 shows as
an example the ‘Handle Replies’ use case.

. A system service describes the input and output of
individual system functions. While use cases put
system functions into context, system services

Table 1. An example of user task

User task name Manage interaction among participants

Initiating actor Meeting facilitator
Participating actors Meeting participant
Task description The meeting facilitator is responsible for

getting replies from participants who
have not reacted promptly, for notifying
participants of changes of date or
location, and for keeping participants
aware of current unresolved conflicts or
delays in the scheduling process.

Realised in use cases Handle replies, remind participant, react
to replan request

Table 2. An example of a use case

Name Handle replies

Realised user task Manage interaction among participants
Initiating actor Meeting facilitator
Participating actors Meeting participant

Flow of events Actors System

1. The meeting facilitator selects ‘Handle Replies’
for a meeting and a question.

2. The system checks if all participants replied
[Exception: slow participant].
3. The system starts the ‘Close Question Service’
and notifies the meeting initiator accordingly.

Exceptions [Slow participant] The meeting facilitator decides whether to remind the participants or to close the
question. In the first case he/she selects the ‘Remind Participant Service’. In the second case he/she
selects the ‘Close Question Service’.

Precondition The meeting initiator has initiated the meeting and asked a question.
Postcondition The participants have been reminded or the question is closed.
Includes use cases –
Used services Check participant replies, remind participant, close question
Non-functional requirements Response time, minimise amount of messages, flexibility

Table 3. An example of a service

Name Remind participant

Used by use cases Handle replies
Flow of events Actors System

1. The meeting facilitator selects the ‘Remind
Participant Service’ for a meeting and a question
and a meeting participant.

2. The system shows a default text for a message to
remind the participant.

3. The meeting facilitator edits the text and triggers
the sending.

4. The systems sends the message to the meeting
participant [Exception: problem with email address]
[Exception: problem with message system].

Exceptions [Problem with email address]: The system displays an error message asking for another address.
5continue with 3.4 or the meeting facilitator aborts the service call.
[Problem with message system]: The system displays an error message and stops service execution.

Precondition –
Postcondition The participant has been reminded to answer the question for the meeting.
Input Meeting identifier, question identifier, participant identifier
Output Email addressed to the participant
Non-functional requirements Minimise length of message

Rationale-Based Use Case Specification 5



describe system functions independently of the user
task. This corresponds to Cockburn’s Subfunction

Goal Use Cases [9]. While user tasks and use cases
are important to communicate with the customer, the
service description is the important input for the
system designers. Table 3 shows as an example the
‘Remind Participant’ service. The service template
looks similar to the use case template. The main
difference is that no context information (e.g., actors)
is provided. Instead input and output are described
explicitly and the flow of event may include user
interface details. Non-functional requirements are
inherited from the use case and additional non-
functional requirements are added which apply only
to this service.

. A glossary entry defines an important concept relevant
to the user tasks or the system services. There are two
reasons for maintaining a glossary in the specification.
First, it allows requirements engineers to document
accurately the terms of art used by the client. Second,
it enables requirements engineers to reduce redundan-
cies and inconsistencies in terms used to describe the
system.

Figure 1 depicts the relationship between user task,
use case and system service.
A major feature of our process is that it not only

covers functional requirements, but also non-functional
requirements (NFRs).1 NFRs are essential for rationale
capture, since they provide criteria for assessing

different options for use cases and services. This is
similar to the NFR framework [12], where softgoals are
refined into several different operationalisations. As
discussed in Chung et al. [12], there are different
taxonomies of NFR. We distinguish between three types
of NFR as explained in Table 4. Domain properties

describe facts of the domain and therefore have to be
satisfied through user tasks and use cases. Global

functional requirements are high-level functional re-
quirements and therefore have to be satisfied through use
cases and system services. Quality requirements are
additional constraints on the characteristics of the
requirements elements. Domain properties play a special
role in that they describe facts that are not changeable
during the requirements engineering process. Jackson
calls these NFRs indicative properties [13]. Global
functional requirements and quality requirements are
subjects of the requirements engineering process.
Jackson calls these optative properties.

Our types are only used as a rough guidance to check
for three basic types of NFR. They are much simpler
than goal types in goal-oriented approaches to require-
ments engineering (e.g. GBRAM [35] or KAOS [2])
which drive the requirements elicitation. In contrast to
these approaches we use user tasks instead of goals to
drive the requirements elicitation and specification
process. We only use the NFR as criteria for the
evaluation of the adequacy of use case or service design
with respect to user tasks and use cases, respectively.

To represent rationale we use an issue model as
proposed by argumentation-based rationale approaches
[6]. Issue models represent the individual decision-

Fig. 1. Relationship between user task, use case, and system service (UML class diagram).

Table 4. Types of NFRs

Property type Explanation

Domain property Facts of the domain to be adhered to by the software system (e.g. ‘a person may not be at two
different places’)

Global functional requirements High-level functional requirements that cannot be attributed to single use cases, but affect several
use cases (e.g. ‘the meeting scheduler must in general handle several meetings in parallel’)

Quality requirements Requirements on characteristics of user tasks, use cases or system services, e.g. ‘the elapsed time
between the determination of a meeting date and location and the communication of this
information to all participants concerned should be smaller than 5 sec.’

1Often, NFR encompass product and process or project requirements.
Here we concentrate on product requirements.

6 A.H. Dutoit and B. Paech



making elements that lead to a decision as individual
nodes and their relationships with edges. Many different
models have been proposed, including IBIS (Issue-Based
Information System [14]) and QOC (Questions, Options,
Criteria [15]), to name the principal ones. We use a
refinement of QOC that includes the following elements
(see the concept model in Fig. 2):

. Questions represent needs to be solved for the
requirements process to proceed. Questions can
indicate a design issue, a request for clarification or
a possible defect.

. Options are possible solutions that could address the
question under consideration. These include options
that were explored but discarded because they did not
satisfy one or more criteria.

. Criteria are desirable qualities that the selected option
should satisfy. In our model, criteria are NFRs.

. Assessments represent the evaluation of a single
option against a criterion. An assessment indicates
whether an option satisfies, helps, hurts or violates a
criterion. Assessments are used to establish the fitness
of options within a question.

