
Vol.:(0123456789)

Requirements Engineering
https://doi.org/10.1007/s00766-024-00430-5

ORIGINAL ARTICLE

Recommending and release planning of user‑driven functionality
deletion for mobile apps

Maleknaz Nayebi1  · Konstantin Kuznetsov2 · Andreas Zeller3 · Guenther Ruhe4

Received: 17 December 2023 / Accepted: 30 August 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Evolving software with an increasing number of features poses challenges in terms of comprehensibility and usability.
Traditional software release planning has pre- dominantly focused on orchestrating the addition of features, contributing to
the growing complexity and maintenance demands of larger software systems. In mobile apps, an excess of functionality
can significantly impact usability, maintainability, and resource consumption, necessitating a nuanced understanding of the
applicability of the law of continuous growth to mobile apps. Previous work showed that the deletion of functionality is com-
mon and sometimes driven by user reviews. For most users, the removal of features is associated with negative sentiments,
prompts changes in usage patterns, and may even result in user churn. Motivated by these preliminary results, we propose
Radiation to input user reviews and recommend if any functionality should be deleted from an app’s User Interface (UI).
We evaluate Radiation using historical data and surveying developers’ opinions. From the analysis of 190,062 reviews from
115 randomly selected apps, we show that Radiation can recommend functionality deletion with an average F-Score of 74%
and if sufficiently many negative user reviews suggest so. We conducted a survey involving 141 software developers to gain
insights into the decision-making process and the level of planning for feature deletions. Our findings indicate that 77.3% of
the participants often or always plan for such deletions. This underscores the importance of incorporating feature deletion
planning into the overall release decision-making process.

Keywords  Mobile apps · Survey · App store mining · Software release planning · Empirical software engineering

1  Introduction

Lehman’s laws of software evolution [1] highlight the
importance of continuous adap- tation to prevent a decline
in user satisfaction over time. Lehman’s sixth law extends

this idea, stating that a program’s functional content must
continually grow to maintain user satisfaction through-
out its lifespan. While this holds true for service-oriented
platforms like operating systems, where maintaining func-
tionality is crucial for back- ward compatibility, it poses a
challenge for programs primarily used by individuals. In
such cases, a constant increase in features conflicts with
usability as more features compete for user attention. As
Buschmann [2] pointed out, there is a risk of trading func-
tional coverage for quality as the reliability, performance,
and maintainability are postponed to the time “when the
functionality is stabilized”. The concept of excessive soft-
ware development emerges as a recognized concern [3].
However, conventional release planning, often fixated on
the addition of features, may inadvertently compromise
quality in the pursuit of comprehensive functional cover-
age [4, 5]. Mobile apps, constrained by factors such as
small screens and limited resources, exemplify the deli-
cate balance between functionality and usability, where
adding functionality comes at a cost [6]. In navigating

 *	 Maleknaz Nayebi
	 mnayebi@yorku.ca

	 Konstantin Kuznetsov
	 konst.kuznetsov@icloud.com

	 Andreas Zeller
	 zeller@cispa.de

	 Guenther Ruhe
	 ruhe@ucalgary.ca

1	 EXINES Lab, York University, Toronto, Canada
2	 Saarland University, Saarbrücken, Germany
3	 CISPA Helmholtz Center for Information Security,

Saarbrücken, Germany
4	 SEDS Lab, University of Calgary, Calgary, Canada

http://orcid.org/0000-0002-2243-5721
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-024-00430-5&domain=pdf

	 Requirements Engineering

these constraints, developers may find it advantageous to
consider the removal of functionality that detrimentally
influences the user experience [7], challenging the conven-
tional notion of perpetual growth. This becomes especially
crucial when considering user-centric principles, where
ease of use and discoverability are key. Hence, developers
should be interested in removing functionality that nega-
tively impacts the user experience [7].

Developers of mobile apps face the challenge of optimiz-
ing the user experience by strategically deciding when to
add or remove features [8, 9]. While this removal can be
the result of different development activities (for example,
removing the code, com- menting out the code, or disabling
respective UI elements), from the user’s perspective, a func-
tionality is considered removed when it is no longer acces-
sible through the user interface [10, 11]. Empirical studies
on mobile app release engineering highlight developers’
increasing awareness of the impact of user feedback on code
changes. However, techniques for release planning have not
considered the removal of functionality.

There is an established body of knowledge on the release
engineering of mobile apps. Several techniques [12] have
been proposed for the release planning of mobile apps. Gen-
erally, these existing methods are focused on feedback devel-
opment planning based on user reviews. They first categorize
reviews into general categories of uninformative comments,
feature requests, bug reports, or praise. Then, they aim to
satisfy that user feedback in the upcoming release. The large
number of user reviews on mobile app stores, which can
range from zero to millions of reviews per release [13, 14]
prompted several studies to summarize and prioritize user
concerns for enhancing mobile apps [15–17].

Palomba et al. [18, 19]. confirmed empirically that mobile
app developers are changing their code based on the crowd-
sourced app reviews. Among these studies, multiple pro-
vided a variety of taxonomies for mobile app reviews [20,
21]. When analyzing user reviews, a few studies reported a
reason for negative reviews [22, 23]. Further, in our previ-
ous study [7], we analyzed commit messages of mobile apps
and established a taxonomy of “what”, “how” and “why”
deletions occur in code repositories. That is, these deletions
range from the code deleted from a repository with no speci-
fied reason (e.g., accidental removal) to the code updated
during refactoring to improve the code structure and UI ele-
ments removed due to undocumented reasons. In this con-
text, and with the emergence of data-driven decision-mak-
ing, machine learning has also impacted how organizations
approach release planning. As the software development
landscape continues to evolve, we can now extend release
decisions to encompass a broader domain and feature dele-
tions by leveraging historical data and predictive analytics.

This paper is an extension of the study published and
awarded in a conference [11] and was invited for this journal

extension. In this version, while summarizing some of the
findings in the first research question, we further:

•	 Enhance the motivation for our research by presenting a
thorough literature review on feature deletion. Integrate
our user study findings into the background section,

•	 Provide extended information on the user study (RQ2),
•	 Provide a survey with developers on the possibility and

support of release decisions and documenting current
best practices.

In our paper, we follow a clear structure based on the
design science process [24, 25]. We start with problem con-
ceptualization, outlining the problem we’re addressing and
connecting the evidence from theory and practice. Then, we
move on to designing solutions that we believe can recom-
mend functionality deletion by offering Radiation. Finally,
we validate the empirical solution we offered following the
design science process. We also reflected upon the problem
as an important element for this knowledge transmission by
surveying the possibility and importance of including feature
deletions in the release planning. This structured approach
helps us ensure that our work is thorough and practical, lead-
ing to meaningful insights and solutions.

In what follows, in Sect. 2, we explain some background
knowledge needed to make this paper self-contained and
motivate the added research question to this study. We then
move to problem conceptualization in Sect. 3. We present
our solution design in Sect. 4 and discuss protocols to vali-
date it from multiple aspects in Sect. 5. We then present
the results of this validation in Sect. 6. We then present the
results of a survey with developers to discuss the current sta-
tus quo for considering functionality deletions in the release
decisions 7 and move to present the threats to the validity
of our study in Sect. 8. We then present the related work in
Sect. 9. We wrap the paper by discussing the future work
(Sect. 10) and the conclusions (Sect. 11).

2 � Background: software functionality
deletions

In a mining study in 2018, we took a step to look into
the code changes and investigate the evolution of open-
source Android mobile apps [7]. We aimed to understand
the frequency and nature of size reduction in releases,
aiming to motivate the analysis of functionality deletion.
The study involved 1,519 apps and over 20,806 GitHub
releases. We compared the size of the code base (which
was highly correlated with the size of APK file, 0.86).
Our analysis showed that 98.8% of apps decreased their
size at least once, with 61.3% experiencing more than
a 10% reduction in size in at least one release. We also

Requirements Engineering	

analyzed the number of Android components (Activities,
Services, Con- tent Providers, Broadcast Receivers) as a
proxy for functionality deletion. Notably, 37.6% of apps
had decreased activities, and various changes in services,
providers, and receivers were observed across releases.
We took a step further and used the Backstage tool [26] to
examine the deletion of UI elements and associated API
calls in a subset of apps. The results indicated that 39.8%
of apps had UI elements removed in at least one release.
Our findings show that nearly one-third of the scrutinized
apps exhibit a discernible decline in size, activities, and UI
elements over successive releases. This finding reinforces
our initial hypothesis, suggesting that the conventional
notion of continuous growth in functionality, as posited by
Lehman’s laws, calls for an investigation into the dynamics
surrounding functionality deletion in software evolution.

We further reported on the in-depth analysis of 8,
000 commit messages from these apps to understand the
“What,” “Why”, and “How” of functionality deletions.
In terms of what functionality was deleted, we identified
a total of 22 categories of functionality deletion. These
categories were subsequently organized into a two-level
taxonomy featuring four high-level categories: “security
and privacy elements” (such as licensing or permissions),
“communication bridges”, “user interface elements”, and
“development artifacts”.

In exploring why functionality was deleted, we pre-
sented a taxonomy with 13 categories, grouped into
broader themes as “improving user experience”, “improv-
ing the quality of the existing code”, “Better use of
resources”, and “Better communication”. We also iden-
tified an “Unknown” category for commits lacking a
description of the reason for deletion.

The retrospective analysis revealed that 29.98% of func-
tionality deletions are related to UI elements, and 11.27%
of functionality deletions are intended to improve users’
experience. Conducting a thorough analysis of commit mes-
sages, we provided an in-depth exploration of functional-
ity deletion in mobile apps. Notably, 11.23% of commits
cite the enhancement of user experience as the rationale for
deletion. Addi- tionally, the author’s examination of commit
messages reveals that 14.63% of deletions are influenced by
negative user feedback. It is worth noting that, despite these
find- ings, there has been no empirical evaluation of users’
perceptions regarding feature removal.

Furthermore, the app developers emphasized that multi-
ple factors impact decisions about functionality deletions.
Complexity and required maintenance effort, extent of
usage, and user reviews with specific attributes were iden-
tified as the top three most important factors. Among the
characteristics highlighted were annoyed reviews, reviews
expressing similar concerns about the app, and reviews asso-
ciated with low ratings.

3 � Problem conceptualization: importance
of feature deletions to users

To conceptualize the problem, we conducted an in-depth
survey with users, which we detailed in the conference
version of this study, aiming to investigate the significance
of feature deletion for mobile app end-users and answer
the question:”How do mobile app end-users perceive the
deletion of software functionality?”. Following established
guidelines for survey research [27], our study comprised
four primary components. Our survey began by collect-
ing participants’ demographic information. Subsequently,
we explored participants’ awareness of missing features
or functionalities across different app releases. Follow-
ing this, we assessed whether the deletion of features
influences users’ overall satisfaction with the mobile app.
Lastly, we inquired about the extent and impact of func-
tionality deletion or limitation on participants’ app usage
patterns. The survey comprised 12 closed-ended questions,
with five initial questions dedicated to gathering demo-
graphic information. The remaining queries utilized a five-
point Likert scale to gauge participants’ opinions.

