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Abstract
Evolving software with an increasing number of features poses challenges in terms of comprehensibility and usability. 
Traditional software release planning has pre- dominantly focused on orchestrating the addition of features, contributing to 
the growing complexity and maintenance demands of larger software systems. In mobile apps, an excess of functionality 
can significantly impact usability, maintainability, and resource consumption, necessitating a nuanced understanding of the 
applicability of the law of continuous growth to mobile apps. Previous work showed that the deletion of functionality is com-
mon and sometimes driven by user reviews. For most users, the removal of features is associated with negative sentiments, 
prompts changes in usage patterns, and may even result in user churn. Motivated by these preliminary results, we propose 
Radiation to input user reviews and recommend if any functionality should be deleted from an app’s User Interface (UI). 
We evaluate Radiation using historical data and surveying developers’ opinions. From the analysis of 190,062 reviews from 
115 randomly selected apps, we show that Radiation can recommend functionality deletion with an average F-Score of 74% 
and if sufficiently many negative user reviews suggest so. We conducted a survey involving 141 software developers to gain 
insights into the decision-making process and the level of planning for feature deletions. Our findings indicate that 77.3% of 
the participants often or always plan for such deletions. This underscores the importance of incorporating feature deletion 
planning into the overall release decision-making process.
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1  Introduction

Lehman’s laws of software evolution [1] highlight the 
importance of continuous adap- tation to prevent a decline 
in user satisfaction over time. Lehman’s sixth law extends 

this idea, stating that a program’s functional content must 
continually grow to maintain user satisfaction through-
out its lifespan. While this holds true for service-oriented 
platforms like operating systems, where maintaining func-
tionality is crucial for back- ward compatibility, it poses a 
challenge for programs primarily used by individuals. In 
such cases, a constant increase in features conflicts with 
usability as more features compete for user attention. As 
Buschmann [2] pointed out, there is a risk of trading func-
tional coverage for quality as the reliability, performance, 
and maintainability are postponed to the time “when the 
functionality is stabilized”. The concept of excessive soft-
ware development emerges as a recognized concern [3]. 
However, conventional release planning, often fixated on 
the addition of features, may inadvertently compromise 
quality in the pursuit of comprehensive functional cover-
age [4, 5]. Mobile apps, constrained by factors such as 
small screens and limited resources, exemplify the deli-
cate balance between functionality and usability, where 
adding functionality comes at a cost [6]. In navigating 
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these constraints, developers may find it advantageous to 
consider the removal of functionality that detrimentally 
influences the user experience [7], challenging the conven-
tional notion of perpetual growth. This becomes especially 
crucial when considering user-centric principles, where 
ease of use and discoverability are key. Hence, developers 
should be interested in removing functionality that nega-
tively impacts the user experience [7].

Developers of mobile apps face the challenge of optimiz-
ing the user experience by strategically deciding when to 
add or remove features [8, 9]. While this removal can be 
the result of different development activities (for example, 
removing the code, com- menting out the code, or disabling 
respective UI elements), from the user’s perspective, a func-
tionality is considered removed when it is no longer acces-
sible through the user interface [10, 11]. Empirical studies 
on mobile app release engineering highlight developers’ 
increasing awareness of the impact of user feedback on code 
changes. However, techniques for release planning have not 
considered the removal of functionality.

There is an established body of knowledge on the release 
engineering of mobile apps. Several techniques [12] have 
been proposed for the release planning of mobile apps. Gen-
erally, these existing methods are focused on feedback devel-
opment planning based on user reviews. They first categorize 
reviews into general categories of uninformative comments, 
feature requests, bug reports, or praise. Then, they aim to 
satisfy that user feedback in the upcoming release. The large 
number of user reviews on mobile app stores, which can 
range from zero to millions of reviews per release [13, 14] 
prompted several studies to summarize and prioritize user 
concerns for enhancing mobile apps [15–17].

Palomba et al. [18, 19]. confirmed empirically that mobile 
app developers are changing their code based on the crowd-
sourced app reviews. Among these studies, multiple pro-
vided a variety of taxonomies for mobile app reviews [20, 
21]. When analyzing user reviews, a few studies reported a 
reason for negative reviews [22, 23]. Further, in our previ-
ous study [7], we analyzed commit messages of mobile apps 
and established a taxonomy of “what”, “how” and “why” 
deletions occur in code repositories. That is, these deletions 
range from the code deleted from a repository with no speci-
fied reason (e.g., accidental removal) to the code updated 
during refactoring to improve the code structure and UI ele-
ments removed due to undocumented reasons. In this con- 
text, and with the emergence of data-driven decision-mak-
ing, machine learning has also impacted how organizations 
approach release planning. As the software development 
landscape continues to evolve, we can now extend release 
decisions to encompass a broader domain and feature dele-
tions by leveraging historical data and predictive analytics.

This paper is an extension of the study published and 
awarded in a conference [11] and was invited for this journal 

extension. In this version, while summarizing some of the 
findings in the first research question, we further:

•	 Enhance the motivation for our research by presenting a 
thorough literature review on feature deletion. Integrate 
our user study findings into the background section,

•	 Provide extended information on the user study (RQ2),
•	 Provide a survey with developers on the possibility and 

support of release decisions and documenting current 
best practices.

In our paper, we follow a clear structure based on the 
design science process [24, 25]. We start with problem con-
ceptualization, outlining the problem we’re addressing and 
connecting the evidence from theory and practice. Then, we 
move on to designing solutions that we believe can recom-
mend functionality deletion by offering Radiation. Finally, 
we validate the empirical solution we offered following the 
design science process. We also reflected upon the problem 
as an important element for this knowledge transmission by 
surveying the possibility and importance of including feature 
deletions in the release planning. This structured approach 
helps us ensure that our work is thorough and practical, lead-
ing to meaningful insights and solutions.

In what follows, in Sect. 2, we explain some background 
knowledge needed to make this paper self-contained and 
motivate the added research question to this study. We then 
move to problem conceptualization in Sect. 3. We present 
our solution design in Sect. 4 and discuss protocols to vali-
date it from multiple aspects in Sect. 5. We then present 
the results of this validation in Sect. 6. We then present the 
results of a survey with developers to discuss the current sta-
tus quo for considering functionality deletions in the release 
decisions 7 and move to present the threats to the validity 
of our study in Sect. 8. We then present the related work in 
Sect. 9. We wrap the paper by discussing the future work 
(Sect. 10) and the conclusions (Sect. 11).

2 � Background: software functionality 
deletions

In a mining study in 2018, we took a step to look into 
the code changes and investigate the evolution of open-
source Android mobile apps [7]. We aimed to understand 
the frequency and nature of size reduction in releases, 
aiming to motivate the analysis of functionality deletion. 
The study involved 1,519 apps and over 20,806 GitHub 
releases. We compared the size of the code base (which 
was highly correlated with the size of APK file, 0.86). 
Our analysis showed that 98.8% of apps decreased their 
size at least once, with 61.3% experiencing more than 
a 10% reduction in size in at least one release. We also 
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analyzed the number of Android components (Activities, 
Services, Con- tent Providers, Broadcast Receivers) as a 
proxy for functionality deletion. Notably, 37.6% of apps 
had decreased activities, and various changes in services, 
providers, and receivers were observed across releases. 
We took a step further and used the Backstage tool [26] to 
examine the deletion of UI elements and associated API 
calls in a subset of apps. The results indicated that 39.8% 
of apps had UI elements removed in at least one release. 
Our findings show that nearly one-third of the scrutinized 
apps exhibit a discernible decline in size, activities, and UI 
elements over successive releases. This finding reinforces 
our initial hypothesis, suggesting that the conventional 
notion of continuous growth in functionality, as posited by 
Lehman’s laws, calls for an investigation into the dynamics 
surrounding functionality deletion in software evolution.

We further reported on the in-depth analysis of 8, 
000 commit messages from these apps to understand the 
“What,” “Why”, and “How” of functionality deletions. 
In terms of what functionality was deleted, we identified 
a total of 22 categories of functionality deletion. These 
categories were subsequently organized into a two-level 
taxonomy featuring four high-level categories: “security 
and privacy elements” (such as licensing or permissions), 
“communication bridges”, “user interface elements”, and 
“development artifacts”.

In exploring why functionality was deleted, we pre-
sented a taxonomy with 13 categories, grouped into 
broader themes as “improving user experience”, “improv-
ing the quality of the existing code”, “Better use of 
resources”, and “Better communication”. We also iden-
tified an “Unknown” category for commits lacking a 
description of the reason for deletion.

The retrospective analysis revealed that 29.98% of func-
tionality deletions are related to UI elements, and 11.27% 
of functionality deletions are intended to improve users’ 
experience. Conducting a thorough analysis of commit mes-
sages, we provided an in-depth exploration of functional-
ity deletion in mobile apps. Notably, 11.23% of commits 
cite the enhancement of user experience as the rationale for 
deletion. Addi- tionally, the author’s examination of commit 
messages reveals that 14.63% of deletions are influenced by 
negative user feedback. It is worth noting that, despite these 
find- ings, there has been no empirical evaluation of users’ 
perceptions regarding feature removal.

