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Abstract
Goal-oriented requirements engineering aims to describe both stakeholders and system goals and their relationships using 
goal models. Large goal models for complex systems are often constructed from sub-models describing various stakehold-
ers’ views and context-related aspects. These goal-oriented sub-models, also called views, may exhibit overlaps and present 
discrepancies. Hence, integrating such views is considered a significant barrier to the construction of a unified goal model. 
Current approaches to merging goal models require intensive human intervention. This paper proposes an approach and a 
prototype tool, called GRLMerger, to integrate two GRL (Goal-oriented Requirement Language) models into one consoli-
dated model that is correct, complete, and free from any conflict that may arise during the merging process. GRLMerger 
considers both syntactic and semantic aspects of the GRL models and allows analysts to merge them either interactively or in 
a fully automated mode. GRLMerger employs natural language processing (NLP) techniques to match intentional elements 
based on their semantic similarity. The proposed GRLMerger approach and tool have been validated using 12 experimental 
tasks derived from two case studies, exhibiting very promising performance.

Keywords  Goal-oriented modeling · Goal-oriented Requirement Language (GRL) · Integration · Matching · Merging · 
Semantics · Natural language processing

1  Introduction

Stakeholders’ requirements are continuously growing which 
increases the systems’ size and complexity [33]. Require-
ments models have emerged as a promising solution to cope 
with software complexity by modeling various software 
aspects at several levels of abstraction. Requirements mod-
els are often constructed incrementally by describing several 
system aspects, e.g., behavioral, functional/non-functional 
aspects, and merging partial viewpoints into a unified view, 

while resolving any conflicts that may arise. In practice, sev-
eral versions of a given requirement artifact are built [27] 
in order to cope with new or changing business needs, new 
technological advances, etc. In addition, partial models (also 
called sub-models) may be developed by different teams 
within an organization. A partial model reflects the view-
points of the team who developed it [4, 5]. Moreover, these 
sub-models are built gradually to help grasp the problem 
domain [11]. Later, these partial models have to be merged 
to obtain a complete and comprehensive model. However, 
this task is faced with many challenges including choosing 
an appropriate level of granularity, conflicting stakeholders’ 
intentions, the usage of different vocabularies, the presence 
of inconsistent viewpoints, and semantic flaws [4, 5, 40].

A common starting point in requirements engineering 
(RE) activities is the elicitation of stakeholders’ high-level 
goals and intentions regarding the targeted system. Goal 
models are meant to describe both stakeholders and sys-
tem goals and their relationships. Over the years, numerous 
goal modeling languages have been developed. Some of the 
famous and widely used ones are i* [46], Keep All Objects 
Satisfied (KAOS) [41], the Non-Functional Requirements 
(NFR) Framework [7], Tropos [14], and the Goal-Oriented 
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Requirements Language (GRL) [19] part of the ITU-T’s 
User Requirements Notation (URN) standard. Large goal 
models are often constructed from sub-models describing 
various stakeholders’ views and context-related aspects. 
These goal-oriented sub-models, also called partial views, 
may exhibit overlaps and present discrepancies. Hence, inte-
grating such views is considered a significant barrier to the 
construction of a unified goal model [40].

Merging goal models is essential when introducing new 
stakeholders, integrating new technologies in a business 
environment [2], maintaining existing business process 
models [11], updating current software products [3], and 
integrating quality aspects, into existing goal models [24, 
25]. Although some approaches have been proposed to inte-
grate goal models [2, 12, 13, 24, 39, 40], goal model inte-
gration still presents many serious challenges such as the 
usage of different vocabularies, the presence of stakeholders 
conflicts, the lack of traceability, the presence of inconsistent 
viewpoints, and the emergence of semantic flaws [5, 40]. 
Furthermore, most of the goal model integration techniques 
are manual and require heavy human intervention, which 
makes them error-prone and hence reduces their adoption.

Therefore, the ultimate goal of this research is to develop 
an approach to automate the integration of partial goal mod-
els, ensure the correctness and completeness of the inte-
grated model, and mitigate any conflict that may arise among 
the merged partial views. In this research, the Goal-Oriented 
Requirements Language (GRL) [19] was used as our target 
goal-oriented language given its status as an international 
standard [19].

In this paper, we make the following contributions: 

1.	 Propose the GRLMerger approach to merge two GRL 
models automatically. Merging goal models is necessary 
not only when building a unified goal model in the early 
elicitation of stakeholders’ goals, but also when main-
taining goal models. GRLMerger considers both syn-
tactic and semantic aspects of the GRL models. GRLM-
erger employs NLP (Natural Language Processing) 
techniques to match the GRL constructs based on their 
semantic similarities.

2.	 A prototype tool, named GRLMerger after the proposed 
approach. The tool offers modelers/maintainers/analysts 
the possibility to merge GRL models either in a full-
automated way or in an interactive way, giving the user 
more control over the integration decisions. The tool is 
published publicly as a Python package.1

3.	 Validate the proposed GRLMerger approach using three 
experiments. A total of 24 TGRL models (derived from 
two case studies) were used in 12 integration cases, and 

evaluated in terms of correctness, completeness, and 
freeness from errors.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background for this research 
with a brief introduction to the Goal-oriented Requirement 
Language (GRL) [19] and its textual version TGRL nota-
tion. Section 3 presents existing work related to merging 
goal models. Section 4 describes the proposed GRLMerger 
approach, while Sect. 5 presents the GRLMerger tool. In 
Sect. 6, we evaluate the proposed approach and tool using 
three experiments. An overview of the limitations of GRLM-
erger, some practical insights to help practitioners apply and 
adjust GRLMerger to their needs, and a discussion of the 
potential threats to validity are provided in Sect. 7. Finally, 
conclusions and future work are presented in Sect. 8.

2 � Research background

This section introduces the basic background of this 
research. It is organized around three main themes: (1) 
model management in the context of model integration, (2) 
the Goal-oriented Requirements Language (GRL) and its 
textual representation, and (3) the techniques to compute 
text similarity.

2.1 � Model management

Software systems are usually described using informal, 
semi-formal, or formal models [27]. Models are used to 
describe software systems at various levels of abstraction. 
They constitute software artifacts from the problem space 
(where they capture the requirements of the system under 
development) to the solution space (where they specify the 
design, development, and deployment of the final software 
product) [4]. Examples of models include, among others, 
control flow diagrams, ontologies, object diagrams, business 
process models, and form definitions [29]. In practice, these 
models are developed by different modelers and describe 
partial views of the system under development. Furthermore, 
multiple versions of a given model may be developed and 
maintained due to the changing nature of requirements and 
the inclusion of various stakeholders’ viewpoints. Hence, 
consolidating such models is essential [29] to maintain a 
consistent view of the modeled system [27].

Model management aims to find the relationship 
between models in a systematic way [35]. This can be 
achieved by a set of algebraic operators [4, 29, 35]. These 
operators are generic as they can be applied to differ-
ent problem domains [29]. However, their implemen-
tation is tailored to the model’s type and applications 
[37]. Some of the major model management operators 1  https://​pypi.​org/​proje​ct/​GRLMe​rger/.

https://pypi.org/project/GRLMerger/
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are Match, Merge, Diff, Extract, Transform, and Compose 
[28–30].

In the context of model integration, given two or more 
input models, the Match operator aims to discover the rela-
tionships between the models’ elements and creates a map-
ping between them. More specifically, it establishes a corre-
spondence between similar/equivalent elements of the input 
models. Such elements are then fed to the Merge operator 
along with the input models, resulting in a merged model 
with no duplication of the matched elements. Other use-
ful operators for model integration include: the Compose 
operator, which composes two or more element mappings, 
the Diff operator which takes as input two models and finds 
the differences between them (if any), the Extract operator 
returns a portion of a model that participates in a mapping, 
and the Transform operator copies the elements that have 
not been matched with the other elements into the merged 
model. Besides the major operators, there are other opera-
tors that can support them in solving model evolution and 
integration, such as Split, Slice, Patch, and Propagate [29].

2.2 � Goal‑oriented Requirements Language (GRL)

Goal-oriented Requirements Language (GRL) is a visual 
modeling language used for capturing and representing the 
goals and requirements of socio-technical systems [11, 26]. 
The primary goal of GRL is to help stakeholders of a system 
define and understand its high-level goals and requirements 
in a structured and systematic way [9, 26]. In addition, GRL 
enables stakeholders to identify and analyze the trade-offs 
between different requirements alternatives, which is particu-
larly important when dealing with complex systems having 
competing objectives. The GRL language has been standard-
ized by the International Telecommunication Union (ITU-T), 
as part of the User Requirements Notation (URN) [19].

In what follows, we introduce the main GRL constructs 
using a simple GRL model of a tiny online shopping busi-
ness. This example will be used throughout the paper to 
illustrate various model integration configurations. The 
GRL model, built using the jUCMNav [20] tool and illus-
trated in Fig. 1, is composed of one GRL actor Business 
Owner. Actors (illustrated as ) represent the stakeholders 
who are involved in the interaction with the system. They 
can be human or non-human entities. The Business Owner 
encloses many intentional elements of different types. For 
instance, Offer Online Shopping, Ensure Authentication, 
and Provide Identification are GRL goals (illustrated as )  
stating the desired outcomes of the actor, while Increase 
Sales and Have System Security are GRL softgoals (illus-
trated as ) representing non-functional requirements or 
quality attributes.

Intentional elements are linked to each other using 
decompositions (illustrated as ), dependencies 
(illustrated as ), and contribution links (illustrated 
as ). For instance, goal Ensure Authentication is 
decomposed, using an OR-decomposition, into three 
tasks (illustrated as ), describing the actions required 
to achieve a particular goal, softgoal or another task, 
namely, Use Fingerprint, Use Card-key, and Use Pass-
word. In addition, task  Access Authorization is decom-
posed, using AND-decomposition, into two goals Ensure 
Authentication and Provide Identification. An AND-
decomposition is used when all child-elements shall be 
satisfied in order to satisfy the parent goal. An OR-decom-
position is used when at least one of the child-elements 
shall be satisfied in order to satisfy the parent goal, while 
an XOR-decomposition requires the fulfillment of only one 
of the alternatives.

Intentional elements can be connected using contribu-
tion links expressing the impact (positive or negative, at 
different levels of sufficiency) of the source element on 
a target element. The qualitative contribution types of a 
contribution link can fall into one of the following cat-
egories [19]:

–	 Make ( ): The contribution is positive and sufficient.
–	 Help ( ): The contribution is positive but not sufficient.
–	 SomePositive ( ): The contribution is positive, but the 

extent of the contribution is unknown.

Fig. 1   GRL model: online shopping business
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–	 Unknown ( ): There is some contribution, but the 
extent and degree (positive or negative) of the contri-
bution is unknown.

–	 SomeNegative ( ): The contribution is negative, but the 
extent of the contribution is unknown.

–	 Break ( ): The contribution of the contributing element 
is negative and sufficient.

–	 Hurt ( ): The contribution is negative but not sufficient.

A contribution link may also have a quantitative weight 
(e.g., an integer value within [ −100 , 100]). For instance, 
task Encryption contributes positively (i.e., Make, +100) 
to softgoal Have System Security, while goal Offer Online 
Shopping contributes positively (i.e., SomePositive, +75) to 
softgoal Increase Sales.

Dependencies are used to describe that one element is 
dependent (depender) on another element (dependee) to 
achieve its objectives. In Fig. 1, softgoal Increase Sales 
depends on resource Payment. Resources (illustrated as )  
represent physical or informational entities required to sat-
isfy goals/softgoals. Beliefs are conditions or design ration-
ales that can be attached to intentional elements, e.g., Biom-
etrics is no regular, off-the-shelf technology.

Actors and intentional elements may have a qualitative 
(e.g., High, Medium, Low, None) or quantitative (value 
between 0 and 100) importance. In Fig. 1, the goal Ensure 
Authentification has a High importance (shown as (100)).