297 individuals completed our survey [11]. Among these
participants, 44.1% fell within the 28–40 age range, 27.3%
were between 18 and 28 years old, 15.5% were in the 40–64
age bracket, and 13.1% were above 64 years old. Regarding
app installation, a majority (51.9%) reported having per-
sonally installed 5–10 apps on their devices, while 26.9%
installed more than ten apps, and 21.2% installed fewer than
five apps. Regarding daily app usage, 53.9% used more than
ten apps daily, with only 1.3% using less than five apps daily
and 44.8% using 5–10 apps daily. Among the respondents,
80.1% had uninstalled some apps, but only 39% occasionally
or more frequently left reviews for mobile apps.

Figure 1 highlights the main findings of our survey.
According to our survey, a majority of users (55.2%)
reported sometimes noticing changes in the features of the
mobile apps they use. Regarding feature deletions, 34.4%
never or rarely noticed dele- tions, while 65.7% reported
sometimes or more frequent awareness of feature deletions.
These indicate the extent to which participating users realize
and notice the change and deletion in mobile app features.

As for the perception of users toward a feature deletion
in an app and its impact on their app usage, we found that
approximately 51.9% of participants expressed a somewhat
negative sentiment associated with feature deletions, with
41.1% stating negative and 7.75% stating very negative sen-
timents. Conversely, 13.5% had a positive perception, and
1.0% expressed very positive feelings about feature dele-
tions. Regarding the impact on app usage, 48.8% reported
no change, while 51.2% reported somewhat or extensive
changes in app usage following a feature deletion.

	 Requirements Engineering

When asking the extent to which deletions impact users’
decisions and provoke a reaction, only 17.17% of partic-
ipants often or sometimes left a review for a mobile app
after a feature was deleted. In response to losing access
to app functionality, 63.7% of participants sometimes or
more frequently sought alternative apps. Additionally, 31%
of participants reported at least once uninstalling an app
due to a feature deletion, while 41.4% never or rarely did
so, and 27.6% sometimes took this action. Deletion of app
functionality provokes negative feelings for the majority of
the participants (51.9% of the participants) and somewhat
changes their usage behavior (51.2% of the participants).
Functionality deletion caused 31.0% of the users often to
migrate to another app. 27.6% of the users uninstalled the
app following the deletion of a feature.

4 � Solution design

The results of our survey with end users motivated us to
further evaluate the significance of feature deletions. We
are interested in studying the feature deletion within the
evolution process and release planning of mobile applica-
tions from user perspective. As the functionality is usually
exposed to the user via (G)UI elements [28], in this study,
we are particularly interested in the deletions visible to the
end user. App reviews are categorized around these UI ele-
ments [19].

To assist the production team with such decisions,
we introduce Radiation1 to recommend deletions based
on user reviews. We further evaluate Radiation’s perfor-
mance retrospectively and by performing cross-validation.

Fig. 1   Results of the survey with app users (Q6–Q12)

Requirements Engineering	

To externally validate Radiation, we surveyed 37 software
developers and 42 users to understand their perception of
the value of deletions recommended by Radiation. Radia-
tion predicts and recommends functionality deletions in
mobile apps.

Multiple factors may trigger functionality deletion. We
designed Radiation to recommend deleting functionali-
ties suggested by user reviews. The current literature on
apps’ user needs and planning is primarily focused on add-
ing features or fixing bugs in each release, based on user
requests [20, 29, 30]. Radiation differs from this approach
by targeting deletions and inputting user reviews. Radia-
tion is a recommendation tool that helps developers iden-
tify deletion candidates. While deleting features is some-
times necessary [7], developers must be cautious about the
features they removed, as it can result in a negative user
experience and potentially losing customers, as shown by
our survey study (see Sect. 2). Radiation is the first step to
assist developers with this task. Figure 2 illustrates the six
steps of Radiation. We relied on the best results presented
in the literature to design each step.

Step 1. Reviews pre-processing. (following [31]) We
eliminated emojis, special characters, and stop words and
expanded contractions (“can’t” was expanded to “cannot”).
Then, we applied lemmatization to map the words into
their dictionary format (“deciding” and “decided” turned
into “decide”). We used Python library NLTK for this
step. We customized the list of stop words as suggested
by Maalej and Nabil [32] and Palomba et al. [18].

Step 2. Separating informative and non-informative
reviews. (following [31]) Not all reviews were useful.
We followed the definition of what is informative and
non-informative as described by Maalej and Nabil [32].
In short, informative reviews communicate content that
can be used in the process of the app evolution, while an
advertisement, a short statement of praise (i.e., “The app
is nice”), or a statement of an emotion (i.e., “I hate this
app!”) is not informative for enhancing an app in future
releases. To identify informative reviews, we manually
classified a fraction of reviews and used them to train a
Naive Bayes classifier (following [32]).

Step 3. Finding UI elements for each release. (following
[29]) For each release, we extracted UI elements used in an
application. We leveraged the UI elements to connect the
reviews with the apps’ functionality following the method
of Palomba et al. [18]. They showed that users write reviews
related to the app components visible to them, which are
the elements of the user interface. To mine UI elements,
we implemented the lightweight analysis of Android layout
files. These files include most of the GUI elements, also
known as view widgets, and control as it is visible to the
app user [26, 35]. Additionally, we parsed the Strings.xml
file, which contains text strings for an app. By mining these
files, for each identified UI element, we got its description
consisting of an element type, a variable name used in the
code, a label associated with the element, and an icon name
if applicable (e.g., < Button, btn mic, ‘Start Listening’, >).

Step 4. Connecting reviews to the UI elements. (follow-
ing [18]) We used the description of elements connecting
reviews to app functionalities. To connect a review to a UI
element in a release Vi, we calculated the cosine similarity
between the text of a UI description and a review’s con-
tent. We established a connection when the similarity score
exceeded a threshold of 0.65. Palomba et al. [18] used the
threshold of 0.6 for this purpose. However, when analyzed
manually, we slightly increased the threshold to achieve a
more accurate matching.

Step 5. Clustering reviews based on their topic. (follow-
ing [18]) Several app reviews are pointing to the same func-
tionality, while they may contain different opin- ions about
that functionality. We used Hierarchical Dirichlet Process
(HDP) [36] with its default setup to group reviews related
to each functionality (UI element) as suggested by Palomba
et al.[37]. HDP is a topic-mining technique that automati-
cally infers the number of topics and is an extension of LDA
[38], which is designed based on a non-parametric Bayesian
network [39]. The difference with LDA is that the number
of topics does not need to be specified in advance for HDP.
Using HDP as described in [37], we performed topic mod-
eling and formed clusters with reviews about a par- ticular
topic associated with a UI element. In this way, every cluster
represents a set of similar concerns about a UI element. One

Fig. 2   The process of radia-
tion to support decisions on
user-driven UI functionality
deletions

	 Requirements Engineering

review might also discuss multiple UI elements; hence, the
clusters are non-exclusive. We manually analyzed the results
for 1,500 reviews across eight apps: The topics were intui-
tive and understandable.

Step 6. Identifying candidate functionality dele-
tion. Following the existing lit- erature on prioritizing app
reviews (Table 1), we selected attributes for identifying and
recommending possible functionality deletion. To deter-
mine candidates, we used Random Forest, as suggested by
related studies [29], and showed good time performance.
A list of attributes for training is presented in Table 1. The
“polarity” and “objectivity” of the reviews in a cluster were
extracted by sentiment analysis performed by Pattern [13,
34] technique.

Radiation involves six main steps. We used established
and top-performing state- of-the-art methods in forming our
Step 1, Step 2, and Step 3. Radiation also adheres to state-
of-the-art approaches for clustering user reviews around
UI elements (Step 4). It has been established [19] that user
reviews often address UI elements as the app functionalities
visible to the end user. In particular, Radiation is designed
to predict and recommend the deletion of UI functionality
based on user reviews. It is important to note that our intent
was to demonstrate whether recommending feature deletion
is possible rather than implementing the most performant
methods. We evaluated the results of Radiation in two ways:
first, by retrospectively comparing the decisions that were
actually made in the app, and second, by externally evaluat-
ing with app developers to understand their perception of the
Radiation recommendation (external evaluation). We explain
these two in the next section.

5 � Empirical validation of radiation

In this section, our objective is to internally evaluate the
performance of Radiation and, in particular, evaluated how
effectively can functionality deletion be recommended

based on user reviews?. We address this question through
two approaches: firstly, retro- spectively comparing auto-
mated recommendations with actual deletions, and sec-
ondly, conducting an external evaluation. For the latter,
we engaged software developers to assess whether a func-
tionality should be deleted from an app based on provided
reviews, then compared their decisions with the outcomes
of our approach. When validating our solution approach,
we answer three research questions:

RQ1: How effectively can functionality deletion be rec-
ommended based on user reviews? For a set of 190,062
reviews, we applied Radiation to identify the reviews
that provoked the deletion of functionality. We evaluated
Radiation internally (via cross-validation) and externally
(with 37 developers):

RQ1–1 How does the recommendations compare with
actual deletions?

RQ1–2 To what extent do app developers consider
analogical reasoning useful for predicting functionality
deletions?

RQ2: What is users’ experience with the functionali-
ties that radiation offers for deletion?

We conducted a survey with 42 participants who used
the app in the lab to assess their sentiment towards the
functionalities recommended for deletion by Radiation.
After familiarizing themselves with the app, we asked
each participant to evaluate 30 UI functionalities based
on their level of liking and the importance of deletion. We
performed a controlled experiment by presenting the ques-
tion for the features recommended for deletion by Radia-
tion and those not recommended for deletion. Finally, we
analyzed the relationship between user sentiment and the
recommendations provided by the tool. The end-user study
confirmed the recommendations’ validity.

Table 1   Features used in RF to recommend if some functionality is a candidate for deletion

Attribute Reason Description

Reviews [29, 31] The number of reviews in a cluster
Rating [29, 31] Each app reviews is associated with a rating. rating is the average rating of reviews in a cluster
∆ Rating [29] ∆ between the average rating of the cluster and the average rating of the app in a specific release
Polarity [20, 30, 33] The average polarity of the reviews in a cluster. Polar- ity is one dimension of sentiment and is

a number between [− 1, 1]. − 1 shows negative sentiment, 0 is neu- trality, and 1 is the very
positive feeling

Objectivity [7] & our user survey Average objectivity of the reviews in a cluster. Objec- tivity is another aspect of sentiment and
is a number between [0, 1]. 0 shows the message is totally objective (expression of facts) and
1 shows the message was opin- ionated (subjective) [34]

Uninstall [7] & our user
survey

The number of reviews talking about “uninstalling the app or requesting “refund”

Requirements Engineering	

5.1 � Protocols for internal validation of radiation
recommendations with developers (RQ1‑1)

For this internal and retrospective evaluation in RQ1, we
excluded apps with fewer than two releases (554 apps) and
randomly selected 10% (115 apps) from the remaining 1,150
for in-depth analysis with an overall of 3,364 releases. These
115 apps encompassed an overall 190,062 reviews and had
an average of 176 reviews per month. To validate the effec-
tiveness of Radiation, we retrospectively compared its rec-
ommendations with actual source code changes across 115
apps and 3,364 releases.In Step 5 of the Radiation process,
we clustered reviews for each UI element and labeled clus-
ters as “deleted” or “not deleted” through manual inspection
of source code com- mits [7]. Two annotators performed this
labeling, through which we achieved a 96% Kappa agree-
ment rate, and discrepancies were promptly resolved through
a brief code look-up and rechecked by the first author of the
paper as the moderator. As such, and to create a truth set,
we tagged reviews in Vi−1 as “deleted” if the corresponding
element Ei was deleted in release Vi. Subsequently, we inter-
nally validated Radiation by comparing its predictions with
this truth set. Hence, if an element Ei was deleted in release
Vi, we tagged the clustered reviews in Vi−1 as “deleted”. As
such, each cluster is a set of reviews with similar criticism
relevant to a UI element. We used these manually labeled
clusters as our truth set. To internally validate our results, we
compared the output of Radiation with this truth set. When
comparing the results of Radiation with the code changes
retrospectively, one of the four outcomes was.

observed:
TP: Radiation recommends deletion of Ei in Vi, and his-

torical data of our truth set shows the element was deleted.
TN: Radiation does not recommend deletion of Ei in Vi,

and historical data of our truth set shows the element was
not deleted.