Furthermore, the app developers emphasized that multi-
ple factors impact decisions about functionality deletions. 
Complexity and required maintenance effort, extent of 
usage, and user reviews with specific attributes were iden-
tified as the top three most important factors. Among the 
characteristics highlighted were annoyed reviews, reviews 
expressing similar concerns about the app, and reviews asso-
ciated with low ratings.

3 � Problem conceptualization: importance 
of feature deletions to users

To conceptualize the problem, we conducted an in-depth 
survey with users, which we detailed in the conference 
version of this study, aiming to investigate the significance 
of feature deletion for mobile app end-users and answer 
the question:”How do mobile app end-users perceive the 
deletion of software functionality?”. Following established 
guidelines for survey research [27], our study comprised 
four primary components. Our survey began by collect-
ing participants’ demographic information. Subsequently, 
we explored participants’ awareness of missing features 
or functionalities across different app releases. Follow-
ing this, we assessed whether the deletion of features 
influences users’ overall satisfaction with the mobile app. 
Lastly, we inquired about the extent and impact of func-
tionality deletion or limitation on participants’ app usage 
patterns. The survey comprised 12 closed-ended questions, 
with five initial questions dedicated to gathering demo-
graphic information. The remaining queries utilized a five-
point Likert scale to gauge participants’ opinions.

297 individuals completed our survey [11]. Among these 
participants, 44.1% fell within the 28–40 age range, 27.3% 
were between 18 and 28 years old, 15.5% were in the 40–64 
age bracket, and 13.1% were above 64 years old. Regarding 
app installation, a majority (51.9%) reported having per-
sonally installed 5–10 apps on their devices, while 26.9% 
installed more than ten apps, and 21.2% installed fewer than 
five apps. Regarding daily app usage, 53.9% used more than 
ten apps daily, with only 1.3% using less than five apps daily 
and 44.8% using 5–10 apps daily. Among the respondents, 
80.1% had uninstalled some apps, but only 39% occasionally 
or more frequently left reviews for mobile apps.

Figure 1 highlights the main findings of our survey. 
According to our survey, a majority of users (55.2%) 
reported sometimes noticing changes in the features of the 
mobile apps they use. Regarding feature deletions, 34.4% 
never or rarely noticed dele- tions, while 65.7% reported 
sometimes or more frequent awareness of feature deletions. 
These indicate the extent to which participating users realize 
and notice the change and deletion in mobile app features.

As for the perception of users toward a feature deletion 
in an app and its impact on their app usage, we found that 
approximately 51.9% of participants expressed a somewhat 
negative sentiment associated with feature deletions, with 
41.1% stating negative and 7.75% stating very negative sen-
timents. Conversely, 13.5% had a positive perception, and 
1.0% expressed very positive feelings about feature dele-
tions. Regarding the impact on app usage, 48.8% reported 
no change, while 51.2% reported somewhat or extensive 
changes in app usage following a feature deletion.
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When asking the extent to which deletions impact users’ 
decisions and provoke a reaction, only 17.17% of partic-
ipants often or sometimes left a review for a mobile app 
after a feature was deleted. In response to losing access 
to app functionality, 63.7% of participants sometimes or 
more frequently sought alternative apps. Additionally, 31% 
of participants reported at least once uninstalling an app 
due to a feature deletion, while 41.4% never or rarely did 
so, and 27.6% sometimes took this action. Deletion of app 
functionality provokes negative feelings for the majority of 
the participants (51.9% of the participants) and somewhat 
changes their usage behavior (51.2% of the participants). 
Functionality deletion caused 31.0% of the users often to 
migrate to another app. 27.6% of the users uninstalled the 
app following the deletion of a feature.

4 � Solution design

The results of our survey with end users motivated us to 
further evaluate the significance of feature deletions. We 
are interested in studying the feature deletion within the 
evolution process and release planning of mobile applica-
tions from user perspective. As the functionality is usually 
exposed to the user via (G)UI elements [28], in this study, 
we are particularly interested in the deletions visible to the 
end user. App reviews are categorized around these UI ele-
ments [19].

To assist the production team with such decisions, 
we introduce Radiation1 to recommend deletions based 
on user reviews. We further evaluate Radiation’s perfor-
mance retrospectively and by performing cross-validation. 

Fig. 1   Results of the survey with app users (Q6–Q12)
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To externally validate Radiation, we surveyed 37 software 
developers and 42 users to understand their perception of 
the value of deletions recommended by Radiation. Radia-
tion predicts and recommends functionality deletions in 
mobile apps.

Multiple factors may trigger functionality deletion. We 
designed Radiation to recommend deleting functionali-
ties suggested by user reviews. The current literature on 
apps’ user needs and planning is primarily focused on add-
ing features or fixing bugs in each release, based on user 
requests [20, 29, 30]. Radiation differs from this approach 
by targeting deletions and inputting user reviews. Radia-
tion is a recommendation tool that helps developers iden-
tify deletion candidates. While deleting features is some-
times necessary [7], developers must be cautious about the 
features they removed, as it can result in a negative user 
experience and potentially losing customers, as shown by 
our survey study (see Sect. 2). Radiation is the first step to 
assist developers with this task. Figure 2 illustrates the six 
steps of Radiation. We relied on the best results presented 
in the literature to design each step.

Step 1. Reviews pre-processing. (following [31]) We 
eliminated emojis, special characters, and stop words and 
expanded contractions (“can’t” was expanded to “cannot”). 
Then, we applied lemmatization to map the words into 
their dictionary format (“deciding” and “decided” turned 
into “decide”). We used Python library NLTK for this 
step. We customized the list of stop words as suggested 
by Maalej and Nabil [32] and Palomba et al. [18].

Step 2. Separating informative and non-informative 
reviews. (following [31]) Not all reviews were useful. 
We followed the definition of what is informative and 
non-informative as described by Maalej and Nabil [32]. 
In short, informative reviews communicate content that 
can be used in the process of the app evolution, while an 
advertisement, a short statement of praise (i.e., “The app 
is nice”), or a statement of an emotion (i.e., “I hate this 
app!”) is not informative for enhancing an app in future 
releases. To identify informative reviews, we manually 
classified a fraction of reviews and used them to train a 
Naive Bayes classifier (following [32]).

Step 3. Finding UI elements for each release. (following 
[29]) For each release, we extracted UI elements used in an 
application. We leveraged the UI elements to connect the 
reviews with the apps’ functionality following the method 
of Palomba et al. [18]. They showed that users write reviews 
related to the app components visible to them, which are 
the elements of the user interface. To mine UI elements, 
we implemented the lightweight analysis of Android layout 
files. These files include most of the GUI elements, also 
known as view widgets, and control as it is visible to the 
app user [26, 35]. Additionally, we parsed the Strings.xml 
file, which contains text strings for an app. By mining these 
files, for each identified UI element, we got its description 
consisting of an element type, a variable name used in the 
code, a label associated with the element, and an icon name 
if applicable (e.g., < Button, btn mic, ‘Start Listening’, >).

Step 4. Connecting reviews to the UI elements. (follow-
ing [18]) We used the description of elements connecting 
reviews to app functionalities. To connect a review to a UI 
element in a release Vi, we calculated the cosine similarity 
between the text of a UI description and a review’s con-
tent. We established a connection when the similarity score 
exceeded a threshold of 0.65. Palomba et al. [18] used the 
threshold of 0.6 for this purpose. However, when analyzed 
manually, we slightly increased the threshold to achieve a 
more accurate matching.

Step 5. Clustering reviews based on their topic. (follow-
ing [18]) Several app reviews are pointing to the same func-
tionality, while they may contain different opin- ions about 
that functionality. We used Hierarchical Dirichlet Process 
(HDP) [36] with its default setup to group reviews related 
to each functionality (UI element) as suggested by Palomba 
et al.[37]. HDP is a topic-mining technique that automati-
cally infers the number of topics and is an extension of LDA 
[38], which is designed based on a non-parametric Bayesian 
network [39]. The difference with LDA is that the number 
of topics does not need to be specified in advance for HDP. 
Using HDP as described in [37], we performed topic mod-
eling and formed clusters with reviews about a par- ticular 
topic associated with a UI element. In this way, every cluster 
represents a set of similar concerns about a UI element. One 

Fig. 2   The process of radia-
tion to support decisions on 
user-driven UI functionality 
deletions
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review might also discuss multiple UI elements; hence, the 
clusters are non-exclusive. We manually analyzed the results 
for 1,500 reviews across eight apps: The topics were intui-
tive and understandable.

Step 6. Identifying candidate functionality dele-
tion. Following the existing lit- erature on prioritizing app 
reviews (Table 1), we selected attributes for identifying and 
recommending possible functionality deletion. To deter-
mine candidates, we used Random Forest, as suggested by 
related studies [29], and showed good time performance. 
A list of attributes for training is presented in Table 1. The 
“polarity” and “objectivity” of the reviews in a cluster were 
extracted by sentiment analysis performed by Pattern [13, 
34] technique.