. Arguments represent the opinions of individual

stakeholders, in particular, about the relevance of a

question or the accuracy of an assessment. By arguing

about relative merits of options, stakeholders can

build consensus and converge towards a solution.

. A decision is the resolution of a question representing

the selected option. Decisions are already implicitly

captured in the use cases during requirements

engineering. We only need to capture the relationship

between decisions and their corresponding rationale.

As an example for a rationale consider the justification

of the ‘Handle Replies’ use case given in Table 5. The

question is the optimal system boundary. Three options

are sketched and evaluated against the criteria. The

assessments +, O, 7 indicate good, sufficient and

insufficient satisfaction. An argument for the good

satisfaction of the ‘Response Time’ criterion of the

first option is that in any case the question is closed

within the given time. However, this system behaviour

impacts negatively on the flexibility of the Meeting

Facilitator, because there is no way he/she can extend the

time for participants to reply before closing the question.

The chosen option is marked by boldface letters. If the

criteria are of different priority, the option with the

highest score of ‘+’ need not be the optimal one.

During review, use cases and services are challenged.

This way new issues are created, for example: Can the

remind message in the ‘Remind Participant Service’ be

created and sent without editing through the Meeting

Facilitator in order to reduce the ‘Response Time

criterion’? During the discussion options, assessments

and possibly new criteria will be generated and the

decision for this question together with its rationale will

be consolidated in a table similar to Table 5.

The concept model in Fig. 2 shows the relationships

among requirements elements and rationale elements

that are created and maintained in our process and tool.

Fig. 2. Concept model.

Table 5. An example of rationale

Justification What is the best option for the system boundary within the ‘Handle
Replies Use Case’ satisfying the non-functional requirements?

Criteria Response time Minimise amount
of messages

Flexibility

Option 1: The system collects replies and reminds slow participants
automatically during a given time within a given interval. The system
then closes the question and informs the meeting facilitator

+ – –

Option 2: The system collects replies and informs the meeting
facilitator about the status automatically after a given interval. The
meeting facilitator decides whether to close the question or to remind
participants

O O +

Decision: The system collects replies. The meeting facilitator
chooses when to handle replies and accordingly checks the
status and decides whether to close the question or to remind
participants

– + +

Rationale-Based Use Case Specification 7



As shown in Fig. 3, the input of our requirements
engineering process is a problem statement, written by
the client and the requirements engineers, describing the
user tasks that the system should support. The problem
statement serves two purposes: first, it provides an initial
description of the environment of the system (e.g., a set
of actors and user tasks); second, it establishes the scope
of the work supported by the system (i.e., which user
tasks should be supported and which should not). We are
well aware that producing an adequate problem
statement requires an elicitation process in itself. Here,
however, we concentrate on the specification of
requirements to be used as input to software develop-
ment.
Based on the problem statement, the requirements

engineers write the specification in terms of use cases,
services, glossary entries and NFRs. The specification
process is iterative and incremental. The requirements
engineers may decide to write and refine only a limited
set of use cases, services or NFRs at the time (i.e., a
depth-first approach), or, conversely, work concurrently
on all use cases, services and NFRs (i.e., a breadth-first
approach). In parallel, parts of the specification are
reviewed which triggers further refinements of the
specification.

2.2. Process Activities

As shown in Fig. 3, the rationale of requirements is
captured during four activities. The justify specification
activity, executed by a requirements engineer or a
reviewer, focuses on capturing rationale through explicit
justification. The review specification activity focuses on

capturing rationale through requests for clarification and
challenges on requirements. The review specification

activity is followed by the address challenge activity,
during which developers and reviewers discuss solutions
to address challenges. Finally, the maintain rationale

activity focuses on consolidating and restructuring the
rationale for long-term use. Similar to the specification
activity, rationale capture is iterative and incremental.
Each activity is intertwined with specification.

Next, we describe each activity in more detail.

2.2.1. Describe Specification

The describe specification activity is executed by the
requirements engineer and is composed of the following
steps:

. Describe use cases and services. This step develops an
initial draft of one use case for each user task which
determines which parts of the user tasks are realised
by the system and which are realised by the user. Each
use case is then refined into a number of further use
cases and system services. The result of this step is a
description of the interactions between the users and
the system (in terms of use cases) and a description of
the features offered by the system (in terms of system
services).

. Define NFRs. This step identifies and describes NFRs
for each use case and service. These NFRs describe
properties that the system must have in order to be
useful to the user. This step may also result in NFRs
that are applicable to the complete system.

. Describe exceptional cases. This step describes the
response of the system under error conditions, such as
wrong user input or component failure. Exceptional
cases are also described as flow of events but are
separated from common cases for clarity.

. Create glossary. All terminology specific to the use
case is captured in a glossary. This includes
terminology specific to the user tasks as well as
terminology specific to the system services described
in the use cases.

2.2.2. Justify Specification

The justify specification activity is executed by the
requirements engineer. Requirements engineers expli-
citly capture rationale by justifying each use case and
system services by documenting alternatives that were
discarded as options and assessing them against the
NFRs to show how the current option is the best (with
respect to the NFRs). A justification takes the same form
as any other question in the system, except that it is
usually created by a single author and that it is closed.

Fig. 3. Process model.

8 A.H. Dutoit and B. Paech



2.2.3. Review Specification

The review specification activity is executed by a
reviewer and is composed of the following steps:

. Request clarification. A reviewer reads some part of
the specification and finds it unclear, and requests a
clarification regarding a term or the phrasing of a
paragraph.

. Challenge specification. A reviewer reads some part
of the requirements specification and challenges
problem areas with questions. The difference between
a challenge and a clarification is that the former points
out a definite problem in the specification whereas the
latter often results from a misunderstanding from the
reviewer. Note that the reviewer can also challenge
the specification by reading and reopening the
justification associated with a use case or a system.

2.2.4. Address Challenge

The address challenge activity is composed of the
following steps:

. Propose and assess options. Questions can result in
the discussion of possible changes in the requirements
specification. A possible option that is always
available is the status quo; that is, not to change the
requirements. Clarification questions are addressed
with options to improve the requirements specification
without necessarily resulting in changes to the system.
Once a sufficient number of options have been
proposed, requirements engineers need to evaluate
them and refine them to satisfy the NFRs. The
resulting QOC models are similar to those resulting
from justification. The difference is that a justification
is systematically written by a single author (the
requirements engineer responsible for the use case/
service) whereas a challenge and resulting discussion
is incrementally written and refined by a number of
authors (the reviewer and the stakeholders interested
in the use case/service).

