
Vol.:(0123456789)

Requirements Engineering (2024) 29:209–259
https://doi.org/10.1007/s00766-024-00413-6

ORIGINAL ARTICLE

GRLMerger: an automatic approach for integrating GRL models

Nadeen AlAmoudi1 · Jameleddine Hassine1,2  · Malak Baslyman1

Received: 5 June 2023 / Accepted: 12 January 2024 / Published online: 4 March 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Goal-oriented requirements engineering aims to describe both stakeholders and system goals and their relationships using
goal models. Large goal models for complex systems are often constructed from sub-models describing various stakehold-
ers’ views and context-related aspects. These goal-oriented sub-models, also called views, may exhibit overlaps and present
discrepancies. Hence, integrating such views is considered a significant barrier to the construction of a unified goal model.
Current approaches to merging goal models require intensive human intervention. This paper proposes an approach and a
prototype tool, called GRLMerger, to integrate two GRL (Goal-oriented Requirement Language) models into one consoli-
dated model that is correct, complete, and free from any conflict that may arise during the merging process. GRLMerger
considers both syntactic and semantic aspects of the GRL models and allows analysts to merge them either interactively or in
a fully automated mode. GRLMerger employs natural language processing (NLP) techniques to match intentional elements
based on their semantic similarity. The proposed GRLMerger approach and tool have been validated using 12 experimental
tasks derived from two case studies, exhibiting very promising performance.

Keywords  Goal-oriented modeling · Goal-oriented Requirement Language (GRL) · Integration · Matching · Merging ·
Semantics · Natural language processing

1  Introduction

Stakeholders’ requirements are continuously growing which
increases the systems’ size and complexity [33]. Require-
ments models have emerged as a promising solution to cope
with software complexity by modeling various software
aspects at several levels of abstraction. Requirements mod-
els are often constructed incrementally by describing several
system aspects, e.g., behavioral, functional/non-functional
aspects, and merging partial viewpoints into a unified view,

while resolving any conflicts that may arise. In practice, sev-
eral versions of a given requirement artifact are built [27]
in order to cope with new or changing business needs, new
technological advances, etc. In addition, partial models (also
called sub-models) may be developed by different teams
within an organization. A partial model reflects the view-
points of the team who developed it [4, 5]. Moreover, these
sub-models are built gradually to help grasp the problem
domain [11]. Later, these partial models have to be merged
to obtain a complete and comprehensive model. However,
this task is faced with many challenges including choosing
an appropriate level of granularity, conflicting stakeholders’
intentions, the usage of different vocabularies, the presence
of inconsistent viewpoints, and semantic flaws [4, 5, 40].

A common starting point in requirements engineering
(RE) activities is the elicitation of stakeholders’ high-level
goals and intentions regarding the targeted system. Goal
models are meant to describe both stakeholders and sys-
tem goals and their relationships. Over the years, numerous
goal modeling languages have been developed. Some of the
famous and widely used ones are i* [46], Keep All Objects
Satisfied (KAOS) [41], the Non-Functional Requirements
(NFR) Framework [7], Tropos [14], and the Goal-Oriented

 *	 Jameleddine Hassine
	 jhassine@kfupm.edu.sa

	 Nadeen AlAmoudi
	 g201906430@kfupm.edu.sa

	 Malak Baslyman
	 malak.baslyman@kfupm.edu.sa

1	 Information and Computer Science Department, King
Fahd University of Petroleum and Minerals, PO.Box 1621,
31261 Dhahran, Kingdom of Saudi Arabia

2	 Interdisciplinary Research Center for Intelligent Secure
Systems, King Fahd University of Petroleum and Minerals,
PO.Box 1621, 31261 Dhahran, Kingdom of Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-024-00413-6&domain=pdf
http://orcid.org/0000-0001-8170-9860

210	 Requirements Engineering (2024) 29:209–259

Requirements Language (GRL) [19] part of the ITU-T’s
User Requirements Notation (URN) standard. Large goal
models are often constructed from sub-models describing
various stakeholders’ views and context-related aspects.
These goal-oriented sub-models, also called partial views,
may exhibit overlaps and present discrepancies. Hence, inte-
grating such views is considered a significant barrier to the
construction of a unified goal model [40].

Merging goal models is essential when introducing new
stakeholders, integrating new technologies in a business
environment [2], maintaining existing business process
models [11], updating current software products [3], and
integrating quality aspects, into existing goal models [24,
25]. Although some approaches have been proposed to inte-
grate goal models [2, 12, 13, 24, 39, 40], goal model inte-
gration still presents many serious challenges such as the
usage of different vocabularies, the presence of stakeholders
conflicts, the lack of traceability, the presence of inconsistent
viewpoints, and the emergence of semantic flaws [5, 40].
Furthermore, most of the goal model integration techniques
are manual and require heavy human intervention, which
makes them error-prone and hence reduces their adoption.

Therefore, the ultimate goal of this research is to develop
an approach to automate the integration of partial goal mod-
els, ensure the correctness and completeness of the inte-
grated model, and mitigate any conflict that may arise among
the merged partial views. In this research, the Goal-Oriented
Requirements Language (GRL) [19] was used as our target
goal-oriented language given its status as an international
standard [19].

In this paper, we make the following contributions:

1.	 Propose the GRLMerger approach to merge two GRL
models automatically. Merging goal models is necessary
not only when building a unified goal model in the early
elicitation of stakeholders’ goals, but also when main-
taining goal models. GRLMerger considers both syn-
tactic and semantic aspects of the GRL models. GRLM-
erger employs NLP (Natural Language Processing)
techniques to match the GRL constructs based on their
semantic similarities.

2.	 A prototype tool, named GRLMerger after the proposed
approach. The tool offers modelers/maintainers/analysts
the possibility to merge GRL models either in a full-
automated way or in an interactive way, giving the user
more control over the integration decisions. The tool is
published publicly as a Python package.1

3.	 Validate the proposed GRLMerger approach using three
experiments. A total of 24 TGRL models (derived from
two case studies) were used in 12 integration cases, and

evaluated in terms of correctness, completeness, and
freeness from errors.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background for this research
with a brief introduction to the Goal-oriented Requirement
Language (GRL) [19] and its textual version TGRL nota-
tion. Section 3 presents existing work related to merging
goal models. Section 4 describes the proposed GRLMerger
approach, while Sect. 5 presents the GRLMerger tool. In
Sect. 6, we evaluate the proposed approach and tool using
three experiments. An overview of the limitations of GRLM-
erger, some practical insights to help practitioners apply and
adjust GRLMerger to their needs, and a discussion of the
potential threats to validity are provided in Sect. 7. Finally,
conclusions and future work are presented in Sect. 8.

2 � Research background

This section introduces the basic background of this
research. It is organized around three main themes: (1)
model management in the context of model integration, (2)
the Goal-oriented Requirements Language (GRL) and its
textual representation, and (3) the techniques to compute
text similarity.

2.1 � Model management

Software systems are usually described using informal,
semi-formal, or formal models [27]. Models are used to
describe software systems at various levels of abstraction.
They constitute software artifacts from the problem space
(where they capture the requirements of the system under
development) to the solution space (where they specify the
design, development, and deployment of the final software
product) [4]. Examples of models include, among others,
control flow diagrams, ontologies, object diagrams, business
process models, and form definitions [29]. In practice, these
models are developed by different modelers and describe
partial views of the system under development. Furthermore,
multiple versions of a given model may be developed and
maintained due to the changing nature of requirements and
the inclusion of various stakeholders’ viewpoints. Hence,
consolidating such models is essential [29] to maintain a
consistent view of the modeled system [27].

Model management aims to find the relationship
between models in a systematic way [35]. This can be
achieved by a set of algebraic operators [4, 29, 35]. These
operators are generic as they can be applied to differ-
ent problem domains [29]. However, their implemen-
tation is tailored to the model’s type and applications
[37]. Some of the major model management operators 1  https://​pypi.​org/​proje​ct/​GRLMe​rger/.

https://pypi.org/project/GRLMerger/

211Requirements Engineering (2024) 29:209–259	

are Match, Merge, Diff, Extract, Transform, and Compose
[28–30].

In the context of model integration, given two or more
input models, the Match operator aims to discover the rela-
tionships between the models’ elements and creates a map-
ping between them. More specifically, it establishes a corre-
spondence between similar/equivalent elements of the input
models. Such elements are then fed to the Merge operator
along with the input models, resulting in a merged model
with no duplication of the matched elements. Other use-
ful operators for model integration include: the Compose
operator, which composes two or more element mappings,
the Diff operator which takes as input two models and finds
the differences between them (if any), the Extract operator
returns a portion of a model that participates in a mapping,
and the Transform operator copies the elements that have
not been matched with the other elements into the merged
model. Besides the major operators, there are other opera-
tors that can support them in solving model evolution and
integration, such as Split, Slice, Patch, and Propagate [29].

2.2 � Goal‑oriented Requirements Language (GRL)

Goal-oriented Requirements Language (GRL) is a visual
modeling language used for capturing and representing the
goals and requirements of socio-technical systems [11, 26].
The primary goal of GRL is to help stakeholders of a system
define and understand its high-level goals and requirements
in a structured and systematic way [9, 26]. In addition, GRL
enables stakeholders to identify and analyze the trade-offs
between different requirements alternatives, which is particu-
larly important when dealing with complex systems having
competing objectives. The GRL language has been standard-
ized by the International Telecommunication Union (ITU-T),
as part of the User Requirements Notation (URN) [19].

In what follows, we introduce the main GRL constructs
using a simple GRL model of a tiny online shopping busi-
ness. This example will be used throughout the paper to
illustrate various model integration configurations. The
GRL model, built using the jUCMNav [20] tool and illus-
trated in Fig. 1, is composed of one GRL actor Business
Owner. Actors (illustrated as) represent the stakeholders
who are involved in the interaction with the system. They
can be human or non-human entities. The Business Owner
encloses many intentional elements of different types. For
instance, Offer Online Shopping, Ensure Authentication,
and Provide Identification are GRL goals (illustrated as)
stating the desired outcomes of the actor, while Increase
Sales and Have System Security are GRL softgoals (illus-
trated as) representing non-functional requirements or
quality attributes.

Intentional elements are linked to each other using
decompositions (illustrated as), dependencies
(illustrated as), and contribution links (illustrated
as). For instance, goal Ensure Authentication is
decomposed, using an OR-decomposition, into three
tasks (illustrated as), describing the actions required
to achieve a particular goal, softgoal or another task,
namely, Use Fingerprint, Use Card-key, and Use Pass-
word. In addition, task Access Authorization is decom-
posed, using AND-decomposition, into two goals Ensure
Authentication and Provide Identification. An AND-
decomposition is used when all child-elements shall be
satisfied in order to satisfy the parent goal. An OR-decom-
position is used when at least one of the child-elements
shall be satisfied in order to satisfy the parent goal, while
an XOR-decomposition requires the fulfillment of only one
of the alternatives.

Intentional elements can be connected using contribu-
tion links expressing the impact (positive or negative, at
different levels of sufficiency) of the source element on
a target element. The qualitative contribution types of a
contribution link can fall into one of the following cat-
egories [19]:

–	 Make (): The contribution is positive and sufficient.
–	 Help (): The contribution is positive but not sufficient.
–	 SomePositive (): The contribution is positive, but the

extent of the contribution is unknown.