FP: Radiation recommends deleting Ei in Vi, but our truth
set’s historical data shows that the element was not deleted.

FN: Radiation does not recommend deletion of Ei in Vi,
but historical data of our truth set shows its deletion.

This retrospective analysis resulted in a confusion matrix,
enabling the calculation of precision, recall, and F-Score for
Radiation.

5.2 � Protocols for external validation of radiation
with software developers (RQ1‑2)

To assess the external validity of Radiation recommen-
dations, we conducted analysis with software developers
of the apps. Developers were given the cluster of user
reviews. Each of these clusters consisted of reviews about
a UI element (generated in Step 5 of Radiation). Given the
cluster of user reviews, we asked each developer, “Based

on your understanding of the given reviews, please catego-
rize each cluster as either motivating functionality deletion
or not motivating functionality deletion.” Subsequently,
we compared these developers’ judgments with the Radia-
tion’s outcomes, introducing the possibilities of true posi-
tives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). This evaluation relies on developers’
subjective assessments rather than historical data and dif-
fers from the previous section’s process. To mitigate bias,
we randomly selected 25 apps, and three developers inde-
pendently evaluated each functionality cluster, with final
decisions determined by majority agreement.

Our objective was to gauge software developers’ per-
spectives on the accuracy of Radiation recommenda-
tions. Initially, we invited developers who contributed to
repositories from our set of F-Droid open-source apps.
However, due to limited avail- ability and responsiveness,
we also perform recruitment through social media and
professional networks. Through non-compensated and
convenience sampling, 37 developers with an average of
8.3 years (ranging from two to 15 years) of overall soft-
ware development experience and 4.4 years of mobile app
development experience (ranging from one to 12 years)
were enlisted. Each developer contributed to the develop-
ment of at least two apps. In conducting this evaluation,
the developers reviewed recommendations for 25 apps and
analyzed 36,039 reviews, constituting an assessment for
20% of our selected apps for validation.

Further, the quality of topics and modeling in Step 5 is
crucial to the success of Radiation. To assess the effective-
ness of clustering by HDP in Step 5 of Radiation, we utilized
a human judgment method called topic intrusion [40]. This
involved pre- senting the top two topics with the highest
similarity for a review and presenting them along with a
random topic of lower probability (the intruder topic) to a
developer, who was then asked to identify all relevant topics.

37 developers participated in our study and evaluated
clustering for 36,039 reviews. To evaluate the results of
Step 5, we calculated Topic Log Odds (TLO) [40]. TLO
is a quantitative measure of agreement between a model
and a human. TLO is defined as the difference between the
log probability assigned to the intruder topic and the log
probability assigned to the topic chosen by a developer.
This number is averaged across developers to get a TLO
score for a single document d [41]:where θr,t is the prob-
ability that a review r belongs to a topic t, and S is the total
number of developers.

where θr,t is the probability that a review r belongs to a topic
t, and S is the total number of developers.

TLO(d) =
log �

r,trueintruders − log �
r,intruderselectby’s’

S

	 Requirements Engineering

5.3 � Protocols for external validation of radiation
with users

We installed the app on our own devices. We recruited par-
ticipants from our personal network by advertising on social
media and mailing lists following a convenient sampling
protocol [42].

On the day of the study, we arranged the devices with the
installed app for the par- ticipants, ensuring they were fully
charged and functioning correctly. We also provided a des-
ignated area for participants to engage with the app comfort-
ably. We provided a consent form outlining the study’s pur-
pose, procedures, and participant rights should be prepared
for participants. We further provided a brief overview of the
study and explained the purpose, emphasize the voluntary
nature of participation, and obtain informed consent.

We deliberately involved only one participant for each
study session to mitigate the influence and peer pressure.
We provided tablets and instructed participants to actively
engage with the app for at least 20 min, exploring various
features and sharing feedback on their experience. Fol-
lowing this period, we checked in with participants to see
whether they required additional time or were prepared to
move forward. Following this interaction phase, we included
questions about their overall experience. We provided par-
ticipants with a structured questionnaire asking them to rate
their experience with the app, similar to the app store, on a
one- to five-star scale. We then asked them to provide feed-
back on a particular app feature.

We asked the participants to rate the importance of a
given feature following a Kano model [43–45] either as
essential, worthwhile, unimportant, or unwise.

Further, we introduced a hypothetical scenario where a
specific app feature is removed. We asked participants to
provide feedback on their feelings and the potential impact
on their overall experience. Figure 3 shows a sample of this
task. We randomly selected 30 UI elements and function-
alities from each app as part of our evaluation. We made
a deliberate effort to include a mix of correct (TP and TN)
and incorrect (FP and FN) deletion recommendations (as

explained in RQ2), whenever possible. In total, we evalu-
ated 650 UI functionalities, with 325 recommended for dele-
tion by Radiation and 325 that were not recommended for
deletion. Our survey included 42 participants selected via
non-compensated and convenience sampling from our social
and professional network. For each functionality of the app,
three users provided evaluations. Figure 3 displays a sample
survey question and the response of one participant spe-
cifically for the org.isoron.uhabits app. After familiarizing
themselves with their assigned apps for at least 20 min, we
presented a specific feature of the app they had studied. In
this context, we consider the participants in our evaluation as
“users” and will refer to them as such, noting their controlled
level of experience with the app.

Then, we requested that they rate their liking of the fea-
ture on a five-point Likert scale. Furthermore, we also asked
the participants to express their emotions if the feature were
to be removed. We used conventional sentiment scores [46]
for evaluation, with − 2 indicating strong dislike, 0 indicating
neutrality, and + 2 indicating strong liking.

We gathered the data only through the formal question-
naire provided to the participants and the questions outlined
above.

6 � Validation results

We used open-source Android apps for this evaluation. As of
June 2022, F-Droid (the open-source repository for Android
mobile apps) included 3,810 mobile apps. We identified
1,704 apps with a valid link to their GitHub repositories.
These apps involve a total of 14,493 releases. As deletions
are identified by comparing sequential releases, deletions
are only meaningful if the app has at least two releases. So,
we excluded 554 apps with fewer than two releases from our
analysis to evaluate Radiation over multiple releases. We
gathered reviews from the Google Play store for the remain-
ing apps while accessing their code and development arti-
facts through GitHub.

Fig. 3   Questions asked for
evaluating Radiation with users
for a sample app “Loop habit
tracker” in RQ2

Requirements Engineering	

We randomly selected 8,300 reviews (∼ = 5% of the total
number of reviews) across. Different apps and manually
labeled each review as “informative” or “non-informative”
as described in Step 2 of Radiation. We followed the defi-
nition of informative and non-informative as described by
Maalej and Nabil [32]. Two researchers classified these
reviews with an average Cohen’s Kappa agreement degree
[47] of 86%. We labeled 2,917 of these reviews as “non-
informative” and used them along with the same num- ber
of “informative” reviews randomly sampled from the rest of
the reviews to train a classifier. Finally, we identified 8.1%
of the total number of reviews as uninformative. When it
came to the performance of the Naive Bayes classifier used
for the automatic separation of these reviews in Step 2, we

achieved an F1 score (the harmonic mean of precision and
recall [48]) of 0.82. This score was calculated as the aver-
age of ten tenfold cross-validation runs. We created recom-
mendations using Radiation and ana- lyzed 115 randomly
selected apps in detail. We then used these recommendations
as well as evaluated Radiation against developers’ judgment
(RQ1) and users’ experi- ence (RQ2) for 25 apps. When we
performed internal and external validation of our method.

6.1 � Results of internal validation of solution
approach

Table 2 presents the results of RQ1 and RQ2 for 25 apps
that were cross-validated and evaluated by developers.

Table 2   Evaluating results by comparing Radiation recommendations with (i) retrospective analysis of actual deletions and (ii) developers’ per-
ception

One user review might be relevant to multiple elements
FP (False-Positive) Recommended as deletion but was not, FN (False-Negative) Recommended not a deletion but it is, TP (True-Positive)
Recom- mended as deletion and it is, TN (True-Negative) Recommended as not a deletion and is not

App’s package name # of UI element
across releases

of reviews Actual deletions (RQ1) Developers’ perception (RQ2)

of FP
of FN

#
of TP

#F1
ofscore TN

#
of FP

#
of FN

#
of TP

#F1
ofscore TN

(A1) app.openconnect 235 232 0 2 1 2320.5 0 0 1 2341
(A2) com.google.android.stardroid 1603 4480 0 2 18 15,830.95 1 2 18 1582 0.92
(A3) com.moez.QKSMS 3009 2751 0 11 5 29,930.48 2 4 5 2998 0.62
(A4) com.vuze.android.remote 774 494 0 2 8 7640.89 1 0 7 7660.93
(A5) net.nurik.roman.muzei 1088 4481 0 15 36 10,370.83 1 0 35 1052 0.99
(A6) org.androisoft.app.permision 189 397 0 1 2 1860.8 0 1 2 1860.8
(A7) org.connectbot 471 4493 0 6 8 4570.73 0 0 8 4631
(A8) org.dmfs.tasks 862 207 0 7 7 8480.67 0 4 7 8510.78
(A9)
org.evilsoft.pathfnder.rference

652 1520 0 0 2 6501 1 0 1 6500.67

(A10) org.isoron.uhabits 895 1976 3 31 101 7600.86 4 13 100 7780.92
(A11) com.spazedog.mounts2sd 394 497 3 7 60 3240.92 2 0 61 3310.98
(A12) org.telegram.messenger 840 73,682 2 30 26 7820.62 3 3 25 8090.89
(A13)
in.blogspot.anselbros.torchie

134 473 8 12 72 420.88 5 1 75 530.96

(A14) com.emaguy.cleanstatusbar 86 392 1 7 8 700.67 0 0 9 771
(A15) com.boardgamegeek 1317 506 33 224 191 66,820.6 3 25 221 6881 0.94
(A16) com.gelakinetic.mtgfam 4510 2366 1 3 4 45,020.67 0 1 5 4504 0.91
(A17) org.addhen.smssync 235 41 6 0 22 2070.88 7 2 21 2050.82
(A18) com.amaze.filemanager 620 1241 7 12 25 5760.72 0 1 33 5860.98
(A19) com.gh4a 344 301 4 8 14 3180.7 1 1 17 3250.94
(A20) org.kontalk 54 39 2 2 7 430.78 2 1 7 440.82
(A21) org.transdroid.lite 942 538 2 3 7 9300.74 0 0 9 9331
(A22) de.qspool.clementineremote 444 355 4 9 13 4180.67 2 3 15 4240.86
(A23)
com.daiancorp.mh4udtabase

3101 979 29 51 73 29,480.65 12 5 90 2994 0.91

(A24) org.servalproject 547 252 4 14 10 5190.53 2 3 15 5270.85
(A25) org.wikipedia 17,830 15,531 23 0 94 17,713 0.89 1 0 116 17,713 0.99
Average 1647.04 4728.96 5.28 18.36 32.56 1823.36 0.74 2 2.8 36 1838.840.9

	 Requirements Engineering

Figure 4 demonstrates the goodness of the topic modeling
of app reviews (Step 5) as part of RQ2).