Radiation involves six main steps. We used established 
and top-performing state- of-the-art methods in forming our 
Step 1, Step 2, and Step 3. Radiation also adheres to state-
of-the-art approaches for clustering user reviews around 
UI elements (Step 4). It has been established [19] that user 
reviews often address UI elements as the app functionalities 
visible to the end user. In particular, Radiation is designed 
to predict and recommend the deletion of UI functionality 
based on user reviews. It is important to note that our intent 
was to demonstrate whether recommending feature deletion 
is possible rather than implementing the most performant 
methods. We evaluated the results of Radiation in two ways: 
first, by retrospectively comparing the decisions that were 
actually made in the app, and second, by externally evaluat-
ing with app developers to understand their perception of the 
Radiation recommendation (external evaluation). We explain 
these two in the next section.

5 � Empirical validation of radiation

In this section, our objective is to internally evaluate the 
performance of Radiation and, in particular, evaluated how 
effectively can functionality deletion be recommended 

based on user reviews?. We address this question through 
two approaches: firstly, retro- spectively comparing auto-
mated recommendations with actual deletions, and sec-
ondly, conducting an external evaluation. For the latter, 
we engaged software developers to assess whether a func-
tionality should be deleted from an app based on provided 
reviews, then compared their decisions with the outcomes 
of our approach. When validating our solution approach, 
we answer three research questions:

RQ1: How effectively can functionality deletion be rec-
ommended based on user reviews? For a set of 190,062 
reviews, we applied Radiation to identify the reviews 
that provoked the deletion of functionality. We evaluated 
Radiation internally (via cross-validation) and externally 
(with 37 developers):

RQ1–1 How does the recommendations compare with 
actual deletions?

RQ1–2 To what extent do app developers consider 
analogical reasoning useful for predicting functionality 
deletions?

RQ2: What is users’ experience with the functionali-
ties that radiation offers for deletion?

We conducted a survey with 42 participants who used 
the app in the lab to assess their sentiment towards the 
functionalities recommended for deletion by Radiation. 
After familiarizing themselves with the app, we asked 
each participant to evaluate 30 UI functionalities based 
on their level of liking and the importance of deletion. We 
performed a controlled experiment by presenting the ques-
tion for the features recommended for deletion by Radia-
tion and those not recommended for deletion. Finally, we 
analyzed the relationship between user sentiment and the 
recommendations provided by the tool. The end-user study 
confirmed the recommendations’ validity.

Table 1   Features used in RF to recommend if some functionality is a candidate for deletion

Attribute Reason Description

Reviews [29, 31] The number of reviews in a cluster
Rating [29, 31] Each app reviews is associated with a rating. rating is the average rating of reviews in a cluster
∆ Rating [29] ∆ between the average rating of the cluster and the average rating of the app in a specific release
Polarity [20, 30, 33] The average polarity of the reviews in a cluster. Polar- ity is one dimension of sentiment and is 

a number between [− 1, 1]. − 1 shows negative sentiment, 0 is neu- trality, and 1 is the very 
positive feeling

Objectivity [7] & our user survey Average objectivity of the reviews in a cluster. Objec- tivity is another aspect of sentiment and 
is a number between [0, 1]. 0 shows the message is totally objective (expression of facts) and 
1 shows the message was opin- ionated (subjective) [34]

Uninstall [7] & our user
survey

The number of reviews talking about “uninstalling the app or requesting “refund”
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5.1 � Protocols for internal validation of radiation 
recommendations with developers (RQ1‑1)

For this internal and retrospective evaluation in RQ1, we 
excluded apps with fewer than two releases (554 apps) and 
randomly selected 10% (115 apps) from the remaining 1,150 
for in-depth analysis with an overall of 3,364 releases. These 
115 apps encompassed an overall 190,062 reviews and had 
an average of 176 reviews per month. To validate the effec-
tiveness of Radiation, we retrospectively compared its rec-
ommendations with actual source code changes across 115 
apps and 3,364 releases.In Step 5 of the Radiation process, 
we clustered reviews for each UI element and labeled clus-
ters as “deleted” or “not deleted” through manual inspection 
of source code com- mits [7]. Two annotators performed this 
labeling, through which we achieved a 96% Kappa agree-
ment rate, and discrepancies were promptly resolved through 
a brief code look-up and rechecked by the first author of the 
paper as the moderator. As such, and to create a truth set, 
we tagged reviews in Vi−1 as “deleted” if the corresponding 
element Ei was deleted in release Vi. Subsequently, we inter-
nally validated Radiation by comparing its predictions with 
this truth set. Hence, if an element Ei was deleted in release 
Vi, we tagged the clustered reviews in Vi−1 as “deleted”. As 
such, each cluster is a set of reviews with similar criticism 
relevant to a UI element. We used these manually labeled 
clusters as our truth set. To internally validate our results, we 
compared the output of Radiation with this truth set. When 
comparing the results of Radiation with the code changes 
retrospectively, one of the four outcomes was.

observed:
TP: Radiation recommends deletion of Ei in Vi, and his-

torical data of our truth set shows the element was deleted.
TN: Radiation does not recommend deletion of Ei in Vi, 

and historical data of our truth set shows the element was 
not deleted.

FP: Radiation recommends deleting Ei in Vi, but our truth 
set’s historical data shows that the element was not deleted.

FN: Radiation does not recommend deletion of Ei in Vi, 
but historical data of our truth set shows its deletion.

This retrospective analysis resulted in a confusion matrix, 
enabling the calculation of precision, recall, and F-Score for 
Radiation.

5.2 � Protocols for external validation of radiation 
with software developers (RQ1‑2)

To assess the external validity of Radiation recommen-
dations, we conducted analysis with software developers 
of the apps. Developers were given the cluster of user 
reviews. Each of these clusters consisted of reviews about 
a UI element (generated in Step 5 of Radiation). Given the 
cluster of user reviews, we asked each developer, “Based 

on your understanding of the given reviews, please catego-
rize each cluster as either motivating functionality deletion 
or not motivating functionality deletion.” Subsequently, 
we compared these developers’ judgments with the Radia-
tion’s outcomes, introducing the possibilities of true posi-
tives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN). This evaluation relies on developers’ 
subjective assessments rather than historical data and dif-
fers from the previous section’s process. To mitigate bias, 
we randomly selected 25 apps, and three developers inde-
pendently evaluated each functionality cluster, with final 
decisions determined by majority agreement.

Our objective was to gauge software developers’ per-
spectives on the accuracy of Radiation recommenda-
tions. Initially, we invited developers who contributed to 
repositories from our set of F-Droid open-source apps. 
However, due to limited avail- ability and responsiveness, 
we also perform recruitment through social media and 
professional networks. Through non-compensated and 
convenience sampling, 37 developers with an average of 
8.3 years (ranging from two to 15 years) of overall soft-
ware development experience and 4.4 years of mobile app 
development experience (ranging from one to 12 years) 
were enlisted. Each developer contributed to the develop-
ment of at least two apps. In conducting this evaluation, 
the developers reviewed recommendations for 25 apps and 
analyzed 36,039 reviews, constituting an assessment for 
20% of our selected apps for validation.

Further, the quality of topics and modeling in Step 5 is 
crucial to the success of Radiation. To assess the effective-
ness of clustering by HDP in Step 5 of Radiation, we utilized 
a human judgment method called topic intrusion [40]. This 
involved pre- senting the top two topics with the highest 
similarity for a review and presenting them along with a 
random topic of lower probability (the intruder topic) to a 
developer, who was then asked to identify all relevant topics.

37 developers participated in our study and evaluated 
clustering for 36,039 reviews. To evaluate the results of 
Step 5, we calculated Topic Log Odds (TLO) [40]. TLO 
is a quantitative measure of agreement between a model 
and a human. TLO is defined as the difference between the 
log probability assigned to the intruder topic and the log 
probability assigned to the topic chosen by a developer. 
This number is averaged across developers to get a TLO 
score for a single document d [41]:where θr,t is the prob-
ability that a review r belongs to a topic t, and S is the total 
number of developers.

where θr,t is the probability that a review r belongs to a topic 
t, and S is the total number of developers.

TLO(d) =
log �

r,trueintruders − log �
r,intruderselectby’s’

S
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5.3 � Protocols for external validation of radiation 
with users

We installed the app on our own devices. We recruited par-
ticipants from our personal network by advertising on social 
media and mailing lists following a convenient sampling 
protocol [42].

On the day of the study, we arranged the devices with the 
installed app for the par- ticipants, ensuring they were fully 
charged and functioning correctly. We also provided a des-
ignated area for participants to engage with the app comfort-
ably. We provided a consent form outlining the study’s pur-
pose, procedures, and participant rights should be prepared 
for participants. We further provided a brief overview of the 
study and explained the purpose, emphasize the voluntary 
nature of participation, and obtain informed consent.

We deliberately involved only one participant for each 
study session to mitigate the influence and peer pressure. 
We provided tablets and instructed participants to actively 
engage with the app for at least 20 min, exploring various 
features and sharing feedback on their experience. Fol-
lowing this period, we checked in with participants to see 
whether they required additional time or were prepared to 
move forward. Following this interaction phase, we included 
questions about their overall experience. We provided par-
ticipants with a structured questionnaire asking them to rate 
their experience with the app, similar to the app store, on a 
one- to five-star scale. We then asked them to provide feed-
back on a particular app feature.