Fig. 1   GRL model: online shopping business

212	 Requirements Engineering (2024) 29:209–259

–	 Unknown (): There is some contribution, but the
extent and degree (positive or negative) of the contri-
bution is unknown.

–	 SomeNegative (): The contribution is negative, but the
extent of the contribution is unknown.

–	 Break (): The contribution of the contributing element
is negative and sufficient.

–	 Hurt (): The contribution is negative but not sufficient.

A contribution link may also have a quantitative weight
(e.g., an integer value within [ −100 , 100]). For instance,
task Encryption contributes positively (i.e., Make, +100)
to softgoal Have System Security, while goal Offer Online
Shopping contributes positively (i.e., SomePositive, +75) to
softgoal Increase Sales.

Dependencies are used to describe that one element is
dependent (depender) on another element (dependee) to
achieve its objectives. In Fig. 1, softgoal Increase Sales
depends on resource Payment. Resources (illustrated as)
represent physical or informational entities required to sat-
isfy goals/softgoals. Beliefs are conditions or design ration-
ales that can be attached to intentional elements, e.g., Biom-
etrics is no regular, off-the-shelf technology.

Actors and intentional elements may have a qualitative
(e.g., High, Medium, Low, None) or quantitative (value
between 0 and 100) importance. In Fig. 1, the goal Ensure
Authentification has a High importance (shown as (100)).

In addition to its graphical notation, Abdelzad et al. [1]
introduced a programming-like textual representation of
GRL, called TGRL, in order to facilitate the analysis of
GRL models and improve their usability and scalability [1].
TGRL is now part of the URN standard [19]. Figure 2 pre-
sents the TGRL specification that corresponds to the GRL
model of Fig. 1. In this research, we implement our GRLM-
erger prototype tool for TGRL. For a complete description
of the GRL language, interested readers are referred to the
URN standard [19].

2.3 � Text similarity

Natural language processing (NLP) has emerged as a power-
ful tool for text similarity to solve many problems, such as
information retrieval, answering questions, document clas-
sification, text clustering, and text summarization [10, 31].
Text similarity can be categorized into lexical-based similar-
ity and semantic-based similarity [15, 31].

2.3.1 � Lexical‑based similarity

The lexical-based similarity operates on the order of charac-
ters to decide whether two words are similar or not regard-
less of their meanings [15, 31]. That is, it is concerned with
the syntax only [31]. The lexical-based similarity can be
categorized into character-based similarity and term-based
similarity [15, 31, 42].

–	 Character-based similarity A character-based similar-
ity measure calculates the similarity between two texts
or documents based on the occurrence and frequency of
shared characters or n-grams (sequences of n characters).

–	 Term-based similarity The algorithms under the term-
based similarity category compare two texts or docu-
ments based on the occurrence and frequency of shared
terms or words [42].

2.3.2 � Semantic‑based similarity

The semantic-based similarity identifies the similarity between
two texts or documents based on their semantic meaning,
rather than just the occurrence of shared words or charac-
ters [31]. For instance, the two words ’gift’ and ’present’ are
semantically similar and this can be concluded by the seman-
tic-based similarity measures. Since the lexical-based similar-
ity measures calculate the similarity on a literal level [42], they
will not identify ’gift’ and ’present’ as similar due to differ-
ent spellings. The semantic-based similarity measures can be
categorized into corpus-based and knowledge-based [15, 31].

–	 Corpus-based similarity Corpus-based similarity algo-
rithms use a large set of written or spoken texts, called
corpus, to determine the similarity between words [15].

–	 Knowledge-based similarity The knowledge-based similar-
ity methods use a semantic network, such as WordNet, to
find the semantic similarity between words [31]. WordNet
is a large lexical database of English where it groups nouns,
verbs, adjectives, and adverbs into sets of cognitive syno-
nyms called synsets [32].

One way to compute semantic-based similarity is by using
distributional semantic models, such as word embeddings or
sentence embeddings [38]. These models represent words or
sentences as dense, low-dimensional vectors in a continuous
space, where similar words or sentences are located close to
each other. To measure the semantic similarity between two
texts, their word or sentence embeddings are first calculated,
and then a similarity score is computed based on the distance
or angle between the vectors. A vector is the numerical repre-
sentation of a word or a set of words in a space such that the

213Requirements Engineering (2024) 29:209–259	

distribution of these numbers conserves the textual meaning
[23]. To measure the similarity between vectors (i.e., embed-
ding), the most common similarity metric is to find the cosine
of the angle between two vectors [21]. It can be computed as
follows:

Word embedding models do not perform well in representing
the meaning of a full sentence [8]. To overcome the issues
of the word embedding models, several state-of-the-art sen-
tence embedding models were proposed. Some of the latest
state-of-the-art sentence embedding models are InferSent
[8], Universal Sentence Encoder [6], and SBERT (Sentence
Bidirectional Encoder Representations from Transformers)
[38]. However, SBERT outperformed InferSent and Uni-
versal Sentence Encoder. SBERT is a modification to the
pre-trained BERT network that creates the embedding of
sentences with semantic meaning using Siamese and triplet

(1)cos(v1, v2) =
v1 ⋅ v2

|v1| ∗ |v2|

network architectures [38]. The sentence embeddings can be
compared using cosine similarity as well. In this paper, we
use SBERT as our Word embedding model.

3 � Related work

Several approaches have been proposed to integrate goal
models [2, 3, 13, 16, 26, 39]. Sabetzadeh and Easterbrook
[39] proposed an algebraic framework to merge early i*
[46] views. Their approach was inspired by categorical
algebra and treated early i* views as structured objects,
and the relationships between them as structural map-
pings. A three-way merge was used to build a consoli-
dated view that contains their common parts. The authors
presented general algorithms that use partially ordered sets
(i.e., posets) to merge typed graphs. The authors claimed
that the poset-annotated graphs, are capable of modeling
incompleteness and inconsistency graph-based views,
while ensuring full traceability with the partial views. A
tiny i* example was for illustration. Hence, the applica-
bility of the approach to real i* models remains untested.
Furthermore, the approach is fully manual, making it
error-prone and limiting its adoption.

Feng et al. [13] presented an approach for merging
semantic similar goal models of networked software sys-
tems. The authors [13] used the Role-Goal-Process-Ser-
vice (RGPS) framework [43] to represent functional goals,
where each goal is described using (1) a verb to indicate
the operation, (2) a noun that indicates the object with
which the operation deals, and (3) the manner, a prefix or
a suffix that indicates how operation manipulates/impacts
the object. Their approach is triggered when there exists
a merging point which is specified by having an overlap
point (i.e., a pair of goals having semantic similarity) of
the root elements of two models. In addition, the authors
define three basic merging patterns, namely, AND-AND,
OR-OR, and AND-OR patterns, to merge atomic goal
models. The approach suffers from many limitations:
(1) the merging is done manually and requires analyst
judgment to ensure consistency and correctness, (2) no
merging is performed in case of an overlap of non-root
elements, (3) only AND/OR goal refinements were consid-
ered, other goal modeling constructs such as dependencies,
and contributions links (present in goal-oriented notations
like i* [46] and GRL [19]) are not considered, and (3) to
resolve AND-OR merging conflict, goals may be dupli-
cated. Contrary to this approach, our proposed GRLMerger
approach resolves conflicts in decomposition types without
duplicating the child elements.

In the context of new technology integration in busi-
ness environments, Baslyman and Amyot [2] proposed

grl OnlineShopping {
actor businessOwner {

name = "Business Owner";
softGoal increaseSales {

name = "Increase Sales";
}
softGoal systemSecurity {

name = "Have System Security";
}
goal onlineShopping {

name = "Offer Online Shopping";
}
goal ensureAuthentication {

name = "Ensure Authentication";
decompositionType = or;
importance = high;

}
goal provideIdentification {

name = "Provide Identification";
}
goal accessAuthorization {

name = "Access Authorization";
decompositionType = and;

}
task encryption {

name = "Encryption";
}
task fingerprint {

name = "Use Fingerprint";
}
task password {

name = "Use Password";
}
task cardkey {

name = "Use Card-key";
}
belief biometric {

name = "Biometrics belief";
description = "Biometrics is no regular,

off-the-shelf technology";
}
onlineShopping contributesTo increaseSales {somePositive;};
systemSecurity contributesTo onlineShopping {somePositive;};
accessAuthorization contributesTo systemSecurity {make;};
encryption contributesTo systemSecurity {make;};
accessAuthorization decomposedBy ensureAuthentication,

provideIdentification;
ensureAuthentication decomposedBy fingerprint, password,

cardkey;
increaseSales dependsOn payment;

}
resource payment {

name = "Payment";
}

}

Fig. 2   TGRL specification: online shopping business

214	 Requirements Engineering (2024) 29:209–259

an integration method to merge GRL models with differ-
ent contexts. The method starts with experts identifying
similarities and dissimilarities between the input models
to be merged. The similarities are added to a similarity
integrated goal model (SIGM), while the dissimilarities
are added to a dissimilarity integrated goal model (DIGM).
Traceability between SIGM, DIGM, and the input models
are preserved using seven relationships, namely, S (Simi-
lar), TS (Transitive Similarity), DS (Dissimilar), C (Con-
flict), D (Different), N (New), and A (Approved). Finally,
the integrated model is checked for consistency using
OCL (Object Constraint Language) rules. In the last step,
the analyst investigates the fully integrated goal model,
and resolves any inconsistencies. Although the approach
enables consistency analysis through OCL verification, it
requires analyst intervention in all steps.

Contrary to the above-mentioned studies that focus on the
integration of goal models of the same type, Beckers et al.
[3] proposed a method trying to integrate SI* goal-based
models with software problem frames. The former captures
stakeholders’ goals, roles, tasks, and resources, while the
latter describes the software development problems. The
mapping of the elements in the SI* models to elements of
the problem frame notation requires the intervention of a
human expert, since it is not a one-to-one mapping and there
may exist many options in problem frame elements that are
mapped to one element from the SI* model. The proposed
method can be used to find relations between goal-based and
problem-based models, but the integration between them is
not meaningful.

Liu et al. [26] presented the idea of combining reviews
with a goal model aiming to support the evolution of
mobile applications. First, the relationships between goals
and reviews are analyzed and the relevancy between them
is computed by comparing their contents. For this phase,
an extensible vocabulary for each goal is established con-
sidering different terminologies used in the reviews to help
establish a strong relationship; the output is a goal model
GM with reviews (R-GM). Then, the user sentiments from
reviews are introduced to the goal model to help developers
determine which goals to be updated. This study emphasized
the importance of considering different terminologies used
for describing a goal.

The recent work by Hablutzel et al. [16] is the most
closely related work to our proposed GRLMerger
approach. The authors [16] proposed a semi-automated
approach for merging Tropos [14] goal models. They
defined two operators, gullibility and consensus. The for-
mer moves actors and intentions, if they exist in one model
only, to the merged model, while the latter combines simi-
lar actors or intentions in both models into one element in
the merged model. Their approach merges the actors with
their relationships first and resolves any contradiction;

then, the intentions with their relationships are merged and
then resolve any contradictions. Some of the contradiction
cases such as different types of merged actors are resolved
automatically and others are left to the user to make a suit-
able decision. Our GRLMerger approach merges the links
(i.e., relations) after completing the merging of actors and
intentional elements. This is because child elements con-
nected through the links of the merged parent elements
could or could not be merged, which affects the process
of link merging. Furthermore, their approach [16] is semi-
automatic and considers only the structural aspect of the
GRL models, while GRLMerger is fully automated (an
interactive option is also offered) and considers both the
structure and the semantics of the GRL models.