. Discuss options. During this step, requirements
engineers create arguments supporting and opposing
options. While the previous steps focus on the
objective evaluation of options against well-defined
criteria, this step focuses on the arguments and
negotiation among requirements engineers to validate
these assessments and to prioritise criteria.

. Decide. Once requirements engineers have evaluated
and refined (most or) all options, requirements
engineers create a decision by selecting an option
which can result in minor or substantial change in the
requirements specification. Note that a clarification

question can be resolved without any changes. Note
also that addressing a question may invalidate
previous decisions.

During rationale capture, requirements engineers may
skip any of the above steps. Options can be generated
and evaluated without an explicit question. Decisions
can be taken and changes implemented without explicit
discussion. It is desirable, however, that at least some of
the components of the decision are recorded so that the
rationale maintenance process can recover the missing
parts.

2.2.5. Maintain Rationale

The maintain rationale activity is executed by the
rationale maintainer, whose responsibility is to keep the
content and structure of the rationale up to date. The
maintain rationale activity is composed of the following
steps:

. Identify missing questions. Given that requirements
engineers and the reviewers may skip steps in
capturing rationale, there can be options that were
captured without their corresponding question. In
most cases, the implicit question can be made explicit
using the options.

. Identify missing decisions. Most decisions occur
during meetings or face-to-face conversations. Con-
sequently, they may be implemented in the require-
ments specification but not captured in the issue
model. The rationale maintainer can identify these
decisions by ensuring each change is associated with a
decision.

. Consolidate options. When discussing a question, the
requirements engineers may propose similar options.
The rationale maintainer consolidates identical op-
tions into single nodes and restructures similar
options.

. Consolidate questions. When reviewing requirements
elements, reviewers may raise similar questions. The
rationale maintainer consolidates identical questions
into single nodes and restructures similar options.

The task of the rationale maintainer can be quite
cumbersome if requirements engineers and reviewers
capture too much rationale that does not have much
value for long-term rationale. In particular, questions
requesting clarification or challenging the form of the
specification are resolved quickly and are not worth
remembering. However, during rationale maintenance, if
the rationale maintainer were to read all these questions
and filter them out manually, the rationale maintenance
activity would be excessively time consuming and error
prone. To address this issue, we use a type attribute for
the question node, as shown in Table 6. The authors of

Rationale-Based Use Case Specification 9



questions indicate the type of question they are raising,
which makes the post-processing task of the rationale
maintainer much easier when filtering out questions
without long-term value.
A side effect of typing questions is that the issue

model becomes much more specific. The types in Table
6 effectively correspond to a taxonomy of defects.
Consequently, these question types make it easier to
develop tool and process guidance, by providing, for
example, different actions and views for each question
depending on its type. The second column of Table 6
lists the relationships between the questions and their
related requirements elements and the third column of
Table 6 lists the restricted set of actions available for
each type of question.

2.3. Integrating Specification and Rationale

Capturing and maintaining rationale will yield benefits
only if both requirements and rationale capture and their
corresponding tool support are integrated. Indeed, the
integration of rationale methods and tools with various
aspects of development is a fundamental issue that has
received little attention in rationale research [16].
A novelty of our approach is that NFRs are used as the

integrating concept between the specification and its
rationale (see the concept model in Fig. 2). On the one
hand, NFRs represent domain properties, global func-
tional requirements, and quality requirements that must
be satisfied. On the other hand, NFRs represent criteria

that can be used when assessing options in justifications
or in responses to challenges.

The following two examples illustrate the integration
and interaction between requirements elements and
rationale elements.

Example 1. A reviewer identifies a defect in the
‘Remind Participant’ service because the service does
not seem to satisfy the ‘Response Time’ NFR. He
indicates this by:

. creating a challenge on content;

. describing the current option, including a negative
assessment linked to the given criterion explaining the
source of the challenge;

. describing an improved option, including a positive
assessment with respect to the given criterion and to
other relevant NFRs.

The original author of the faulty use case can then either
select the proposed option or propose a different option.
Example 2. A requirements engineer describes the
reasoning behind the ‘Handle Replies’ use case (see
Table 5) by:

. creating the justification question;

. describing the current option and the alternatives that
were discarded;

. entering the assessments between each of these
options and the relevant NFRs, hence explaining
how the current option satisfies these requirements
better than the alternatives;

. creating new NFRs and corresponding assessments, as
needed, to better justify the current option; and

. closing the question with the current option.

Table 6. Types of questions

Question type Relationship to requirements Available actions Value for rationale

Challenge on form Linked to one or more elements that do not comply
with the structure supported by the tool (e.g.,
confusion between user tasks and use cases).

Close question by revising
related elements

None

Challenge on content Linked to one or more elements the author of the
question disagrees with.

Propose options
Select criteria
Revise assessments
Close question once consensus
is reached

High

Clarification Linked to statement in a requirements element that is
not clear.

Close question by clarifying
unclear requirement. (No criteria
or options are associated with
this question)

None

Inconsistency Linked to two or more elements that are inconsistent. Propose option
Close question by revising
related elements

Low

Justification Linked to requirements element that is being justified. Reopen question (in which
case this question behaves the
same way as a challenge on
the content)

High

Omission Linked to one or more elements and describes
statements that have not been written down.

Propose option
Close question by filling gaps

Low

10 A.H. Dutoit and B. Paech



In the first example, we observe how a reviewer can
point out inconsistencies between requirements elements
and NFRs with negative assessments. In Example 2, we
observe how a developer can justify the current solution
(thus clarifying the specification) and discover NFRs that
were left implicit until then (thus improving the
completeness of the specification). Such interactions
between functional requirements elements, NFRs,
challenges and justifications result from the tight
integration between requirements and rationale and
enable developers and reviewers to improve the
specification.

3. Tool Support

In the previous section, we described products and
activities for developing a use case specification along
with its associated rationale, through collaboration,
justification and review. In the following, we give an
overview of REQuest, our tool for supporting these
processes.