We asked the participants to rate the importance of a 
given feature following a Kano model [43–45] either as 
essential, worthwhile, unimportant, or unwise.

Further, we introduced a hypothetical scenario where a 
specific app feature is removed. We asked participants to 
provide feedback on their feelings and the potential impact 
on their overall experience. Figure 3 shows a sample of this 
task. We randomly selected 30 UI elements and function-
alities from each app as part of our evaluation. We made 
a deliberate effort to include a mix of correct (TP and TN) 
and incorrect (FP and FN) deletion recommendations (as 

explained in RQ2), whenever possible. In total, we evalu-
ated 650 UI functionalities, with 325 recommended for dele-
tion by Radiation and 325 that were not recommended for 
deletion. Our survey included 42 participants selected via 
non-compensated and convenience sampling from our social 
and professional network. For each functionality of the app, 
three users provided evaluations. Figure 3 displays a sample 
survey question and the response of one participant spe-
cifically for the org.isoron.uhabits app. After familiarizing 
themselves with their assigned apps for at least 20 min, we 
presented a specific feature of the app they had studied. In 
this context, we consider the participants in our evaluation as 
“users” and will refer to them as such, noting their controlled 
level of experience with the app.

Then, we requested that they rate their liking of the fea-
ture on a five-point Likert scale. Furthermore, we also asked 
the participants to express their emotions if the feature were 
to be removed. We used conventional sentiment scores [46] 
for evaluation, with − 2 indicating strong dislike, 0 indicating 
neutrality, and + 2 indicating strong liking.

We gathered the data only through the formal question-
naire provided to the participants and the questions outlined 
above.

6 � Validation results

We used open-source Android apps for this evaluation. As of 
June 2022, F-Droid (the open-source repository for Android 
mobile apps) included 3,810 mobile apps. We identified 
1,704 apps with a valid link to their GitHub repositories. 
These apps involve a total of 14,493 releases. As deletions 
are identified by comparing sequential releases, deletions 
are only meaningful if the app has at least two releases. So, 
we excluded 554 apps with fewer than two releases from our 
analysis to evaluate Radiation over multiple releases. We 
gathered reviews from the Google Play store for the remain-
ing apps while accessing their code and development arti-
facts through GitHub.

Fig. 3   Questions asked for 
evaluating Radiation with users 
for a sample app “Loop habit 
tracker” in RQ2
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We randomly selected 8,300 reviews (∼ = 5% of the total 
number of reviews) across. Different apps and manually 
labeled each review as “informative” or “non-informative” 
as described in Step 2 of Radiation. We followed the defi-
nition of informative and non-informative as described by 
Maalej and Nabil [32]. Two researchers classified these 
reviews with an average Cohen’s Kappa agreement degree 
[47] of 86%. We labeled 2,917 of these reviews as “non-
informative” and used them along with the same num- ber 
of “informative” reviews randomly sampled from the rest of 
the reviews to train a classifier. Finally, we identified 8.1% 
of the total number of reviews as uninformative. When it 
came to the performance of the Naive Bayes classifier used 
for the automatic separation of these reviews in Step 2, we 

achieved an F1 score (the harmonic mean of precision and 
recall [48]) of 0.82. This score was calculated as the aver-
age of ten tenfold cross-validation runs. We created recom-
mendations using Radiation and ana- lyzed 115 randomly 
selected apps in detail. We then used these recommendations 
as well as evaluated Radiation against developers’ judgment 
(RQ1) and users’ experi- ence (RQ2) for 25 apps. When we 
performed internal and external validation of our method.

6.1 � Results of internal validation of solution 
approach

Table 2 presents the results of RQ1 and RQ2 for 25 apps 
that were cross-validated and evaluated by developers. 

Table 2   Evaluating results by comparing Radiation recommendations with (i) retrospective analysis of actual deletions and (ii) developers’ per-
ception

One user review might be relevant to multiple elements
FP (False-Positive) Recommended as deletion but was not, FN (False-Negative) Recommended not a deletion but it is, TP (True-Positive) 
Recom- mended as deletion and it is, TN (True-Negative) Recommended as not a deletion and is not

App’s package name # of UI element 
across releases

# of reviews Actual deletions (RQ1) Developers’ perception (RQ2)

# of FP #
of FN

#
of TP

#F1
ofscore TN

#
of FP

#
of FN

#
of TP

#F1
ofscore TN

(A1) app.openconnect 235 232 0 2 1 2320.5 0 0 1 2341
(A2) com.google.android.stardroid 1603 4480 0 2 18 15,830.95 1 2 18 1582 0.92
(A3) com.moez.QKSMS 3009 2751 0 11 5 29,930.48 2 4 5 2998 0.62
(A4) com.vuze.android.remote 774 494 0 2 8 7640.89 1 0 7 7660.93
(A5) net.nurik.roman.muzei 1088 4481 0 15 36 10,370.83 1 0 35 1052 0.99
(A6) org.androisoft.app.permision 189 397 0 1 2 1860.8 0 1 2 1860.8
(A7) org.connectbot 471 4493 0 6 8 4570.73 0 0 8 4631
(A8) org.dmfs.tasks 862 207 0 7 7 8480.67 0 4 7 8510.78
(A9)
org.evilsoft.pathfnder.rference

652 1520 0 0 2 6501 1 0 1 6500.67

(A10) org.isoron.uhabits 895 1976 3 31 101 7600.86 4 13 100 7780.92
(A11) com.spazedog.mounts2sd 394 497 3 7 60 3240.92 2 0 61 3310.98
(A12) org.telegram.messenger 840 73,682 2 30 26 7820.62 3 3 25 8090.89
(A13)
in.blogspot.anselbros.torchie

134 473 8 12 72 420.88 5 1 75 530.96

(A14) com.emaguy.cleanstatusbar 86 392 1 7 8 700.67 0 0 9 771
(A15) com.boardgamegeek 1317 506 33 224 191 66,820.6 3 25 221 6881 0.94
(A16) com.gelakinetic.mtgfam 4510 2366 1 3 4 45,020.67 0 1 5 4504 0.91
(A17) org.addhen.smssync 235 41 6 0 22 2070.88 7 2 21 2050.82
(A18) com.amaze.filemanager 620 1241 7 12 25 5760.72 0 1 33 5860.98
(A19) com.gh4a 344 301 4 8 14 3180.7 1 1 17 3250.94
(A20) org.kontalk 54 39 2 2 7 430.78 2 1 7 440.82
(A21) org.transdroid.lite 942 538 2 3 7 9300.74 0 0 9 9331
(A22) de.qspool.clementineremote 444 355 4 9 13 4180.67 2 3 15 4240.86
(A23)
com.daiancorp.mh4udtabase

3101 979 29 51 73 29,480.65 12 5 90 2994 0.91

(A24) org.servalproject 547 252 4 14 10 5190.53 2 3 15 5270.85
(A25) org.wikipedia 17,830 15,531 23 0 94 17,713 0.89 1 0 116 17,713 0.99
Average 1647.04 4728.96 5.28 18.36 32.56 1823.36 0.74 2 2.8 36 1838.840.9
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Figure 4 demonstrates the goodness of the topic modeling 
of app reviews (Step 5) as part of RQ2).

We conducted cross-validation on 115 apps, 3,364 
releases, and a total of 190,062 reviews. 8.1% of this total 
number of reviews were uninformative. The results indicate 
high precision (0.83) and recall of 0.48 using tenfold cross-
validation. The precision is considerably higher than recall 
because in Radiation, the number of false positives (FP) is 
much lower than false negatives (FN). In other words, in 
mobile apps, there have been deleted features, but Radia-
tion cannot recommend them for deletion (FN). This results 
in a low recall. Radiation cannot (and is not designed to) 
capture all deletions that happen within a mobile app. How-
ever, as the first study looked into functionality deletion, we 
could predict with 83% precision. For several of these “false 
negatives”, we did not find reviews related to an element 
that has been deleted. Hence, we concluded that the fea-
ture would not be deleted, and there were other reasons than 
user reviews for deleting the UI element. Table 2 details the 
confusion matrix for the 25 apps that were also externally 
evaluated in RQ2. As the result, Radiation demonstrates 
83% precision in recommending deletions based on user 
reviews. The low recall indicates that not all deletions in a 
mobile app are motivated by user reviews, which Radiation 
is not designed to capture.

6.2 � Results of external evaluation with software 
developers (RQ2)

37 developers evaluated Radiation in two ways. First, by 
evaluating the quality of the topics created from reviews 
and about each UI as a result of Steps 4 and 5. Second, by 
assessing whether, as professional software developers, they 
would make the same decisions as Radiation regarding the 
deletion functionality based on user reviews.

Evaluation of cluster topics about each UI element We 
followed the approach of Palomba et al. [37]. to cluster user 
reviews by their connection to UI elements. Hence, in Radia-
tion, we first connected reviews to the UI elements (Step 4) 
and then clustered the reviews around each UI element using 
HDP topic modeling (Step 5) [37]. Topic modeling was used 
as many users stated similar concerns in reviews, and each 
review might have contained multiple concerns about func-
tionality. We presented the number of UI elements along 

with the number of clusters and number of user reviews in 
Table 2. To evaluate the usefulness of our topic model, we 
relied on the judgment of app developers. After asking them 
to evaluate the topics using topic intrusion, we calculated 
TLO as suggested by Chang et al. [40]. We present the dis-
tribution of TLO in the boxplot chart of Fig. 4. TLO = 0 
shows the highest conformance between developers and the 
topic modeling technique. Comparison of the distribution of 
our HDP clustering showed a slight disagreement between 
developers and machine learning results as the median is 
around − 3. However, this is still considered as a relatively 
low disagreement compared to former benchmarks [40, 41].