Table 1 summarizes the comparison with related work.
The comparison is based on the following criteria:

–	 Operator: denotes the operator used for the integra-
tion.

–	 Input: specifies the input to the used process.
–	 Output: specified the output generated from the operator.
–	 Automation: denotes whether the operator is fully auto-

mated, semi-automated, or manual.
–	 Notation/language: denotes the GORE model type.
–	 Language specific: specifies whether the approach can

be applied to other types of goal models.
–	 Validation: presents the empirical method(s) conducted

to validate the approach.
–	 Syntactic/semantic: denotes whether the approach is

based on models syntactic similarities, semantic simi-
larities, or both.

The main ascertainment is the existence of one single study
that proposed the integration of GRL models [2]. The major-
ity of the reviewed studies in Table 1 are manual [2, 3, 13,
39], while only one is semi-automated [16] and two are fully
automated [26, 39]. Moreover, none of the reported studies
have described all processes required to integrate two goal
models starting from matching until the automatic genera-
tion of a complete integrated model that is free from errors.
Although Hablutzel et al. [16] automated the merging pro-
cess, the authors [16] did not consider the semantic matching
between the intentional elements of Tropos goal models. The
proposed GRLMerger approach covers all required opera-
tors: Match, Merge, Transform, and Refine.

It is worth noting that some of the proposed manual
matching operators (i.e., map) are based on the goal model
semantics [3, 24, 39]. However, these studies did not con-
sider the syntactical differences between the matched con-
structs. Ignoring these syntactical differences might cause
conflicts in the resulting integrated model.

Furthermore, Feng et al. [13] defined three specific rules
for handling the syntactical differences based on the goal

215Requirements Engineering (2024) 29:209–259	

model semantics. The proposed GRLMerger approach deals
with the syntactical differences via two modes: fully auto-
matically or semi-automatically, without restricting the user
to specific constructs. Therefore, these two modes can be
adapted to different languages (with minimal modifications).

4 � GRLMerger: the approach

In this section, we describe our proposed GRLMerger
approach to merge GRL models, whose overview is given
as a workflow diagram in Fig. 3.

GRL models can be considered as a graph with rich
semantics, where nodes and edges are of different types.
Nodes represent GRL intentional elements, e.g., goals,
softgoals, tasks, etc., and edges represent GRL links, e.g.,
contributions, decompositions, dependencies, etc. To
tackle the complexity arising from the richness and hetero-
geneity of elements and links, the GRLMerger approach
divides the problem into three separate steps, where each
step deals with the processing of one type of constructs,
e.g., actors, intentional elements, and links. Indeed, as
shown in Fig. 3, the proposed GRLMerger approach starts
first by integrating the actor’s containers, followed by the
integration of the intentional elements that are bound to
the integrated actor’s containers, and finally proceeds with
the integration of links. Each of these steps involves two
major operators, match and merge. The match operator
employs semantic similarity to match actor containers and
intentional elements. The merge operator decides about
the final output result of the matched elements. During the
merge process of two GRL models, conflicts may arise,
e.g., different intentional element types, different link
types, and different attributes (e.g., importance values,
descriptions, etc.). To automate the resolution of such con-
figuration conflicts, one of the two input GRL models is
used as a base model. Therefore, a higher priority is given
to the configuration of the selected base model, which is
used as a reference model. The base model shall be spec-
ified by the user at the beginning and used throughout
the whole merging process. Section 4.2 and 4.3 provides
examples of resolving conflicts using the base model.

The proposed GRLMerger prototype tool (presented in
Sect. 5) can be run in two modes: (1) fully automated
mode and (2) interactive (semi-automated) mode. The
fully automated mode uses a base model to resolve con-
flicts, while in the interactive approach the user has to
select an option from a computed set of alternatives.

The following subsections describe the processes of
the GRLMerger in detail. To demonstrate the proposed
approach, we will use two GRL models model_a (Fig. 4a)
and model_b (Fig. 4b) that are constructed from the online
shopping GRL model of Fig. 1.

The proposed GRLMerger approach is structured using
the pipes and filters architectural style and illustrated in
Fig. 3. In what follows, we detail each of its processes.

4.1 � Integration of GRL actor containers

The GRLMerger approach takes as input two syntactically
correct GRL models, as no checks for correctness are per-
formed. Before presenting the matching and merging pro-
cedures, we start by formalizing the notion of GRL actors.

Definition 1  (GRL Actor) A GRL actor is defined as a tuple
Actor = (ActorID, ActorName, ActorDescription, ActorIm-
portance, ActorMetadata), where:

–	 ActorID is the Id of the actor.
–	 ActorName denotes the name of the actor (i.e., its

enclosed text).
–	 ActorDescription denotes the description of the actor.

This attribute is optional.
–	 ActorImportance denotes the importance of the actor

that can be qualitative (i.e., low, medium, or high) or
quantitative (value between 0 and 100). This default
value is zero (i.e., not important).

–	 IEMetadata denotes the metadata, i.e., attribute-value
pairs, associated with the intentional element. This attrib-
ute is optional.

4.1.1 � Matching actor containers

GRLMerger uses the names of actors (i.e., ActorName
attribute) to compute the semantic similarity between actor
containers. Given two input GRL models Model_a and
Model_b, semantic similarity is calculated for each actor in
Model_a with all actors of Model_b. If the semantic simi-
larity between a pair of actors from Model_a and Model_b
equals one, they are considered as matching actors. Other-
wise, the user has to decide whether the rest of the actors
from Model_a and Model_b are matching or not. Each
actor is matched with one actor at most. The user input is
essential in matching actors because incorrectly matching
or mismatching actors would impact the merging results.
In the example of Fig. 4, each model has one single actor.
The computed similarity value between Business Owner
and Proprietor is 0.7 (less than 1). Since matching actors is
a crucial step toward obtaining a consolidated GRL model,
the user is asked (in both modes automatic and interactive)
to confirm that the actors are matching.

4.1.2 � Merging actor containers

Matched actor containers are merged either automatically or
interactively. A new ActorID is generated for the resulting

216	 Requirements Engineering (2024) 29:209–259

Table 1   Summary of goal-oriented models integration approaches

References Operator Input Output Automation Notation/
language

Lan-
guage
specific

Validation Syntactic/
semantic

Sabetzadeh and
Easterbrook
[39]

Map Two i* views Interconnected
sets

Manual i* views Yes Example and
Tool support

Semantic

Merge Interconnected
sets

Merged i* view Fully Auto-
mated

Feng et al. [13] Map Two models Overlap points
Merge points
Conflict points

Manual Generic No Case study Syntactic and
Semantic

Merge Two models
Overlap points
Merge points
Conflict points

Merged model Manual

Beckers et al.
[3]

Match Goal-based
models

Problem-based
models

Mapping between
goal-based
model elements
and problem-
based model
elements

Manual SI*
Problem
frames

Yes Application
scenario

Semantic

Li et al. [24] Match Goal model
Non-functional
patterns

Candidates of the
non-functional
patterns

Manual Generic No Case study and
Tool support

Semantic

Merge Goal model
Candidates of

the non-
functional
patterns

Merged goal
model

Manual

Baslyman and
Amyot [2]

Match Goal models Similarity model Manual GRL Yes Case study Syntactic and
SemanticDiff Goal models Dissimilarity

model
Manual

Merge Similarity and
dissimilarity
models

Integrated model Manual

Liu et al. [26] Match Goal models
User reviews

Relationship
between them

Fully Auto-
mated

Generic No Experiment
and Survey

Semantic

Hablutzel et al.
[16]

Merge Two goal
models

Merged goal
model

Semi Auto-
mated

Tropos Yes Tool support
and Experi-
ment

Syntactic

GRLMerger Match Two goal
models

Matched actors
Matched elements
Matched links

Fully Auto-
mated

GRL Yes Tool support
and Experi-
ments

Syntactic and
Semantic

Merge Matched actors
Matched ele-

ments
Matched links

Merged actors
Merged elements
Merged links

Fully / Semi
Automated

Transforming Unmatched
actors

Unmatched
elements

Unmatched
links

Moved to the
merged model

Fully Auto-
mated

Refinement Merged model Refined merged
model

Full / Semi
Automated

217Requirements Engineering (2024) 29:209–259	

actor and is added to the integrated GRL model. However,
the merge may lead to a conflict situation in case one or
many of the actor attributes are different. We formalize this
situation as follows:

Definition 2  (Conflicting actor containers) Let A1 and A2
be two actor containers: A1 = (AID1, AName1, ADescrip-
tion1, AImportance1, AMetadata1) and A2 = (AID2,
AName2, ADescription2, AImportance2, AMetadata2),
such that Similarity(AName1, AName2) = 1, or user has
confirmed that AName1 and AName2 are similar. A conflict
occurs if at least one of the following conditions is satisfied:

–	 ADescription1 ≠ ADescription2.
–	 AImportance1 ≠ AImportance2.
–	 AMetadata1 ≠ AMetadata2.

In case of automatic merging, the resulting actor con-
tainer will have the attributes of the actor container that
belongs to the selected base model. In the interactive mode,
the user is prompted to select the attributes of the resulting
actor container. In the example of Fig. 4, model_a (Fig. 4a)
is used as a base model in the automatic mode. Hence, the
resulting actor name will be Business Owner and all attrib-
utes (except the ActorID) of model_a will be copied to the
resulting GRL model.

4.2 � Integration of GRL intentional elements

Merged actor containers could have common (i.e., semanti-
cally similar) intentional elements that need to be matched
and merged. GRL intentional elements can be defined as
formalized as follows:

Definition 3  (GRL Intentional Element) A GRL intentional
element is defined as a tuple:

IE = (IEID, IEActorID, IEType, IEName, IEDescription,
IEImportance, IEMetadata, IEDecompositionType), where:

–	 IEID is the Id of the intentional element.

–	 IEActorID is the Id of the actor the intentional element
is bound to. IEActorID may be empty (in case of an
unbound intentional element).

–	 IEType denotes the type of the intentional element, e.g.,
Goal, SoftGoal, Task, etc.

–	 IEName denotes the name of the intentional element (i.e.,
its enclosed text).

–	 IEDescription denotes the description of the intentional
element. This attribute is optional.

–	 IEImportance denotes the importance of the intentional
element that can be qualitative (i.e., low, medium, or
high) or quantitative (value between 0 and 100). This
default value is zero (i.e., not important).

–	 IEMetadata denotes the metadata, i.e., attribute-value
pairs, associated with the actor. This attribute is optional.

–	 IEDecompositionType refers to the decomposition type,
e.g., AND, OR, XOR. It may be empty (in case an inten-
tional element is not decomposed into other intentional
elements).

4.2.1 � Matching GRL intentional elements

Similar to the actor containers matching, intentional ele-
ments are matched based on their names as well. Given two
actor containers A1 and A2 that got matched as the result
of the previous step (Sect. 4.1.1), GRLMerger calculates the
semantic similarity between each intentional element of A1
and the intentional elements of A2. Thereafter, the seman-
tic similarity values for all pairs are sorted in a descendant
order and presented to the user. The user is then asked (in
both modes automatic and interactive) to choose an appro-
priate threshold value, based on which GRLMerger decides
whether two intentional elements are matching or not. It
compares the semantic similarity value of each pair of inten-
tional elements with the similarity threshold value. If the
semantic similarity value is greater or equal to the similarity
threshold value, the GRLMerger considers them as matched
intentional elements. Each intentional element from A1 will
be matched with one intentional element from A2 at most. It
is worth noting that the selected similarity threshold value
will be used throughout the whole merging process.