In addition to its graphical notation, Abdelzad et al. [1] 
introduced a programming-like textual representation of 
GRL, called TGRL, in order to facilitate the analysis of 
GRL models and improve their usability and scalability [1]. 
TGRL is now part of the URN standard [19]. Figure 2 pre-
sents the TGRL specification that corresponds to the GRL 
model of Fig. 1. In this research, we implement our GRLM-
erger prototype tool for TGRL. For a complete description 
of the GRL language, interested readers are referred to the 
URN standard [19].

2.3 � Text similarity

Natural language processing (NLP) has emerged as a power-
ful tool for text similarity to solve many problems, such as 
information retrieval, answering questions, document clas-
sification, text clustering, and text summarization [10, 31]. 
Text similarity can be categorized into lexical-based similar-
ity and semantic-based similarity [15, 31].

2.3.1 � Lexical‑based similarity

The lexical-based similarity operates on the order of charac-
ters to decide whether two words are similar or not regard-
less of their meanings [15, 31]. That is, it is concerned with 
the syntax only [31]. The lexical-based similarity can be 
categorized into character-based similarity and term-based 
similarity [15, 31, 42].

–	 Character-based similarity A character-based similar-
ity measure calculates the similarity between two texts 
or documents based on the occurrence and frequency of 
shared characters or n-grams (sequences of n characters).

–	 Term-based similarity The algorithms under the term-
based similarity category compare two texts or docu-
ments based on the occurrence and frequency of shared 
terms or words [42].

2.3.2 � Semantic‑based similarity

The semantic-based similarity identifies the similarity between 
two texts or documents based on their semantic meaning, 
rather than just the occurrence of shared words or charac-
ters [31]. For instance, the two words ’gift’ and ’present’ are 
semantically similar and this can be concluded by the seman-
tic-based similarity measures. Since the lexical-based similar-
ity measures calculate the similarity on a literal level [42], they 
will not identify ’gift’ and ’present’ as similar due to differ-
ent spellings. The semantic-based similarity measures can be 
categorized into corpus-based and knowledge-based [15, 31].

–	 Corpus-based similarity Corpus-based similarity algo-
rithms use a large set of written or spoken texts, called 
corpus, to determine the similarity between words [15].

–	 Knowledge-based similarity The knowledge-based similar-
ity methods use a semantic network, such as WordNet, to 
find the semantic similarity between words [31]. WordNet 
is a large lexical database of English where it groups nouns, 
verbs, adjectives, and adverbs into sets of cognitive syno-
nyms called synsets [32].

One way to compute semantic-based similarity is by using 
distributional semantic models, such as word embeddings or 
sentence embeddings [38]. These models represent words or 
sentences as dense, low-dimensional vectors in a continuous 
space, where similar words or sentences are located close to 
each other. To measure the semantic similarity between two 
texts, their word or sentence embeddings are first calculated, 
and then a similarity score is computed based on the distance 
or angle between the vectors. A vector is the numerical repre-
sentation of a word or a set of words in a space such that the 
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distribution of these numbers conserves the textual meaning 
[23]. To measure the similarity between vectors (i.e., embed-
ding), the most common similarity metric is to find the cosine 
of the angle between two vectors [21]. It can be computed as 
follows:

Word embedding models do not perform well in representing 
the meaning of a full sentence [8]. To overcome the issues 
of the word embedding models, several state-of-the-art sen-
tence embedding models were proposed. Some of the latest 
state-of-the-art sentence embedding models are InferSent 
[8], Universal Sentence Encoder [6], and SBERT (Sentence 
Bidirectional Encoder Representations from Transformers) 
[38]. However, SBERT outperformed InferSent and Uni-
versal Sentence Encoder. SBERT is a modification to the 
pre-trained BERT network that creates the embedding of 
sentences with semantic meaning using Siamese and triplet 

(1)cos(v1, v2) =
v1 ⋅ v2

|v1| ∗ |v2|

network architectures [38]. The sentence embeddings can be 
compared using cosine similarity as well. In this paper, we 
use SBERT as our Word embedding model.

3 � Related work

Several approaches have been proposed to integrate goal 
models [2, 3, 13, 16, 26, 39]. Sabetzadeh and Easterbrook 
[39] proposed an algebraic framework to merge early i* 
[46] views. Their approach was inspired by categorical 
algebra and treated early i* views as structured objects, 
and the relationships between them as structural map-
pings. A three-way merge was used to build a consoli-
dated view that contains their common parts. The authors 
presented general algorithms that use partially ordered sets 
(i.e., posets) to merge typed graphs. The authors claimed 
that the poset-annotated graphs, are capable of modeling 
incompleteness and inconsistency graph-based views, 
while ensuring full traceability with the partial views. A 
tiny i* example was for illustration. Hence, the applica-
bility of the approach to real i* models remains untested. 
Furthermore, the approach is fully manual, making it 
error-prone and limiting its adoption.

Feng et  al. [13] presented an approach for merging 
semantic similar goal models of networked software sys-
tems. The authors [13] used the Role-Goal-Process-Ser-
vice (RGPS) framework [43] to represent functional goals, 
where each goal is described using (1) a verb to indicate 
the operation, (2) a noun that indicates the object with 
which the operation deals, and (3) the manner, a prefix or 
a suffix that indicates how operation manipulates/impacts 
the object. Their approach is triggered when there exists 
a merging point which is specified by having an overlap 
point (i.e., a pair of goals having semantic similarity) of 
the root elements of two models. In addition, the authors 
define three basic merging patterns, namely, AND-AND, 
OR-OR, and AND-OR patterns, to merge atomic goal 
models. The approach suffers from many limitations: 
(1) the merging is done manually and requires analyst 
judgment to ensure consistency and correctness, (2) no 
merging is performed in case of an overlap of non-root 
elements, (3) only AND/OR goal refinements were consid-
ered, other goal modeling constructs such as dependencies, 
and contributions links (present in goal-oriented notations 
like i* [46] and GRL [19]) are not considered, and (3) to 
resolve AND-OR merging conflict, goals may be dupli-
cated. Contrary to this approach, our proposed GRLMerger 
approach resolves conflicts in decomposition types without 
duplicating the child elements.

In the context of new technology integration in busi-
ness environments, Baslyman and Amyot [2] proposed 

grl OnlineShopping {
actor businessOwner {

name = "Business Owner";
softGoal increaseSales {

name = "Increase Sales";
}
softGoal systemSecurity {

name = "Have System Security";
}
goal onlineShopping {

name = "Offer Online Shopping";
}
goal ensureAuthentication {

name = "Ensure Authentication";
decompositionType = or;
importance = high;

}
goal provideIdentification {

name = "Provide Identification";
}
goal accessAuthorization {

name = "Access Authorization";
decompositionType = and;

}
task encryption {

name = "Encryption";
}
task fingerprint {

name = "Use Fingerprint";
}
task password {

name = "Use Password";
}
task cardkey {

name = "Use Card-key";
}
belief biometric {

name = "Biometrics belief";
description = "Biometrics is no regular,

off-the-shelf technology";
}
onlineShopping contributesTo increaseSales {somePositive;};
systemSecurity contributesTo onlineShopping {somePositive;};
accessAuthorization contributesTo systemSecurity {make;};
encryption contributesTo systemSecurity {make;};
accessAuthorization decomposedBy ensureAuthentication, 

provideIdentification;
ensureAuthentication decomposedBy fingerprint, password, 

cardkey;
increaseSales dependsOn payment;

}
resource payment {

name = "Payment";
}

}

Fig. 2   TGRL specification: online shopping business
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an integration method to merge GRL models with differ-
ent contexts. The method starts with experts identifying 
similarities and dissimilarities between the input models 
to be merged. The similarities are added to a similarity 
integrated goal model (SIGM), while the dissimilarities 
are added to a dissimilarity integrated goal model (DIGM). 
Traceability between SIGM, DIGM, and the input models 
are preserved using seven relationships, namely, S (Simi-
lar), TS (Transitive Similarity), DS (Dissimilar), C (Con-
flict), D (Different), N (New), and A (Approved). Finally, 
the integrated model is checked for consistency using 
OCL (Object Constraint Language) rules. In the last step, 
the analyst investigates the fully integrated goal model, 
and resolves any inconsistencies. Although the approach 
enables consistency analysis through OCL verification, it 
requires analyst intervention in all steps.

Contrary to the above-mentioned studies that focus on the 
integration of goal models of the same type, Beckers et al. 
[3] proposed a method trying to integrate SI* goal-based 
models with software problem frames. The former captures 
stakeholders’ goals, roles, tasks, and resources, while the 
latter describes the software development problems. The 
mapping of the elements in the SI* models to elements of 
the problem frame notation requires the intervention of a 
human expert, since it is not a one-to-one mapping and there 
may exist many options in problem frame elements that are 
mapped to one element from the SI* model. The proposed 
method can be used to find relations between goal-based and 
problem-based models, but the integration between them is 
not meaningful.

Liu et al. [26] presented the idea of combining reviews 
with a goal model aiming to support the evolution of 
mobile applications. First, the relationships between goals 
and reviews are analyzed and the relevancy between them 
is computed by comparing their contents. For this phase, 
an extensible vocabulary for each goal is established con-
sidering different terminologies used in the reviews to help 
establish a strong relationship; the output is a goal model 
GM with reviews (R-GM). Then, the user sentiments from 
reviews are introduced to the goal model to help developers 
determine which goals to be updated. This study emphasized 
the importance of considering different terminologies used 
for describing a goal.

The recent work by Hablutzel et al. [16] is the most 
closely related work to our proposed  GRLMerger 
approach. The authors [16] proposed a semi-automated 
approach for merging Tropos [14] goal models. They 
defined two operators, gullibility and consensus. The for-
mer moves actors and intentions, if they exist in one model 
only, to the merged model, while the latter combines simi-
lar actors or intentions in both models into one element in 
the merged model. Their approach merges the actors with 
their relationships first and resolves any contradiction; 

then, the intentions with their relationships are merged and 
then resolve any contradictions. Some of the contradiction 
cases such as different types of merged actors are resolved 
automatically and others are left to the user to make a suit-
able decision. Our GRLMerger approach merges the links 
(i.e., relations) after completing the merging of actors and 
intentional elements. This is because child elements con-
nected through the links of the merged parent elements 
could or could not be merged, which affects the process 
of link merging. Furthermore, their approach [16] is semi-
automatic and considers only the structural aspect of the 
GRL models, while GRLMerger is fully automated (an 
interactive option is also offered) and considers both the 
structure and the semantics of the GRL models.

Table 1 summarizes the comparison with related work. 
The comparison is based on the following criteria:

–	 Operator: denotes the operator used for the integra-
tion.

–	 Input: specifies the input to the used process.
–	 Output: specified the output generated from the operator.
–	 Automation: denotes whether the operator is fully auto-

mated, semi-automated, or manual.
–	 Notation/language: denotes the GORE model type.
–	 Language specific: specifies whether the approach can 

be applied to other types of goal models.
–	 Validation: presents the empirical method(s) conducted 

to validate the approach.
–	 Syntactic/semantic: denotes whether the approach is 

based on models syntactic similarities, semantic simi-
larities, or both.

The main ascertainment is the existence of one single study 
that proposed the integration of GRL models [2]. The major-
ity of the reviewed studies in Table 1 are manual [2, 3, 13, 
39], while only one is semi-automated [16] and two are fully 
automated [26, 39]. Moreover, none of the reported studies 
have described all processes required to integrate two goal 
models starting from matching until the automatic genera-
tion of a complete integrated model that is free from errors. 
Although Hablutzel et al. [16] automated the merging pro-
cess, the authors [16] did not consider the semantic matching 
between the intentional elements of Tropos goal models. The 
proposed GRLMerger approach covers all required opera-
tors: Match, Merge, Transform, and Refine.

It is worth noting that some of the proposed manual 
matching operators (i.e., map) are based on the goal model 
semantics [3, 24, 39]. However, these studies did not con-
sider the syntactical differences between the matched con-
structs. Ignoring these syntactical differences might cause 
conflicts in the resulting integrated model.

Furthermore, Feng et al. [13] defined three specific rules 
for handling the syntactical differences based on the goal 
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model semantics. The proposed GRLMerger approach deals 
with the syntactical differences via two modes: fully auto-
matically or semi-automatically, without restricting the user 
to specific constructs. Therefore, these two modes can be 
adapted to different languages (with minimal modifications).