Evaluating Radiation recommendations: We asked 
developers to evaluate whether a cluster of reviews for a UI 
element was “motivating a functionality deletion” or”not 
motivating a functionality deletion” (e.g., implying a bug 
fix). We compared Radiation results to developer percep-
tions for 25 randomly selected apps, resulting in an average 
F-Score of 90% for Radiation. See Table 2 for the number of 
true and false recommendations for these apps.

Upon examining the results presented in Table 2, it is 
apparent that there are fewer false positives (FP) and false 
negatives (FN) when comparing our recommendations with 
developers’ perceptions as opposed to retrospective evalu-
ation. This difference can be attributed to the fact that rec-
ommending deletions involves multiple factors beyond user 
reviews, which Radiation does not take into account. There-
fore, when asking developers to make a decision based on 
user reviews, Radiation demonstrates better performance. 
Hence, Radiation achieves an average F-score of 0.9 when 
its recommendations are compared with the developers’ 
decisions based on the respective clustered reviews.

6.3 � Results of external validation of radiation 
with users

We aim to assess the degree to which recommendations gen-
erated by Radiation align or conflict with user experience 
toward specific app functionalities. To answer this question, 
we performed a user study. In this user study, we invited 
the participants to our lab. The primary focus is to collect 
empirical data on user interactions and feedback regarding 
specific features, with particular attention to user experience 
and the potential impact of feature deletions. 42 participants 
took part, all aged between 18 and 32 years old. Thirty-
one of them had graduated with a BSc or BA degree, while 
the remaining participants were pursuing their studies as 
undergraduate students. These participants have familiarized 
themselves with the app within the lab setting and at least 
for 20 min. Among these, 17 (40.4%) required more than 
20 min to familiarize themselves with their assigned apps. 
Answering the questions was mandatory, and hence, the data 
was consistently available.

-12 -10
TLO

-8 -6 -4 -2 0

Fig. 4   Topic Log Odds (TLO) shows the performance of Radiation’s 
clustering against developers’ perception
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Our objective was to evaluate user sentiment towards the 
functionalities recom- mended for deletion by Radiation. To 
achieve this, we surveyed 42 users to evaluate their percep-
tion of specific mobile app functionalities and understand 
their sentiments if those functionalities were to be removed 
(refer to Fig. 3). We asked each partic- ipant two questions 
regarding the features they were evaluating. Figure 5 dis-
plays a violin plot of the results. Table 3 provides a sum-
mary of the results obtained for the first survey question in 
RQ2, presented for each of the 25 apps under evaluation. 
Each column represents the average responses from three 
survey participants. It’s impor- tant to note that the number 
of samples across TP (true positive), TN (true negative), 
and other categories varied. For instance, the app (A1) app.
openconnect had only one UI functionality correctly recom-
mended for deletion (TP) in RQ2, as detailed in Table 2. We 
also asked users how they would feel if the functionality 
were to be removed (Q2). We observed a high correlation 
of −0.86 between the responses to Q1 and Q2 in our survey. 
That being said, we found that the more negative the users’ 
feelings towards the feature, the more positive they were 
about its removal.

When asked about the overall satisfaction for each app 
they were assigned, the satisfaction was rather low (with 
an average of 2.55 stars), with only 8.5% of the users 
ranking an app with five stars. The distribution of the 
stars is shown in Fig. 5). We also asked users to evalu-
ate each feature based on the Kano schema. In the Kano 
schema, we asked users to evaluate each feature based 
on four categories: essen- tial, worthwhile, uninterest-
ing, or unwise. Essential features are considered neces-
sary and form the baseline expectations, while worth-
while features add value and satisfac- tion. Uninteresting 
features don’t significantly impact user satisfaction, and 
unwise features, if included, might even decrease satis-
faction. This categorization allows us to understand how 
users perceive and prioritize different features, providing 

valuable insights into what aspects are essential or desir-
able for them [44, 45]. Figure 6 shows the distribution of 
importance among the surveyed functionalities where the 
wider sections of the violin indicate higher density, while 

Fig. 5   (a) Overall app rating in 
the evaluated set, and (b) the 
Users’ sentiment when evaluat-
ing 650 features (in blue) with 
users through RQ2 survey

Table 3   Evaluating user sentiments toward the features Radiation rec-
ommends for deletion through a survey (RQ2)

Q1: Average Sentiment toward functionalities that are

App ID Incorrect deletion
recom. (FP)

Correct deletion
recom. (TP)

other (FN
or TN)

(A1) N/A −1.3 2.0
(A2) −0.13 −1.07 0.86
(A3) −0.7 −1.16 1.0
(A4) −0.55 −0.66 −0.66
(A5) 1.07 −1.0 0.08
(A6) N/A −0.86 −1.13
(A7) N/A −0.93 0.0
(A8) N/A −0.06 0.13
(A9) −0.66 −1.2 0.91
(A10) 1.27 −0.91 1.13
(A11) −0.55 −1.0 1.05
(A12) −0.45 −1.8 −0.79
(A13) −0.56 −1.0 0.51
(A14) N/A −2.0 0.06
(A15) −0.88 −1.4 0.79
(A16) N/A −1.66 0.81
(A17) −0.77 −1.0 0.73
(A18) N/A −1.66 0.21
(A19) 0.97 −1.08 0.91
(A20) 0 −1.16 1.21
(A21) N/A −1.13 0.05
(A22) −1.03 −1.5 −0.31
(A23) −0.89 −1.33 −1.09
(A24) − 0.09 −1.55 −0.45
(A25) −1.02 −1.02 0.18
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narrower sections indicate lower density. The majority of 
features were perceived as essential or worthwhile, with 
only a smaller subset and a portion of participants voting 
for certain features as unwise.

When we asked users about the functionalities, we 
observed that the average sen- timent of the participants 
towards the features that were correctly recommended for 
deletion by Radiation (TP recommendations) was consist-
ently negative. In other words, the users’ negative experi-
ences were aligned with the recommendations. However, 
for deletions that were not actually performed (FP), we 
observed mixed sentiments. Nevertheless, the majority 
of the apps (13 out of 16) received an overall average of 
negative sentiments for wrong predictions as well. Thus, 
it is essential to note that a negative experience might not 
necessarily imply feature deletion but could call for a bug 
fix or a change in the software.

This finding aligns with our analysis of RQ2, where 
external developers favored Radiation recommendations, 
while historical data showed that the decisions of the 
actual app developers (RQ1) were different. This differ-
ence could be due to the exclusion of particular ecosystem 
or business factors in Radiation modeling. We obserevd 
that The users consistently disliked the functionalities 
that Radiation correctly recommended for deletion and, 
in general, are not against removing them.

All the features that had more than 10% unwise votes 
based on the Kano schema have also been positively per-
ceived to be deleted (Fig. 5). We also observed that the 
stronger the users voted for the importance of the feature 
(i.e., essential and worthwhile features), the more they 
feel disappointed if the feature is deleted (correlation of 
0.76), which is intuitive.

7 � Reflection: status que and possibility 
of incorporating deletions in the release 
decisions

The release planning problem has traditionally been con-
cerned with balancing con- flicting priorities, such as 
resource constraints, time limitations, and stakeholder 
expectations. This intricate challenge involves making deci-
sions about the selection and scheduling of features for inclu-
sion in software releases [49, 50]. The primary objective is 
to optimize the allocation of resources and meet strategic 
goals. In particular, the’what-to-release’ problem focuses on 
identifying features and bug reports to be added to upcoming 
releases to maximize the value within given constraints, both 
for each release and overall for the product. The next release 
problem is widely studied and, as such, revolves around the 
challenge of adding features and/or identifying enhance-
ments to meet user needs and expectations in the upcoming 
version of the product [51–53]. As the software develop-
ment landscape continues to evolve, the release planning 
problem remains a critical aspect of project management. In 
particular, our survey focused on understanding the aspect of 
deletion decisions to address the planning issues and further 
investigate the possibility of extending the release planning 
definition to further include feature deletions.

Following the design science research, it is important 
to ground and structure the lessons learned for improving 
the decisions in practice [54]. As a result, we designed a 
survey to understand the possibility and practice of release 
planning in consideration of feature deletion, and based on 
the feedback received from the users, we performed a sur-
vey with software developers to understand their percep-
tions. We followed the survey design principles as outlined 
by Kitchenham and Pfleeger [27]. At first, we outlined 
three main objectives to guide our survey:

Obj1: Understanding frequency and cause of feature 
deletions.

Obj2: Understanding feature evaluation process and the 
role of users and their review in deletions.

Obj3: Understanding the release decisions and prac-
tices for excluding or deleting a feature.

Based on these objectives, we then move forward to 
designing the questionnaire and running the survey.