The design goals of the tool were to provide a simple
and integrated solution to manipulate use case and
rationale models, embedding only minimal process-
specific knowledge. The tool is a web application that
can be accessed via standard web browsers. This enables
users to access the tool remotely from a variety of
environments (e.g., lab, home, office) without the

installation of additional software. The main view of

the tool presents the user with three frames: a title, a

requirements specification view and a rationale view (see

Fig. 4).

The requirements view displays the requirements

specification as a hypertext document, structured into

actors, user tasks, use cases, services, glossary entries

and NFRs. The tool provides templates, text boxes and

selection menus for each requirements element. The tool

recognises known terms (e.g., glossary entries, the name

of user tasks, use cases and system services) and

highlights them automatically in text fields where the

terms appear. For example, if the name of an actor

appears in the flow of events of a use case, the name of

the actor is highlighted. The user can then click on the

highlighted name to examine the attributes of the actor.

In the rationale view, information is structured

according to the QOC model presented in the previous

section and displayed as tables and hyperlinks, thus

maximising the density of information that the user can

read in a single screen. Displaying rationale as text is a

different approach from other well-known rationale-

based tools (e.g., gIBIS [17], SYBIL [18], QuestMap

[19]), which display rationale as a graph. In addition to

the QOC structured information, users can annotate

questions with informal comments or arguments to

provide reference information or negotiate various

aspects of the question.

Fig. 4. Tool overview: requirements specification (left column) and rationale (right column) are allocated the same amount of screen real estate.

Rationale-Based Use Case Specification 11



In the following subsections, we focus in more detail
on three aspects of the tool that are specific to our
process: linking requirements and rationale elements,
supporting justification, and supporting rationale main-
tenance.

3.1. Linking Requirements and Rationale
Elements

When viewing any requirements element, the user has
the opportunity to create questions associated with the
viewed element. By clicking on a question button, the
user creates a question of a specified type and content
(Fig. 5). The user may choose to continue the question
process and associate more rationale elements with the
question, such as options, relevant criteria and assess-
ments. As the question is created incrementally, the user
can choose to enter as little or as much information as
necessary. For inconsistency questions, the user is
prompted for references to other parts of the specifica-
tion that are involved in the inconsistency questions.
Since the user must first view a requirements element

before asking a question, all questions are automatically
associated with at least one requirements element. The
relationships between requirements elements and ques-
tions is a many-to-many and bidirectional relationship.
When viewing an element in the requirements view, the
titles of the questions associated with the element appear
as a list of hyperlinks. When clicking on the title of a
question, the user can examine the content of the
question (operations, criteria, assessments, decision) in
the rationale view. Similarly, when viewing a question in
the rationale view, the list of elements related to the
question appear as hyperlinks that the user can use to
display a related requirements element in the require-
ments view. Hence, the user can quickly examine the
relationship between two or more seemingly indepen-
dent requirements elements that participate in related
questions.

3.2. Supporting Justification

The REQuest tool supports the justification of use cases
and services. When viewing a use case in the
requirements view (i.e., in the left column), the
developer uses the [Justify] feature to initiate the
justification process, which includes completing several
forms in the rationale view (i.e., in the right column).
Keeping the justified element and its justification in
separate columns enables the developer to examine any
part of the requirements specification without disturbing
the forms associated with justification. The justification
process consists of the following steps:

. The tool presents the developer with a summary of the
justification process, explaining what forms will
appear.

. The tool checks if the use case or the service is well
formed. A well-formed use case has an initiating actor
and is associated with the user task that it realises. A
well-formed service is attached to at least one system
step in a use case. The tool also issues warnings if no
quality requirements are associated with the use case
or service.

. The tool computes the set of NFRs that are applicable
to the use case or service. This includes the quality
requirements attached to the element and any NFR
inherited through associations (e.g., domain properties
attached to an associated user task). The set of
applicable NFRs are used as criteria in the justification
question. The developer can extend or reduce the set
of criteria if necessary.

. The developer summarises the alternatives that could
have been considered.

. The developer describes how the selected solution
differs from the alternatives.

. The developer assesses the alternatives and the current
solutions against the selected set of criteria.

. In the final step, the tool displays the QOC matrix
representing the justification and marks the element as
justified.

A reviewer or a developer may reopen the justification at
any point to revise it or to challenge it. Once a
justification question is reopened, it can be manipulated
in the same way as a challenge on content.

3.3. Supporting Rationale Maintenance

The REQuest tool supports the maintenance of rationale
by providing several features for viewing rationale
elements and their relationships with the requirements
elements:Fig. 5. Creating questions and following question links.

12 A.H. Dutoit and B. Paech



. View questions by status enables the rationale
maintainer to identify questions that have not yet
been resolved. In most cases, such questions indicate
issues that have been resolved in the requirements
specification, but whose resolution has not been
documented. In the case of challenge questions, the
rationale maintainer elicits more information from the
developers and enters the decisions that have already
been taken.

. View questions by type enables the rationale main-
tainer to access questions that are interesting for long-
term rationale (e.g., justifications and challenges on
content) and to review them. If a documented decision
is not consistent with the assessments, the rationale
maintainer can either attach comments to the question
to clarify the decision, add missing criteria in the
assessment matrix, or reopen the question and require
a developer to enter the missing information.

. View unjustified elements enables the rationale
maintainer to identify specification elements without
justifications or without rationale. For elements with
questions but without justification, the rationale
maintainer creates a justification and consolidates
the information from the other questions into the
justification. For elements without questions, the
rationale maintainer can request the author of the
element to complete the justification process (see
Fig. 6).

While these features are designed to support the
rationale maintainer, reviewers and developers may also
use these features to access the rationale when
accomplishing their own tasks.

3.4. Tool Architecture

The current REQuest prototype tool is implemented as
Java servlets [20] that store their persistent objects (e.g.,
requirements and rationale products) in an SQL
database. Users access the tool with a standard web
browser that supports Javascript and tables. The

requirements specification can be exported as an
HTML document, which can then be imported into a
word processor for final formatting. The tool has scaled
up to the situations we face in the project course and the
seminars (e.g., 15 concurrent users, specifications of ~30
use cases, rationale of ~60 questions) and could scale up
to much larger situations. The current version of the tool,
however, is missing several critical features for use in an
industrial environment, including supporting interchange
formats with other CASE tools (e.g., XMI [21]) and
version control.