Fig. 3   GRLMerger approach

218	 Requirements Engineering (2024) 29:209–259

Definition 4  (Matched GRL intentional Elements) Let IE1
and IE2 be two GRL intentional elements: IE1 = (IE1ID,
IEActorID1, IEType1, IEName1, IEDescription1, IEImpor-
tance1, IEMetadata1, IEDecompositionType1) and IE2 =
(IEID2, IEActorID2, IEType2, IEName2, IEDescription2,
IEImportance2, IEMetadata2, IEDecompositionType2).

IE1 matches IE2 (written as: matches(IEID1, IEID2)) iff
Similarity(IEName1, IEName2) ≥ threshold.

Table 2 shows some of the computed similarity values
between intentional elements of model_a and model_b.
With a threshold of 0.7, Offer Online Shopping is matched

with Provide online retail, and Provide Identification
matches Validate identification.

4.2.2 � Merging GRL intentional elements

In this step, the two matched intentional elements will be
merged into one consolidated intentional element. This
merged intentional element is then copied to the integrated
GRL model and bound to the merged actor container.

Matched intentional elements are merged either automati-
cally or interactively. A new ID is generated for the result-
ing intentional element. However, the merge may lead to a
conflict situation in case one or many of the attributes of the
matched elements are different. We formalize this situation
as follows:

Definition 5  (Conflicting intentional elements) Let IE1 and
IE2 be two intentional elements part of the same matched
actor of two different GRL models:

IE1 = (IEActorID1, IEType1, IEName1, IEDescription1,
IEImportance1, IEMetadata1, IEDecompositionType1) and
IE2 = (IEActorID2, IEType2, IEName2, IEDescription2,
IEImportance2, IEMetadata2, IEDecompositionType2),
such that matches(IEID1, IEID2). A conflict occurs if at
least one of the following conditions is true:

–	 IEType1 ≠ IEType2
–	 IEDescription1 ≠ IEDescription2
–	 IEImportance1 ≠ IEImportance2
–	 IEMetadata1 ≠ IEMetadata2

Conflicts can be resolved either automatically (using the
selected base model as a reference model) or interactively
where the user selects the attributes of the resulting inten-
tional element. In the example of Fig. 4, Access Authoriza-
tion is described as a task (i.e., IEType = Task) in model_a
(Fig. 4a), while it is described as a goal (i.e., IEType = Goal)
in model_b (Fig. 4b). Since model_a was chosen as a base
model, the resulting type of Access Authorization will be a
task. The integrated model is shown in Fig. 1.

4.3 � Integration of GRL links

In GRL, each intentional element could be linked to one
intentional elements via one link at most. Each link has a
parent intentional element and a child intentional element, as
illustrated in Fig. 5. GRL intentional elements can be defined
as formalized as follows:

Definition 6  (GRL link) A GRL link is defined as a tuple
Link = (LinkID, LinkType, ParentID, ChildID, LinkDecom-
positionType, LinkContributionValue), where:

Fig. 4   GRL model_a and model_b

219Requirements Engineering (2024) 29:209–259	

–	 LinkID is the Id of the link.
–	 LinkType denotes the type of the link, e.g., Dependency,

Decomposition, Contribution, etc.
–	 ParentID represents the ID of the parent element of the

link.
–	 ChildID represents the ID of the child element of the

link.
–	 LinkDecompositionType refers to the decomposition type,

e.g., AND, OR, XOR. It may be empty (in the case of
contributions and dependencies).

–	 LinkContributionValue denotes the contribution value,
e.g., +75.

4.3.1 � Matching GRL links

The matching of actors and intentional elements is made
based on the semantic similarity of their names. In contrast,
the links are matched based on their syntactical similar-
ity, i.e., parent and child intentional elements. Each link is
matched with one link at most. We define matched links as
follows:

Definition 7  (Matched GRL links) Let L1 and L2 be two
GRL links, defined as follows:

L1 = (LID1, LType1, LParentID1, LChildID1, LDecom-
positionType1, LContributionValue1),
L2 = (LID2, LType2, LParentID2, LChildID2, LDecom-
positionType2, LContributionValue2).
L1 matches L2 (written as matches(LID1, LID2)), iff

matches(LChildID1, LChildID2) and matches(LParentID1,
LParentID2).

The link type is not considered as a condition to match
links because GRL does not allow more than one link
between two intentional elements, even when these links
are of different types. Figure 6 illustrates the matched
links between model_a and model_b, each color represents
one matching. For instance, the contribution link (+100)
between task Access Authorization and softgoal Have System

Security (in blue color) matches the contribution link (+75)
between goal Access Authorization and softgoal Have Sys-
tem Security (in blue color). Both links share the same Par-
entID and ChildID.

4.3.2 � Merging GRL links

Merging the matched links may lead to many conflicting
situations:

1.	 Different link types. For example, in model_a (Fig. 6a),
the link connecting softgoal Have System Security and
goal Offer Online Shopping is a contribution, while in
model_b (Fig. 6b) it is a dependency link.

2.	 Different decomposition types. For example, in
model_a (Fig. 6a), task Access Authorization is decom-
posed, via a AND-decomposition, into goal Ensure
Authentication and goal Provide Identification (orange
and purple color), while in model_b (Fig. 6b) the
goal Access Authorization is decomposed via an OR-
decomposition into similar intentional elements.

3.	 Different contribution values. For example, in model_a
(Fig. 6a), task Access Authentication contributes to
softgoal Have System Security with +100 contribution
value, while in model_b (Fig. 6b) it is +75.

These four situations are formalized as follows:

Definition 8  (Conflicting links) Let L1 and L2 be two GRL
matching links:

L1 = (LID1, LType1, LParentID1, LChildID1, LDecom-
positionType1, LContributionValue1),

L2 = (LID2, LType2, LParentID2, LChildID2, LDecom-
positionType2, LContributionValue2).

A conflict occurs iff at least one of the following condi-
tions is satisfied:

1.	 LType1 ≠ LType2
2.	 LDecompositionType1 ≠ LDecompositionType2
3.	 LContributionValue1 ≠ LContributionValue2

Each pair of matched links is merged separately from
the other matched links and copied to the integrated model.
Conflicts can be resolved either automatically (using the
selected base model as a reference model) or interactively
where the user selects the attributes of the resulting link.
Algorithm 1 depicts the automatic merging algorithm. The
inputs to the algorithm are the matched links, i.e., link_a and
link_b, and the selected base model, i.e., model_a.

Table 2   Computed similarity values between the intentional elements
of the actors Business Owner and Proprietor element 

Business owner element Proprietor element Similarity

Have System Security Have System Security 1
Ensure Authentication Ensure Authentication 1
Access Authorization Access Authorization 1
Offer Online Shopping Provide online retail 0.72
Provide Identification Validate identification 0.7

220	 Requirements Engineering (2024) 29:209–259

Algorithm 1   Automatic merging of links

If the matched links have different types, the algorithm
reports the specific type of the conflict and resolves it by
selecting the attributes of the link of the base model, i.e.,
model_a. If the matched links have the same type, the algo-
rithm checks their attributes (LinkContributionValue for

Fig. 5   Link parent/child

Fig. 6   Matched links between Model_a and Model_b

221Requirements Engineering (2024) 29:209–259	

contributions and LinkDecompositionType for decomposi-
tions) for conflicts. Conflicts are resolved by selecting the
attributes of the link of the base model, i.e., model_a. In
the case of a reciprocal parent–child situation, the resulting
link (i.e., link_ab) will have the same attributes as link_a, of
the base model, such that the parent and child ids as direct
mappings of the child and parent ids of the link of the base
model.

In the example of Fig. 4, the contribution (+75) between
softgoal Have System Security and goal Offer Online Shop-
ping in Fig. 6a is merged with the dependency between
goal Provide online retail and softgoal Have System Security
in Fig. 6b, resulting in an integrated contribution (+75) link
(see the integrated model in Fig. 1).

4.4 � Import unmatched GRL constructs

Given two models model_a and model_b to be merged, the
unique constructs are the constructs from model_a that are
not matching any constructs from model_b and vice versa.
These constructs have to be copied to the integrated model to
ensure its completeness. The unmatched actors, intentional
elements, and links from model_a and model_b are imported
(i.e., copied) in the integrated model.

Figure 7 highlights the constructs in model_a (Fig. 7a)
and model_b (Fig. 7b) that will be copied to the integrated
model. The syntactical structure of the copied constructs
remains the same in the merged model. That is, the softgoal
will remain a softgoal, and the contribution link will remain
a contribution link, etc. Also, the intentional elements linked
to an intentional element that got merged will be linked to
the same merged intentional element in the merged model.
For example, softgoal Increase Sales is copied along with its
link to the merged goal Offer Online Shopping via the same
contribution link and the same contribution value, i.e., +75.

4.5 � Model sanitization

Each type of GRL construct is integrated separately from the
other types. Furthermore, matched constructs are merged
without checking the other constructs connected to it directly
or indirectly. Furthermore, unmatched constructs are cop-
ied to the resulting model. Subsequently, the integrated
GRL model may be subject to three syntactic errors: (1)
parent intentional element with more than one decomposi-
tion type, (2) reciprocal parent–child relationships, and (3)
cycles (although the initial input models are cycle-free). The
aim of model sanitization phase is to resolve such errors.
The following subsections will detail each error and how
the GRLMerger approach deals with it.

4.5.1 � Sanitizing parent intentional element having
multiple decomposition types

Each parent intentional element can have one decomposition
type at most. However, if two parent intentional elements
with different decomposition types were integrated, and
they are decomposed by unique intentional elements (i.e.,
there is no matching between them), the integrated model
will include a parent intentional element connecting its chil-
dren via two different decomposition types. For instance, in
Fig. 8, the goal Ensure Authentication with AND-decompo-
sition (Fig. 8a) got integrated with the goal Ensure Authen-
tication that has XOR-decomposition (Fig. 8b). In addition,
their children’s tasks Use Fingerprint and Use Password got
integrated. Moreover, the links connecting the integrated
goal Ensure Authentication and the integrated tasks User
Fingerprint and Use Password were integrated. The conflict
of different decomposition types was resolved during the
merging process. However, during the import of task Use
Card-Key and its XOR-decomposition link from model_f,
the parent intentional element Ensure Authentication would
have two different decomposition types as illustrated in the
imaginary picture of Fig. 8c (GRL language and the jUCM-
Nav tool do not allow such configuration).

We propose two strategies to resolve this error:

1.	 Strategy #1—Unification of the decomposition types:
It consists of changing one of the decomposition types
to the other. Hence, all siblings will be connected via
the same decomposition type. In the automatic merg-
ing mode, the non-base decomposition type is converted
to the base decomposition type, if there is at least one
merged intentional element among the siblings that are
from the base model.