We conducted cross-validation on 115 apps, 3,364
releases, and a total of 190,062 reviews. 8.1% of this total
number of reviews were uninformative. The results indicate
high precision (0.83) and recall of 0.48 using tenfold cross-
validation. The precision is considerably higher than recall
because in Radiation, the number of false positives (FP) is
much lower than false negatives (FN). In other words, in
mobile apps, there have been deleted features, but Radia-
tion cannot recommend them for deletion (FN). This results
in a low recall. Radiation cannot (and is not designed to)
capture all deletions that happen within a mobile app. How-
ever, as the first study looked into functionality deletion, we
could predict with 83% precision. For several of these “false
negatives”, we did not find reviews related to an element
that has been deleted. Hence, we concluded that the fea-
ture would not be deleted, and there were other reasons than
user reviews for deleting the UI element. Table 2 details the
confusion matrix for the 25 apps that were also externally
evaluated in RQ2. As the result, Radiation demonstrates
83% precision in recommending deletions based on user
reviews. The low recall indicates that not all deletions in a
mobile app are motivated by user reviews, which Radiation
is not designed to capture.

6.2 � Results of external evaluation with software
developers (RQ2)

37 developers evaluated Radiation in two ways. First, by
evaluating the quality of the topics created from reviews
and about each UI as a result of Steps 4 and 5. Second, by
assessing whether, as professional software developers, they
would make the same decisions as Radiation regarding the
deletion functionality based on user reviews.

Evaluation of cluster topics about each UI element We
followed the approach of Palomba et al. [37]. to cluster user
reviews by their connection to UI elements. Hence, in Radia-
tion, we first connected reviews to the UI elements (Step 4)
and then clustered the reviews around each UI element using
HDP topic modeling (Step 5) [37]. Topic modeling was used
as many users stated similar concerns in reviews, and each
review might have contained multiple concerns about func-
tionality. We presented the number of UI elements along

with the number of clusters and number of user reviews in
Table 2. To evaluate the usefulness of our topic model, we
relied on the judgment of app developers. After asking them
to evaluate the topics using topic intrusion, we calculated
TLO as suggested by Chang et al. [40]. We present the dis-
tribution of TLO in the boxplot chart of Fig. 4. TLO = 0
shows the highest conformance between developers and the
topic modeling technique. Comparison of the distribution of
our HDP clustering showed a slight disagreement between
developers and machine learning results as the median is
around − 3. However, this is still considered as a relatively
low disagreement compared to former benchmarks [40, 41].

Evaluating Radiation recommendations: We asked
developers to evaluate whether a cluster of reviews for a UI
element was “motivating a functionality deletion” or”not
motivating a functionality deletion” (e.g., implying a bug
fix). We compared Radiation results to developer percep-
tions for 25 randomly selected apps, resulting in an average
F-Score of 90% for Radiation. See Table 2 for the number of
true and false recommendations for these apps.

Upon examining the results presented in Table 2, it is
apparent that there are fewer false positives (FP) and false
negatives (FN) when comparing our recommendations with
developers’ perceptions as opposed to retrospective evalu-
ation. This difference can be attributed to the fact that rec-
ommending deletions involves multiple factors beyond user
reviews, which Radiation does not take into account. There-
fore, when asking developers to make a decision based on
user reviews, Radiation demonstrates better performance.
Hence, Radiation achieves an average F-score of 0.9 when
its recommendations are compared with the developers’
decisions based on the respective clustered reviews.

6.3 � Results of external validation of radiation
with users

We aim to assess the degree to which recommendations gen-
erated by Radiation align or conflict with user experience
toward specific app functionalities. To answer this question,
we performed a user study. In this user study, we invited
the participants to our lab. The primary focus is to collect
empirical data on user interactions and feedback regarding
specific features, with particular attention to user experience
and the potential impact of feature deletions. 42 participants
took part, all aged between 18 and 32 years old. Thirty-
one of them had graduated with a BSc or BA degree, while
the remaining participants were pursuing their studies as
undergraduate students. These participants have familiarized
themselves with the app within the lab setting and at least
for 20 min. Among these, 17 (40.4%) required more than
20 min to familiarize themselves with their assigned apps.
Answering the questions was mandatory, and hence, the data
was consistently available.

-12 -10
TLO

-8 -6 -4 -2 0

Fig. 4   Topic Log Odds (TLO) shows the performance of Radiation’s
clustering against developers’ perception

Requirements Engineering	

Our objective was to evaluate user sentiment towards the
functionalities recom- mended for deletion by Radiation. To
achieve this, we surveyed 42 users to evaluate their percep-
tion of specific mobile app functionalities and understand
their sentiments if those functionalities were to be removed
(refer to Fig. 3). We asked each partic- ipant two questions
regarding the features they were evaluating. Figure 5 dis-
plays a violin plot of the results. Table 3 provides a sum-
mary of the results obtained for the first survey question in
RQ2, presented for each of the 25 apps under evaluation.
Each column represents the average responses from three
survey participants. It’s impor- tant to note that the number
of samples across TP (true positive), TN (true negative),
and other categories varied. For instance, the app (A1) app.
openconnect had only one UI functionality correctly recom-
mended for deletion (TP) in RQ2, as detailed in Table 2. We
also asked users how they would feel if the functionality
were to be removed (Q2). We observed a high correlation
of −0.86 between the responses to Q1 and Q2 in our survey.
That being said, we found that the more negative the users’
feelings towards the feature, the more positive they were
about its removal.

When asked about the overall satisfaction for each app
they were assigned, the satisfaction was rather low (with
an average of 2.55 stars), with only 8.5% of the users
ranking an app with five stars. The distribution of the
stars is shown in Fig. 5). We also asked users to evalu-
ate each feature based on the Kano schema. In the Kano
schema, we asked users to evaluate each feature based
on four categories: essen- tial, worthwhile, uninterest-
ing, or unwise. Essential features are considered neces-
sary and form the baseline expectations, while worth-
while features add value and satisfac- tion. Uninteresting
features don’t significantly impact user satisfaction, and
unwise features, if included, might even decrease satis-
faction. This categorization allows us to understand how
users perceive and prioritize different features, providing

valuable insights into what aspects are essential or desir-
able for them [44, 45]. Figure 6 shows the distribution of
importance among the surveyed functionalities where the
wider sections of the violin indicate higher density, while

Fig. 5   (a) Overall app rating in
the evaluated set, and (b) the
Users’ sentiment when evaluat-
ing 650 features (in blue) with
users through RQ2 survey

Table 3   Evaluating user sentiments toward the features Radiation rec-
ommends for deletion through a survey (RQ2)

Q1: Average Sentiment toward functionalities that are

App ID Incorrect deletion
recom. (FP)

Correct deletion
recom. (TP)

other (FN
or TN)

(A1) N/A −1.3 2.0
(A2) −0.13 −1.07 0.86
(A3) −0.7 −1.16 1.0
(A4) −0.55 −0.66 −0.66
(A5) 1.07 −1.0 0.08
(A6) N/A −0.86 −1.13
(A7) N/A −0.93 0.0
(A8) N/A −0.06 0.13
(A9) −0.66 −1.2 0.91
(A10) 1.27 −0.91 1.13
(A11) −0.55 −1.0 1.05
(A12) −0.45 −1.8 −0.79
(A13) −0.56 −1.0 0.51
(A14) N/A −2.0 0.06
(A15) −0.88 −1.4 0.79
(A16) N/A −1.66 0.81
(A17) −0.77 −1.0 0.73
(A18) N/A −1.66 0.21
(A19) 0.97 −1.08 0.91
(A20) 0 −1.16 1.21
(A21) N/A −1.13 0.05
(A22) −1.03 −1.5 −0.31
(A23) −0.89 −1.33 −1.09
(A24) − 0.09 −1.55 −0.45
(A25) −1.02 −1.02 0.18

	 Requirements Engineering

narrower sections indicate lower density. The majority of
features were perceived as essential or worthwhile, with
only a smaller subset and a portion of participants voting
for certain features as unwise.

When we asked users about the functionalities, we
observed that the average sen- timent of the participants
towards the features that were correctly recommended for
deletion by Radiation (TP recommendations) was consist-
ently negative. In other words, the users’ negative experi-
ences were aligned with the recommendations. However,
for deletions that were not actually performed (FP), we
observed mixed sentiments. Nevertheless, the majority
of the apps (13 out of 16) received an overall average of
negative sentiments for wrong predictions as well. Thus,
it is essential to note that a negative experience might not
necessarily imply feature deletion but could call for a bug
fix or a change in the software.

This finding aligns with our analysis of RQ2, where
external developers favored Radiation recommendations,
while historical data showed that the decisions of the
actual app developers (RQ1) were different. This differ-
ence could be due to the exclusion of particular ecosystem
or business factors in Radiation modeling. We obserevd
that The users consistently disliked the functionalities
that Radiation correctly recommended for deletion and,
in general, are not against removing them.

All the features that had more than 10% unwise votes
based on the Kano schema have also been positively per-
ceived to be deleted (Fig. 5). We also observed that the
stronger the users voted for the importance of the feature
(i.e., essential and worthwhile features), the more they
feel disappointed if the feature is deleted (correlation of
0.76), which is intuitive.

7 � Reflection: status que and possibility
of incorporating deletions in the release
decisions

The release planning problem has traditionally been con-
cerned with balancing con- flicting priorities, such as
resource constraints, time limitations, and stakeholder
expectations. This intricate challenge involves making deci-
sions about the selection and scheduling of features for inclu-
sion in software releases [49, 50]. The primary objective is
to optimize the allocation of resources and meet strategic
goals. In particular, the’what-to-release’ problem focuses on
identifying features and bug reports to be added to upcoming
releases to maximize the value within given constraints, both
for each release and overall for the product. The next release
problem is widely studied and, as such, revolves around the
challenge of adding features and/or identifying enhance-
ments to meet user needs and expectations in the upcoming
version of the product [51–53]. As the software develop-
ment landscape continues to evolve, the release planning
problem remains a critical aspect of project management. In
particular, our survey focused on understanding the aspect of
deletion decisions to address the planning issues and further
investigate the possibility of extending the release planning
definition to further include feature deletions.