We took several steps to design the survey in a manner 
that complements the information gathered in previous 
works [7, 11].

7.1 � Protocols

Initially, we initiated a brainstorming session to formulate 
questions addressing each objective, meticulously filtering 

Fig. 6   Violin plot of feature evaluation with users based on the Kano 
model. The “violin” shape surrounding the boxplot displays the prob-
ability density of the data at different values
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out redundancies. Subsequently, we compiled a final- ized 
list of 20 unique questions aligned with our objectives. To 
ensure the novelty of our questions and their absence in 
the current state of the art, we conducted a comprehen-
sive literature review. We then curated and categorized 
the questions for each objective. The survey includes five 
demographic questions, one yes/no question, eight Lik-
ert-scale questions, and six open-ended questions. Our 
demographic questions address participants’ software and 
mobile app development experience, role, size of team, 
and self-perceived familiarity with the process of releas-
ing mobile apps. We designed the survey instrument using 
the Qualtrics platform. We ensured participant anonymity, 
with no collection of identifying information.

We invited five students with existing experience in app 
development for a pilot study to assess survey clarity, reli-
ability, and validity. We then solicited feedback from these 
participants and reworded a few questions for further clarity. 
These responses were discarded and not used in the final 
analysis. We then sent the survey to our connections in the 
industry and advertised it on social media platforms (Twit-
ter and LinkedIn). We received 242 clicks on the survey. 
Having the responses, we first checked for the completeness 
of responses and excluded the ones that were incomplete. 
We then performed descriptive statistics and visualization 
to report quantitative data and thematic analysis to analyze 
qualitative data.

We utilized our social media channels to disseminate the 
survey and extend invitations to developers for our study. 
We garnered 242 clicks, with 163 participants initiating the 
survey. Out of these, 141 successfully completed the survey 
and submitted their responses. The survey was specifically 
promoted for product managers and decision-makers within 
software teams. We used statistical and analytical techniques 
to analyze the numerical and categorical data. For the open 
text, the process was semi-manual, where two independ-
ent annotators performed sorting and aggregation [55]. In 
this process, one author was the moderator whenever any 
disagreement appeared. We also gathered the demographic 
information of our survey participants to contextualize the 
results. In our analysis, whenever appropriate, we compared 
the different demographic groups and reported the results.

7.2 � Results: developers’ perception 
and implications of deletions in release 
planning

In collecting demographic data through questions Q1 to 
Q5 (refer to Table 4), these developers, on average, had 
8.6 years of experience in software development (ranging 
from a minimum of 3 years to a maximum of 24 years) and 
were involved in developing an average of 2.5 apps (ranging 
from a minimum of one to a maximum of nine apps). We 

categorized team sizes into four groups: teams with fewer 
than five developers, teams with five to 20 developers, teams 
with 20–50 developers, and teams with more than 50 devel-
opers. 66 participants reported working in teams of 20- 50 
developers, while the remaining participants (53.2%) were 
part of smaller teams consisting of 5–20 developers.

These participants were product managers (41 partici-
pants), technical leads (36 participants), senior develop-
ers (22 participants), developers (21 participants), project 
managers (10 participants), and product owners (11 partici-
pants). When asked about the extent of their participation in 
release decisions, 39 participants were highly involved, 81 
participants (57.4%) stated their moderate involvement, and 
21 participants stated they were somewhat involved.

We conducted a survey to understand whether deletions 
are being planned in practice and how the decision is being 
made. The survey questions are detailed in Table 4. 141 
developers fully answered the survey, which we character-
ized using the demographic questions in Sect. 6.3.

When asked about the importance of regularly evaluat-
ing and updating mobile app features, 87.9% of participants 
considered the matter important or very important. Notably, 
developers in larger teams (with more than 20 members) 
expressed a stronger emphasis on planning in this regard. 
Among our participants, 58.9% stated that they sometimes 
or somewhat frequently remove features from mobile apps, 
while 3.5% have never removed any features. In this deci-
sion-making process, 87.2% of participants stated that they 
sometimes (77 participants) or more frequently consider user 
feedback when deciding to exclude a functionality, while 
only a negligible percentage, 1.4% (two participants), have 
never made such a decision based on user opinions.

All participants mentioned that they occasionally or more 
often monitor user reviews after a feature deletion, with 
the majority (78.7%) doing so often (61 partici- pants) or 
always (50 participants). This monitoring is more frequent 
and statistically more significant among teams of larger sizes 
(p − value = 0.008). A majority of partic- ipants (53.2%) 
stated that such deletions always contribute to enhancing the 
overall user experience. However, when compared using the 
Mann–Whitney test, this enhance- ment was not significant 
for participants involved in developing a larger number of 
apps (p − value = 0.012). These results are highlighted and 
summarized in Fig. 7. When it comes to release decisions, 
61% of the participants (81 participants) use measurements 
and analytics to inform their choices. They most frequently 
rely on metrics such as click rates, user metrics, user sub-
scriptions, number of new users, and user reviews to guide 
these decisions. A word cloud of the responses is provided 
in Fig. 8. The majority of these participants often plan to 
release their apps (57.4%). However, this number increases 
to 65.2% when it comes to planning in advance for excluding 
a feature. We summarized these results in Fig. 8. Overall, 
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developers tend to plan more diligently when deciding to 
delete a feature in a release compared to planning for upcom-
ing releases in general.

In the decision-making process for feature removal, vari-
ous stakeholders play distinct roles (Q17). The participants 
most frequently mentioned quality assurance members and 
testers (54.6%). This was followed by references to team 
leads (47.5%), product managers (45.3%), and customer 
relations team/manager (39%). We also asked the develop-
ers about the factors impacting their decision for feature 
removal in app development. The results, as summarized 
in Table 5, reveal that maintain- ability concerns, includ-
ing bugs, ranked highest in frequency at 64.5%, followed 
by user feedback (positive or negative) at 61%. Usability 
challenges were noted by 52.5% of participants, while 

performance concerns accounted for 36.2% of responses. 
Other factors influencing feature deletion decisions included 
adoption rates among users (26.2%), compatibility issues 
(22%), market trends, strategic decisions, product road map 
considerations (11.3%), resource constraints (4.9%), regula-
tory compliance (2.8%), and technical debt (1.4%). Overall, 
User requirements stated in the form of user feedback (61%), 
usability concerns (52.5%), and adoption rates (26.2%) are 
among the most impactful criteria for planning deletions.

8 � Discussion on threats to validity

Throughout the different steps of the process, there are vari-
ous threats to the validity of our achieved results.

Table 4   Survey with developers to understand the decision process for feature deletion

ID Question Response type

Demographics
Q1 How many years of experience do you have as a software developer? Numerical
Q2 How many mobile apps have you actively contributed to in the development

process?
Numerical

Q3 What is the size of your current team? Categorical
Q4 What is your current position in the team? Short text
Q5 To what extent have you been involved in the decision-making process for

removing features or functionalities?
Likert scale

Evaluating App Features
Q6 How important is it to regularly evaluate and update software features and

functionality?
Likert scale

Q7 How do you typically assess the impact of a deprecated feature on your exist-
ing projects?

Open text

Q8 How frequently does removing a functionality change the UI elements in apps? Likert scale
Q9 How frequently are user feedback and opinions considered when deleting a

functionality?
Likert scale

Q10 How often do functionality deletions contribute to improving the overall user
experience?

Likert scale

Q11 How often do you monitor user reviews and feedback after a functionality
deletion to assess the impact on user experience?

Likert scale

Q12 What measures do you take to minimize negative impacts on users when
functionality is deleted?

Open text

Release Decisions
Q13 Do you conduct any specific measurements to support your decision to release

a product update?
Yes/No

Q14 If yes, what specific measurements do you conduct? Open text
Q15 How often do you plan for your app releases? Likert scale
Q16 How often do you plan for feature deletions? Likert scale
Q17 Who are typically involved in making decisions for feature removal? Open text
Q18 What factors typically influence your decision-making process when planning

for functionality deletions?
Open text

Q19 How do you balance user feedback against other factors, such as technical
considerations and business requirements?

Open text

Q20 How important is it to communicate the rationales behind functionality dele-
tions, particularly in response to user reviews?

Likert scale



Requirements Engineering	

8.1 � Construct validity—are we measuring the right 
things?

We pre-processed all review texts and used machine learn-
ing classification to ensure that the analysis only considers 
informative user reviews. The Naive Bayes classifi- cation 
resulted in an F1 score of 0.82. While this is a very good 
result, there is still a possibility that a review has been 
classified incorrectly. There is a risk related to linking 
reviews to the proper UI elements. Two of the authors 
looked into the results of this linking (Step 4 of Radiation) 
for 600 reviews across six apps and found 71 mismatched 
or unrelated reviews. The influence of this noise should 
be considered while interpreting the results of this study. 
Radiation uses user reviews to recom- mend UI functional-
ity deletions based on various factors. We analyzed user 
reviews and clustered them according to relevant UI ele-
ments, which enables Radiation to focus solely on user 
feedback and visible app functionality. Upon retrospec-
tive anal- ysis, we found that Radiation has a low recall 
due to a considerable proportion of false negatives. These 

false negatives indicate deletions that were not motivated 
by user reviews and therefore fell outside the scope of 
Radiation recommendations. To further evaluate the effec-
tiveness of our approach, we provided software develop-
ers with reviews for each UI element and asked them to 
decide whether they motivated functionality deletion or 
not. This resulted in better recall compared to our previous 
cross-validation results. We also evaluated user sentiment 
toward these functionalities and found that they consist-
ently experienced negative emotions when using the Radi-
ation recommended for deletion. We further discovered 
that the more negative the user’s experience, the more 
likely they were to be neutral or positive about removing 
that feature from the app. Additionally, we used card sort-
ing and thematic analysis for the open-ended questions in 
our survey related to the survey for release decisions. The 
results somewhat depend on the annotators’ perception and 
understanding of the responses. To mitigate this, annota-
tors worked independently, adhering to a strict empirical 
protocol. Any disagreements were discussed and mediated 
to ensure consistency.