	  The existence of common siblings means that there is
a common concept between them. Hence, the decompo-
sition type can be changed. Assume that Model_e shown
in Fig. 8a is the base model, while Model_f presented
in Fig. 8b is the non-base model. GRLMerger would
unify different decomposition types of the goal Ensure
Authentication (Fig. 8c), to the AND-decomposition
type (Fig. 8d). This is because the original siblings of
the task Use Card-Key in Model_f (that has a different
decomposition type) were integrated with the tasks in
the base Model_e (i.e., tasks Use Fingerprint and Use
Password in Model_f, Fig. 8b) that were integrated with
tasks Use Fingerprint and Use Password in the base
Model_e (Fig. 8a), respectively.

2.	 Strategy #2—Add a temporary intentional element:
This strategy is selected if the parent elements do not
share any matched children elements (i.e., Strategy #1

222	 Requirements Engineering (2024) 29:209–259

is not applicable). Therefore, this strategy consists of
adding a temporary intentional element (i.e., temporary
parent) connected to the original parent intentional ele-
ment, that has two decomposition types. The decom-
position type from the base model will be retained for
the parent with the multiple decomposition types. The
temporary intentional element is connected to that par-
ent via the retained decomposition type. The intentional
elements of the different decomposition type (i.e., non-

base decomposition type) will no longer be connected
to that parent directly (i.e., links shall be removed), yet
they will be connected to the temporary intentional ele-
ment via their non-base decomposition type. The added
temporary element has the same type of siblings and
it is connected to the parent intentional element via
the same decomposition type of its siblings. Figure 9
depicts this configuration. Goal Ensure Authentication
in Model_g (Fig. 9a) got integrated with the goal Ensure
Authentication that is part of Model_h (Fig. 9b). Their
children’s intentional elements with their links were
copied to the integrated model (Fig. 9c) since there is
no matching between them. Since there are no common
siblings between the children of Ensure Authentication
in Model_g and Model_h, and assuming that Model_g
is the base model, the AND-decomposition will be
retained for the parent intentional element (i.e., the goal
Ensure Authentication) and the XOR-decomposition
type from the non-base model will be used to connect
the siblings of the Model_h. The user is then asked to
name this temporary intentional element, i.e., TEMP.

4.5.2 � Sanitizing the reciprocal parent–child relationships

Since each pair of matched links is merged separately from
the other matched links, the resulting model may contain
two intentional elements, where the parent of the first link
is matching the child of the second link and vice versa (see
Definition 9). Such configuration is not allowed in GRL and
is not supported in jUCMNav.

Definition 9  (Reciprocal parent–child relationship) Let L1
and L2 be two GRL matching links:

L1 = (LID1, LType1, LParentID1, LChildID1, LDecom-
positionType1, LContributionValue1),

L2 = (LID2, LType2, LParentID2, LChildID2, LDecom-
positionType2, LContributionValue2).

A reciprocal parent–child relationship occurs iff:
matched(link_a.LChildID, link_b.LParentID) and
matched(link_b.LChildID, link_a.LParentID)

Similar to the automatic processes of merging actors/
intentional elements/links, the resolution of this error condi-
tion consists of the removal of the link originating from the
non-base model. In the interactive mode, the user is asked
to select the link to be dropped.

Fig. 7   Constructs to be imported in the merged model

223Requirements Engineering (2024) 29:209–259	

4.5.3 � Removing GRL cycles

Cycles are bad smells in GRL models that need to be iden-
tified and resolved [34]. When performing satisfaction
analysis (one of the most important goal model analysis
techniques [19]) on a GRL model, the presence of cycles
would prevent computed satisfaction values from propagat-
ing through all GRl model elements; hence hindering the
satisfaction analysis.

A cycle is defined as a set of consecutively linked inten-
tional elements, where each one is a parent in one link and
a child in another link. We call such an intentional element

an internal intentional element. Figure 10a and b illustrates
two sub-models (Model_c and Model_d) resulting in a
cycle once integrated (Fig. 10c). In Fig. 10c, the three links
(link 1, link 2, and link 3) form a cycle between the internal
intentional elements Access Authorization, Strong Password,
and Ensure Authentication.

Fig. 8   Strategy #1: resolution of a parent intentional element with
two decomposition types

Fig. 9   Strategy #2: resolution of a parent intentional element with
two decomposition types

224	 Requirements Engineering (2024) 29:209–259

Algorithm 2 shows the cycle detection procedure.
It uses two sub-procedures, getAllParents and getAll-
Children, to get the list of all parents and children of a
given intentional element, respectively. Assuming that X is
an internal intentional element, we start by getting all par-
ent intentional elements of the links connected to X until
reaching the root, and all children intentional elements of
the links connected to X until reaching a leaf. Thereafter,
we check if there is an intentional element in the set of X’s
parents that exists in the set of X’s children. This means
that there is a cycle between X and the found intersection.

Algorithm 2   Identifying cycles

For example, in Fig. 10, the task Access Authorization
is an internal intentional element that is a child in link 1
and a parent in link 3. The parents of the link that is con-
nected to the internal task Access Authorization are Strong
Password and Ensure Authentication, and the children are
Ensure Authentication, Provide Identification, Strong Pass-
word, and Secure Fingerprint. The intentional elements
Ensure Authentication and Strong Password exist in both
parent’s and children’s sets. Therefore, there is a cycle
between Access Authorization, Ensure Authentication, and
Strong Password.

Fig. 10   GRL cycle

225Requirements Engineering (2024) 29:209–259	

Algorithm 3   getAllParents

Algorithm 4   getAllChildren

The automatic breaking of a cycle consists of removing a
non-base model link from the cycle. If the links composing
the cycle are from the base model, or they are integrated
links, the user is asked to choose a link to be removed. In
the interactive mode, the user is asked to select the link to
be dropped. Hence, he can select a link from the base model.

It is worth noting that depending on the targeted analysis
technique, the presence of cycles would not cause an issue.
To this end, in addition to the final cycle-free model, we
keep a version of the integrated model that includes cycles.
It is the responsibility of the analyst to use it in its current
form or break the cycles.

5 � GRLMerger prototype tool

The GRLMerger approach is implemented as a Python appli-
cation. It is publicly available on PyPi.2 The user can install
and run the package as described in the README.md file.
An overview of the GRLMerger prototype tool processes is

shown in Fig. 11. The following sections detail the imple-
mentation of each phase.

5.1 � Input models

The GRLMerger tool works with the textual representation
of GRL (TGRL) [1]. The tool takes two TGRL files (with the
extension .xgrl) as input, e.g., startGRLMerger(’model_a.
xgrl’, ’model_b.xgrl’)) and converts them into dataframes
[36]. Next, it will check whether each construct has a unique
ID. Lastly, it will pre-process the names of actors and inten-
tional elements for automatic semantic matching.

5.1.1 � Converting TGRL to dataframes

Although the syntax of TGRL is well-structured, simple,
and consistent, it is more convenient to convert the input
TGRL models to dataframes [36] in order to facilitate its
processing.

Definition 10  (Dataframe data model) A dataframe D is a
tuple (A, R, C, T), where A is an m × n array of data entries
that represents the dataframe content, R is an array of m row
labels, C is an array of n column labels, and T is an array of
types for each column.

The dataframe structure was selected because it is a
logical data structure that organizes data in rows and col-
umns [36], which facilitates accessing, retrieving, and
modifying the data entries. Furthermore, dataframes can
be embedded in Python, which offers many NLP librar-
ies to support the automatic semantic matching of data
entries. Before populating the dataframes, some pre-
processing steps are conducted to clean the TGRL files,
including the removal of spaces at the beginning and
at the end of each line, the removal of empty lines, and
ensuring that each construct definition or attribute is in
one line.

For each TGRL model, we define three dataframes, one
for actors, one for the intentional elements, and one for
the links. The three dataframes have the same structure
as the definitions 1, 3, and 6, respectively. After pre-pro-
cessing the TGRL specification, each actor, intentional
element, and link are parsed and inserted into the corre-
sponding dataframe as a new row. However, some inten-
tional elements (e.g., resources) usually do not belong
to an actor, especially if they are part of a dependency
link. The GRLMerger tool adds a dummy actor defini-
tion to the actors dataframe with the ID ’X#Y’ and name
’X#YDUMMYACTOR’ (see Table 3) and assigns to it
the intentional elements that do not belong to any actor.
TGRL syntax does not allow the use of the hash sign

2  https://​pypi.​org/​proje​ct/​GRLMe​rger/.

https://pypi.org/project/GRLMerger/

226	 Requirements Engineering (2024) 29:209–259

so GRLMerger uses it to differentiate this dummy actor
and its intentional elements and links. It is worth noting
that TGRL does not specify an ID for links, however, the
GRLMerger tool assigns an ID for each link to facilitate
their processing (see Definition 6).

5.1.2 � Checking the uniqueness of IDs

TGRL uses IDs to differentiate between the model con-
structs. If two constructs have the same ID and they are
linked to other constructs via links, the links will not show
correctly when generating the corresponding graphical
GRL model in the jUCMNav tool. Therefore, GRLMerger

Fig. 11   GRLMerger tool

227Requirements Engineering (2024) 29:209–259	

checks that each ID in both input models is unique. If
an ID was used for two constructs, a random number
between 0 and 99 is generated and attached to the ID of
one of the similar constructs’ IDs. This would allow the
tool to distinguish them in case they were not merged.

5.1.3 � Pre‑processing

Actors and intentional element names, i.e., ActorName
and IEName, are the attributes used for semantic match-
ing. To achieve better results, names are pre-processed by
lower casing them, removing the special characters, if any,
expanding contractions (“Can’t” is changed to “Cannot”),
and lemmatizing them (reducing the names to their base
forms). The pre-processing is performed automatically.
However, if the TGRL model contains context-dependent
abbreviations, the user is asked to provide the full text. For
example, the abbreviation “SMS” could refer to “Short
Message Service,” while in the experimental model used
in Sect. 6, it refers to “Seminars Managing System”. These
pre-processing steps aim to convert the names of con-
structs to simple English sentences to be used for measur-
ing the similarity values [18].

5.1.4 � Name embedding

The proposed GLRMerger approach matches actors and
intentional elements based on the semantic similarity
between their names. Semantic-based similarity meas-
ures convert the input text into vectors (i.e., embedding)
that capture their semantic information, where similar
sentences are close in vector space [38]. There are sev-
eral word embedding models trained on large corpora.
However, word embedding models do not perform well in
representing the meaning of a full sentence [8]. Since the
names of GRL constructs could be one or two words long
(as for actors), or a full sentence (as for intentional ele-
ments), the GRLMerger tool uses one of the latest state-of-
the-art sentence embedding model to convert constructs’
names into vectors. It uses the Sentence-BERT (SBERT)
embedding model [38]. The SBERT model was selected
because it outperformed the other state-of-the-are sentence

embedding models (InferSent [8] and Universal Sentence
Encoder [6]) in the semantic textual similarity task [38].
The GRLMerger tool uses the cosine similarity (Eq. 1)
to calculate the semantic similarity between sentences as
suggested by Reimers and Gurevych [38].

5.2 � Supporting dataframes

The GRLMerger tool uses two additional dataframes:

1.	 Conflicts dataframe: used to store the resolved con-
flicts. Table 4 presents the structure of the conflict cases
dataframe. The column m_ID refers to the merged
construct ID where this conflict occurred, while the
m_selected_value is the selected value to resolve the
conflict either automatically or interactively. The con-
flict_type could be one of the conflict cases, which are
Element Type, Link Type, Decomposition Type, or Con-
tribution Value. If the interactive mode is chosen, any
decision taken by the user is stored in the conflict cases
dataframe. Therefore, the conflict_type column could
include Actor Name, Actor Description, Element Name,
Element Importance, etc.