4 � GRLMerger: the approach

In this section, we describe our proposed GRLMerger 
approach to merge GRL models, whose overview is given 
as a workflow diagram in Fig. 3.

GRL models can be considered as a graph with rich 
semantics, where nodes and edges are of different types. 
Nodes represent GRL intentional elements, e.g., goals, 
softgoals, tasks, etc., and edges represent GRL links, e.g., 
contributions, decompositions, dependencies, etc. To 
tackle the complexity arising from the richness and hetero-
geneity of elements and links, the GRLMerger approach 
divides the problem into three separate steps, where each 
step deals with the processing of one type of constructs, 
e.g., actors, intentional elements, and links. Indeed, as 
shown in Fig. 3, the proposed GRLMerger approach starts 
first by integrating the actor’s containers, followed by the 
integration of the intentional elements that are bound to 
the integrated actor’s containers, and finally proceeds with 
the integration of links. Each of these steps involves two 
major operators, match and merge. The match operator 
employs semantic similarity to match actor containers and 
intentional elements. The merge operator decides about 
the final output result of the matched elements. During the 
merge process of two GRL models, conflicts may arise, 
e.g., different intentional element types, different link 
types, and different attributes (e.g., importance values, 
descriptions, etc.). To automate the resolution of such con-
figuration conflicts, one of the two input GRL models is 
used as a base model. Therefore, a higher priority is given 
to the configuration of the selected base model, which is 
used as a reference model. The base model shall be spec-
ified by the user at the beginning and used throughout 
the whole merging process. Section 4.2 and 4.3 provides 
examples of resolving conflicts using the base model.

The proposed GRLMerger prototype tool (presented in 
Sect. 5) can be run in two modes: (1) fully automated 
mode and (2) interactive (semi-automated) mode. The 
fully automated mode uses a base model to resolve con-
flicts, while in the interactive approach the user has to 
select an option from a computed set of alternatives.

The following subsections describe the processes of 
the GRLMerger in detail. To demonstrate the proposed 
approach, we will use two GRL models model_a (Fig. 4a) 
and model_b (Fig. 4b) that are constructed from the online 
shopping GRL model of Fig. 1.

The proposed GRLMerger approach is structured using 
the pipes and filters architectural style and illustrated in 
Fig. 3. In what follows, we detail each of its processes.

4.1 � Integration of GRL actor containers

The GRLMerger approach takes as input two syntactically 
correct GRL models, as no checks for correctness are per-
formed. Before presenting the matching and merging pro-
cedures, we start by formalizing the notion of GRL actors.

Definition 1  (GRL Actor) A GRL actor is defined as a tuple 
Actor = (ActorID, ActorName, ActorDescription, ActorIm-
portance, ActorMetadata), where:

–	 ActorID is the Id of the actor.
–	 ActorName denotes the name of the actor (i.e., its 

enclosed text).
–	 ActorDescription denotes the description of the actor. 

This attribute is optional.
–	 ActorImportance denotes the importance of the actor 

that can be qualitative (i.e., low, medium, or high) or 
quantitative (value between 0 and 100). This default 
value is zero (i.e., not important).

–	 IEMetadata denotes the metadata, i.e., attribute-value 
pairs, associated with the intentional element. This attrib-
ute is optional.

4.1.1 � Matching actor containers

GRLMerger uses the names of actors (i.e., ActorName 
attribute) to compute the semantic similarity between actor 
containers. Given two input GRL models Model_a and 
Model_b, semantic similarity is calculated for each actor in 
Model_a with all actors of Model_b. If the semantic simi-
larity between a pair of actors from Model_a and Model_b 
equals one, they are considered as matching actors. Other-
wise, the user has to decide whether the rest of the actors 
from Model_a and Model_b are matching or not. Each 
actor is matched with one actor at most. The user input is 
essential in matching actors because incorrectly matching 
or mismatching actors would impact the merging results. 
In the example of Fig. 4, each model has one single actor. 
The computed similarity value between Business Owner 
and Proprietor is 0.7 (less than 1). Since matching actors is 
a crucial step toward obtaining a consolidated GRL model, 
the user is asked (in both modes automatic and interactive) 
to confirm that the actors are matching.

4.1.2 � Merging actor containers

Matched actor containers are merged either automatically or 
interactively. A new ActorID is generated for the resulting 
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Table 1   Summary of goal-oriented models integration approaches

References Operator Input Output Automation Notation/
language

Lan-
guage 
specific

Validation Syntactic/
semantic

Sabetzadeh and 
Easterbrook 
[39]

Map Two i* views Interconnected 
sets

Manual i* views Yes Example and 
Tool support

Semantic

Merge Interconnected 
sets

Merged i* view Fully Auto-
mated

Feng et al. [13] Map Two models Overlap points 
Merge points 
Conflict points

Manual Generic No Case study Syntactic and 
Semantic

Merge Two models
Overlap points
Merge points
Conflict points

Merged model Manual

Beckers et al. 
[3]

Match Goal-based 
models

Problem-based 
models

Mapping between 
goal-based 
model elements 
and problem-
based model 
elements

Manual SI* 
Problem 
frames

Yes Application 
scenario

Semantic

Li et al. [24] Match Goal model
Non-functional
patterns

Candidates of the 
non-functional 
patterns

Manual Generic No Case study and 
Tool support

Semantic

Merge Goal model
Candidates of 

the non-
functional 
patterns

Merged goal 
model

Manual

Baslyman and 
Amyot [2]

Match Goal models Similarity model Manual GRL Yes Case study Syntactic and 
SemanticDiff Goal models Dissimilarity 

model
Manual

Merge Similarity and 
dissimilarity 
models

Integrated model Manual

Liu et al. [26] Match Goal models
User reviews

Relationship 
between them

Fully Auto-
mated

Generic No Experiment 
and Survey

Semantic

Hablutzel et al. 
[16]

Merge Two goal 
models

Merged goal 
model

Semi Auto-
mated

Tropos Yes Tool support 
and Experi-
ment

Syntactic

GRLMerger Match Two goal 
models

Matched actors
Matched elements
Matched links

Fully Auto-
mated

GRL Yes Tool support 
and Experi-
ments

Syntactic and 
Semantic

Merge Matched actors
Matched ele-

ments
Matched links

Merged actors
Merged elements
Merged links

Fully / Semi
Automated

Transforming Unmatched 
actors

Unmatched 
elements

Unmatched 
links

Moved to the 
merged model

Fully Auto-
mated

Refinement Merged model Refined merged 
model

Full / Semi 
Automated
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actor and is added to the integrated GRL model. However, 
the merge may lead to a conflict situation in case one or 
many of the actor attributes are different. We formalize this 
situation as follows:

Definition 2  (Conflicting actor containers) Let A1 and A2 
be two actor containers: A1 = (AID1, AName1, ADescrip-
tion1, AImportance1, AMetadata1) and A2 = (AID2, 
AName2, ADescription2, AImportance2, AMetadata2), 
such that Similarity(AName1, AName2) = 1, or user has 
confirmed that AName1 and AName2 are similar. A conflict 
occurs if at least one of the following conditions is satisfied:

–	 ADescription1 ≠ ADescription2.
–	 AImportance1 ≠ AImportance2.
–	 AMetadata1 ≠ AMetadata2.

In case of automatic merging, the resulting actor con-
tainer will have the attributes of the actor container that 
belongs to the selected base model. In the interactive mode, 
the user is prompted to select the attributes of the resulting 
actor container. In the example of Fig. 4, model_a (Fig. 4a) 
is used as a base model in the automatic mode. Hence, the 
resulting actor name will be Business Owner and all attrib-
utes (except the ActorID) of model_a will be copied to the 
resulting GRL model.

4.2 � Integration of GRL intentional elements

Merged actor containers could have common (i.e., semanti-
cally similar) intentional elements that need to be matched 
and merged. GRL intentional elements can be defined as 
formalized as follows:

Definition 3  (GRL Intentional Element) A GRL intentional 
element is defined as a tuple:

IE = (IEID, IEActorID, IEType, IEName, IEDescription, 
IEImportance, IEMetadata, IEDecompositionType), where:

–	 IEID is the Id of the intentional element.

–	 IEActorID is the Id of the actor the intentional element 
is bound to. IEActorID may be empty (in case of an 
unbound intentional element).

–	 IEType denotes the type of the intentional element, e.g., 
Goal, SoftGoal, Task, etc.

–	 IEName denotes the name of the intentional element (i.e., 
its enclosed text).

–	 IEDescription denotes the description of the intentional 
element. This attribute is optional.

–	 IEImportance denotes the importance of the intentional 
element that can be qualitative (i.e., low, medium, or 
high) or quantitative (value between 0 and 100). This 
default value is zero (i.e., not important).

–	 IEMetadata denotes the metadata, i.e., attribute-value 
pairs, associated with the actor. This attribute is optional.

–	 IEDecompositionType refers to the decomposition type, 
e.g., AND, OR, XOR. It may be empty (in case an inten-
tional element is not decomposed into other intentional 
elements).

4.2.1 � Matching GRL intentional elements

Similar to the actor containers matching, intentional ele-
ments are matched based on their names as well. Given two 
actor containers A1 and A2 that got matched as the result 
of the previous step (Sect. 4.1.1), GRLMerger calculates the 
semantic similarity between each intentional element of A1 
and the intentional elements of A2. Thereafter, the seman-
tic similarity values for all pairs are sorted in a descendant 
order and presented to the user. The user is then asked (in 
both modes automatic and interactive) to choose an appro-
priate threshold value, based on which GRLMerger decides 
whether two intentional elements are matching or not. It 
compares the semantic similarity value of each pair of inten-
tional elements with the similarity threshold value. If the 
semantic similarity value is greater or equal to the similarity 
threshold value, the GRLMerger considers them as matched 
intentional elements. Each intentional element from A1 will 
be matched with one intentional element from A2 at most. It 
is worth noting that the selected similarity threshold value 
will be used throughout the whole merging process.

Fig. 3   GRLMerger approach
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Definition 4  (Matched GRL intentional Elements) Let IE1 
and IE2 be two GRL intentional elements: IE1 = (IE1ID, 
IEActorID1, IEType1, IEName1, IEDescription1, IEImpor-
tance1, IEMetadata1, IEDecompositionType1) and IE2 = 
(IEID2, IEActorID2, IEType2, IEName2, IEDescription2, 
IEImportance2, IEMetadata2, IEDecompositionType2).

IE1 matches IE2 (written as: matches(IEID1, IEID2)) iff 
Similarity(IEName1, IEName2) ≥ threshold.

Table 2 shows some of the computed similarity values 
between intentional elements of model_a and model_b. 
With a threshold of 0.7, Offer Online Shopping is matched 

with  Provide online retail, and  Provide Identification 
matches  Validate identification.

4.2.2 � Merging GRL intentional elements

In this step, the two matched intentional elements will be 
merged into one consolidated intentional element. This 
merged intentional element is then copied to the integrated 
GRL model and bound to the merged actor container.

Matched intentional elements are merged either automati-
cally or interactively. A new ID is generated for the result-
ing intentional element. However, the merge may lead to a 
conflict situation in case one or many of the attributes of the 
matched elements are different. We formalize this situation 
as follows:

Definition 5  (Conflicting intentional elements) Let IE1 and 
IE2 be two intentional elements part of the same matched 
actor of two different GRL models:

IE1 = (IEActorID1, IEType1, IEName1, IEDescription1, 
IEImportance1, IEMetadata1, IEDecompositionType1) and 
IE2 = (IEActorID2, IEType2, IEName2, IEDescription2, 
IEImportance2, IEMetadata2, IEDecompositionType2), 
such that matches(IEID1, IEID2). A conflict occurs if at 
least one of the following conditions is true:

–	 IEType1 ≠ IEType2
–	 IEDescription1 ≠ IEDescription2
–	 IEImportance1 ≠ IEImportance2
–	 IEMetadata1 ≠ IEMetadata2

Conflicts can be resolved either automatically (using the 
selected base model as a reference model) or interactively 
where the user selects the attributes of the resulting inten-
tional element. In the example of Fig. 4, Access Authoriza-
tion is described as a task (i.e., IEType = Task) in model_a 
(Fig. 4a), while it is described as a goal (i.e., IEType = Goal) 
in model_b (Fig. 4b). Since model_a was chosen as a base 
model, the resulting type of Access Authorization will be a 
task. The integrated model is shown in Fig. 1.