Following the design science research, it is important
to ground and structure the lessons learned for improving
the decisions in practice [54]. As a result, we designed a
survey to understand the possibility and practice of release
planning in consideration of feature deletion, and based on
the feedback received from the users, we performed a sur-
vey with software developers to understand their percep-
tions. We followed the survey design principles as outlined
by Kitchenham and Pfleeger [27]. At first, we outlined
three main objectives to guide our survey:

Obj1: Understanding frequency and cause of feature
deletions.

Obj2: Understanding feature evaluation process and the
role of users and their review in deletions.

Obj3: Understanding the release decisions and prac-
tices for excluding or deleting a feature.

Based on these objectives, we then move forward to
designing the questionnaire and running the survey.

We took several steps to design the survey in a manner
that complements the information gathered in previous
works [7, 11].

7.1 � Protocols

Initially, we initiated a brainstorming session to formulate
questions addressing each objective, meticulously filtering

Fig. 6   Violin plot of feature evaluation with users based on the Kano
model. The “violin” shape surrounding the boxplot displays the prob-
ability density of the data at different values

Requirements Engineering	

out redundancies. Subsequently, we compiled a final- ized
list of 20 unique questions aligned with our objectives. To
ensure the novelty of our questions and their absence in
the current state of the art, we conducted a comprehen-
sive literature review. We then curated and categorized
the questions for each objective. The survey includes five
demographic questions, one yes/no question, eight Lik-
ert-scale questions, and six open-ended questions. Our
demographic questions address participants’ software and
mobile app development experience, role, size of team,
and self-perceived familiarity with the process of releas-
ing mobile apps. We designed the survey instrument using
the Qualtrics platform. We ensured participant anonymity,
with no collection of identifying information.

We invited five students with existing experience in app
development for a pilot study to assess survey clarity, reli-
ability, and validity. We then solicited feedback from these
participants and reworded a few questions for further clarity.
These responses were discarded and not used in the final
analysis. We then sent the survey to our connections in the
industry and advertised it on social media platforms (Twit-
ter and LinkedIn). We received 242 clicks on the survey.
Having the responses, we first checked for the completeness
of responses and excluded the ones that were incomplete.
We then performed descriptive statistics and visualization
to report quantitative data and thematic analysis to analyze
qualitative data.

We utilized our social media channels to disseminate the
survey and extend invitations to developers for our study.
We garnered 242 clicks, with 163 participants initiating the
survey. Out of these, 141 successfully completed the survey
and submitted their responses. The survey was specifically
promoted for product managers and decision-makers within
software teams. We used statistical and analytical techniques
to analyze the numerical and categorical data. For the open
text, the process was semi-manual, where two independ-
ent annotators performed sorting and aggregation [55]. In
this process, one author was the moderator whenever any
disagreement appeared. We also gathered the demographic
information of our survey participants to contextualize the
results. In our analysis, whenever appropriate, we compared
the different demographic groups and reported the results.

7.2 � Results: developers’ perception
and implications of deletions in release
planning

In collecting demographic data through questions Q1 to
Q5 (refer to Table 4), these developers, on average, had
8.6 years of experience in software development (ranging
from a minimum of 3 years to a maximum of 24 years) and
were involved in developing an average of 2.5 apps (ranging
from a minimum of one to a maximum of nine apps). We

categorized team sizes into four groups: teams with fewer
than five developers, teams with five to 20 developers, teams
with 20–50 developers, and teams with more than 50 devel-
opers. 66 participants reported working in teams of 20- 50
developers, while the remaining participants (53.2%) were
part of smaller teams consisting of 5–20 developers.

These participants were product managers (41 partici-
pants), technical leads (36 participants), senior develop-
ers (22 participants), developers (21 participants), project
managers (10 participants), and product owners (11 partici-
pants). When asked about the extent of their participation in
release decisions, 39 participants were highly involved, 81
participants (57.4%) stated their moderate involvement, and
21 participants stated they were somewhat involved.

We conducted a survey to understand whether deletions
are being planned in practice and how the decision is being
made. The survey questions are detailed in Table 4. 141
developers fully answered the survey, which we character-
ized using the demographic questions in Sect. 6.3.

When asked about the importance of regularly evaluat-
ing and updating mobile app features, 87.9% of participants
considered the matter important or very important. Notably,
developers in larger teams (with more than 20 members)
expressed a stronger emphasis on planning in this regard.
Among our participants, 58.9% stated that they sometimes
or somewhat frequently remove features from mobile apps,
while 3.5% have never removed any features. In this deci-
sion-making process, 87.2% of participants stated that they
sometimes (77 participants) or more frequently consider user
feedback when deciding to exclude a functionality, while
only a negligible percentage, 1.4% (two participants), have
never made such a decision based on user opinions.

All participants mentioned that they occasionally or more
often monitor user reviews after a feature deletion, with
the majority (78.7%) doing so often (61 partici- pants) or
always (50 participants). This monitoring is more frequent
and statistically more significant among teams of larger sizes
(p − value = 0.008). A majority of partic- ipants (53.2%)
stated that such deletions always contribute to enhancing the
overall user experience. However, when compared using the
Mann–Whitney test, this enhance- ment was not significant
for participants involved in developing a larger number of
apps (p − value = 0.012). These results are highlighted and
summarized in Fig. 7. When it comes to release decisions,
61% of the participants (81 participants) use measurements
and analytics to inform their choices. They most frequently
rely on metrics such as click rates, user metrics, user sub-
scriptions, number of new users, and user reviews to guide
these decisions. A word cloud of the responses is provided
in Fig. 8. The majority of these participants often plan to
release their apps (57.4%). However, this number increases
to 65.2% when it comes to planning in advance for excluding
a feature. We summarized these results in Fig. 8. Overall,

	 Requirements Engineering

developers tend to plan more diligently when deciding to
delete a feature in a release compared to planning for upcom-
ing releases in general.

In the decision-making process for feature removal, vari-
ous stakeholders play distinct roles (Q17). The participants
most frequently mentioned quality assurance members and
testers (54.6%). This was followed by references to team
leads (47.5%), product managers (45.3%), and customer
relations team/manager (39%). We also asked the develop-
ers about the factors impacting their decision for feature
removal in app development. The results, as summarized
in Table 5, reveal that maintain- ability concerns, includ-
ing bugs, ranked highest in frequency at 64.5%, followed
by user feedback (positive or negative) at 61%. Usability
challenges were noted by 52.5% of participants, while

performance concerns accounted for 36.2% of responses.
Other factors influencing feature deletion decisions included
adoption rates among users (26.2%), compatibility issues
(22%), market trends, strategic decisions, product road map
considerations (11.3%), resource constraints (4.9%), regula-
tory compliance (2.8%), and technical debt (1.4%). Overall,
User requirements stated in the form of user feedback (61%),
usability concerns (52.5%), and adoption rates (26.2%) are
among the most impactful criteria for planning deletions.

8 � Discussion on threats to validity

Throughout the different steps of the process, there are vari-
ous threats to the validity of our achieved results.

Table 4   Survey with developers to understand the decision process for feature deletion

ID Question Response type

Demographics
Q1 How many years of experience do you have as a software developer? Numerical
Q2 How many mobile apps have you actively contributed to in the development

process?
Numerical

Q3 What is the size of your current team? Categorical
Q4 What is your current position in the team? Short text
Q5 To what extent have you been involved in the decision-making process for

removing features or functionalities?
Likert scale

Evaluating App Features
Q6 How important is it to regularly evaluate and update software features and

functionality?
Likert scale

Q7 How do you typically assess the impact of a deprecated feature on your exist-
ing projects?

Open text

Q8 How frequently does removing a functionality change the UI elements in apps? Likert scale
Q9 How frequently are user feedback and opinions considered when deleting a

functionality?
Likert scale

Q10 How often do functionality deletions contribute to improving the overall user
experience?

Likert scale

Q11 How often do you monitor user reviews and feedback after a functionality
deletion to assess the impact on user experience?

Likert scale

Q12 What measures do you take to minimize negative impacts on users when
functionality is deleted?

Open text

Release Decisions
Q13 Do you conduct any specific measurements to support your decision to release

a product update?
Yes/No

Q14 If yes, what specific measurements do you conduct? Open text
Q15 How often do you plan for your app releases? Likert scale
Q16 How often do you plan for feature deletions? Likert scale
Q17 Who are typically involved in making decisions for feature removal? Open text
Q18 What factors typically influence your decision-making process when planning

for functionality deletions?
Open text

Q19 How do you balance user feedback against other factors, such as technical
considerations and business requirements?

Open text

Q20 How important is it to communicate the rationales behind functionality dele-
tions, particularly in response to user reviews?

Likert scale

Requirements Engineering	

8.1 � Construct validity—are we measuring the right
things?

We pre-processed all review texts and used machine learn-
ing classification to ensure that the analysis only considers
informative user reviews. The Naive Bayes classifi- cation
resulted in an F1 score of 0.82. While this is a very good
result, there is still a possibility that a review has been
classified incorrectly. There is a risk related to linking
reviews to the proper UI elements. Two of the authors
looked into the results of this linking (Step 4 of Radiation)
for 600 reviews across six apps and found 71 mismatched
or unrelated reviews. The influence of this noise should
be considered while interpreting the results of this study.
Radiation uses user reviews to recom- mend UI functional-
ity deletions based on various factors. We analyzed user
reviews and clustered them according to relevant UI ele-
ments, which enables Radiation to focus solely on user
feedback and visible app functionality. Upon retrospec-
tive anal- ysis, we found that Radiation has a low recall
due to a considerable proportion of false negatives. These

false negatives indicate deletions that were not motivated
by user reviews and therefore fell outside the scope of
Radiation recommendations. To further evaluate the effec-
tiveness of our approach, we provided software develop-
ers with reviews for each UI element and asked them to
decide whether they motivated functionality deletion or
not. This resulted in better recall compared to our previous
cross-validation results. We also evaluated user sentiment
toward these functionalities and found that they consist-
ently experienced negative emotions when using the Radi-
ation recommended for deletion. We further discovered
that the more negative the user’s experience, the more
likely they were to be neutral or positive about removing
that feature from the app. Additionally, we used card sort-
ing and thematic analysis for the open-ended questions in
our survey related to the survey for release decisions. The
results somewhat depend on the annotators’ perception and
understanding of the responses. To mitigate this, annota-
tors worked independently, adhering to a strict empirical
protocol. Any disagreements were discussed and mediated
to ensure consistency.

Fig. 7   Perception of develop-
ers on release management in
consideration of function- ality
deletions

ID Question Distribution
High vs low
of apps

Small vs
large team

Q6
How important is it to regularly
evaluating and updating
software features?