2.	 Errors dataframe: used to store the error cases.
Table 4 presents the structure of the error cases data-
frame. The error_type could be Reciprocal parent–child
relationship, Cycle, or Multiple Decomposition Types.
The actor_name refers to the actor where this issue
occurred. Sometimes cycles are spread between two or
more actors. All actors involved in the cycle are listed
in the actor_name column. If the error was a cycle, the
solution will be to drop a link, hence, m_ID refers to
the dropped link ID. The description includes details
about the dropped link. In case the error was multi-
ple decomposition types, the solution could be either
to unify the decomposition type or to add a temporary
intentional element. The m_ID in this case reports the
ID of the intentional element that got its decomposition
type changed to the selected decomposition type, and the
description depicts the conducted sanitization strategy.
The description column includes free-text because it is
easier to describe the solution instead of separating it
into multiple structured columns.

Table 3   Actors dataframe for
the online shopping Model_a

ActorID ActorName ActorDescription ActorImpor-
tance

ActorMetadata

businessOwner Business Owner
X#Y X#YDUMMYACTOR

228	 Requirements Engineering (2024) 29:209–259

5.3 � Integration of actor containers

The actors dataframes of model_a and model_b are used
by GRLMerger to match and merge the actors. GRLMerger
calculates the semantic similarity between each actor from
model_a and each actor from model_b using the cosine simi-
larity measure (Eq. 1). Identical actors (i.e., cosine similarity
= 1) got merged directly. If the cosine similarity was less
than one, the GRLMerger tool asks the user to match the rest
of the unmatched actors. For the online shopping example,
the similarity between “Business Owner” and “Proprietor” is
0.7. In the automatic mode, the user is asked whether these
two actors match or not (see Fig. 12a). The integrated actor
would have the attributes of the actor from the selected base
model. However, in the interactive mode, the user is asked
to select the attributes’ values of the integrated actor if they
are not identical. For example, Fig. 12b illustrates the ques-
tion asked to the user to select the name of the merged actor.
The GRLMerger tool creates a new ID for the integrated
actors by combining the IDs of the matched actors using
the plus sign (i.e., actor_a_ID+actor_b_ID). This format
helps GRLMerger to refer to the original actors if needed.
The integrated actors are stored in a new dataframe that has
the same structure as the actors’ dataframe.

5.4 � Integration of the intentional elements

The intentional elements integration process uses the inten-
tional elements dataframes of the input models. GRLMerger
uses the embedded names of the intentional elements (as
described in Sect. 5.1.4) to calculate the semantic similarity
between each intentional element from model_a that is part
of the integrated actor_ab with all intentional elements from
model_b that belong to the integrated actor_ab. The GRLM-
erger tool displays the similarity values sorted in descending
order to the user (see Fig. 13), so the user can select the opti-
mal similarity threshold value to ensure the correct matching
of the intentional elements. The similarity threshold value
must be a real value between 0 (not matching at all) and 1
(identical).

In the automatic mode and in case of a matching conflict,
e.g., different intentional element types, the type from the
base model is retained (along with all its attributes). The
conflict and how it was resolved are stored in the conflicts’
dataframe. In the interactive mode, the user is asked to spec-
ify the integrated intentional element’s attributes if they were
not identical (Fig. 14). All decisions made by the user are
stored in the conflict dataframe.

The integrated intentional elements are stored in a new
dataframe (having the same structure as the other inten-
tional elements dataframes) created to store the integrated
intentional elements. All attributes of the integrated inten-
tional elements are either from the base model (automatic Ta

bl
e 

4  
S

up
po

rti
ng

 d
at

af
ra

m
es

C
on

fli
ct

s d
at

af
ra

m
e

m
_I

D
co

nfl
ic

t_
ty

pe
ac

to
r_

na
m

e
m

od
el

_a
_n

am
e

m
od

el
_a

_v
al

ue
m

od
el

_b
_n

am
e

m
od

el
_b

_v
al

ue
m

_s
el

ec
te

d_
va

lu
e

Er
ro

rs
 d

at
af

ra
m

e

m
_I

D
er

ro
r_

ty
pe

ac
to

r_
na

m
e

so
lu

tio
n

de
sc

rip
tio

n

229Requirements Engineering (2024) 29:209–259	

mode) or entered by the user (interactive mode), except
the ID which is generated using the format intentional_
element_a_ID+intentional_element_b_ID. Furthermore,
the links dataframe of model_a that connects the matched
intentional_element_a and the links dataframe of model_b
that connects the matched intentional_element_b are
updated to be connected to the integrated intentional ele-
ment. That is, if the intentional elements that got inte-
grated are the parent intentional element or the child
intentional element in the links dataframes of model_a
and model_b, the GRLMerger tool updates the IDs with
the new integrated intentional element ID.

5.5 � Integration of links

The GRLMerger tool uses the links dataframes of model_a
and model_b to integrate their links. A new ID for each
integrated link is generated by combining the two IDs
of the matched links (i.e., the integrated link format is
link_a_ID+link_b_ID). The new ID of the integrated
links will be used to know whether the link that is part
of a cycle is an integrated link or an unmatched imported
link. The integrated links are inserted in a new dataframe
(having the same structure as the input links dataframe)
for the integrated links. All resolved link conflicts, either
automatically or interactively, are stored in the conflict
dataframe.

5.6 � Importing unmatched elements

After completing the integration of all matched constructs
(actors, intentional elements, and links), the GRLMerger tool
copies the unmatched/unmerged constructs to the integrated

model dataframes. The IDs of the imported constructs from
model_a and model_b have not been changed.

5.7 � Model sanitization

The GRLMerger tool uses the integrated links dataframe
(that includes the transformed links as well) to sanitize the
resulting model. For example, Fig. 15 illustrates a scenario
where the user is asked to resolve the multiple decomposi-
tion types issue.

5.8 � Output files

The GRLMerger tool generates the following files:

1.	 The integrated model file: the generated integrated
model is the combination of the three dataframes: (1)
the integrated actors dataframes, (2) the intentional
elements dataframes, and (3) the links dataframe.
The GRLMerger tool converts these dataframes to
TGRL syntax. The GRLMerger cleans the IDs of the
integrated constructs by removing the added “plus sign,”
since the TGRL syntax does not allow it. The GRLM-
erger tool saves the integrated model TGRL file with
the extension .xgrl. The file name is integratedModel_
model_a_model_b.xgrl, where model_a and model_b are
the names of the input models.

2.	 the integrated model before cycle removal: GRLM-
erger produces a copy of the resulting xgrl file before
the sanitization from cycles.

3.	 the integrated constructs file: To assist modelers
when analyzing or reviewing the integration results,
the GRLMerger tool stores the integrated constructs in
an excel file enclosing three sheets (i.e, a sheet for the

Fig. 12   GRLMerger tool: merging actors’ containers

230	 Requirements Engineering (2024) 29:209–259

integrated actors (Table 5), a sheet for the integrated
intentional elements (Table 2), and a sheet for the inte-
grated links (Table 6)). The GRLMerger tool uses the
integrated actors, the integrated intentional elements,
and the integrated links dataframes (without including
the imported constructs). The file name is integrated-
Constructs_model_a_model_b.xlsx. The difference
between this file and the integrated model file is that
this file only includes the integrated constructs in a table

format, while the integrated model file is the complete
integrated TGRL model.

4.	 File containing the resolved conflict and error cases:
The GRLMerger tool generates a file that reports on all
resolved conflict and error cases, automatically or inter-

Fig. 13   GRLMerger tool: online shopping example: computed similarity values

Fig. 14   GRLMerger tool: user
is asked to select the merged
intentional element’s type

Fig. 15   GRLMerger tool-Interactive mode: ask the user to select s resolution strategy for the multiple decomposition types issue

Table 5   Integrated actors sheet

actor_1 actor_2 similarity

Business Owner Proprietor 0.7

231Requirements Engineering (2024) 29:209–259	

actively, during the integration. The GRLMerger tool
uses the conflict cases and the error cases dataframes to
generate the file. The file name is conflict_error_cases_
model_a_model_b.xlsx. It includes two sheets, one for the
conflict cases (Table 7) and the other for the error cases.

6 � Evaluation of the GRLMerger approach
and prototype tool

In this section, we evaluate empirically our pro-
posed GRLMerger approach and its prototype tool. We fol-
low the template and recommendations presented by Wohlin
et al. [44].

Figure 16 provides an overview of the experimental plan.
We have used two TGRL models as our main subjects (see
Sect. 6.1) in order to generate 24 TGRL sub-models (see
Appendices 8 and 8).3 Then, we have designed three experi-
ments (see Sect. 6.2) to evaluate the basic merging cases, con-
flict cases and semantic merging cases. The effectiveness of
the GRLMerger approach and tool was measured in terms of
correctness, completeness, and freeness from errors. The steps
of the experimental plan are explained in the following sections.

6.1 � Subjects

In addition to the running example, we have applied
our GRLMerger approach and tool to two TGRL models:

1.	 Example 1: University Alumni (Fig. 17): A modi-
fied version of a GRL model, introduced by Hassine
and Amyot [17], describing how to foster a university–
alumni relationship. The model has 4 actors: University,
Alumni department, Alumnus, and Professor. In order
to cover all types of GRL constructs, we have extended
the model by adding a softgoal, a belief, a resource, an
indicator, and an OR-decomposition link. In the rest of
the paper, we refer to this model as MF.

2.	 Example 2: Seminars Managing System (Fig. 18): It
models the objectives of a future seminar management

system along with its stakeholders goals. The model has
5 actors: seminars managing system, admin, speaker,
organizer, and attendee. In the rest of the paper, we refer
to this model as MS.

6.2 � Experiment procedure

We have designed and conducted three experiments:

6.2.1 � Experiment 1: basic merging

The University–Alumni (MF) and the Seminars Managing
System (MS) TGRL models were used as ground truth to
evaluate the GRLMerger approach.