We also built a prototype of our concept model in the
requirements management tool DOORS [22] to evaluate
how our process could be supported by a tool developed
and applied in industry. We found no major conceptual
problem in using DOORS to store our requirements and
rationale elements. However, the effort to develop a
sufficiently usable adaptation is high. Moreover, we
found that the learning curve faced by students when
learning to use DOORS is steep as DOORS provides
many features that are not always relevant to our
process. Thus, we decided not to burden our students
with this prototype.

4. Lessons Learned: Experiences with
Process and Tool

We evaluated and incrementally refined the process
described in the previous sections in case studies with
students. So far, we have conducted four case studies
with three versions of the process, tool and guidance.
The goal of these case studies was to evaluate
qualitatively if the guidance associated with the process
was sufficient for novice participants. In particular, we
were interested in the following points:

. the distinction (granularity, context, purpose) between
user tasks, use cases, and services;

. the representation of rationale as a QOC model
displayed as a textual matrix;

. the relationship between NFRs and criteria; and

. the process for asking and resolving questions.

While these case studies were not designed to compare
our process against others, we were able to gain
qualitative insights into the strengths and weaknesses
of our process. We plan future work that will include an
in-depth evaluation of the process with professional
subjects.

In this section, we first describe the experimental
context of the case studies. We then summarise the
lessons we learned with the first four main activities of
our process, namely, specification, justification, review

Fig. 6. View unjustified elements. Rationale indicators next to
elements in the overview indicate the status of each element with
respect to captured rationale.

Rationale-Based Use Case Specification 13



and addressing challenges. We have not yet evaluated
the maintenance activity with students, as our focus has
been initially on the activities capturing rationale.

4.1. Experimental Context

In each case study, we provided a 45-minute tutorial on
the process and the tool, an online help document and
written guidance. We surveyed the students during and
after the case study with a structured questionnaire,
examined the delivered specification and the issue
model, and took notes of our observations and of
informal discussions with the students. The exploratory
nature of the case studies, the number of subjects (4–22
per case study) and variables (background of partici-
pants, system under specification, process and tool
variations) did not allow for a rigorous quantitative
study (see Table 7).
Our primary evaluation context is the software

engineering project course offered at Technische
Universität München (TUM) [23]. This project provides
students with a realistic software engineering experience
during which students build and demonstrate a system
for a real client. During our first case study in winter
2000/01, 22 students divided into four teams developed a
prototype augmented reality application for nuclear
power plant technicians; 15 students were involved in
the requirements engineering of the system, which lasted
5 weeks.
Following the project course, we evaluated an

improved version of the process and tool in a
requirements engineering seminar at TUM. Four
students spent 4 weeks developing a requirements
specification for the meeting scheduler problem [2].
This smaller and more focused setting enabled us to
investigate in more detail the explicit capture of
rationale. One week in this exercise was dedicated
only to consolidating existing use cases and entering
justifications. Moreover, since the students of the
seminar had more experience and were more motivated
than the students in the project course, we were able to
better distinguish problems with the guidance from
problems with the process itself.

During the summer semester of 2001, we evaluated a
third version of the process and tool during the summer
in a design rationale seminar at TUM (four students, 6
weeks) and a requirements engineering lecture at the
University of Kaiserslautern (eight students, 10 weeks).
Both the seminar and the lecture used the same meeting
scheduler problem statement as in the winter seminar.

4.2. Specifying Functional Requirements

We found that the templates for uses cases and services
supported by the tool and the writing guidelines helped
avoid several typical problems encountered when
training novices [24]:

. The use cases were written from the actor’s point of
view, as the first step of every use case was usually an
actor step.

. The causality between steps was clear most of the
time, as the writing guidelines encouraged students to
write the flow of events as an alternating sequence of
actor actions and system responses.

. The naming of actors, user tasks, use cases and
services was consistent (noun phrases for actors, verb
phrases for the others).

. Most exceptions were identified and handled as
alternate flow of events.

While the distinction between user tasks and use cases is
now clear to participants, there are still open questions
about the granularity of use cases and services. Both
templates are still similar (both use cases and services
have flow of events), and often, participants model
services as short low-level use cases. We will address
these remaining issues by improving our use cases
writing guidelines and by providing more detailed
examples in our tutorial.

4.3. Specifying NFRs

We found that the three types of NFRs and guidance in
the form of examples of NFRs made it easier to train
novices to correctly identify and attach NFRs to the
correct element in the specification. Moreover, the tool
support for automatically relevant NFRs during justifica-
tion increased the number of criteria taken into account
during the assessment of options.

However, the set of NFRs that the participants identify
is still incomplete. The organisation of NFRs into a
refinement graph as in the NFR Framework [12] would
help better address the completeness issue.

Table 7. Number of requirements and rationale elements by case
study

Participants Use
cases

Services Questions
(justifications)

Project course 15 29 0 62 (0)
Seminar 1 4 17 13 40 (13)
Seminar 2 4 13 6 43 (9)
Lecture 8 7 12 37 (12)

14 A.H. Dutoit and B. Paech



4.4. Justifying Use Cases and Services

Usually, justifications do not come naturally as a side
effect of development. This is consistent with other
studies and is a well-known obstacle to the widespread
use of rationale [6]. By explicitly adding the justification
activity in the process, differentiating justification
questions from other questions, and training developers
to enter justifications as part of the deliverables, we were
able to capture quite a large rationale (e.g., all use cases
justified after the second iteration, all justifications
including two or more options). While justifications
cost additional overhead, we found that there are
concrete incentives for including justifications on use
cases.

For example, the question associated with use case
justifications was phrased as explaining how a use case
satisfies better the NFRs than other possible use cases.
When assessing the current use case with alternative
options, the assessments did not clearly indicate why the
current solution was better. One of two things would
then occur: either the author revised the use case to
improve it or identified missing NFRs, adding columns
to the assessment matrix in the justification, and thus
making clearer the selection of the current solution. In
both cases, the specification was improved.