Fig. 7   Perception of develop-
ers on release management in 
consideration of function- ality 
deletions

ID Question Distribution
High vs low
# of apps

Small vs
large team

Q6
How important is it to regularly 
evaluating and updating 
software features?

N
ot

at
al

l(
3)

Lo
w

im
po

rt
an

ce
(7

)

N
eu

tr
al

(7
)

Im
po

rt
an

t(
51

)

V
er

y
im

po
rt

an
t(

73
)

0.281 0.031*

Q8
How frequently removing a 
functionality changes the UI 
elements in apps?

N
ev

er
(5

)

O
cc

as
io

na
lly

(1
8)

S
om

et
im

es
(8

3)

O
fte

n
(2

9)

A
lw

ay
s

(6
)

0.102 0.407

Q9

How frequently are user 
feedback and opinions 
considered when deleting a 
functionality? N

ev
er

(2
)

O
cc

as
io

na
lly

(1
6)

S
om

et
im

es
(7

7)

O
fte

n
(3

5)

A
lw

ay
s

(1
1)

0.122 0.084

Q10

How often does functionality 
deletions contribute to 
improving the overall user 
experience? N

ev
er

(0
)

O
cc

as
io

na
lly

(5
)

S
om

et
im

es
(1

9)

O
fte

n
(4

2)

A
lw

ay
s

(7
5)

0.012* 0.206

Q11

How often do you monitor user 
reviews and feedback after a 
functionality deletion to assess 
the impact on user experience? N

ev
er

(0
)

O
cc

as
io

na
lly

(3
)

S
om

et
im

es
(2

7)

O
fte

n
(6

1)

A
lw

ay
s

(5
0)

0.073 0.008*



	 Requirements Engineering

8.2 � Conclusion validity‑ are we drawing the right 
conclusion about treatment and outcome 
relation?

In comparison to studies in the context of mobile apps 
(Table 6), our surveys can be considered highly partici-
pated. However, we used non-compensated and convenience 

sampling to attract participants, which might bias the con-
clusions that are drawn [56]. It is essential to note this type 
of evaluation is subjective. However, in RQ1, the results of 
the retrospective analysis of the data are aligned with our 
survey results with developers (external validity) and the 
users’ perception (RQ2). In total, we think that the evalua-
tion gained with 37 developers and 42 users is sufficient to 
confirm our findings.

When connecting a review to a UI element in Radiation, 
there is a chance that we relate a review to an element incor-
rectly (false positives). This may happen because.

•	 We may miss some UI elements, as they can be instanti-
ated in the program code or hard coded,

•	 Some UI elements are not visible to the end user, or.
•	 Text of some UI elements are common English words or 

can have similar labels in different app views.

To address the first two items above, we used Back-
stage [26] on a few of the apps, and we found that while 
the risk exists, it is relatively small. Since Backstage works 
on compiled application binaries we were limited to using 
it in Radiation. For the third item above, we applied pre-
processing as suggested in CRISTAL [18] and adopted their 
list of stop words. Further, Radiation is not intended to find 

Fig. 8   The current practice of 
considering functionality dele-
tion in release practices

Table 5   Factors influencing feature removal decisions in app devel-
opment

The participants were asked to name all factors in an open-text format

Factors impacting feature deletion Frequency Participants %

Maintainability concerns including bugs 91 64.5
User feedback (positive or negative) 86 61
Usability challenges 74 52.5
Performance concerns 51 36.2
Adoption rates among users 37 26.2
Compatibility issues 31 22
Market trends, strategic decisions & 

product roadmap
16 11.3

Resource constraints 7 4.9
Regulatory compliance 4 2.8
Technical debt 2 1.4
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all the deleted features (recall) exhaustively. The impact of 
potentially missed elements is insignificant.

We validated our approach in two stages: first, by looking 
back at past decisions made by app developers and com-
paring them with recommendations from Radiation. Then, 
in the second stage, we shifted our focus to see if human 
experts, using the same data, would come to similar conclu-
sions as Radiation. In this situation, we sought the advice of 
experienced software developers who were not involved in 
creating the apps we were studying. This helped us under-
stand how meaningful analogical reasoning is in this context. 
Analogical reasoning is identifying similarities between two 
different concepts or situations and using this comparison 
to gain insights or solve problems. In our study, we refer to 
analogical reasoning as the method by which users draw 
par- allels between familiar elements and new functionali-
ties to make decisions or provide feedback. This concept is 
closely related to case-based reasoning (CBR), where users 
apply knowledge from previous cases to new situations. 
Both analogical reasoning and CBR involve leveraging past 
experiences to evaluate and understand new information. By 
defining and exploring analogical reasoning, we can better 
interpret user feedback and improve the design and function-
ality of user interface elements. This connection allows us to 
develop more intuitive and user-friendly interfaces by under-
standing how users transfer knowledge from known contexts 
to new ones [57]. We made this choice for two main reasons: 
firstly, because we didn’t receive responses from the original 
developers, and secondly, to add depth to our evaluation of 
the research question. It’s important for readers to keep in 
mind this limitation when they’re interpreting the results.

Another potential threat arises from the level of famili-
arity users have with the mobile apps during evaluation in 
RQ2. All participants in the study interacted with the appli-
cation for a minimum of 20 min in controlled laboratory 
conditions. This may raise concerns regarding the conclu-
sion’s validity. However, we argue that the con- trolled set-
ting in the laboratory and the dedicated time allotted for 
app usage mitigate the typical randomness inherent in sur-
veys, instilling a higher degree of confidence in the results. 
Without this designated time in the lab, there is no guar-
antee that par- ticipants have actually used the app or are 
up to date with the recent functionality, potentially leading 
to random responses. Conversely, obtaining contact infor-
mation and accessing individuals who have independently 
used these applications, especially at scale, is not feasible. 
Thus, we conducted the lab study to ensure controlled usage 
conditions.

8.3 � Internal validity—can we be sure 
that the treatment indeed caused the outcome?

The selection of attributes used in Radiation to decide if a UI 
functionality should be deleted is another threat to validity. 
Our survey with users was aligned with the findings in the 
literature [7] and showed that users and their feedback are 
important information in the deletion process. However, it 
is not the only decisive factor for excluding a functionality 
from apps. We selected attributes based on related studies 
(Table 1). There are other attributes related to competitors, 
performance, or mainte- nance considerations that are rel-
evant for the decision-making but could not be taken into 

Table 6   Context and evaluation 
of related studies

Method Context Evaluation

ARdoc[33] Information giving/seeking, feature
request, problem discovery, others

Evaluating three apps by two developers

AR-Miner
[31]

Informative or non-informative reviews Manual inspection by authors, compari-
son between techniques

ChangeAdvi
[37]

Localizing change request by linking
reviews to the source code

Evaluated results with 12 developers

CLAP [29] New feature request, bug report Retrospective analysis of 463 reviews and
interview with three developers

CRISTAL
[18]

Tracing user reviews to the developers
changes

Manual evaluation by authors

MARA [67] Feature request Comparing different techniques
PAID [68] Issues (bugs) Retrospective analysis of 18 apps
Panichella
et al. [20]

Information giving/seeking, feature
request, problem discovery, others

Comparison between different methods

SURF
[14, 17]

Information giving/seeking, feature
request, problem discovery, others

23 developers analyzed SURF output for
2622 reviews

SUR-Miner
[30]

Aspect evaluation, praise, function
request, bug report, others

Comparing different techniques, evalua-
tion with 32 developers

URR [21] Compatibility, usage, resources, pric-
ing, protection, complaint

Qualitative evaluation by a student and
a developer
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account for our study. Following the results of former studies 
on mobile apps [18], we assumed that users are reviewing 
just the functionality that is visible to them (and not the 
background code). This might not be true for all the users, 
reviews, and sentiments. However, we expect a low number 
of such cases.

8.4 � External validity—can the results be 
generalized beyond the scope of this study?

Our retrospective analysis was performed on open-source 
mobile apps. The number of apps, reviews, and commits 
analyzed is considered high, indicating that results are sig-
nificant, at least for open-source mobile apps. While select-
ing the apps for this study, we did not consider their status 
(for example, the number of downloads), which may pose 
a risk of bias in the findings. The results may vary between 
apps with regard to their status on the app store. Also, we 
have not discussed apps outside Google Play, such as iTunes. 
Hence, the results might not be representative of all apps. 
However, the choice of sample size and the platform is com-
parable with state-of-the-art studies [12].