From the university–alumni (MF) model, we derive:

–	 Case #1: Two sub-models MF1 (Fig. 21) and MF2
(Fig. 22), as follows:

–	 MF1 = MF∖X1, where X1 ⊂ MF
–	 MF2 = MF∖X2, where X2 ⊂ MF
–	 X1 ∩ X2= �
–	 MF1 ∪ MF2 = MF

–	 Case #2: Two sub-models MF3 (Fig. 23) and MF4
(Fig. 24), as follows:

–	 MF3 = MF∖X3, where X3 ⊂ MF
–	 MF4 = MF∖X4, where X4 ⊂ MF
–	 X3 ∩ X4 = �
–	 MF3 ∪ MF4 = MF

Similarly, from the Seminars Managing System (MS)
model, we derive:

–	 Case #3: Two sub-models MS1 (Fig. 33) and MS2
(Fig. 34), as follows:

–	 MS1 = MS∖Y1, where Y1 ⊂ MS
–	 MS2 = MS∖Y2, where Y2 ⊂ MS
–	 Y1 ∩ Y2 = �
–	 MS1 ∪ MS2 = MS

Table 6   Integrated links sheet

parent_element_1 link_1 child_element_1 parent_element_2 link_2 child_element_2

Offer Online Shopping contribution Have System Security Offer Online Shopping dependency Have System Security
Have System Security contribution Access Authorization Have System Security contribution Access Authorization
Access Authorization decomposition Ensure Authentication Access Authorization decomposition Ensure Authentication
Access Authorization decomposition Provide Identification Access Authorization decomposition Provide Identification

3  The data used in the evaluation are openly available in github at
https://​github.​com/​ndn94/​GRLMe​rger-​Paper.

https://github.com/ndn94/GRLMerger-Paper

232	 Requirements Engineering (2024) 29:209–259

–	 Case #4: Two sub-models MS3 (Fig. 35) and MS4
(Fig. 36), as follows:

–	 MS3 = MS∖Y3, where Y3 ⊂ MS
–	 MS4 = MS∖Y4, where Y4 ⊂ MS
–	 Y3 ∩ Y4 = �
–	 MS3 ∪ MS4 = MS

All pairs of sub-models (e.g., MF1 and MF2) have iden-
tically matching constructs syntactically and lexically.
In addition, in the automatic merging mode, sub-models
MF1, MF3, MS1, and MS3 were set as the base models.
Similarity threshold value was set to 1 since there are no
lexical differences between the names of the matched
intentional elements. Table 8 presents the number and
types of constructs in each input model.

6.3 � Experiment 2: conflict and error cases

This aim of Experiment 2 is to evaluate the pro-
posed GRLMerger approach and tool in terms of resolv-
ing the conflicts automatically and generating a merged
model that is error-free. To this end, we have built pairs
of sub-models, as in Experiment 1, but we have introduced

Table 7   Conflict cases sheet

m_ID conflict_type actor_name base_name base_value new_name new_value m_selected_value

accessAuthoriza-
tionaccessAu-
thorization50

Element Type Business Owner Access Authori-
zation

Task Access Authori-
zation

Goal Task

R183R078 Link Type Business Owner
-
Business Owner

(Have System
Security)

linked to
(Offer Online

Shopping)

Contribu-
tion

(Have System
Security)

linked to
(Offer Online

Shopping)

Depend-
ency

Contribution

R283R178 Contribution
Value

Business Owner
-
Business Owner

(Access Authori-
zation)

contributes to
(Have System

Security)

100 (Access Authori-
zation)

contributes to
(Have System

Security)

75 100

R483R278 Decomposition
Type

Business Owner
-
Business Owner

(Access Authori-
zation)

decomposed by
(Ensure Authenti-

cation)

and (Access Authori-
zation)

decomposed by
(Ensure Authenti-

cation)

or and

R583R378 Decomposition
Type

Business Owner
-
Business Owner

(Access Authori-
zation)

decomposed by
(Provide Identifi-

cation)

and (Access Authori-
zation)

decomposed by
(Provide Identifi-

cation)

or and

Fig. 16   Experimental design

233Requirements Engineering (2024) 29:209–259	

Fig. 17   Fostering university–alumni relationship GRL model

Fig. 18   Seminars managing system GRL model

234	 Requirements Engineering (2024) 29:209–259

syntactic differences in the non-base models in order to
generate conflict cases and errors in the integrated model.
All pairs of sub-models (e.g., MF5 and MF6) have lexi-
cally identical elements (semantically matching). Hence,
the similarity threshold value was set also to 1.

Examples of syntactic changes to the non-base sub-
models include:

–	 Change the intentional element type, e.g., from goal to
softgoal.

–	 Change the link type, from contribution to a depend-
ency.

–	 Change the contribution value, e.g., from +100 to +50.
–	 Change the decomposition type, e.g., from OR to XOR.
–	 Switch the direction of a link to create an error state or a

cycle.

From the university–alumni (MF) model, we derive:

–	 Case #1: Two sub-models MF5 (Fig. 25) and MF6
(Fig. 26), as follows:

–	 MF5 = MF∖Z1, where Z1 ⊂ MF
–	 MF6 is built from MF by removing some constructs

and making syntactic changes to some others.
–	 MF5 ∪ MF6 ≠ MF, as MF6 contains syntactic

changes.

–	 Case #2: Two sub-models MF7 (Fig. 27) and MF8
(Fig. 28), as follows:

–	 MF7 = MF∖Z2, where Z2 ⊂ MF
–	 MF8 is built from MF by removing some constructs

and making syntactic changes to some others.
–	 MF7 ∪ MF8 ≠ MF, as MF8 contains syntactic

changes.

Similarly, from the Seminars Managing System (MS) model,
we derive:

Table 8   Experiments input models

Case # Actor Goal Softgoal Task Belief Resource Indicator Decomposi-
tion link

Contribu-
tion link

Depend-
ency link

Total

Experiment 1
Case 1 MF1 3 3 0 8 1 1 0 5 6 1 28

MF2 4 2 1 11 0 1 1 1 8 2 31
Case 2 MF3 3 3 0 12 1 0 1 3 11 1 35

MF4 4 4 1 9 0 1 0 5 8 2 34
Case 3 MS1 3 6 3 7 0 1 0 4 5 2 31

MS2 5 7 5 9 0 0 0 4 7 0 37
Case 4 MS3 4 4 5 9 0 1 0 2 3 2 30

MS4 5 5 3 7 0 1 0 4 6 2 33
Experiment 2
Case 1 MF5 4 4 1 11 0 1 1 5 12 2 41

MF6 4 3 2 12 1 1 1 5 12 2 43
Case 2 MF7 3 3 1 13 1 0 1 3 12 1 38

MF8 4 4 2 9 0 1 0 5 8 3 36
Case 3 MS5 4 7 2 7 0 1 0 4 6 2 33

MS6 5 8 5 9 0 0 0 4 9 0 40
Case 4 MS7 5 6 3 9 0 1 0 5 7 2 38

MS8 5 9 5 10 0 1 0 6 9 3 48
Experiment 3
Case 1 MF9 4 4 0 13 1 0 1 6 11 1 41

MF10 4 4 2 12 0 1 0 4 13 3 43
Case 2 MF11 4 4 1 12 0 0 1 6 12 1 41

MF12 4 3 2 13 1 1 1 3 18 3 49
Case 3 MS9 5 8 5 9 0 1 0 6 7 2 43

MS10 5 8 5 11 0 0 0 6 9 0 44
Case 4 MS11 5 9 3 8 0 1 0 4 8 2 40

MS12 5 8 5 12 0 1 0 7 9 1 48

235Requirements Engineering (2024) 29:209–259	

–	 Case #3: Two sub-models MS5 (Fig. 37) and MS6
(Fig. 38), as follows:

–	 MS5 = MS∖Z3, where Z3 ⊂ MS
–	 MS6 is built from MS by removing some constructs

and making syntactic changes to some others.
–	 MS5 ∪ MS6 ≠ MS, as MS6 contains syntactic

changes.

–	 Case #4: Two sub-models MS7 (Fig. 39) and MS8
(Fig. 40), as follows:

–	 MS7 = MS∖Z4, where Z4 ⊂ MS
–	 MS8 is built from MS by removing some constructs

and making syntactic changes to some others.
–	 MS7 ∪ MS8 ≠ MS, as MS8 contains syntactic

changes.

The union of sub-models pairs MF5 and MF6, MF7 and
MF8, MS5 and MS6, and MS7 with MS8 will not result in
the regeneration of the original models MF or MS. Table 8
presents the number of constructs in each input model of
experiment 2.

6.4 � Experiment 3: semantic matching

The aim of Experiment 3 is to evaluate the ability
of GRLMerger to automatically match the constructs based
on their semantics (using sentence embedding and cosine
semantic similarity measures) and merge the matched
ones.

From the university–alumni (MF) model, we derive:

–	 Case #1: Two sub-models MF9 (Fig. 29) and MF10
(Fig. 30), as follows:

–	 MF9 is built from MF by removing some constructs
and making semantic changes to some of the remain-
ing ones.

–	 MF10 (non-base model) is built from MF by remov-
ing some constructs and making syntactic and
semantic changes to some of the remaining ones.

–	 Case #2: Two sub-models MF11 (Fig. 31) and MF12
(Fig. 32), as follows:

–	 MF11 is built from MF by removing some constructs
and making semantic changes to some of the remain-
ing ones.

–	 MF12 (non-base model) is built from MF by remov-
ing some constructs and making syntactic and
semantic changes to some of the remaining ones.

Similarly, from the Seminars Managing System (MS)
model, we derive:

–	 Case #3: Two sub-models MS9 (Fig. 41) and MS10
(Fig. 42), as follows:

–	 MS9 is built from MS by removing some constructs
and making semantic changes to some of the remain-
ing ones.

–	 MS10 (non-base model) is built from MS by remov-
ing some constructs and making syntactic and
semantic changes to some of the remaining ones.

–	 Case #4: Two sub-models MS11 (Fig. 43) and MS12
(Fig. 44), as follows:

–	 MS11 is built from MS by removing some constructs
and making semantic changes to some of the remain-
ing ones.

–	 MS12 (non-base model) is built from MS by remov-
ing some constructs and making syntactic and
semantic changes to some of the remaining ones.

The QuillBot tool4 was used to paraphrase and generate
semantically similar text to the original model constructs’
names. The union of sub-models pairs MF9 and MF10,
MF11 and MF12, MS9 and MS10, and MS11 with MS12
will not result in the regeneration of the original models MF
or MS. Table 8 presents the number of constructs in each
input model of Experiment3.

The threshold value for each case was set based on the
given input and the generated semantic similarity values: (1)
Case 1: it was set to 0.57, (2) Case 2: it was set to 0.75, (3)
Case 3: it was set to 0.7, and (4) Case 4: it was set to 0.71.

6.5 � Effectiveness measurement

The effectiveness of the GRLMerger approach is evaluated
in terms of: (1) correctness, (2) completeness, and (3) free-
ness from errors.

6.5.1 � Correctness

In our context, correctness can be defined as follows:

Definition 11  (Correctness) The GRLMerger approach is
able to match and merge the similar GRL constructs of two
GRL models and produce one conflict-free integrated model.

In order to measure the correctness, we define:

4  https://​quill​bot.​com/.

https://quillbot.com/

236	 Requirements Engineering (2024) 29:209–259

–	 True positives (TP): the number of correctly matched
and merged constructs by GRLMerger.

–	 True negatives (TN): Number of constructs that were
correctly not matched/merged by GRLMerger.

–	 False positives (FP): Number of constructs that were not
matched/merged by GRLMerger, while they should.

–	 False negatives (FN): Number of constructs that were
incorrectly matched and merged by GRLMerger.

Figure 19 shows the confusion matrix that was used to evalu-
ate the correctness of GRLMerger. Correctness can be meas-
ured using accuracy (Eq. 2), precision (Eq. 3), and recall
(Eq. 4):

6.5.2 � Completeness

In our context, completeness can be defined as follows:

Definition 12  (Completeness) The GRLMerger approach is
able to produce an integrated model that includes all the
matched/merged and unmatched/unmerged constructs from
the input models (no construct from the input models is
missing).

The completeness can be measured by a simple count
of all non-matched constructs from the input models that
are not present in the integrated model.

6.5.3 � Freeness from errors

Definition 13  (Freeness from errors) GRLMerger is able to
produce an integrated model that is free from cycles, recip-
rocal parent–child, and intentional elements with more than
one decomposition type.