In the last two case studies, we added tool support for
selecting the initial set of criteria that are included in a
justification. For example, when justifying a use case,
the domain properties associated with the realised user
task and the quality requirements associated with the use
case were automatically included in the specification.
The users were offered to expand or restrict the set of
NFRs in the matrix. In general, we observed that this
helped minimising the occurrences of missing criteria in
justifications.

4.5. Reviewing Specification

In our case studies, more than half of the questions were
generated during review by the instructors, the coaches
and the authors. Of these questions, half were request for
clarifications and reports of omissions, which, once the
specification is revised to resolve these questions, did not
contain much useful rationale. We found that novices
were able to correctly classify their questions, which in
turn made it easier for us to find the questions that
contain the most useful rationale. The type associated
with questions also made it easier for reviewers to
correctly phrase their questions and subsequently for
developers to revise the requirements specification or the
justifications accordingly.

However, the elaboration of complex questions by a
single reviewer can be laborious. For example, if a
reviewer enters an inconsistency question referring to
two different use cases, enters several different
alternatives for addressing the inconsistency, and
assesses the alternatives against all relevant criteria,
the reviewer will have to go through a series of five
different forms. While a developer familiar with the
process can specify the question efficiently, the length of
the process may discourage a novice. We believe,
however, that the reviewer can see early the benefit of
investing the time in documenting complex questions, as
it makes it easier for the developer to revise the
requirements specification (and hence, minimise the
number of review cycles).

4.6. Addressing Challenges and Clarifications

We found that attaching challenges and clarifications
provided an effective way to track defects in the
specification and their resolution by the responsible
authors. The rationale side of the tool effectively acted
as a long to-do list that could be viewed by status, author
and relevant requirements element. In all four case
studies, however, developers collaborated among them-
selves mostly outside the tool; that is, they did not
request clarifications or challenge each others’ use cases
when defects were identified. Instead, those were
addressed in meetings and subsequent changes were
made to the use cases.

We believe this lack of collaboration through the tool
was due, in part, to the lack of features typically offered
by newsgroups or email. Once a question was posted, it
was not always obvious who the target of the question
was and what actions were expected. Some developers
attempted to indicate this with comments, but this was
not a common case. While our focus does not directly
include supporting distributed collaboration, we plan to
improve collaboration or management support to
increase the opportunities to capture critical rationale
in the form of requests for clarification and challenges on
content. Such rationale could then be restructured and
formalised by use case authors and rationale maintainers
into consolidated justification questions.

4.7. Lessons Learned Summary

We observed that the use case writing guidelines and the
incremental teaching of the process concepts helped
participants write better use cases and better rationale.
We found that adopting an incremental training enabled

Rationale-Based Use Case Specification 15



participants to master the process more quickly. For
example, the process in the last study was composed of
the following sequential steps:

. Students develop a first version of the use cases.

. Instructors review of the form of the use cases.

. Students justify the use cases.

. Instructors review the content of the use cases and the
justifications.

. Students specify and justify services.

. Students review and consolidate the complete
specification.

By the end of this process, students mastered both the
use case specification and the justification tasks. By
alternating the focus on each technique, we were able to
emphasise and illustrate the benefits of each guideline
and process feature. Moreover, once the participants
mastered the process, the use of the tool did not incur
any problem.
However, we also found lost opportunities for

developing NFRs and for capturing rationale. We hope
to address the first set of issues by revising our model of
NFRs and the second set of issues by providing better
collaboration support in the tool.

5. Related Work

The integration of rationale and requirements specifica-
tion is not new. Several proposals from the requirements
literature have included the capture and use of rationale
information for addressing a variety of goals, such as
improving traceability [25–27], driving elicitation [28–
31], supporting negotiation [32] and supporting process
improvement [33,34]. While many aspects in these
proposals appear similar to REQuest, each differs
fundamentally either in the goal they achieve or their
approach. In this section, we examine how our work
complements and extends these proposals.
REMAP was one of the first rationale approaches

focusing on requirements [25]. The goal of REMAP was
to support the traceability of requirements to design
objects. Researchers studied how individuals and teams
of information systems professionals make requirements
decisions. They initially used the IBIS model, including
the issue, position and argument nodes, and extended it
with nodes for representing constraints, assumptions,
decisions, requirements and design objects. The proto-
type REMAP tool enables developers to represent
requirements and their rationale as evolving graphs and
replay decisions. In addition, the REMAP tool includes a
truth maintenance system, which propagates the belief
status of each node based on new changes. For example,
invalidating an assumption modifies the validity of

positions that rely on the assumption, and may prompt
developers to reopen closed issues. The REMAP tool has
since been extended to better support collaboration
among developers and link external material, such as
email, video, documents and so forth [26,27]. While the
goals of REMAP and REQuest are similar (capturing
rationale for long-term use), there are two essential
differences between REMAP and REQuest: the repre-
sentation of rationale and the relationship between
rationale and requirements models. REMAP uses IBIS
[14] to represent rationale, while REQuest uses QOC
[15]. IBIS follows the natural flow of argumentation
during which participants express arguments for or
against individual alternatives. QOC, on the other hand,
focuses on the systematic evaluation alternatives against
a set of criteria that is relevant to a question. QOC is a
consolidated representation for long-term rationale, as it
makes explicit the criteria that were considered during
assessments. The second difference is the use of NFRs in
the requirements model as criteria in the rationale model.
The result is that REQuest puts a greater emphasis on
NFRs and their relationship with functional require-
ments.

The Inquiry Cycle [28] is a class of methods for
incrementally refining and reviewing requirements,
using scenarios and rationale during elicitation. The
goal of the Inquiry Cycle is to improve the quality of the
requirements for evolving systems. The Inquiry Cycle
includes the cyclical application of three steps: expres-
sion of semantic or episodic ideas (i.e., scenarios),
criticism (i.e., raising and resolving issues) and
refinement (e.g., addition of detail, decomposition and
corrections). Scenarios are derived from the current
requirements as concrete material to provoke discussion
and raise issues. The discussion of issues leads to
changes in the requirements. ScenIC [29] is an instance
of the Inquiry Cycle that provides detailed guidelines for
each step. The Inquiry Cycle and ScenIC use rationale as
a short-term working memory for discussing and
keeping track of open issues and decisions to be
implemented. Requirements and rationale in terms of
objectives, tasks and obstacles are identified and
elaborated supported by scenario analysis. Although
researchers point out that it is possible to structure
and archive the working memory as rationale, the details
on how to achieve this restructuring have not been
explored (and are not within the goals of the method).
Our approach attempts to address the issue of converting
the short-term working memory into a longer-term
rationale record and, hence, support the longer-term
goal of supporting changes in later phases of develop-
ment.