N
ot

at
al

l(
3)

Lo
w

im
po

rt
an

ce
(7

)

N
eu

tr
al

(7
)

Im
po

rt
an

t(
51

)

V
er

y
im

po
rt

an
t(

73
)

0.281 0.031*

Q8
How frequently removing a
functionality changes the UI
elements in apps?

N
ev

er
(5

)

O
cc

as
io

na
lly

(1
8)

S
om

et
im

es
(8

3)

O
fte

n
(2

9)

A
lw

ay
s

(6
)

0.102 0.407

Q9

How frequently are user
feedback and opinions
considered when deleting a
functionality? N

ev
er

(2
)

O
cc

as
io

na
lly

(1
6)

S
om

et
im

es
(7

7)

O
fte

n
(3

5)

A
lw

ay
s

(1
1)

0.122 0.084

Q10

How often does functionality
deletions contribute to
improving the overall user
experience? N

ev
er

(0
)

O
cc

as
io

na
lly

(5
)

S
om

et
im

es
(1

9)

O
fte

n
(4

2)

A
lw

ay
s

(7
5)

0.012* 0.206

Q11

How often do you monitor user
reviews and feedback after a
functionality deletion to assess
the impact on user experience? N

ev
er

(0
)

O
cc

as
io

na
lly

(3
)

S
om

et
im

es
(2

7)

O
fte

n
(6

1)

A
lw

ay
s

(5
0)

0.073 0.008*

	 Requirements Engineering

8.2 � Conclusion validity‑ are we drawing the right
conclusion about treatment and outcome
relation?

In comparison to studies in the context of mobile apps
(Table 6), our surveys can be considered highly partici-
pated. However, we used non-compensated and convenience

sampling to attract participants, which might bias the con-
clusions that are drawn [56]. It is essential to note this type
of evaluation is subjective. However, in RQ1, the results of
the retrospective analysis of the data are aligned with our
survey results with developers (external validity) and the
users’ perception (RQ2). In total, we think that the evalua-
tion gained with 37 developers and 42 users is sufficient to
confirm our findings.

When connecting a review to a UI element in Radiation,
there is a chance that we relate a review to an element incor-
rectly (false positives). This may happen because.

•	 We may miss some UI elements, as they can be instanti-
ated in the program code or hard coded,

•	 Some UI elements are not visible to the end user, or.
•	 Text of some UI elements are common English words or

can have similar labels in different app views.

To address the first two items above, we used Back-
stage [26] on a few of the apps, and we found that while
the risk exists, it is relatively small. Since Backstage works
on compiled application binaries we were limited to using
it in Radiation. For the third item above, we applied pre-
processing as suggested in CRISTAL [18] and adopted their
list of stop words. Further, Radiation is not intended to find

Fig. 8   The current practice of
considering functionality dele-
tion in release practices

Table 5   Factors influencing feature removal decisions in app devel-
opment

The participants were asked to name all factors in an open-text format

Factors impacting feature deletion Frequency Participants %

Maintainability concerns including bugs 91 64.5
User feedback (positive or negative) 86 61
Usability challenges 74 52.5
Performance concerns 51 36.2
Adoption rates among users 37 26.2
Compatibility issues 31 22
Market trends, strategic decisions &

product roadmap
16 11.3

Resource constraints 7 4.9
Regulatory compliance 4 2.8
Technical debt 2 1.4

Requirements Engineering	

all the deleted features (recall) exhaustively. The impact of
potentially missed elements is insignificant.

We validated our approach in two stages: first, by looking
back at past decisions made by app developers and com-
paring them with recommendations from Radiation. Then,
in the second stage, we shifted our focus to see if human
experts, using the same data, would come to similar conclu-
sions as Radiation. In this situation, we sought the advice of
experienced software developers who were not involved in
creating the apps we were studying. This helped us under-
stand how meaningful analogical reasoning is in this context.
Analogical reasoning is identifying similarities between two
different concepts or situations and using this comparison
to gain insights or solve problems. In our study, we refer to
analogical reasoning as the method by which users draw
par- allels between familiar elements and new functionali-
ties to make decisions or provide feedback. This concept is
closely related to case-based reasoning (CBR), where users
apply knowledge from previous cases to new situations.
Both analogical reasoning and CBR involve leveraging past
experiences to evaluate and understand new information. By
defining and exploring analogical reasoning, we can better
interpret user feedback and improve the design and function-
ality of user interface elements. This connection allows us to
develop more intuitive and user-friendly interfaces by under-
standing how users transfer knowledge from known contexts
to new ones [57]. We made this choice for two main reasons:
firstly, because we didn’t receive responses from the original
developers, and secondly, to add depth to our evaluation of
the research question. It’s important for readers to keep in
mind this limitation when they’re interpreting the results.

Another potential threat arises from the level of famili-
arity users have with the mobile apps during evaluation in
RQ2. All participants in the study interacted with the appli-
cation for a minimum of 20 min in controlled laboratory
conditions. This may raise concerns regarding the conclu-
sion’s validity. However, we argue that the con- trolled set-
ting in the laboratory and the dedicated time allotted for
app usage mitigate the typical randomness inherent in sur-
veys, instilling a higher degree of confidence in the results.
Without this designated time in the lab, there is no guar-
antee that par- ticipants have actually used the app or are
up to date with the recent functionality, potentially leading
to random responses. Conversely, obtaining contact infor-
mation and accessing individuals who have independently
used these applications, especially at scale, is not feasible.
Thus, we conducted the lab study to ensure controlled usage
conditions.

8.3 � Internal validity—can we be sure
that the treatment indeed caused the outcome?

The selection of attributes used in Radiation to decide if a UI
functionality should be deleted is another threat to validity.
Our survey with users was aligned with the findings in the
literature [7] and showed that users and their feedback are
important information in the deletion process. However, it
is not the only decisive factor for excluding a functionality
from apps. We selected attributes based on related studies
(Table 1). There are other attributes related to competitors,
performance, or mainte- nance considerations that are rel-
evant for the decision-making but could not be taken into

Table 6   Context and evaluation
of related studies

Method Context Evaluation

ARdoc[33] Information giving/seeking, feature
request, problem discovery, others

Evaluating three apps by two developers

AR-Miner
[31]

Informative or non-informative reviews Manual inspection by authors, compari-
son between techniques

ChangeAdvi
[37]

Localizing change request by linking
reviews to the source code

Evaluated results with 12 developers

CLAP [29] New feature request, bug report Retrospective analysis of 463 reviews and
interview with three developers

CRISTAL
[18]

Tracing user reviews to the developers
changes

Manual evaluation by authors

MARA [67] Feature request Comparing different techniques
PAID [68] Issues (bugs) Retrospective analysis of 18 apps
Panichella
et al. [20]

Information giving/seeking, feature
request, problem discovery, others

Comparison between different methods

SURF
[14, 17]

Information giving/seeking, feature
request, problem discovery, others

23 developers analyzed SURF output for
2622 reviews

SUR-Miner
[30]

Aspect evaluation, praise, function
request, bug report, others

Comparing different techniques, evalua-
tion with 32 developers

URR [21] Compatibility, usage, resources, pric-
ing, protection, complaint

Qualitative evaluation by a student and
a developer

	 Requirements Engineering

account for our study. Following the results of former studies
on mobile apps [18], we assumed that users are reviewing
just the functionality that is visible to them (and not the
background code). This might not be true for all the users,
reviews, and sentiments. However, we expect a low number
of such cases.

8.4 � External validity—can the results be
generalized beyond the scope of this study?

Our retrospective analysis was performed on open-source
mobile apps. The number of apps, reviews, and commits
analyzed is considered high, indicating that results are sig-
nificant, at least for open-source mobile apps. While select-
ing the apps for this study, we did not consider their status
(for example, the number of downloads), which may pose
a risk of bias in the findings. The results may vary between
apps with regard to their status on the app store. Also, we
have not discussed apps outside Google Play, such as iTunes.
Hence, the results might not be representative of all apps.
However, the choice of sample size and the platform is com-
parable with state-of-the-art studies [12].

When it comes to surveys with developers and user stud-
ies, our study draws con- clusions based on a survey, which
can be inaccurate at times. Surveying software develop-
ers does not always provide a comprehensive perspective
of real-world prac- tices [58]. We used surveys to trian-
gulate the results of our internal validation (RQ1) and to
gain a deeper understanding of practices related to deletion
decisions.

9 � Related work

In this study, we challenged Lehman’s law of growth by
investigating functionality deletion as a specific activity
in the development process. We focused on the mobile
apps because the device resources are limited and the size
of the release has been introduced as a decisive factor for
release decisions [59]. Feature and functionality dele-
tion for software products in general have been discussed
mostly on the model level, which triggered us to widely
investigate on the nature and reasons for function- ality
deletion in RQ1. Development activities in software engi-
neering involve adding, deleting, and modifying elements
[60, 61]. However, discussions have primarily focused on
adding and modifying features, with less attention given to
deletion. Adding new functionality is a key consideration
in release planning, and existing approaches often con-
centrate on this aspect [4, 5, 62], or they revolve around
handling change requests [29, 63]. Commonly in litera-
ture, studies have used the term “code churn”, which rep-
resents the total count of added or deleted lines of code.

However, this metric does not differentiate between addi-
tions and deletions [64, 65]. Murphy-Hill et al. [66]. made
an important distinction between adding and deleting fea-
tures, particularly in the context of bug fixes. They defined
functionality deletion as the removal of a feature during a
bug fix. Their findings indicate that 75% of participating
developers remove functionality to address bugs.

Furthermore, the release planning of mobile apps and/
or the analysis of user reviews to support app evolution
and maintenance have been studied by several research-
ers [12?]. In the following sections, we discuss the state
of the art in these studies as they pertain to requirements
engineering, specifically addressing RQ1 and RQ2. Our
primary focus is to explore the potential and feasibility
of recommending feature deletions rather than striving
for perfect accuracy in these suggestions. There- fore, we
rely exclusively on the best practices documented in the
current literature without engaging in benchmarking or
method comparisons. Additionally, we present a summary
of related work on release planning, focusing on survey
analysis in particular.

9.1 � User reviews to support apps’ evolution

Analyzing user reviews to support app evolution and main-
tenance has been explored by various researchers [12].
These studies primarily focus on differentiating user needs,
categorized as either”feature requests” or”bug reports”
[32]. Notably, Palomba et al.’s study [18] revealed that
49% of informative reviews were considered for app evolu-
tion. In these investigations, user reviews serve as sources
of change requests, employing various Natural Language
Processing (NLP) techniques to offer prioriti- zation or
classification schemes. The goal is to assist developers
in deciding on the next best changes, whether by adding
new functionality or addressing a bug. Table 6 provides
an overview of the most relevant methods.

CLAP [29] adopted a mixed method, combining retro-
spective analysis of changes for 463 reviews with inter-
views of three app developers. PAID [68] conducted a
com- prehensive retrospective evaluation by investigating
18 apps for issue prioritization. In comparison, our study
involved a more rigorous evaluation, with 37 developers
assess- ing 36,039 reviews across 25 apps. We further
compared these evaluations with the results obtained from
Radiation.