4.3 � Integration of GRL links

In GRL, each intentional element could be linked to one 
intentional elements via one link at most. Each link has a 
parent intentional element and a child intentional element, as 
illustrated in Fig. 5. GRL intentional elements can be defined 
as formalized as follows:

Definition 6  (GRL link) A GRL link is defined as a tuple 
Link = (LinkID, LinkType, ParentID, ChildID, LinkDecom-
positionType, LinkContributionValue), where:

Fig. 4   GRL model_a and model_b
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–	 LinkID is the Id of the link.
–	 LinkType denotes the type of the link, e.g., Dependency, 

Decomposition, Contribution, etc.
–	 ParentID represents the ID of the parent element of the 

link.
–	 ChildID represents the ID of the child element of the 

link.
–	 LinkDecompositionType refers to the decomposition type, 

e.g., AND, OR, XOR. It may be empty (in the case of 
contributions and dependencies).

–	 LinkContributionValue denotes the contribution value, 
e.g., +75.

4.3.1 � Matching GRL links

The matching of actors and intentional elements is made 
based on the semantic similarity of their names. In contrast, 
the links are matched based on their syntactical similar-
ity, i.e., parent and child intentional elements. Each link is 
matched with one link at most. We define matched links as 
follows:

Definition 7  (Matched GRL links) Let L1 and L2 be two 
GRL links, defined as follows:

L1 = (LID1, LType1, LParentID1, LChildID1, LDecom-
positionType1, LContributionValue1),
L2 = (LID2, LType2, LParentID2, LChildID2, LDecom-
positionType2, LContributionValue2).
L1 matches L2 (written as matches(LID1, LID2)), iff

matches(LChildID1, LChildID2) and matches(LParentID1, 
LParentID2).

The link type is not considered as a condition to match 
links because GRL does not allow more than one link 
between two intentional elements, even when these links 
are of different types. Figure  6 illustrates the matched 
links between model_a and model_b, each color represents 
one matching. For instance, the contribution link (+100) 
between task Access Authorization and softgoal Have System 

Security (in blue color) matches the contribution link (+75) 
between goal Access Authorization and softgoal Have Sys-
tem Security (in blue color). Both links share the same Par-
entID and ChildID.

4.3.2 � Merging GRL links

Merging the matched links may lead to many conflicting 
situations: 

1.	 Different link types. For example, in model_a (Fig. 6a), 
the link connecting softgoal Have System Security and 
goal Offer Online Shopping is a contribution, while in 
model_b (Fig. 6b) it is a dependency link.

2.	 Different decomposition types. For example, in 
model_a (Fig. 6a), task Access Authorization is decom-
posed, via a AND-decomposition, into goal Ensure 
Authentication and goal Provide Identification (orange 
and purple color), while in model_b (Fig.  6b) the 
goal Access Authorization is decomposed via an OR-
decomposition into similar intentional elements.

3.	 Different contribution values. For example, in model_a 
(Fig. 6a), task Access Authentication contributes to 
softgoal Have System Security with +100 contribution 
value, while in model_b (Fig. 6b) it is +75.

These four situations are formalized as follows:

Definition 8  (Conflicting links) Let L1 and L2 be two GRL 
matching links:

L1 = (LID1, LType1, LParentID1, LChildID1, LDecom-
positionType1, LContributionValue1),

L2 = (LID2, LType2, LParentID2, LChildID2, LDecom-
positionType2, LContributionValue2).

A conflict occurs iff at least one of the following condi-
tions is satisfied: 

1.	 LType1 ≠ LType2
2.	 LDecompositionType1 ≠ LDecompositionType2
3.	 LContributionValue1 ≠ LContributionValue2

Each pair of matched links is merged separately from 
the other matched links and copied to the integrated model. 
Conflicts can be resolved either automatically (using the 
selected base model as a reference model) or interactively 
where the user selects the attributes of the resulting link. 
Algorithm 1 depicts the automatic merging algorithm. The 
inputs to the algorithm are the matched links, i.e., link_a and 
link_b, and the selected base model, i.e., model_a.

Table 2   Computed similarity values between the intentional elements 
of the actors Business Owner and Proprietor element 

Business owner element Proprietor element Similarity

Have System Security Have System Security 1
Ensure Authentication Ensure Authentication 1
Access Authorization Access Authorization 1
Offer Online Shopping Provide online retail 0.72
Provide Identification Validate identification 0.7
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Algorithm 1   Automatic merging of links

If the matched links have different types, the algorithm 
reports the specific type of the conflict and resolves it by 
selecting the attributes of the link of the base model, i.e., 
model_a. If the matched links have the same type, the algo-
rithm checks their attributes (LinkContributionValue for 

Fig. 5   Link parent/child

Fig. 6   Matched links between Model_a and Model_b
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contributions and LinkDecompositionType for decomposi-
tions) for conflicts. Conflicts are resolved by selecting the 
attributes of the link of the base model, i.e., model_a. In 
the case of a reciprocal parent–child situation, the resulting 
link (i.e., link_ab) will have the same attributes as link_a, of 
the base model, such that the parent and child ids as direct 
mappings of the child and parent ids of the link of the base 
model.

In the example of Fig. 4, the contribution (+75) between 
softgoal Have System Security and goal Offer Online Shop-
ping in Fig. 6a is merged with the dependency between 
goal Provide online retail and softgoal Have System Security 
in Fig. 6b, resulting in an integrated contribution (+75) link 
(see the integrated model in Fig. 1).

4.4 � Import unmatched GRL constructs

Given two models model_a and model_b to be merged, the 
unique constructs are the constructs from model_a that are 
not matching any constructs from model_b and vice versa. 
These constructs have to be copied to the integrated model to 
ensure its completeness. The unmatched actors, intentional 
elements, and links from model_a and model_b are imported 
(i.e., copied) in the integrated model.

Figure 7 highlights the constructs in model_a (Fig. 7a) 
and model_b (Fig. 7b) that will be copied to the integrated 
model. The syntactical structure of the copied constructs 
remains the same in the merged model. That is, the softgoal 
will remain a softgoal, and the contribution link will remain 
a contribution link, etc. Also, the intentional elements linked 
to an intentional element that got merged will be linked to 
the same merged intentional element in the merged model. 
For example, softgoal Increase Sales is copied along with its 
link to the merged goal Offer Online Shopping via the same 
contribution link and the same contribution value, i.e., +75.

4.5 � Model sanitization

Each type of GRL construct is integrated separately from the 
other types. Furthermore, matched constructs are merged 
without checking the other constructs connected to it directly 
or indirectly. Furthermore, unmatched constructs are cop-
ied to the resulting model. Subsequently, the integrated 
GRL model may be subject to three syntactic errors: (1) 
parent intentional element with more than one decomposi-
tion type, (2) reciprocal parent–child relationships, and (3) 
cycles (although the initial input models are cycle-free). The 
aim of model sanitization phase is to resolve such errors. 
The following subsections will detail each error and how 
the GRLMerger approach deals with it.

4.5.1 � Sanitizing parent intentional element having 
multiple decomposition types

Each parent intentional element can have one decomposition 
type at most. However, if two parent intentional elements 
with different decomposition types were integrated, and 
they are decomposed by unique intentional elements (i.e., 
there is no matching between them), the integrated model 
will include a parent intentional element connecting its chil-
dren via two different decomposition types. For instance, in 
Fig. 8, the goal Ensure Authentication with AND-decompo-
sition (Fig. 8a) got integrated with the goal Ensure Authen-
tication that has XOR-decomposition (Fig. 8b). In addition, 
their children’s tasks Use Fingerprint and Use Password got 
integrated. Moreover, the links connecting the integrated 
goal Ensure Authentication and the integrated tasks User 
Fingerprint and Use Password were integrated. The conflict 
of different decomposition types was resolved during the 
merging process. However, during the import of task Use 
Card-Key and its XOR-decomposition link from model_f, 
the parent intentional element Ensure Authentication would 
have two different decomposition types as illustrated in the 
imaginary picture of Fig. 8c (GRL language and the jUCM-
Nav tool do not allow such configuration).

We propose two strategies to resolve this error: 

1.	 Strategy #1—Unification of the decomposition types: 
It consists of changing one of the decomposition types 
to the other. Hence, all siblings will be connected via 
the same decomposition type. In the automatic merg-
ing mode, the non-base decomposition type is converted 
to the base decomposition type, if there is at least one 
merged intentional element among the siblings that are 
from the base model.

	   The existence of common siblings means that there is 
a common concept between them. Hence, the decompo-
sition type can be changed. Assume that Model_e shown 
in Fig. 8a is the base model, while Model_f presented 
in Fig. 8b is the non-base model. GRLMerger would 
unify different decomposition types of the goal Ensure 
Authentication (Fig. 8c), to the AND-decomposition 
type (Fig. 8d). This is because the original siblings of 
the task Use Card-Key in Model_f (that has a different 
decomposition type) were integrated with the tasks in 
the base Model_e (i.e., tasks Use Fingerprint and Use 
Password in Model_f, Fig. 8b) that were integrated with 
tasks Use Fingerprint and Use Password in the base 
Model_e (Fig. 8a), respectively.

2.	 Strategy #2—Add a temporary intentional element: 
This strategy is selected if the parent elements do not 
share any matched children elements (i.e., Strategy #1 
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is not applicable). Therefore, this strategy consists of 
adding a temporary intentional element (i.e., temporary 
parent) connected to the original parent intentional ele-
ment, that has two decomposition types. The decom-
position type from the base model will be retained for 
the parent with the multiple decomposition types. The 
temporary intentional element is connected to that par-
ent via the retained decomposition type. The intentional 
elements of the different decomposition type (i.e., non-

base decomposition type) will no longer be connected 
to that parent directly (i.e., links shall be removed), yet 
they will be connected to the temporary intentional ele-
ment via their non-base decomposition type. The added 
temporary element has the same type of siblings and 
it is connected to the parent intentional element via 
the same decomposition type of its siblings. Figure 9 
depicts this configuration. Goal Ensure Authentication 
in Model_g (Fig. 9a) got integrated with the goal Ensure 
Authentication that is part of Model_h (Fig. 9b). Their 
children’s intentional elements with their links were 
copied to the integrated model (Fig. 9c) since there is 
no matching between them. Since there are no common 
siblings between the children of Ensure Authentication 
in Model_g and Model_h, and assuming that Model_g 
is the base model, the AND-decomposition will be 
retained for the parent intentional element (i.e., the goal 
Ensure Authentication) and the XOR-decomposition 
type from the non-base model will be used to connect 
the siblings of the Model_h. The user is then asked to 
name this temporary intentional element, i.e., TEMP.

4.5.2 � Sanitizing the reciprocal parent–child relationships

Since each pair of matched links is merged separately from 
the other matched links, the resulting model may contain 
two intentional elements, where the parent of the first link 
is matching the child of the second link and vice versa (see 
Definition 9). Such configuration is not allowed in GRL and 
is not supported in jUCMNav.

Definition 9  (Reciprocal parent–child relationship) Let L1 
and L2 be two GRL matching links:

L1 = (LID1, LType1, LParentID1, LChildID1, LDecom-
positionType1, LContributionValue1),

L2 = (LID2, LType2, LParentID2, LChildID2, LDecom-
positionType2, LContributionValue2).

A reciprocal parent–child relationship occurs iff: 
matched(link_a.LChildID, link_b.LParentID) and 
matched(link_b.LChildID, link_a.LParentID)

Similar to the automatic processes of merging actors/
intentional elements/links, the resolution of this error condi-
tion consists of the removal of the link originating from the 
non-base model. In the interactive mode, the user is asked 
to select the link to be dropped.