When it comes to surveys with developers and user stud-
ies, our study draws con- clusions based on a survey, which 
can be inaccurate at times. Surveying software develop-
ers does not always provide a comprehensive perspective 
of real-world prac- tices [58]. We used surveys to trian-
gulate the results of our internal validation (RQ1) and to 
gain a deeper understanding of practices related to deletion 
decisions.

9 � Related work

In this study, we challenged Lehman’s law of growth by 
investigating functionality deletion as a specific activity 
in the development process. We focused on the mobile 
apps because the device resources are limited and the size 
of the release has been introduced as a decisive factor for 
release decisions [59]. Feature and functionality dele-
tion for software products in general have been discussed 
mostly on the model level, which triggered us to widely 
investigate on the nature and reasons for function- ality 
deletion in RQ1. Development activities in software engi-
neering involve adding, deleting, and modifying elements 
[60, 61]. However, discussions have primarily focused on 
adding and modifying features, with less attention given to 
deletion. Adding new functionality is a key consideration 
in release planning, and existing approaches often con-
centrate on this aspect [4, 5, 62], or they revolve around 
handling change requests [29, 63]. Commonly in litera-
ture, studies have used the term “code churn”, which rep- 
resents the total count of added or deleted lines of code. 

However, this metric does not differentiate between addi-
tions and deletions [64, 65]. Murphy-Hill et al. [66]. made 
an important distinction between adding and deleting fea-
tures, particularly in the context of bug fixes. They defined 
functionality deletion as the removal of a feature during a 
bug fix. Their findings indicate that 75% of participating 
developers remove functionality to address bugs.

Furthermore, the release planning of mobile apps and/
or the analysis of user reviews to support app evolution 
and maintenance have been studied by several research-
ers [12?]. In the following sections, we discuss the state 
of the art in these studies as they pertain to requirements 
engineering, specifically addressing RQ1 and RQ2. Our 
primary focus is to explore the potential and feasibility 
of recommending feature deletions rather than striving 
for perfect accuracy in these suggestions. There- fore, we 
rely exclusively on the best practices documented in the 
current literature without engaging in benchmarking or 
method comparisons. Additionally, we present a summary 
of related work on release planning, focusing on survey 
analysis in particular.

9.1 � User reviews to support apps’ evolution

Analyzing user reviews to support app evolution and main-
tenance has been explored by various researchers [12]. 
These studies primarily focus on differentiating user needs, 
categorized as either”feature requests” or”bug reports” 
[32]. Notably, Palomba et al.’s study [18] revealed that 
49% of informative reviews were considered for app evolu-
tion. In these investigations, user reviews serve as sources 
of change requests, employing various Natural Language 
Processing (NLP) techniques to offer prioriti- zation or 
classification schemes. The goal is to assist developers 
in deciding on the next best changes, whether by adding 
new functionality or addressing a bug. Table 6 provides 
an overview of the most relevant methods.

CLAP [29] adopted a mixed method, combining retro-
spective analysis of changes for 463 reviews with inter-
views of three app developers. PAID [68] conducted a 
com- prehensive retrospective evaluation by investigating 
18 apps for issue prioritization. In comparison, our study 
involved a more rigorous evaluation, with 37 developers 
assess- ing 36,039 reviews across 25 apps. We further 
compared these evaluations with the results obtained from 
Radiation.

While some studies compared different evaluation 
methods, this was not feasible for Radiation in general, as 
none of the existing techniques focused on functionality 
deletion. However, for selecting classifier and topic mod-
eling techniques, we made the comparisons, as discussed 
in Sect. 4.
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9.2 � Release planning and mobile apps

Release planning is a well-established practice in software 
requirements engineering [49, 69]. Numerous studies have 
explored various aspects of this critical phase, delving into 
prioritizing features, resource allocation, and decision-mak-
ing processes within release planning. Release planning is 
often being addressed as a search problem [70]. These inves-
tigations contribute valuable insights to enhance the effec-
tiveness and efficiency of software release planning strate-
gies. To gain a comprehensive under- standing of the overall 
state of release planning, we leveraged existing systematic 
literature reviews. Achimugu et al. [71]. identified 73 papers 
in the context of require- ment prioritization and planning in 
their systematic literature study, while Riegel and Doerr [72] 
analyzed 83 papers. Notably, these two studies had 15 papers 
in common, and we carefully reviewed them by inspecting 
the abstracts. However, none of these papers mentioned or 
considered feature deletions. Similarly, the studies gathered 
by Svahnberg et al. [62] also did not address the deletion of 
features.

Similarly, starting from the existing systematic litera-
ture review [12, 73, 74], numer- ous studies in the realm 
of mobile apps have addressed the planning and prioritiza-
tion of requirements for decisions regarding additions to the 
next release. However, none have delved into the discus-
sion of the deletion of app features. Our search within the 
recent body of literature has yielded no papers considering 
the deletion of mobile apps other than those from our own 
research, which we elaborate on in this study. How- ever, a 
number of studies have discussed the requirements prior-
itization along with the need for release planning [29, 59, 
75–77]. The current literature primarily addresses different 
user requests in app evolution, while our study focuses on a 
functionality deletion—and its triggers.

10 � Future work

Overall, the main goal of future research will be to better 
understand the deletion of functionality as part of software 
evolution, also beyond mobile apps. One key motivation for 
the paper comes from the observation that current release 
planning in general [5] and in particular for mobile apps [12, 
29] is exclusively focused on feature addition. Planning in 
consideration of both addition and deletion of functionality 
requires revisiting the planning objective(s). Clearly, dele-
tion consumes development effort as well. While we took the 
first step toward understanding functionality deletion, future 
work involves contextualizing the results for specific pro-
jects and development teams. Besides a more comprehen-
sive empirical evaluation in general, we also target trade-off 

analysis between measuring the evolving maintenance effort 
and functionality deletions.

In addition, we will work on improving the performance 
of our recommendations by updating the machine learning 
techniques and features and tuning the model (for instance, 
by more in-depth analysis of similarity). We relied on the 
highly per- formed methods discussed in the literature and 
did not re-evaluate the performance of the learners. We do 
not argue these techniques are the most optimal and highest- 
performing methods possible. Rather, as the first study on 
recommending feature deletion in app releases, we focused 
on exploring the possibility of deletion rec- ommendations, 
their usefulness, and the ease of explanation to the users and 
the developers.

As the first study on predicting deletions based on user 
reviews, our target was to examine if the deletion prediction 
is possible rather than to highly optimize the per- formance 
of the approach. This is an essential step before taking 
further steps to plan these deletions. Based on the current 
state-of-the-art results, we do not expect that a benchmark 
of different classifiers would significantly improve the per-
formance of our approach. The results of our survey with 
practitioners show a systematic approach toward planning 
deletions in mobile apps, combined with the measurement of 
a variety of factors (see Fig. 8 and Table 5). This discussion 
explores the possibility and poten- tial of planning for dele-
tions in the software development life cycle. Recognizing 
the importance of systematically considering the removal of 
features adds a new dimension to release planning, empha-
sizing a holistic approach that encompasses both additions 
and deletions to enhance overall product development and 
maintenance strategies.

11 � Conclusions

Lehman’s law on continuous growth of functionality does 
not universally apply. In the domain of mobile apps, devel-
opers frequently delete functionality—be it to fix bugs, 
maintain compatibility, or improve the user experience. We 
performed a study with app users to confirm the potential 
value of deletions also from their perspective. We suggested 
that the process of selecting the functionality to be deleted 
can be automated, as demonstrated by our Radiation rec-
ommendation system. Radiation analyses the UI elements 
of the app and the reviews and recommends if the UI ele-
ment and its functionality shall be deleted or not. We further 
conducted a study with users to understand their perception 
of the features recommended for deletion by our method. 
Additionally, our survey with developers revealed that they 
carefully plan when deciding to remove a feature, with user 
and usage data playing a crucial role in these decisions. This 
is the first study to investigate the prediction of functionality 
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deletion in software evolution. It opens the door towards a 
better understanding of software evolution, in particular in 
an important domain such as mobile app development. In the 
days of Lehman’s studies, features such as user experience, 
screen space, or energy consumption were not as crucial as 
they are today; it may be time to revisit and refine Lehman’s 
findings.

Data availability  The related artifacts of this paper are available at 
https://​github.​com/ maleknaz/Radiation. The data of mobile apps are 
subjected to Google Play copyright, and hence, we cannot openly 
provide access to them. Our dataset is hosted on GitHub to ensure 
maintainability and ease of updates while adhering to the legal terms 
appli- cable to data hosted on mobile app marketplaces. The data was 
collected exclusively for this study, with no commercial or proprietary 
use intended, and has been managed in accordance with the relevant 
terms and conditions. To request access to the dataset, please contact 
us directly. Each request will be evaluated individually to ensure full 
compliance with all legal requirements.

Code availability  We used three primary tools and their associated code 
in the RADIATION steps S1 to S7 [19, 26, 31], as referenced through-
out the paper. We foresee future research investing in the improved 
performance of these technologies.
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