SCRAM [30,31] is an elicitation method that presents
stakeholders with a combination of scenarios, conceptual

16 A.H. Dutoit and B. Paech



demonstrators and the rationale of specific issues. The
goal of SCRAM is to improve stakeholder participation
during elicitation sessions by exposing the stakeholders
with rationale information. For selected issues, devel-
opers present the stakeholder with a complete rationale
represented in the form of a QOC model. Different
alternatives (in addition to the one illustrated by the
concept demonstrator) are documented together with
their evaluation against a set of criteria relevant to the
issue. The reason for presenting explicit rationale to
stakeholders is to check if the selected set of criteria
reflects their position and if the evaluation of different
alternatives was done correctly. Sutcliffe [30] observed
that, with trained facilitators, the availability of rationale
led stakeholders to ask more questions and more open-
ended questions during sessions. Although SCRAM
appears similar to REQuest (use of QOC to represent
rationale, representation of NFRs as criteria), SCRAM
and REQuest address different goals. Hence, SCRAM
builds focused QOC graphs for selected decisions to be
validated by the user, while REQuest systematically
builds justifications for all use cases in the specification.
However, by attempting to generalise the results from
SCRAM, we propose that the review of use cases and
system services can be improved by the availability of
justifications. As a side effect, this also results in more
extensive documentation for later phases of develop-
ment.

WinWin [32] is a spiral approach to software
development based on Boehm’s spiral model. The goal
of WinWin is the early identification and resolution of
conflicts among stakeholders. Stakeholders post their
‘win’ conditions (i.e., conditions that must be satisfied
by the system in their view) using the WinWin
groupware tool. A facilitator, with the help of the tool,
identifies conflicts, which are then resolved by negotia-
tion among stakeholders. The negotiation and its
resolution are captured as an issue model listing issues,
alternatives and decisions. REQuest is similar to
WinWin in its inclusion of NFRs in the rationale
model (win conditions include NFRs). REQuest,
however, differs from WinWin in that WinWin focuses
on the higher-level task of identifying a set of win
conditions that all stakeholders can agree with. REQuest
focuses on the detailed development of a requirements
specification and its evaluation and justification against
this set of win conditions (represented as criteria).

FOOM is a formal object-oriented method for
specification that was recently complemented by the
use of IBIS and QOC for capturing rationale [33,34].
During a series of case studies, researchers observed that
the requirements engineering process can be thought of
as a series of refinement steps, during which the
requirements increase in complexity, punctuated by

crisis points, during which the requirements are

drastically simplified and restructured as a consequence

of new insights. In FOOM, IBIS was used to capture ad

hoc rationale during the refinement steps, while QOC

was used during crisis points to consolidate this

rationale. While this study did not address cost and

acceptance issues introduced by the systematic capture

and consolidation of rationale, it provides evidence of

the potential benefits of making rationale available to

developers (e.g., better support during drastic restructur-

ing) and managers (e.g., process monitoring and process

improvement). REQuest is similar to FOOM in that –

using QOC – it consolidates rationale that has been

captured during the requirements engineering process.

However, the FOOM effort concentrated on under-

standing the requirements engineering process and the

potential uses for rationale information, while REQuest

has also focused on guidance, acceptance and tool

support issues related to capturing and consolidating

rationale information. Also, since REQuest is based on

use cases, we hope that it is more immune to the drastic

restructuring observed in FOOM (which is based on

object models), enabling users to incrementally for-

mulate and consolidate rationale on a use case basis as

opposed to a system-wide basis. However, we will have

to evaluate this hypothesis empirically on longer-running

studies.

The NFR Framework [12] is a method for system-

atically refining and elaborating NFRs. From a set of

high-level NFRs (called softgoals) requirements engi-

neers develop more detailed NFRs organised into an

AND–OR graph. Requirements engineers then evaluate

different options (called operationalisations) for their

level of satisfaction against the NFRs and examine the

interactions between conflicting NFRs. Since most high-

level NFRs are rarely qualities that are either met or not,

links in the NFR graph represent the degree an NFR

contributes to or hinders another NFR. An NFR is

satisficed (as opposed to satisfied) when the selected

option meets the NFR within acceptable limits. REQuest

is similar to the NFR Framework in its emphasis of

criteria. However, in the NFR Framework, the NFR

drives the requirements elicitation. Therefore, it has a

much richer representation and set of techniques for

operationalisations and for dealing with dependencies

among NFRs. In addition, it focuses on the automatic

evaluation of the NFR graphs to determine the impact of

decisions. Again, we complement this approach by an

emphasis on functional requirement elicitation in terms

of user tasks, use cases and services, and by an emphasis

on a simpler rationale representation suitable for use in

subsequent development tasks.

Rationale-Based Use Case Specification 17



6. Conclusion

In this paper, we described guidance and tool support for
integrated use case specification and rationale capture as
well as four case studies where we have evaluated the
tool and the guidance.
We hope to have completed the guidance on use case

specification and rationale capture. Thus we will focus
on rationale usage during the winter software engineer-
ing project course at TUM. In particular, we are setting
up an experiment where two groups of students are
required to carry out some changes to the specification:
one group with rationale, the other without. To further
study collaboration during requirements engineering, we
also plan a distributed case study where students from
Kaiserslautern and TUM collaborate for the specifica-
tion, only by way of the tool. Finally, to evaluate the
rationale maintenance part of the process, we plan a case
study where we first ask students to produce a first
version of the specification, perform rationale main-
tenance, and then introduce a change in the problem
statement. This would give us preliminary results
indicating whether or not the rationale maintenance
process as currently defined is feasible and produces
rationale that can be used during requirements changes.
It is generally recognised that case studies and

experiments with students are limited when testing the
effectiveness of a process or a tool and for generalising
results to the population of software developers.
However, in our experience qualitative case studies
using novices as subjects can lead to improvements in
both tool support and guidance. To support the claim of
the practical usefulness of the process and tool, we plan
to do experiments with practitioners after we have
confirmed the usefulness of the rationale.