Fig. 7   Constructs to be imported in the merged model
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4.5.3 � Removing GRL cycles

Cycles are bad smells in GRL models that need to be iden-
tified and resolved [34]. When performing satisfaction 
analysis (one of the most important goal model analysis 
techniques [19]) on a GRL model, the presence of cycles 
would prevent computed satisfaction values from propagat-
ing through all GRl model elements; hence hindering the 
satisfaction analysis.

A cycle is defined as a set of consecutively linked inten-
tional elements, where each one is a parent in one link and 
a child in another link. We call such an intentional element 

an internal intentional element. Figure 10a and b illustrates 
two sub-models (Model_c and Model_d) resulting in a 
cycle once integrated (Fig. 10c). In Fig. 10c, the three links 
(link 1, link 2, and link 3) form a cycle between the internal 
intentional elements Access Authorization, Strong Password, 
and Ensure Authentication.

Fig. 8   Strategy #1: resolution of a parent intentional element with 
two decomposition types

Fig. 9   Strategy #2: resolution of a parent intentional element with 
two decomposition types
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Algorithm  2 shows the cycle detection procedure. 
It uses two sub-procedures,  getAllParents and  getAll-
Children, to get the list of all parents and children of a 
given intentional element, respectively. Assuming that X is 
an internal intentional element, we start by getting all par-
ent intentional elements of the links connected to X until 
reaching the root, and all children intentional elements of 
the links connected to X until reaching a leaf. Thereafter, 
we check if there is an intentional element in the set of X’s 
parents that exists in the set of X’s children. This means 
that there is a cycle between X and the found intersection.

Algorithm 2   Identifying cycles

For example, in Fig. 10, the task Access Authorization 
is an internal intentional element that is a child in link 1 
and a parent in link 3. The parents of the link that is con-
nected to the internal task Access Authorization are Strong 
Password and Ensure Authentication, and the children are 
Ensure Authentication, Provide Identification, Strong Pass-
word, and Secure Fingerprint. The intentional elements 
Ensure Authentication and Strong Password exist in both 
parent’s and children’s sets. Therefore, there is a cycle 
between Access Authorization, Ensure Authentication, and 
Strong Password.

Fig. 10   GRL cycle
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Algorithm 3   getAllParents

Algorithm 4   getAllChildren

The automatic breaking of a cycle consists of removing a 
non-base model link from the cycle. If the links composing 
the cycle are from the base model, or they are integrated 
links, the user is asked to choose a link to be removed. In 
the interactive mode, the user is asked to select the link to 
be dropped. Hence, he can select a link from the base model.

It is worth noting that depending on the targeted analysis 
technique, the presence of cycles would not cause an issue. 
To this end, in addition to the final cycle-free model, we 
keep a version of the integrated model that includes cycles. 
It is the responsibility of the analyst to use it in its current 
form or break the cycles.

5 � GRLMerger prototype tool

The GRLMerger approach is implemented as a Python appli-
cation. It is publicly available on PyPi.2 The user can install 
and run the package as described in the README.md file. 
An overview of the GRLMerger prototype tool processes is 

shown in Fig. 11. The following sections detail the imple-
mentation of each phase.

5.1 � Input models

The GRLMerger tool works with the textual representation 
of GRL (TGRL) [1]. The tool takes two TGRL files (with the 
extension .xgrl) as input, e.g., startGRLMerger(’model_a.
xgrl’, ’model_b.xgrl’)) and converts them into dataframes 
[36]. Next, it will check whether each construct has a unique 
ID. Lastly, it will pre-process the names of actors and inten-
tional elements for automatic semantic matching.

5.1.1 � Converting TGRL to dataframes

Although the syntax of TGRL is well-structured, simple, 
and consistent, it is more convenient to convert the input 
TGRL models to dataframes [36] in order to facilitate its 
processing.

Definition 10  (Dataframe data model) A dataframe D is a 
tuple (A, R, C, T), where A is an m × n array of data entries 
that represents the dataframe content, R is an array of m row 
labels, C is an array of n column labels, and T is an array of 
types for each column.

The dataframe structure was selected because it is a 
logical data structure that organizes data in rows and col-
umns [36], which facilitates accessing, retrieving, and 
modifying the data entries. Furthermore, dataframes can 
be embedded in Python, which offers many NLP librar-
ies to support the automatic semantic matching of data 
entries. Before populating the dataframes, some pre-
processing steps are conducted to clean the TGRL files, 
including the removal of spaces at the beginning and 
at the end of each line, the removal of empty lines, and 
ensuring that each construct definition or attribute is in 
one line.

For each TGRL model, we define three dataframes, one 
for actors, one for the intentional elements, and one for 
the links. The three dataframes have the same structure 
as the definitions 1, 3, and 6, respectively. After pre-pro-
cessing the TGRL specification, each actor, intentional 
element, and link are parsed and inserted into the corre-
sponding dataframe as a new row. However, some inten-
tional elements (e.g., resources) usually do not belong 
to an actor, especially if they are part of a dependency 
link. The GRLMerger tool adds a dummy actor defini-
tion to the actors dataframe with the ID ’X#Y’ and name 
’X#YDUMMYACTOR’ (see Table 3) and assigns to it 
the intentional elements that do not belong to any actor. 
TGRL syntax does not allow the use of the hash sign 

2  https://​pypi.​org/​proje​ct/​GRLMe​rger/.

https://pypi.org/project/GRLMerger/
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so GRLMerger uses it to differentiate this dummy actor 
and its intentional elements and links. It is worth noting 
that TGRL does not specify an ID for links, however, the 
GRLMerger tool assigns an ID for each link to facilitate 
their processing (see Definition 6).

5.1.2 � Checking the uniqueness of IDs

TGRL uses IDs to differentiate between the model con-
structs. If two constructs have the same ID and they are 
linked to other constructs via links, the links will not show 
correctly when generating the corresponding graphical 
GRL model in the jUCMNav tool. Therefore, GRLMerger 

Fig. 11   GRLMerger tool
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checks that each ID in both input models is unique. If 
an ID was used for two constructs, a random number 
between 0 and 99 is generated and attached to the ID of 
one of the similar constructs’ IDs. This would allow the 
tool to distinguish them in case they were not merged.

5.1.3 � Pre‑processing

Actors and intentional element names, i.e., ActorName 
and IEName, are the attributes used for semantic match-
ing. To achieve better results, names are pre-processed by 
lower casing them, removing the special characters, if any, 
expanding contractions (“Can’t” is changed to “Cannot”), 
and lemmatizing them (reducing the names to their base 
forms). The pre-processing is performed automatically. 
However, if the TGRL model contains context-dependent 
abbreviations, the user is asked to provide the full text. For 
example, the abbreviation “SMS” could refer to “Short 
Message Service,” while in the experimental model used 
in Sect. 6, it refers to “Seminars Managing System”. These 
pre-processing steps aim to convert the names of con-
structs to simple English sentences to be used for measur-
ing the similarity values [18].

5.1.4 � Name embedding

The proposed GLRMerger approach matches actors and 
intentional elements based on the semantic similarity 
between their names. Semantic-based similarity meas-
ures convert the input text into vectors (i.e., embedding) 
that capture their semantic information, where similar 
sentences are close in vector space [38]. There are sev-
eral word embedding models trained on large corpora. 
However, word embedding models do not perform well in 
representing the meaning of a full sentence [8]. Since the 
names of GRL constructs could be one or two words long 
(as for actors), or a full sentence (as for intentional ele-
ments), the GRLMerger tool uses one of the latest state-of-
the-art sentence embedding model to convert constructs’ 
names into vectors. It uses the Sentence-BERT (SBERT) 
embedding model [38]. The SBERT model was selected 
because it outperformed the other state-of-the-are sentence 

embedding models (InferSent [8] and Universal Sentence 
Encoder [6]) in the semantic textual similarity task [38]. 
The GRLMerger tool uses the cosine similarity (Eq. 1) 
to calculate the semantic similarity between sentences as 
suggested by Reimers and Gurevych [38].

5.2 � Supporting dataframes

The GRLMerger tool uses two additional dataframes: 

1.	 Conflicts dataframe: used to store the resolved con-
flicts. Table 4 presents the structure of the conflict cases 
dataframe. The column m_ID refers to the merged 
construct ID where this conflict occurred, while the 
m_selected_value is the selected value to resolve the 
conflict either automatically or interactively. The con-
flict_type could be one of the conflict cases, which are 
Element Type, Link Type, Decomposition Type, or Con-
tribution Value. If the interactive mode is chosen, any 
decision taken by the user is stored in the conflict cases 
dataframe. Therefore, the conflict_type column could 
include Actor Name, Actor Description, Element Name, 
Element Importance, etc.

2.	 Errors dataframe: used to store the error cases. 
Table 4 presents the structure of the error cases data-
frame. The error_type could be Reciprocal parent–child 
relationship, Cycle, or Multiple Decomposition Types. 
The actor_name refers to the actor where this issue 
occurred. Sometimes cycles are spread between two or 
more actors. All actors involved in the cycle are listed 
in the actor_name column. If the error was a cycle, the 
solution will be to drop a link, hence, m_ID refers to 
the dropped link ID. The description includes details 
about the dropped link. In case the error was multi-
ple decomposition types, the solution could be either 
to unify the decomposition type or to add a temporary 
intentional element. The m_ID in this case reports the 
ID of the intentional element that got its decomposition 
type changed to the selected decomposition type, and the 
description depicts the conducted sanitization strategy. 
The description column includes free-text because it is 
easier to describe the solution instead of separating it 
into multiple structured columns.

Table 3   Actors dataframe for 
the online shopping Model_a

ActorID ActorName ActorDescription ActorImpor-
tance

ActorMetadata

businessOwner Business Owner
X#Y X#YDUMMYACTOR
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5.3 � Integration of actor containers

The actors dataframes of model_a and model_b are used 
by GRLMerger to match and merge the actors. GRLMerger 
calculates the semantic similarity between each actor from 
model_a and each actor from model_b using the cosine simi-
larity measure (Eq. 1). Identical actors (i.e., cosine similarity 
= 1) got merged directly. If the cosine similarity was less 
than one, the GRLMerger tool asks the user to match the rest 
of the unmatched actors. For the online shopping example, 
the similarity between “Business Owner” and “Proprietor” is 
0.7. In the automatic mode, the user is asked whether these 
two actors match or not (see Fig. 12a). The integrated actor 
would have the attributes of the actor from the selected base 
model. However, in the interactive mode, the user is asked 
to select the attributes’ values of the integrated actor if they 
are not identical. For example, Fig. 12b illustrates the ques-
tion asked to the user to select the name of the merged actor. 
The GRLMerger tool creates a new ID for the integrated 
actors by combining the IDs of the matched actors using 
the plus sign (i.e., actor_a_ID+actor_b_ID). This format 
helps GRLMerger to refer to the original actors if needed. 
The integrated actors are stored in a new dataframe that has 
the same structure as the actors’ dataframe.

5.4 � Integration of the intentional elements

The intentional elements integration process uses the inten-
tional elements dataframes of the input models. GRLMerger 
uses the embedded names of the intentional elements (as 
described in Sect. 5.1.4) to calculate the semantic similarity 
between each intentional element from model_a that is part 
of the integrated actor_ab with all intentional elements from 
model_b that belong to the integrated actor_ab. The GRLM-
erger tool displays the similarity values sorted in descending 
order to the user (see Fig. 13), so the user can select the opti-
mal similarity threshold value to ensure the correct matching 
of the intentional elements. The similarity threshold value 
must be a real value between 0 (not matching at all) and 1 
(identical).

In the automatic mode and in case of a matching conflict, 
e.g., different intentional element types, the type from the 
base model is retained (along with all its attributes). The 
conflict and how it was resolved are stored in the conflicts’ 
dataframe. In the interactive mode, the user is asked to spec-
ify the integrated intentional element’s attributes if they were 
not identical (Fig. 14). All decisions made by the user are 
stored in the conflict dataframe.