While some studies compared different evaluation
methods, this was not feasible for Radiation in general, as
none of the existing techniques focused on functionality
deletion. However, for selecting classifier and topic mod-
eling techniques, we made the comparisons, as discussed
in Sect. 4.

Requirements Engineering	

9.2 � Release planning and mobile apps

Release planning is a well-established practice in software
requirements engineering [49, 69]. Numerous studies have
explored various aspects of this critical phase, delving into
prioritizing features, resource allocation, and decision-mak-
ing processes within release planning. Release planning is
often being addressed as a search problem [70]. These inves-
tigations contribute valuable insights to enhance the effec-
tiveness and efficiency of software release planning strate-
gies. To gain a comprehensive under- standing of the overall
state of release planning, we leveraged existing systematic
literature reviews. Achimugu et al. [71]. identified 73 papers
in the context of require- ment prioritization and planning in
their systematic literature study, while Riegel and Doerr [72]
analyzed 83 papers. Notably, these two studies had 15 papers
in common, and we carefully reviewed them by inspecting
the abstracts. However, none of these papers mentioned or
considered feature deletions. Similarly, the studies gathered
by Svahnberg et al. [62] also did not address the deletion of
features.

Similarly, starting from the existing systematic litera-
ture review [12, 73, 74], numer- ous studies in the realm
of mobile apps have addressed the planning and prioritiza-
tion of requirements for decisions regarding additions to the
next release. However, none have delved into the discus-
sion of the deletion of app features. Our search within the
recent body of literature has yielded no papers considering
the deletion of mobile apps other than those from our own
research, which we elaborate on in this study. How- ever, a
number of studies have discussed the requirements prior-
itization along with the need for release planning [29, 59,
75–77]. The current literature primarily addresses different
user requests in app evolution, while our study focuses on a
functionality deletion—and its triggers.

10 � Future work

Overall, the main goal of future research will be to better
understand the deletion of functionality as part of software
evolution, also beyond mobile apps. One key motivation for
the paper comes from the observation that current release
planning in general [5] and in particular for mobile apps [12,
29] is exclusively focused on feature addition. Planning in
consideration of both addition and deletion of functionality
requires revisiting the planning objective(s). Clearly, dele-
tion consumes development effort as well. While we took the
first step toward understanding functionality deletion, future
work involves contextualizing the results for specific pro-
jects and development teams. Besides a more comprehen-
sive empirical evaluation in general, we also target trade-off

analysis between measuring the evolving maintenance effort
and functionality deletions.

In addition, we will work on improving the performance
of our recommendations by updating the machine learning
techniques and features and tuning the model (for instance,
by more in-depth analysis of similarity). We relied on the
highly per- formed methods discussed in the literature and
did not re-evaluate the performance of the learners. We do
not argue these techniques are the most optimal and highest-
performing methods possible. Rather, as the first study on
recommending feature deletion in app releases, we focused
on exploring the possibility of deletion rec- ommendations,
their usefulness, and the ease of explanation to the users and
the developers.

As the first study on predicting deletions based on user
reviews, our target was to examine if the deletion prediction
is possible rather than to highly optimize the per- formance
of the approach. This is an essential step before taking
further steps to plan these deletions. Based on the current
state-of-the-art results, we do not expect that a benchmark
of different classifiers would significantly improve the per-
formance of our approach. The results of our survey with
practitioners show a systematic approach toward planning
deletions in mobile apps, combined with the measurement of
a variety of factors (see Fig. 8 and Table 5). This discussion
explores the possibility and poten- tial of planning for dele-
tions in the software development life cycle. Recognizing
the importance of systematically considering the removal of
features adds a new dimension to release planning, empha-
sizing a holistic approach that encompasses both additions
and deletions to enhance overall product development and
maintenance strategies.

11 � Conclusions

Lehman’s law on continuous growth of functionality does
not universally apply. In the domain of mobile apps, devel-
opers frequently delete functionality—be it to fix bugs,
maintain compatibility, or improve the user experience. We
performed a study with app users to confirm the potential
value of deletions also from their perspective. We suggested
that the process of selecting the functionality to be deleted
can be automated, as demonstrated by our Radiation rec-
ommendation system. Radiation analyses the UI elements
of the app and the reviews and recommends if the UI ele-
ment and its functionality shall be deleted or not. We further
conducted a study with users to understand their perception
of the features recommended for deletion by our method.
Additionally, our survey with developers revealed that they
carefully plan when deciding to remove a feature, with user
and usage data playing a crucial role in these decisions. This
is the first study to investigate the prediction of functionality

	 Requirements Engineering

deletion in software evolution. It opens the door towards a
better understanding of software evolution, in particular in
an important domain such as mobile app development. In the
days of Lehman’s studies, features such as user experience,
screen space, or energy consumption were not as crucial as
they are today; it may be time to revisit and refine Lehman’s
findings.

Data availability  The related artifacts of this paper are available at
https://​github.​com/ maleknaz/Radiation. The data of mobile apps are
subjected to Google Play copyright, and hence, we cannot openly
provide access to them. Our dataset is hosted on GitHub to ensure
maintainability and ease of updates while adhering to the legal terms
appli- cable to data hosted on mobile app marketplaces. The data was
collected exclusively for this study, with no commercial or proprietary
use intended, and has been managed in accordance with the relevant
terms and conditions. To request access to the dataset, please contact
us directly. Each request will be evaluated individually to ensure full
compliance with all legal requirements.

Code availability  We used three primary tools and their associated code
in the RADIATION steps S1 to S7 [19, 26, 31], as referenced through-
out the paper. We foresee future research investing in the improved
performance of these technologies.

References

	 1.	 Lehman MM (1996) Laws of software evolution revisited. In:
Montangero C (ed) Software Process Technology. Springer Berlin
Heidelberg, Berlin, pp 108–124

	 2.	 Buschmann, F. (2010) Learning from failure, part 2: featuritis,
performitis, and other diseases. IEEE software 27(1)

	 3.	 Shmueli O, Ronen B (2017) Excessive sof tware
development:practices and penalties. Int J Project Manage
35(1):13–27

	 4.	 Greer D, Ruhe G (2004) Software release planning: an evolution-
ary and iterative approach. Inf Softw Technol 46(4):243–253

	 5.	 Ruhe, G. (2010) Product Release Planning: Methods, Tools and
Applications. CRC Press, ???

	 6.	 Gong, J., Tarasewich, P., et al. (2004) Guidelines for handheld
mobile device interface design. In: Proceedings of DSI 2004
Annual Meeting, pp. 3751–3756

	 7.	 Nayebi, M., Kuznetsov, K., Chen, P., Zeller, A., Ruhe, G.: Anat-
omy of functionality deletion for mobile apps. In: 2018 IEEE 15th
International Working Conference on Mining Software Reposito-
ries (MSR), p. (2018). IEEE

	 8.	 Thompson DV, Norton MI (2011) The social utility of feature
creep. J Mark Res 48(3):555–565

	 9.	 Thompson DV, Hamilton RW, Rust RT (2005) Feature fatigue:
when product capabilities become too much of a good thing. J
Mark Res 42(4):431–442

	10.	 Nayebi, M., Farrahi, H., Ruhe, G. (2016) Analysis of marketed
versus not-marketed mobile app releases. In: Proceedings of the
4th International Workshop on Release Engineering, pp. 1–4,
ACM

	11.	 Nayebi, M., Kuznetsov, K., Zeller, A., Ruhe, G. (2023) User
driven functionality deletion for mobile apps. Proceedings of 31st
International Conference on Requirements Engineering

	12.	 Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M. (2016) A
survey of app store analysis for software engineering. IEEE Trans-
actions on Software Engineering, 1–1

	13.	 Nayebi, M., Cho, H., Farrahi, H., Ruhe, G. (2017) App store min-
ing is not enough. In: Proceedings of the 39th International Con-
ference on Software Engineering Companion. ACM

	14.	 Di Sorbo, A., Panichella, S., Alexandru, C.V., Shimagaki, J., Vis-
aggio, C.A., Canfora, G., Gall, H.C. (2016) What would users
change in my app? summarizing app reviews for recommend-
ing software changes. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 499–510. ACM

	15.	 Pagano, D., Maalej, W. (2013) User feedback in the appstore: An
empirical study. In: Requirements Engineering Conference (RE),
2013 21st IEEE International, pp. 125–134. IEEE

	16.	 Licorish, S.A., Tahir, A., Bosu, M.F., MacDonell, S.G. (2015) On
satisfying the android os community: User feedback still central
to developers’ portfolios. In: 2015 24th Australasian Software
Engineering Conference, pp. 78–87. IEEE

	17.	 Di Sorbo, A., Panichella, S., Alexandru, C.V., Visaggio, C.A.,
Canfora, G. (2017) Surf: Summarizer of user reviews feedback.
In: Proceedings of the 39th International Conference on Software
Engineering Companion, pp. 55–58. IEEE Press

	18.	 Palomba, F., Linares-V´asquez, M., Bavota, G., Oliveto, R., Di
Penta, M., Poshy- vanyk, D., De Lucia, A. (2015) User reviews
matter! Tracking crowdsourced reviews to support evolution
of successful apps. In: Software Maintenance and Evolution
(ICSME), 2015 IEEE International Conference On, pp. 291–300.
IEEE

	19.	 Palomba F, Linares-Vásquez M, Bavota G, Oliveto R, Di Penta
M, Poshyvanyk D, De Lucia A (2018) Crowdsourcing user
reviews to support the evolution of mobile apps. J Syst Software
137:143–162

	20.	 Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora,
G., Gall, H.C. (2015) How can I improve my app? Classifying
user reviews for software maintenance and evolution. In: Software
Maintenance and Evolution (ICSME), 2015 IEEE International
Conference On, pp. 281–290. IEEE

	21.	 Ciurumelea, A., Schaufelbu¨hl, A., Panichella, S., Gall, H.C.:
Analyzing reviews and code of mobile apps for better release
planning. In: Software Analysis, Evolu- tion and Reengineer-
ing (SANER), 2017 IEEE 24th International Conference On, pp.
91–102 (2017). IEEE

	22.	 Martens D, Maalej W (2019) Release early, release often, and
watch your users’ emotions: lessons from emotional patterns.
IEEE Softw 36(5):32–37

	23.	 Khalid H, Shihab E, Nagappan M, Hassan AE (2014) What do
mobile app users complain about? IEEE Softw 32(3):70–77

	24.	 Wieringa RJ (2014) Design Science Methodology for Information
Systems and Software Engineering. Springer Berlin Heidelberg,
Berlin. https://​doi.​org/​10.​1007/​978-3-​662-​43839-8

	25.	 Engström E, Storey MA, Runeson P, Höst M, Baldassarre MT
(2020) How software engineering research aligns with design sci-
ence: a review. Empirical Software Eng 25(4):2630–2660

	26.	 Avdiienko, V., Kuznetsov, K., Rommelfanger, I., Rau, A., Gorla,
A., Zeller, A. (2017) Detecting behavior anomalies in graphical
user interfaces. In: Proceedings of the 39th International Confer-
ence on Software Engineering Companion, pp. 201–203. IEEE
Press

	27.	 Pfleeger SL, Kitchenham BA (2001) Principles of survey research:
part 1: turning lemons into lemonade. ACM SIGSOFT Software
Eng Notes 26(6):16–18

	28.	 Berenbach, B., Paulish, D.J., Kazmeier, J., Rudorfer, A. (2009)
Software & Systems Requirements Engineering: in Practice.
McGraw-Hill Education, ???