Acknowledgements. We thank our students for their interest, time
and effort during the case studies. We thank Daniela Ahlisch and
Kagan Aksit for their contributions to the REQuest prototype. We
thank the anonymous reviewers of REFSQ’2001 and of Requirements
Engineering for their numerous constructive comments and sugges-
tions, which have helped us improve this paper. Finally, we thank the
Fraunhofer Institute of Experimental Software Engineering and
Professor Bruegge at the Chair of Applied Software Engineering at
TUM who have continuously supported this work over the past 2
years.

References

1. Seminar ‘Steuergeräte-Design im Automobilbau und in der
Industrieautomation’. Haus der Technik, Essen, 24–25 May 2000

2. van Lamsweerde A, Darimont R, Massonet P. Goal-directed
elaboration of requirements for a meeting scheduler: problems
and lessons learnt. In: International symposium on requirements
engineering, 1995, pp 194–203

3. Jacobson I, Christerson M, Jonsson P, Overgaard G. Object-
oriented software engineering—a use case driven approach.
Addison-Wesley, Reading, MA, 1992

4. Jacobson I, Booch G, Rumbaugh J. The unified software
development process. Addison-Wesley, Reading, MA, 1999

5. Constantine LL, Lockwood LAD. Structure and style in use cases
for user interface design. In: van Harmelen M (ed.), Object-
oriented user interface design, 2001. Addison Wesley, Harlow,
England

6. Buckingham Shum S, Hammond N. Argumentation-based design
rationale: what use at what cost? Int J Human–Computer Studies
1994;40:603–652

7. Dutoit AH, Paech B. Rationale management in software
engineering. In: Chung X (ed.), Handbook of software engineer-
ing and knowledge engineering. World Scientific Publishing,
Singapore, 2001

8. Dutoit AH, Paech B. Supporting evolution: rationale in use case
driven software development. In: International workshop on
requirements engineering: foundations of software quality
(REFSQ’2000), Stockholm, June 2000

9. Cockburn A. Writing effective use cases. Addison Wesley,
Reading, MA, 2001

10. Diaper D (ed.). Task analysis for human–computer interaction.
Ellis Horwood, Chichester, UK, 1989

11. Benutzer-orientierte Gestaltung interaktiver Systeme. Norment-
wurf, DIN EN ISO 13407, 1998

12. Chung L, Nixon BA, Yu E, Mylopoulos J. Non-functional
requirements in software engineering. Kluwer Academic, Boston,
MA, 1999

13. Jackson M. Software requirements and specifications. Addison-
Wesley, Reading, MA, 1995

14. Kunz W, Rittel H. Issues as elements of information systems.
Working paper no. 131, Institut für Grundlagen der Plannung,
Universität Stuttgart, Germany, 1970

15. MacLean A, Young RM, Bellotti V, Moran T. Questions, options,
and criteria: elements of design space analysis. Human–Computer
Interaction 1991;6:201–250.

16. Lee J. Design rationale systems: understanding the issues. IEEE
Expert 1997(May–June);78–85

17. Conklin J, Burgess-Yakemovic KC. A process-oriented approach
to design rationale. Human–Computer Interaction 1991;6:357–
391

18. Lee J. A qualitative decision management system. In: Winston
PH, Shellard S (eds), Artificial intelligence at MIT: expanding
frontiers, Vol 1. MIT Press, Cambridge, MA, 1990, pp 104–133

19. The Softbicycle Company. QuestMap: the wicked problem
solver. http://www.softbicycle.com/

20. Javasoft. Java servlet specification. Javasoft. http://www.java-
soft.com/

21. Object Management Group (OMG). XML Meta Interchange
(XMI). OMG, November 2000. http://www.omg.org/

22. DOORS. Telelogic. http://www.telelogic.com/index.cfm
23. Bruegge B, Dutoit AH, Kobylinski R, Teubner G. Transatlantic

project courses in a university environment. In Asian Pacific
software engineering conference, Singapore, December 2000

24. Lilly S. Use case pitfalls: top 10 problems from real projects
using use cases. Tools 30 Proceedings, Technol Object-Oriented
Language System 1999;174–183

25. Ramesh B, Dhar V. Representing and maintaining process
knowledge for large-scale systems development. IEEE Expert
1994;April:54–59

26. Ramesh B, Sengupta K. Multimedia in a design rationale decision
support system. Decision Support Systems 1995, pp 181–196

27. Ramesh B, Tiwana A. Supporting collaborative process knowl-
edge management in new product development teams. Decision
Support Systems 1999;27:213–235

28. Potts C, Takahashi K, Anton AI. Inquiry-based requirements
analysis. IEEE Software 1994;11(2):21–32

29. Potts C. ScenIC: a strategy for inquiry-driven requirements
determination. In: International symposium on requirements
engineering, RE’99, 1999, pp 58–65

30. Sutcliffe A. Requirements rationales: integrating approaches to

18 A.H. Dutoit and B. Paech



requirement analysis. In: Olson GM, Schuon S (eds), Proceedings
of designing interactive systems, DIS’95. ACM Press, New York,
1995, pp 33–42

31. Sutcliffe A, Ryan M. Experience with SCRAM, a scenario
requirements analysis method. In: Proceedings of the third
international conference on requirements engineering, April
1998, pp 164–171

32. Boehm B, Egyed A, Kwan J, Port D, Shah A, Madachy R. Using
the winwin spiral model: a case study. IEEE Computer
1998;July:33–44

33. Nguyen L, Swatman PA, Shanks G. Using design explanation
within the formal object-oriented method. Requirements Eng
1999;4:152–164

34. Nguyen L, Swatman PA. Managing the requirements engineering
process. In: Seventh international workshop on requirements
engineering: foundation for software quality, Interlaken, Switzer-
land. 2001

35. Anton A, Potts C. The use of goals to surface requirements for
evolving systems. In: International conference on software
engineering, Kyoto, 1998, pp 157–166

Rationale-Based Use Case Specification 19