The integrated intentional elements are stored in a new 
dataframe (having the same structure as the other inten-
tional elements dataframes) created to store the integrated 
intentional elements. All attributes of the integrated inten-
tional elements are either from the base model (automatic Ta
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mode) or entered by the user (interactive mode), except 
the ID which is generated using the format intentional_
element_a_ID+intentional_element_b_ID. Furthermore, 
the links dataframe of model_a that connects the matched 
intentional_element_a and the links dataframe of model_b 
that connects the matched intentional_element_b are 
updated to be connected to the integrated intentional ele-
ment. That is, if the intentional elements that got inte-
grated are the parent intentional element or the child 
intentional element in the links dataframes of model_a 
and model_b, the GRLMerger tool updates the IDs with 
the new integrated intentional element ID.

5.5 � Integration of links

The GRLMerger tool uses the links dataframes of model_a 
and model_b to integrate their links. A new ID for each 
integrated link is generated by combining the two IDs 
of the matched links (i.e., the integrated link format is 
link_a_ID+link_b_ID). The new ID of the integrated 
links will be used to know whether the link that is part 
of a cycle is an integrated link or an unmatched imported 
link. The integrated links are inserted in a new dataframe 
(having the same structure as the input links dataframe) 
for the integrated links. All resolved link conflicts, either 
automatically or interactively, are stored in the conflict 
dataframe.

5.6 � Importing unmatched elements

After completing the integration of all matched constructs 
(actors, intentional elements, and links), the GRLMerger tool 
copies the unmatched/unmerged constructs to the integrated 

model dataframes. The IDs of the imported constructs from 
model_a and model_b have not been changed.

5.7 � Model sanitization

The GRLMerger tool uses the integrated links dataframe 
(that includes the transformed links as well) to sanitize the 
resulting model. For example, Fig. 15 illustrates a scenario 
where the user is asked to resolve the multiple decomposi-
tion types issue.

5.8 � Output files

The GRLMerger tool generates the following files: 

1.	 The integrated model file: the generated integrated 
model is the combination of the three dataframes: (1) 
the integrated actors dataframes, (2) the intentional 
elements dataframes, and (3) the links dataframe. 
The  GRLMerger tool converts these dataframes to 
TGRL syntax. The GRLMerger cleans the IDs of the 
integrated constructs by removing the added “plus sign,” 
since the TGRL syntax does not allow it. The GRLM-
erger tool saves the integrated model TGRL file with 
the extension .xgrl. The file name is integratedModel_
model_a_model_b.xgrl, where model_a and model_b are 
the names of the input models.

2.	 the integrated model before cycle removal: GRLM-
erger produces a copy of the resulting xgrl file before 
the sanitization from cycles.

3.	 the integrated constructs file: To assist modelers 
when analyzing or reviewing the integration results, 
the GRLMerger tool stores the integrated constructs in 
an excel file enclosing three sheets (i.e, a sheet for the 

Fig. 12   GRLMerger tool: merging actors’ containers
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integrated actors (Table 5), a sheet for the integrated 
intentional elements (Table 2), and a sheet for the inte-
grated links (Table 6)). The GRLMerger tool uses the 
integrated actors, the integrated intentional elements, 
and the integrated links dataframes (without including 
the imported constructs). The file name is integrated-
Constructs_model_a_model_b.xlsx. The difference 
between this file and the integrated model file is that 
this file only includes the integrated constructs in a table 

format, while the integrated model file is the complete 
integrated TGRL model.

4.	 File containing the resolved conflict and error cases: 
The GRLMerger tool generates a file that reports on all 
resolved conflict and error cases, automatically or inter-

Fig. 13   GRLMerger tool: online shopping example: computed similarity values

Fig. 14   GRLMerger tool: user 
is asked to select the merged 
intentional element’s type

Fig. 15   GRLMerger tool-Interactive mode: ask the user to select s resolution strategy for the multiple decomposition types issue

Table 5   Integrated actors sheet

actor_1 actor_2 similarity

Business Owner Proprietor 0.7
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actively, during the integration. The GRLMerger tool 
uses the conflict cases and the error cases dataframes to 
generate the file. The file name is conflict_error_cases_
model_a_model_b.xlsx. It includes two sheets, one for the 
conflict cases (Table 7) and the other for the error cases.

6 � Evaluation of the GRLMerger approach 
and prototype tool

In this section, we evaluate empirically our pro-
posed  GRLMerger approach and its prototype tool. We fol-
low the template and recommendations presented by Wohlin 
et al. [44].

Figure 16 provides an overview of the experimental plan. 
We have used two TGRL models as our main subjects (see 
Sect. 6.1) in order to generate 24 TGRL sub-models (see 
Appendices 8 and 8).3 Then, we have designed three experi-
ments (see Sect. 6.2) to evaluate the basic merging cases, con-
flict cases and semantic merging cases. The effectiveness of 
the GRLMerger approach and tool was measured in terms of 
correctness, completeness, and freeness from errors. The steps 
of the experimental plan are explained in the following sections.

6.1 � Subjects

In addition to the running example, we have applied 
our GRLMerger approach and tool to two TGRL models: 

1.	 Example 1: University Alumni (Fig. 17): A modi-
fied version of a GRL model, introduced by Hassine 
and Amyot [17], describing how to foster a university–
alumni relationship. The model has 4 actors: University, 
Alumni department, Alumnus, and Professor. In order 
to cover all types of GRL constructs, we have extended 
the model by adding a softgoal, a belief, a resource, an 
indicator, and an OR-decomposition link. In the rest of 
the paper, we refer to this model as MF.

2.	 Example 2: Seminars Managing System (Fig. 18): It 
models the objectives of a future seminar management 

system along with its stakeholders goals. The model has 
5 actors: seminars managing system, admin, speaker, 
organizer, and attendee. In the rest of the paper, we refer 
to this model as MS.

6.2 � Experiment procedure

We have designed and conducted three experiments:

6.2.1 � Experiment 1: basic merging

The University–Alumni (MF) and the Seminars Managing 
System (MS) TGRL models were used as ground truth to 
evaluate the GRLMerger approach.

From the university–alumni (MF) model, we derive:

–	 Case #1: Two sub-models MF1 (Fig.  21) and MF2 
(Fig. 22), as follows:

–	 MF1 = MF∖X1, where X1 ⊂ MF
–	 MF2 = MF∖X2, where X2 ⊂ MF
–	 X1 ∩ X2= �
–	 MF1 ∪ MF2 = MF

–	 Case #2: Two sub-models MF3 (Fig.  23) and MF4 
(Fig. 24), as follows:

–	 MF3 = MF∖X3, where X3 ⊂ MF
–	 MF4 = MF∖X4, where X4 ⊂ MF
–	 X3 ∩ X4 = �
–	 MF3 ∪ MF4 = MF

Similarly, from the Seminars Managing System (MS) 
model, we derive:

–	 Case #3: Two sub-models MS1 (Fig.  33) and MS2 
(Fig. 34), as follows:

–	 MS1 = MS∖Y1, where Y1 ⊂ MS
–	 MS2 = MS∖Y2, where Y2 ⊂ MS
–	 Y1 ∩ Y2 = �
–	 MS1 ∪ MS2 = MS

Table 6   Integrated links sheet

parent_element_1 link_1 child_element_1 parent_element_2 link_2 child_element_2

Offer Online Shopping contribution Have System Security Offer Online Shopping dependency Have System Security
Have System Security contribution Access Authorization Have System Security contribution Access Authorization
Access Authorization decomposition Ensure Authentication Access Authorization decomposition Ensure Authentication
Access Authorization decomposition Provide Identification Access Authorization decomposition Provide Identification

3  The data used in the evaluation are openly available in github at 
https://​github.​com/​ndn94/​GRLMe​rger-​Paper.

https://github.com/ndn94/GRLMerger-Paper


232	 Requirements Engineering (2024) 29:209–259

–	 Case #4: Two sub-models MS3 (Fig.  35) and MS4 
(Fig. 36), as follows:

–	 MS3 = MS∖Y3, where Y3 ⊂ MS
–	 MS4 = MS∖Y4, where Y4 ⊂ MS
–	 Y3 ∩ Y4 = �
–	 MS3 ∪ MS4 = MS

All pairs of sub-models (e.g., MF1 and MF2) have iden-
tically matching constructs syntactically and lexically. 
In addition, in the automatic merging mode, sub-models 
MF1, MF3, MS1, and MS3 were set as the base models. 
Similarity threshold value was set to 1 since there are no 
lexical differences between the names of the matched 
intentional elements. Table 8 presents the number and 
types of constructs in each input model.

6.3 � Experiment 2: conflict and error cases

This aim of Experiment 2 is to evaluate the pro-
posed GRLMerger approach and tool in terms of resolv-
ing the conflicts automatically and generating a merged 
model that is error-free. To this end, we have built pairs 
of sub-models, as in Experiment 1, but we have introduced 

Table 7   Conflict cases sheet

m_ID conflict_type actor_name base_name base_value new_name new_value m_selected_value

accessAuthoriza-
tionaccessAu-
thorization50

Element Type Business Owner Access Authori-
zation

Task Access Authori-
zation

Goal Task

R183R078 Link Type Business Owner
-
Business Owner

(Have System 
Security)

linked to
(Offer Online 

Shopping)

Contribu-
tion

(Have System 
Security)

linked to
(Offer Online 

Shopping)

Depend-
ency

Contribution

R283R178 Contribution 
Value

Business Owner
-
Business Owner

(Access Authori-
zation)

contributes to
(Have System 

Security)

100 (Access Authori-
zation)

contributes to
(Have System 

Security)

75 100

R483R278 Decomposition 
Type

Business Owner
-
Business Owner

(Access Authori-
zation)

decomposed by
(Ensure Authenti-

cation)

and (Access Authori-
zation)

decomposed by
(Ensure Authenti-

cation)

or and

R583R378 Decomposition 
Type

Business Owner
-
Business Owner

(Access Authori-
zation)

decomposed by
(Provide Identifi-

cation)

and (Access Authori-
zation)

decomposed by
(Provide Identifi-

cation)

or and

Fig. 16   Experimental design
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Fig. 17   Fostering university–alumni relationship GRL model

Fig. 18   Seminars managing system GRL model
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syntactic differences in the non-base models in order to 
generate conflict cases and errors in the integrated model. 
All pairs of sub-models (e.g., MF5 and MF6) have lexi-
cally identical elements (semantically matching). Hence, 
the similarity threshold value was set also to 1.

Examples of syntactic changes to the non-base sub-
models include:

–	 Change the intentional element type, e.g., from goal to 
softgoal.

–	 Change the link type, from contribution to a depend-
ency.

–	 Change the contribution value, e.g., from +100 to +50.
–	 Change the decomposition type, e.g., from OR to XOR.
–	 Switch the direction of a link to create an error state or a 

cycle.

From the university–alumni (MF) model, we derive:

–	 Case #1: Two sub-models MF5 (Fig.  25) and MF6 
(Fig. 26), as follows:

–	 MF5 = MF∖Z1, where Z1 ⊂ MF
–	 MF6 is built from MF by removing some constructs 

and making syntactic changes to some others.
–	 MF5 ∪ MF6 ≠ MF, as MF6 contains syntactic 

changes.

–	 Case #2: Two sub-models MF7 (Fig.  27) and MF8 
(Fig. 28), as follows:

–	 MF7 = MF∖Z2, where Z2 ⊂ MF
–	 MF8 is built from MF by removing some constructs 

and making syntactic changes to some others.
–	 MF7 ∪ MF8 ≠ MF, as MF8 contains syntactic 

changes.