	29.	 Villarroel, L., Bavota, G., Russo, B., Oliveto, R., Di Penta, M.
(2016) Release planning of mobile apps based on user reviews.
In: proceedings of the 38th International Conference on Software
Engineering, pp. 14–24. ACM

https://github.com/
https://doi.org/10.1007/978-3-662-43839-8

Requirements Engineering	

	30.	 Gu, X., Kim, S. (2015) What parts of your apps are loved by
users? In: automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference On, pp. 760–770. IEEE

	31.	 Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B. (2014) AR-miner:
mining informative reviews for developers from mobile app mar-
ketplace. In: Proceedings of the 36th International Conference on
Software Engineering, pp. 767–778. ACM

	32.	 Maalej, W., Nabil, H. (2015) Bug report, feature request, or simply
praise? on auto- matically classifying app reviews. In: 2015 IEEE
23rd International Requirements Engineering Conference (RE),
pp. 116–125. IEEE

	33.	 Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora,
G., Gall, H.C. (2016) Ardoc: app reviews development oriented
classifier. In: proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp.
1023–1027. ACM

	34.	 Smedt TD, Daelemans W (2012) Pattern for python. J Mach Learn
Res 13:2063–2067

	35.	 Mirzaei N, Malek S, Păsăreanu CS, Esfahani N, Mahmood R
(2012) Testing android apps through symbolic execution. ACM
SIGSOFT Software Engineering Notes 37(6):1–5

	36.	 Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M. (2005) Sharing
clusters among related groups: Hierarchical dirichlet processes.
In: advances in Neural Information Processing Systems, pp.
1385–1392

	37.	 Palomba, F., Salza, P., Ciurumelea, A., Panichella, S., Gall, H.,
Ferrucci, F., De Lucia, A. (2017) Recommending and localiz-
ing change requests for mobile apps based on user reviews. In:
Proceedings of the 39th International Conference on Software
Engineering, pp. 106–117. IEEE Press

	38.	 Blei, D.M., Ng, A.Y., Jordan, M.I. (2003) Latent dirichlet alloca-
tion. Journal of machine Learning research 3(Jan), 993–1022

	39.	 Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A.,
Rubin, D.B. (2014) Bayesian Data Analysis vol. 2. CRC press
Boca Raton, FL, ???

	40.	 Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J.L., Blei, D.M.
(2009) Reading tea leaves: How humans interpret topic models.
In: Advances in Neural Information Processing Systems, pp.
288–296

	41.	 Bhatia, S., Lau, J.H., Baldwin, T. (2017) An automatic approach
for document-level topic model evaluation. arXiv preprint arXiv:​
1706.​05140

	42.	 Kitchenham, B.A., Pfleeger, S.L. (2008) Personal opinion sur-
veys. In: Guide to Advanced Empirical Software Engineering, pp.
63–92. Springer, ???

	43.	 Xu Q, Jiao RJ, Yang X, Helander M, Khalid HM, Opperud A
(2009) An analytical kano model for customer need analysis. Des
Stud 30(1):87–110

	44.	 Begel, A., Zimmermann, T. (2014) Analyze this! 145 questions for
data scientists in software engineering. In: Proceedings of the 36th
International Conference on Software Engineering, pp. 12–23.
ACM

	45.	 Nayebi M, Ruhe G (2018) Asymmetric release planning: compro-
mising satisfaction against dissatisfaction. IEEE Trans Software
Eng 45(9):839–857

	46.	 Guzman, E., Maalej, W. (2014) How do users like this feature? a
fine grained senti- ment analysis of app reviews. In: 2014 IEEE
22nd International Requirements Engineering Conference (RE),
pp. 153–162. Ieee

	47.	 Sheskin, D.J. (2003) Handbook of Parametric and Non-parametric
Statistical Proce- dures. CRC Press, ???

	48.	 Powers, D.M. (2011) Evaluation: from precision, recall and
f-measure to roc, informed- ness, markedness and correlation

	49.	 Ruhe, G.: Software release planning. In: Handbook Of Soft-
ware Engineering and Knowledge Engineering: Vol 3: Recent
Advances, pp. 365–393. World Scientific, ??? (2005)

	50.	 Ngo-The A, Ruhe G (2008) Optimized resource allocation for soft-
ware release planning. IEEE Trans Software Eng 35(1):109–123

	51.	 Bagnall AJ, Rayward-Smith VJ, Whittley IM (2001) The next
release problem. Inf Softw Technol 43(14):883–890

	52.	 Zhang, Y., Harman, M., Mansouri, S.A. (2007) The multi-objec-
tive next release prob- lem. In: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, pp.
1129–1137

	53.	 Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A
study of the bi- objective next release problem. Empir Softw Eng
16:29–60

	54.	 Runeson P, H¨ost M (2009) Guidelines for conducting and report-
ing case study research in software engineering. Empirical Soft-
ware Eng 14(2):131

	55.	 Zimmermann T (2016) Card-sorting. Perspectives on Data Sci-
ence for Software Engineering. Elsevier, pp 137–141

	56.	 Kitchenham B, Pfleeger SL (2002) Principles of survey research:
part 5: populations and samples. ACM SIGSOFT Software Engi-
neering Notes 27(5):17–20

	57.	 Nayebi, M., Farrahi, H., Ruhe, G. (2017) Which version should be
released to app store? In: ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM),
pp. 324–333. IEEE

	58.	 Shrikanth, N.C., Menzies, T. (2020) Assessing practitioner beliefs
about software defect prediction. In: Proceedings of the ACM/
IEEE 42nd ICSE-SEIP

	59.	 Nayebi, M., Adams, B., Ruhe, G. (2016) Release practices for
mobile apps–what do users and developers think? In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, pp. 552–562. IEEE

	60.	 Shihab, E., Bird, C., Zimmermann, T. (2012) The effect of branch-
ing strategies on software quality. In: ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 301–310. ACM

	61.	 Ray, B., Nagappan, M., Bird, C., Nagappan, N., Zimmermann, T.
(2015) The uniqueness of changes: Characteristics and applica-
tions. In: Mining Software Repositories (MSR), 2015, pp. 34–44.
IEEE

	62.	 Svahnberg M, Gorschek T, Feldt R, Torkar R, Saleem SB,
Shafique MU (2010) A systematic review on strategic release
planning models. Inf Softw Technol 52(3):237–248

	63.	 Ameller, D., Farr´e, C., Franch, X., Rufian, G.: A survey on soft-
ware release planning models. In: Product-Focused Software Pro-
cess Improvement: 17th International Conference, PROFES 2016,
Trondheim, Norway, November 22–24, 2016, Proceedings 17, pp.
48–65 (2016). Springer

	64.	 Zimmermann, T., Premraj, R., Zeller, A. (2007) Predicting defects
for eclipse. In: Pro- ceedings of the Third International Workshop
on Predictor Models in Software Engineering, p. 9. IEEE Com-
puter Society

	65.	 Nagappan, N., Ball, T. (2005) Use of relative code churn measures
to predict system defect density. In: Software Engineering, 2005.
ICSE 2005. Proceedings. 27th International Conference On, pp.
284–292. IEEE

	66.	 Murphy-Hill, E., Zimmermann, T., Bird, C., Nagappan, N. (2013)
The design of bug fixes. In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 332–341. IEEE Press

	67.	 Iacob, C., Harrison, R. (2013) Retrieving and analyzing mobile
apps feature requests from online reviews. In: Mining Software
Repositories, 2013 10th IEEE Working Conference On, pp.
41–44. IEEE

	68.	 Gao, C., Wang, B., He, P., Zhu, J., Zhou, Y., Lyu, M.R. (2015)
Paid: Prioritizing app issues for developers by tracking user
reviews over versions. In: Software Reliability Engineering
(ISSRE), 2015 IEEE 26th International Symposium On, pp.
35–45. IEEE

http://arxiv.org/abs/1706.05140
http://arxiv.org/abs/1706.05140

	 Requirements Engineering

	69.	 Ruhe G, Saliu MO (2005) The art and science of software release
planning. IEEE Softw 22(6):47–53

	70.	 Harman M, Mansouri SA, Zhang Y (2012) Search-based software
engineering: trends, techniques and applications. ACM Comput-
ing Surveys (CSUR) 45(1):1–61

	71.	 Achimugu P, Selamat A, Ibrahim R, Mahrin MN (2014) A sys-
tematic literature review of software requirements prioritization
research. Inf Softw Technol 56(6):568–585

	72.	 Riegel, N., Doerr, J. (2015) A systematic literature review of
requirements prioritization criteria. In: Proceedings Conference
on Requirements Engineering: Foundation for Software Quality,
pp. 300–317. Springer

	73.	 Dabrowski J, Letier E, Perini A, Susi A (2022) Analysing app
reviews for software engineering: a systematic literature review.
Empir Softw Eng 27(2):43

	74.	 Genc-Nayebi N, Abran A (2017) A systematic literature review:
opinion mining studies from mobile app store user reviews. J Syst
Softw 125:207–219

	75.	 Scalabrino S, Bavota G, Russo B, Di Penta M, Oliveto R (2017)
Listening to the crowd for the release planning of mobile apps.
IEEE Trans Software Eng 45(1):68–86

	76.	 Keertipati, S., Savarimuthu, B.T.R., Licorish, S.A. (2016)
Approaches for prioritizing feature improvements extracted from
app reviews. In: Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering, pp. 1–6

	77.	 Malgaonkar S, Licorish SA, Savarimuthu BTR (2022) Prioritizing
user concerns in app reviews–a study of requests for new features,
enhancements and bug fixes. Inf Softw Technol 144:106798

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	Recommending and release planning of user-driven functionality deletion for mobile apps
	Abstract
	1 Introduction
	2 Background: software functionality deletions
	3 Problem conceptualization: importance of feature deletions to users
	4 Solution design
	5 Empirical validation of radiation
	5.1 Protocols for internal validation of radiation recommendations with developers (RQ1-1)
	5.2 Protocols for external validation of radiation with software developers (RQ1-2)
	5.3 Protocols for external validation of radiation with users

	6 Validation results
	6.1 Results of internal validation of solution approach
	6.2 Results of external evaluation with software developers (RQ2)
	6.3 Results of external validation of radiation with users

	7 Reflection: status que and possibility of incorporating deletions in the release decisions
	7.1 Protocols
	7.2 Results: developers’ perception and implications of deletions in release planning

	8 Discussion on threats to validity
	8.1 Construct validity—are we measuring the right things?
	8.2 Conclusion validity- are we drawing the right conclusion about treatment and outcome relation?
	8.3 Internal validity—can we be sure that the treatment indeed caused the outcome?
	8.4 External validity—can the results be generalized beyond the scope of this study?

	9 Related work
	9.1 User reviews to support apps’ evolution
	9.2 Release planning and mobile apps

	10 Future work
	11 Conclusions
	References