Similarly, from the Seminars Managing System (MS) model, 
we derive:

Table 8   Experiments input models

Case # Actor Goal Softgoal Task Belief Resource Indicator Decomposi-
tion link

Contribu-
tion link

Depend-
ency link

Total

Experiment 1
Case 1 MF1 3 3 0 8 1 1 0 5 6 1 28

MF2 4 2 1 11 0 1 1 1 8 2 31
Case 2 MF3 3 3 0 12 1 0 1 3 11 1 35

MF4 4 4 1 9 0 1 0 5 8 2 34
Case 3 MS1 3 6 3 7 0 1 0 4 5 2 31

MS2 5 7 5 9 0 0 0 4 7 0 37
Case 4 MS3 4 4 5 9 0 1 0 2 3 2 30

MS4 5 5 3 7 0 1 0 4 6 2 33
Experiment 2
Case 1 MF5 4 4 1 11 0 1 1 5 12 2 41

MF6 4 3 2 12 1 1 1 5 12 2 43
Case 2 MF7 3 3 1 13 1 0 1 3 12 1 38

MF8 4 4 2 9 0 1 0 5 8 3 36
Case 3 MS5 4 7 2 7 0 1 0 4 6 2 33

MS6 5 8 5 9 0 0 0 4 9 0 40
Case 4 MS7 5 6 3 9 0 1 0 5 7 2 38

MS8 5 9 5 10 0 1 0 6 9 3 48
Experiment 3
Case 1 MF9 4 4 0 13 1 0 1 6 11 1 41

MF10 4 4 2 12 0 1 0 4 13 3 43
Case 2 MF11 4 4 1 12 0 0 1 6 12 1 41

MF12 4 3 2 13 1 1 1 3 18 3 49
Case 3 MS9 5 8 5 9 0 1 0 6 7 2 43

MS10 5 8 5 11 0 0 0 6 9 0 44
Case 4 MS11 5 9 3 8 0 1 0 4 8 2 40

MS12 5 8 5 12 0 1 0 7 9 1 48
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–	 Case #3: Two sub-models MS5 (Fig.  37) and MS6 
(Fig. 38), as follows:

–	 MS5 = MS∖Z3, where Z3 ⊂ MS
–	 MS6 is built from MS by removing some constructs 

and making syntactic changes to some others.
–	 MS5 ∪ MS6 ≠ MS, as MS6 contains syntactic 

changes.

–	 Case #4: Two sub-models MS7 (Fig.  39) and MS8 
(Fig. 40), as follows:

–	 MS7 = MS∖Z4, where Z4 ⊂ MS
–	 MS8 is built from MS by removing some constructs 

and making syntactic changes to some others.
–	 MS7 ∪ MS8 ≠ MS, as MS8 contains syntactic 

changes.

The union of sub-models pairs MF5 and MF6, MF7 and 
MF8, MS5 and MS6, and MS7 with MS8 will not result in 
the regeneration of the original models MF or MS. Table 8 
presents the number of constructs in each input model of 
experiment 2.

6.4 � Experiment 3: semantic matching

The aim of Experiment 3 is to evaluate the ability 
of GRLMerger to automatically match the constructs based 
on their semantics (using sentence embedding and cosine 
semantic similarity measures) and merge the matched 
ones.

From the university–alumni (MF) model, we derive:

–	 Case #1: Two sub-models MF9 (Fig. 29) and MF10 
(Fig. 30), as follows:

–	 MF9 is built from MF by removing some constructs 
and making semantic changes to some of the remain-
ing ones.

–	 MF10 (non-base model) is built from MF by remov-
ing some constructs and making syntactic and 
semantic changes to some of the remaining ones.

–	 Case #2: Two sub-models MF11 (Fig. 31) and MF12 
(Fig. 32), as follows:

–	 MF11 is built from MF by removing some constructs 
and making semantic changes to some of the remain-
ing ones.

–	 MF12 (non-base model) is built from MF by remov-
ing some constructs and making syntactic and 
semantic changes to some of the remaining ones.

Similarly, from the Seminars Managing System (MS) 
model, we derive:

–	 Case #3: Two sub-models MS9 (Fig.  41) and MS10 
(Fig. 42), as follows:

–	 MS9 is built from MS by removing some constructs 
and making semantic changes to some of the remain-
ing ones.

–	 MS10 (non-base model) is built from MS by remov-
ing some constructs and making syntactic and 
semantic changes to some of the remaining ones.

–	 Case #4: Two sub-models MS11 (Fig. 43) and MS12 
(Fig. 44), as follows:

–	 MS11 is built from MS by removing some constructs 
and making semantic changes to some of the remain-
ing ones.

–	 MS12 (non-base model) is built from MS by remov-
ing some constructs and making syntactic and 
semantic changes to some of the remaining ones.

The QuillBot tool4 was used to paraphrase and generate 
semantically similar text to the original model constructs’ 
names. The union of sub-models pairs MF9 and MF10, 
MF11 and MF12, MS9 and MS10, and MS11 with MS12 
will not result in the regeneration of the original models MF 
or MS. Table 8 presents the number of constructs in each 
input model of Experiment3.

The threshold value for each case was set based on the 
given input and the generated semantic similarity values: (1) 
Case 1: it was set to 0.57, (2) Case 2: it was set to 0.75, (3) 
Case 3: it was set to 0.7, and (4) Case 4: it was set to 0.71.

6.5 � Effectiveness measurement

The effectiveness of the GRLMerger approach is evaluated 
in terms of: (1) correctness, (2) completeness, and (3) free-
ness from errors.

6.5.1 � Correctness

In our context, correctness can be defined as follows:

Definition 11  (Correctness) The GRLMerger approach is 
able to match and merge the similar GRL constructs of two 
GRL models and produce one conflict-free integrated model.

In order to measure the correctness, we define:

4  https://​quill​bot.​com/.

https://quillbot.com/
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–	 True positives (TP): the number of correctly matched 
and merged constructs by GRLMerger.

–	 True negatives (TN): Number of constructs that were 
correctly not matched/merged by GRLMerger.

–	 False positives (FP): Number of constructs that were not 
matched/merged by GRLMerger, while they should.

–	 False negatives (FN): Number of constructs that were 
incorrectly matched and merged by GRLMerger.

Figure 19 shows the confusion matrix that was used to evalu-
ate the correctness of GRLMerger. Correctness can be meas-
ured using accuracy (Eq. 2), precision (Eq. 3), and recall 
(Eq. 4):

6.5.2 � Completeness

In our context, completeness can be defined as follows:

Definition 12  (Completeness) The GRLMerger approach is 
able to produce an integrated model that includes all the 
matched/merged and unmatched/unmerged constructs from 
the input models (no construct from the input models is 
missing).

The completeness can be measured by a simple count 
of all non-matched constructs from the input models that 
are not present in the integrated model.

6.5.3 � Freeness from errors

Definition 13  (Freeness from errors) GRLMerger is able to 
produce an integrated model that is free from cycles, recip-
rocal parent–child, and intentional elements with more than 
one decomposition type.

The freeness from errors of the integrated model generated 
by GRLMerger can be measured by a simple count of the 
number of syntactical errors (i.e., cycles, reciprocal par-
ent–child, intentional element with more than one decom-
position type) that are present in the integrated model.

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

6.6 � Experiment results

This section presents the results of the conducted 
experiments.

6.6.1 � Results of experiment 1

The GRLMerger tool was able to match and merge all the 
actually matching constructs as depicted in Table 9. There-
fore, the correctness accuracy, precision, and recall were 
equal to one. Furthermore, the GRLMerger tool copied all 
non-matched constructs from the input models to the inte-
grated model, which resulted in regenerating the original 
models, MF and MS. The generated integrated models were 
free from errors.

6.6.2 � Results of experiment 2

Experiment 2 focused more on evaluating the performance 
of the GRLMerger approach and tool in the presence of con-
flicts and error cases. The results of Experiment 2 in Table 9 
show that all the actually matching constructs were matched 
and merged. Therefore, the accuracy, precision, and recall of 
correctness were equal to one. Moreover, all non-matched 
constructs were copied to the integrated model. Therefore, 
the original models, MF and MS, were reconstructed with 
no errors. In addition, all conflicts were resolved as the base 
constructs’ types were retained in the integrated model.

Fig. 19   Correctness confusion matrix
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6.6.3 � Results of experiment 3

The correctness results are presented in Table 9. Out of the 
four cases implemented in Experiment 3, the GRLMerger 
matched and merged the actually matching constructs in 
case 2 only. In the other cases, the GRLMerger mismatched 
some of the actually matching intentional elements which 
further resulted in mismatching the connecting links. The 
accuracy and recall of cases 1, 3, and 4 were less than one 

as shown in Table 10. The correctness precision was equal 
to one because all matched and merged constructs are actual 
matching constructs. Although GRLMerger failed to match 
some of the constructs, these constructs and non-matched 
constructs were copied to the integrated model. Moreover, 
the integrated models were free from errors.

6.7 � Results interpretation

The matching of actors and intentional elements is based 
on their names (i.e., semantic matching), while links are 
matched syntactically (i.e., based on the connected parent 
and child intentional elements). In experiments 1 and 2, the 
differences between the input models were purely syntacti-
cal. For example, some of the intentional elements exist in 
one input model and they are not in the other input model, 
or different types of the matched intentional elements (e.g., 
a goal is matched with a task). However, the matched actors 
and intentional elements had identical names (i.e., no syno-
nyms or paraphrasing were applied). Therefore, the GRLM-
erger tool was able to match all actually matching constructs 
(using a similarity threshold of 1). Furthermore, the non-
matched constructs were copied to the integrated model 
resulting in a model that is complete and free from errors.

GRLMerger decides if two intentional elements are 
matching based on the specified similarity threshold value. 
This threshold is set manually by the user as an input to the 
approach. Therefore, the results of the matching are impacted 
by the specified threshold. If a high threshold value is speci-
fied, the GRLMerger will not match all matching constructs 
(lower accuracy and recall), and hence, the generated merged 
model would include more constructs. However, based on our 
experiment 3, we couldn’t confirm this correlation. Indeed, 
we notice that an increase in the threshold value (0.57 in case 
#1 to 0.75 in case #2) would increase the accuracy (from 0.86 
in case #1 to 1 in case #2) and the recall (from 0.79 in case #1 
to 1 in case #2). However, an increase in the threshold value 
(0.57 in case #1 to 0.7 in case #3) would decrease the accuracy 
(from 0.86 in case #1 to 0.85 in case #2).

In the input models of the third experiment, synonyms and 
paraphrases were used and results showed that the GRLM-
erger tool was not able to match all intentional elements 
(i.e., synonyms generated by Quillbot) that were supposed to 
be matched. This is because the names of these intentional 

Table 9   Evaluation results: correctness confusion matrices

Case # GRLMerger Actual Matching and 
Merging

Matching 
and Merg-
ing

Not Matching

Experiment 1
Case 1 MF1–MF2 Matching and 

merging
10 0

Not Matching 0 39
Case 2 MF3–MF4 Matching and 

merging
20 0

Not Matching 0 29
Case 3 MS1–MS2 Matching and 

merging
20 0

Not Matching 0 28
Case 4 MS3–MS4 Matching and 

merging
18 0

Not Matching 0 30
Experiment 2
Case 1 MF5–MF6 Matching and 

merging
33 0

Not Matching 0 16
Case 2 MF7–MF8 Matching and 

merging
23 0

Not Matching 0 26
Case 3 MS5–MS6 Matching and 

merging
25 0

Not Matching 0 23
Case 4 MS7–MS8 Matching and 

merging
32 0

Not Matching 0 16
Experiment 3
Case 1 MF9–MF10 Matching and 

merging
27 0

Not Matching 7 15
Case 2 MF11–

MF12
Matching and 

merging
40 0

Not Matching 0 9
Case 3 MS9–MS10 Matching and 

merging
30 0

Not Matching 7 11
Case 4 MS11–

MS12
Matching and 

merging
31 0

Not Matching 3 14

Table 10   Experiment 3: correctness accuracy, precision, and recall

Case # Accuracy Precision Recall

Case 1: MF9–MF10 0.86 1 0.79
Case 2: MF11–MF12 1 1 1
Case 3: MS9–MS10 0.85 1 0.81
Case 4: MS11–MS12 0.94 1 0.91
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elements have semantic similarity values less than the speci-
fied similarity threshold value. Therefore, the GRLMerger did 
not recognize them as matching intentional elements.

Since the GRLMerger match/merge process starts with 
actor containers followed by intentional elements, and finally 
processes the links, a mismatch of the intentional elements 
would propagate to the links. Indeed, not all the actually 
matching links were matched and merged since their parent/
child intentional elements are different. Moreover, this mis-
match resulted in having some semantically similar intentional 
elements within the same actor. However, changing the thresh-
old value would lead to a different resulting model and differ-
ent accuracy values.

6.8 � Impact of threshold selection

To provide more insight into the importance of the selection 
of an appropriate threshold value, two more experiments were 
conducted. These experiments were conducted to evaluate the 
performance of GRLMerger with the highest and the lowest 
possible similarity values which are 1 and 0, respectively. In 
these two extra experiments, we have used the same input 
models MF9 and MF10 (syntactically and lexically different 
but semantically similar) that were used in case 1 of the third 
experiment (Sect. 6.4). The first experiment was conducted 
with a threshold value equals to one, while the second experi-
ment with a threshold value equals to zero"

–	 Threshold = 1: A threshold of 1 forces GRLMerger 
to do a lexical matching (matching only identical 
terms). GRLMerger was not able to match the intentional 
elements that have semantically similar but lexically dif-
ferent names. Table 11 shows 19 mismatched constructs. 
That is, it mismatched eight intentional elements which 
resulted in mismatching the links that are linking the 
integrated intentional elements. Furthermore, GRLM-
erger copied all the non-matched and mismatched con-
structs to the integrated model. Accuracy, precision, and 
recall are presented in Table 12.

–	 Threshold = 0: GRLMerger would match each inten-
tional element from model_a with at most one inten-
tional element from model_b. Therefore, all the matched 

and unmatched intentional elements will be integrated. 
Table  11 shows the presence of incorrect matching 
between two constructs, the task “Provide discounts on 
short courses registration fees” was integrated with the 
task “Organize networking events,” hence the links con-
necting them were incorrectly integrated.

Based on the results of these two extreme cases and the 
results of Experiment 3, no conclusions can be drawn on the 
optimal ranges of the thresholds.

7 � Discussion

In this section, we present the limitations of the pro-
posed GRLMerger approach, then we compare it with exist-
ing GRL integration techniques, and finally we present its 
main threats to validity.

7.1 � Limitations of the GRLMerger approach

Despite the perceived benefits of the proposed GRLMerger 
approach and tool, some limitations could impact the quality 
of the integrated GRL model:

–	 Selection of the base model: Conflicts that may arise 
during the integration of two GRL models are resolved 
automatically by giving a higher priority to the selected 
base model, i.e., used as a reference model. However, 
the selection of the other model as a base model would 
result in a different integrated model. Such discrepan-
cies between the results of the merging process can be 
avoided by using the GRLMerger interactive mode.

–	 Systematic merging: GRLMerger merges the input mod-
els systematically without considering the context. For 
example, if the two input models come from different 

Table 11   Special experiments: 
correctness

Case # GRLMerger Actual matching and merging

Matching and merg-
ing

Not matching

Similarity threshold = 1 Matching and merging 15 0
Not matching 19 15

Similarity threshold = 0 Matching and merging 34 2
Not matching 0 13

Table 12   Special experiments results

Case # Accuracy Precision Recall

Similarity threshold = 1 0.61 1 0.44
Similarity threshold = 0 0.96 0.94 1
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contexts and domains, GRLMerger proceeds blindly 
with the automatic merging and does not detect that the 
models are from different domains. This issue should be 
detected by the analyst.

–	 No discovery of new dependencies: In case the input 
models have no common actors, the resulting model 
will be the combination of all actors within the input 
models. However, actors from the first input model won’t 
be connected to actors of the second model, as no new 
dependencies are created. It is the role of the analyst to 
add such dependencies.

–	 No redistribution of contribution weights: The merging of 
contribution links may lead to a situation where the aggrega-
tion of the contribution weights exceeds 100. For instance, 
Fig. 20 illustrates the resulting model when integrating two 
models: Model_a (composed of goal G and tasks A and B) 
and Model_b (composed of goal G and tasks C, D, and E). 
The aggregation of contribution weights is 200. For an opti-
mal model, we need to re-balance the contribution weights 
(to have a total of 100). This task is left to the analyst.

–	 No backtracking: In the interactive mode, the user is pre-
sented with a set of options that he has to choose from. Once 
the choice is made, the next step is processed and there is no 
possibility to go back and change previous choices.

–	 Textual interaction: In the interactive mode, the user is 
given a range of options (in the form of text) to choose 
from (e.g., dialog boxes in Figs. 12, 14). A graphical 
representation of the choices would be more effective.

7.2 � Practical considerations

In this section, we provide some practical insights to help 
practitioners apply and adjust the proposed approach to their 
needs. From a practical perspective, GRLMerger may be 
used in the following situations: 

1.	 Early stages of the RE process: Various techniques, 
such as interviews, surveys, and workshops, can be 
employed to collect information from stakeholders. The 
aim is to capture a comprehensive understanding of the 
stakeholders’ needs, concerns, and objectives. The gath-
ered information, collected by different teams, is then 
used to construct partial GRL models. A partial GRL 
model reflects the viewpoints of the team that developed 
it. The GRLMerger tool would assist in integrating these 
partial GRL models (belonging to the same context). 
While the fully automated mode of the tool may be used, 
the interactive mode is more suitable at this stage. As this 
marks the initial development of a comprehensive GRL 
model, the interactive merging mode affords users greater 
control over integration decisions, enabling the identifi-
cation and resolution of potential conflicts. Deploying 
GRLMerger in this phase eliminates subjectivity among 

different teams when deciding on the semantic similarity 
of integrated goal model elements. It is worth noting that 
practitioners may also experiment with different semantic 
similarity thresholds and different base models.

2.	 Requirements evolution: In this scenario, we assume 
the existence of a well-established GRL model that cap-
tures the current goals and requirements agreed upon by 
stakeholders, serving as the baseline. Any introduction of 
new goals or requirements, prompted by factors such as 
emerging technology, evolving business landscapes, or 
the inclusion of novel quality aspects, necessitates adjust-
ments to the baseline GRL model. To accommodate these 
changes, a partial GRL model is developed to specifically 
address the new technological or business perspectives. 
Utilizing GRLMerger in this scenario involves integrating 
the newly developed model with the baseline, treating the 
new model as the base during conflict resolution. Given 
the shared requirements context of both models, the auto-
mated mode of GRLMerger proves more efficient, reducing 
effort and time compared to manual or interactive merging. 
Practitioners may also experiment with different semantic 
similarity thresholds in this scenario. If the resulting con-
solidated model is unsatisfactory, they have the option to 
switch to the interactive mode for further refinement.

It is important to highlight that partial GRL models are not 
simply discarded post-integration; rather, they are retained 
to document the merging rationale.

7.3 � Threats to validity

The proposed GRLMerger approach and the experimental 
validation are subject to several threats to validity that are 
categorized according to three important types identified 
by Wright et al. [45].

–	 Construct Validity: There is a potential threat concern-
ing the need to specify a base model to be able to resolve 
the emerged conflicts automatically. In addition, choos-
ing a different base model would lead to a different inte-
grated model. To mitigate this risk, we have provided an 

Fig. 20   Merge requiring weight redistribution
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interactive mode, where the user decides how conflicts 
are resolved.

	       Another possible risk is related to the selection of a 
similarity threshold, based on which intentional elements 
are matched and merged. Having different threshold val-
ues would lead to different integrated models. To miti-
gate this risk, the GRLMerger tool computes the seman-
tic similarity between all pairs of elements and presents 
them to the user. This would help the user to select an 
appropriate similarity threshold.

	       There is a potential criticism concerning the lack 
of validation of the integrated models by experts. To 
mitigate this risk, we have used three metrics (correct-
ness, completeness, and freeness from errors) as perfor-
mance indicators to evaluate the proposed GRLMerger 
approach. However, validating the results by experts 
could increase its validity.

	       Furthermore, a potential concern that may affect 
the performance of the matching process in the GRLM-
erger tool is the domain of the input models. To mitigate 
this threat, SBERT is chosen, having been trained on the 
Stanford Natural Language Inference (SNLI) corpus, a 
diverse collection of human-authored sentences. Con-
sequently, the GRLMerger tool is not constrained by a 
specific domain.

–	 Internal Validity: The first threat is related to the per-
formance of the used sentence embedding model, which 
may impact the effectiveness of GRLMerger matching 
process and hence affect the overall results. This threat 
is mitigated by selecting SBERT sentence embedding 
model, which outperforms other state-of-the-art embed-
ding models proposed in the literature.

	       A second possible risk is related to the size of the 
used models in the experiments. Indeed, although the 
size of the used examples is comparable to those pub-
lished in GORE papers, they are considered of medium 
size. The use of bigger models would increase the valid-
ity of the proposed GRLMerger approach and tool.

	           A third potential risk is that the  GRLMerger 
approach may introduce cycles, reciprocal child-parent, 
and intentional elements with multiple decomposition 
types in the integrated model. To mitigate this risk, we 
have introduced the model sanitization phase to resolve 
and document such issues. A related risk is that the 
sanitization step involves the removal of some links to 
break a cycle or to resolve the reciprocal child-parent 
issue (having the base model as a reference). To miti-
gate this risk, the user may run choose the interactive 
mode and choose which link to break.

–	 External Validity: As for external validity, a possible 
threat is that our proposed GRLMerger approach is tai-
lored to the GRL language [19] and more specifically 
the TGRL notation [1]. However, the GRLMerger tool 

can be easily adjusted to cover the textual URN syntax 
proposed by Kumar and Mussbacher [22]. In addition, 
the four main steps of the integration process (match, 
merge, transform, sanitize) can likely be adjusted and 
applied to other goal-oriented languages, like iStar, that 
support actors, intentional elements, and their relation-
ships. However, it is imperative to conduct a proof of 
concept and additional experiments to assess the effec-
tiveness of GRLMerger in GORE languages that share 
similar constructs.

	       Another possible threat is related to the use of two 
models (University–Alumni and Seminars Management 
System) to derive the 24 models used in the 12 experi-
ments. Having additional models from other domains 
would support the generalization of our results.

8 � Conclusions and future work

The manual integration of GRL models requires intensive 
human effort and time. It is an error-prone process that 
could be biased by the conflicts between stakeholders’ 
intentions, the usage of different vocabularies and the 
subjectivity of the requirements engineer/analyst per-
forming the integration. In this paper, we have proposed 
the GRLMerger approach to integrate automatically (and 
interactively) two TGRL models into one consolidated 
model that is correct, complete, and free from any conflict 
that may arise during the merging process. GRLMerger 
considers both syntactic and semantic aspects (based on 
semantic similarity) when merging sub-models. GRLM-
erger has four main sequential steps: matching, merging, 
transforming, and sanitizing. A prototype tool was devel-
oped to implement the GRLMerger approach. In addition 
to the integrated model, the tool documents all matched 
and merged constructs, the resolved conflicts and error 
cases, and provides a copy of the model before cycle res-
olution. The  GRLMerger approach and tool have been 
validated using three experiments showing very promis-
ing performance.

As future work, we plan to extend the proposed GRLM-
erger approach to be able to integrate more than two GRL 
models at a time. Furthermore, in order to increase its 
adoption, we plan to integrate the developed GRLMerger 
tool within jUCMNav [20].

Appendix A: fostering university–alumni 
relationships GRL sub‑models

See Figs. 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32.
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Fig. 21   Input model MF1

Fig. 22   Input model MF2
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Fig. 23   Input model MF3

Fig. 24   Input model MF4

Fig. 25   Input model MF5
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Fig. 26   Input model MF6

Fig. 27   Input model MF7

Fig. 28   Input model MF8



244	 Requirements Engineering (2024) 29:209–259

Fig. 29   Input model MF9

Fig. 30   Input model: MF10
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Fig. 31   Input model MF11

Fig. 32   Input model MF12
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Appendix B: seminars managing system GRL 
sub‑models

See Figs. 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 and 44.

Fig. 33   Input model MS1
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Fig. 34   Input model MS2
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Fig. 35   Input model MS3
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Fig. 36   Input model MS4
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Fig. 37   Input model MS5
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Fig. 38   Input model MS6
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Fig. 39   Input model MS7
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Fig. 40   Input model MS8
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Fig. 41   Input model MS9
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Fig. 42   Input model MS10
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Fig. 43   Input model MS11
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Fig. 44   Input model MS12
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