The freeness from errors of the integrated model generated
by GRLMerger can be measured by a simple count of the
number of syntactical errors (i.e., cycles, reciprocal par-
ent–child, intentional element with more than one decom-
position type) that are present in the integrated model.

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

6.6 � Experiment results

This section presents the results of the conducted
experiments.

6.6.1 � Results of experiment 1

The GRLMerger tool was able to match and merge all the
actually matching constructs as depicted in Table 9. There-
fore, the correctness accuracy, precision, and recall were
equal to one. Furthermore, the GRLMerger tool copied all
non-matched constructs from the input models to the inte-
grated model, which resulted in regenerating the original
models, MF and MS. The generated integrated models were
free from errors.

6.6.2 � Results of experiment 2

Experiment 2 focused more on evaluating the performance
of the GRLMerger approach and tool in the presence of con-
flicts and error cases. The results of Experiment 2 in Table 9
show that all the actually matching constructs were matched
and merged. Therefore, the accuracy, precision, and recall of
correctness were equal to one. Moreover, all non-matched
constructs were copied to the integrated model. Therefore,
the original models, MF and MS, were reconstructed with
no errors. In addition, all conflicts were resolved as the base
constructs’ types were retained in the integrated model.

Fig. 19   Correctness confusion matrix

237Requirements Engineering (2024) 29:209–259	

6.6.3 � Results of experiment 3

The correctness results are presented in Table 9. Out of the
four cases implemented in Experiment 3, the GRLMerger
matched and merged the actually matching constructs in
case 2 only. In the other cases, the GRLMerger mismatched
some of the actually matching intentional elements which
further resulted in mismatching the connecting links. The
accuracy and recall of cases 1, 3, and 4 were less than one

as shown in Table 10. The correctness precision was equal
to one because all matched and merged constructs are actual
matching constructs. Although GRLMerger failed to match
some of the constructs, these constructs and non-matched
constructs were copied to the integrated model. Moreover,
the integrated models were free from errors.

6.7 � Results interpretation

The matching of actors and intentional elements is based
on their names (i.e., semantic matching), while links are
matched syntactically (i.e., based on the connected parent
and child intentional elements). In experiments 1 and 2, the
differences between the input models were purely syntacti-
cal. For example, some of the intentional elements exist in
one input model and they are not in the other input model,
or different types of the matched intentional elements (e.g.,
a goal is matched with a task). However, the matched actors
and intentional elements had identical names (i.e., no syno-
nyms or paraphrasing were applied). Therefore, the GRLM-
erger tool was able to match all actually matching constructs
(using a similarity threshold of 1). Furthermore, the non-
matched constructs were copied to the integrated model
resulting in a model that is complete and free from errors.

GRLMerger decides if two intentional elements are
matching based on the specified similarity threshold value.
This threshold is set manually by the user as an input to the
approach. Therefore, the results of the matching are impacted
by the specified threshold. If a high threshold value is speci-
fied, the GRLMerger will not match all matching constructs
(lower accuracy and recall), and hence, the generated merged
model would include more constructs. However, based on our
experiment 3, we couldn’t confirm this correlation. Indeed,
we notice that an increase in the threshold value (0.57 in case
#1 to 0.75 in case #2) would increase the accuracy (from 0.86
in case #1 to 1 in case #2) and the recall (from 0.79 in case #1
to 1 in case #2). However, an increase in the threshold value
(0.57 in case #1 to 0.7 in case #3) would decrease the accuracy
(from 0.86 in case #1 to 0.85 in case #2).

In the input models of the third experiment, synonyms and
paraphrases were used and results showed that the GRLM-
erger tool was not able to match all intentional elements
(i.e., synonyms generated by Quillbot) that were supposed to
be matched. This is because the names of these intentional

Table 9   Evaluation results: correctness confusion matrices

Case # GRLMerger Actual Matching and
Merging

Matching
and Merg-
ing

Not Matching

Experiment 1
Case 1 MF1–MF2 Matching and

merging
10 0

Not Matching 0 39
Case 2 MF3–MF4 Matching and

merging
20 0

Not Matching 0 29
Case 3 MS1–MS2 Matching and

merging
20 0

Not Matching 0 28
Case 4 MS3–MS4 Matching and

merging
18 0

Not Matching 0 30
Experiment 2
Case 1 MF5–MF6 Matching and

merging
33 0

Not Matching 0 16
Case 2 MF7–MF8 Matching and

merging
23 0

Not Matching 0 26
Case 3 MS5–MS6 Matching and

merging
25 0

Not Matching 0 23
Case 4 MS7–MS8 Matching and

merging
32 0

Not Matching 0 16
Experiment 3
Case 1 MF9–MF10 Matching and

merging
27 0

Not Matching 7 15
Case 2 MF11–

MF12
Matching and

merging
40 0

Not Matching 0 9
Case 3 MS9–MS10 Matching and

merging
30 0

Not Matching 7 11
Case 4 MS11–

MS12
Matching and

merging
31 0

Not Matching 3 14

Table 10   Experiment 3: correctness accuracy, precision, and recall

Case # Accuracy Precision Recall

Case 1: MF9–MF10 0.86 1 0.79
Case 2: MF11–MF12 1 1 1
Case 3: MS9–MS10 0.85 1 0.81
Case 4: MS11–MS12 0.94 1 0.91

238	 Requirements Engineering (2024) 29:209–259

elements have semantic similarity values less than the speci-
fied similarity threshold value. Therefore, the GRLMerger did
not recognize them as matching intentional elements.

Since the GRLMerger match/merge process starts with
actor containers followed by intentional elements, and finally
processes the links, a mismatch of the intentional elements
would propagate to the links. Indeed, not all the actually
matching links were matched and merged since their parent/
child intentional elements are different. Moreover, this mis-
match resulted in having some semantically similar intentional
elements within the same actor. However, changing the thresh-
old value would lead to a different resulting model and differ-
ent accuracy values.

6.8 � Impact of threshold selection

To provide more insight into the importance of the selection
of an appropriate threshold value, two more experiments were
conducted. These experiments were conducted to evaluate the
performance of GRLMerger with the highest and the lowest
possible similarity values which are 1 and 0, respectively. In
these two extra experiments, we have used the same input
models MF9 and MF10 (syntactically and lexically different
but semantically similar) that were used in case 1 of the third
experiment (Sect. 6.4). The first experiment was conducted
with a threshold value equals to one, while the second experi-
ment with a threshold value equals to zero"

–	 Threshold = 1: A threshold of 1 forces GRLMerger
to do a lexical matching (matching only identical
terms). GRLMerger was not able to match the intentional
elements that have semantically similar but lexically dif-
ferent names. Table 11 shows 19 mismatched constructs.
That is, it mismatched eight intentional elements which
resulted in mismatching the links that are linking the
integrated intentional elements. Furthermore, GRLM-
erger copied all the non-matched and mismatched con-
structs to the integrated model. Accuracy, precision, and
recall are presented in Table 12.

–	 Threshold = 0: GRLMerger would match each inten-
tional element from model_a with at most one inten-
tional element from model_b. Therefore, all the matched

and unmatched intentional elements will be integrated.
Table 11 shows the presence of incorrect matching
between two constructs, the task “Provide discounts on
short courses registration fees” was integrated with the
task “Organize networking events,” hence the links con-
necting them were incorrectly integrated.

Based on the results of these two extreme cases and the
results of Experiment 3, no conclusions can be drawn on the
optimal ranges of the thresholds.

7 � Discussion

In this section, we present the limitations of the pro-
posed GRLMerger approach, then we compare it with exist-
ing GRL integration techniques, and finally we present its
main threats to validity.

7.1 � Limitations of the GRLMerger approach

Despite the perceived benefits of the proposed GRLMerger
approach and tool, some limitations could impact the quality
of the integrated GRL model:

–	 Selection of the base model: Conflicts that may arise
during the integration of two GRL models are resolved
automatically by giving a higher priority to the selected
base model, i.e., used as a reference model. However,
the selection of the other model as a base model would
result in a different integrated model. Such discrepan-
cies between the results of the merging process can be
avoided by using the GRLMerger interactive mode.

–	 Systematic merging: GRLMerger merges the input mod-
els systematically without considering the context. For
example, if the two input models come from different

Table 11   Special experiments:
correctness

Case # GRLMerger Actual matching and merging

Matching and merg-
ing

Not matching

Similarity threshold = 1 Matching and merging 15 0
Not matching 19 15

Similarity threshold = 0 Matching and merging 34 2
Not matching 0 13

Table 12   Special experiments results

Case # Accuracy Precision Recall

Similarity threshold = 1 0.61 1 0.44
Similarity threshold = 0 0.96 0.94 1

239Requirements Engineering (2024) 29:209–259	

contexts and domains, GRLMerger proceeds blindly
with the automatic merging and does not detect that the
models are from different domains. This issue should be
detected by the analyst.

–	 No discovery of new dependencies: In case the input
models have no common actors, the resulting model
will be the combination of all actors within the input
models. However, actors from the first input model won’t
be connected to actors of the second model, as no new
dependencies are created. It is the role of the analyst to
add such dependencies.

–	 No redistribution of contribution weights: The merging of
contribution links may lead to a situation where the aggrega-
tion of the contribution weights exceeds 100. For instance,
Fig. 20 illustrates the resulting model when integrating two
models: Model_a (composed of goal G and tasks A and B)
and Model_b (composed of goal G and tasks C, D, and E).
The aggregation of contribution weights is 200. For an opti-
mal model, we need to re-balance the contribution weights
(to have a total of 100). This task is left to the analyst.

–	 No backtracking: In the interactive mode, the user is pre-
sented with a set of options that he has to choose from. Once
the choice is made, the next step is processed and there is no
possibility to go back and change previous choices.

–	 Textual interaction: In the interactive mode, the user is
given a range of options (in the form of text) to choose
from (e.g., dialog boxes in Figs. 12, 14). A graphical
representation of the choices would be more effective.

7.2 � Practical considerations

In this section, we provide some practical insights to help
practitioners apply and adjust the proposed approach to their
needs. From a practical perspective, GRLMerger may be
used in the following situations:

1.	 Early stages of the RE process: Various techniques,
such as interviews, surveys, and workshops, can be
employed to collect information from stakeholders. The
aim is to capture a comprehensive understanding of the
stakeholders’ needs, concerns, and objectives. The gath-
ered information, collected by different teams, is then
used to construct partial GRL models. A partial GRL
model reflects the viewpoints of the team that developed
it. The GRLMerger tool would assist in integrating these
partial GRL models (belonging to the same context).
While the fully automated mode of the tool may be used,
the interactive mode is more suitable at this stage. As this
marks the initial development of a comprehensive GRL
model, the interactive merging mode affords users greater
control over integration decisions, enabling the identifi-
cation and resolution of potential conflicts. Deploying
GRLMerger in this phase eliminates subjectivity among

different teams when deciding on the semantic similarity
of integrated goal model elements. It is worth noting that
practitioners may also experiment with different semantic
similarity thresholds and different base models.

2.	 Requirements evolution: In this scenario, we assume
the existence of a well-established GRL model that cap-
tures the current goals and requirements agreed upon by
stakeholders, serving as the baseline. Any introduction of
new goals or requirements, prompted by factors such as
emerging technology, evolving business landscapes, or
the inclusion of novel quality aspects, necessitates adjust-
ments to the baseline GRL model. To accommodate these
changes, a partial GRL model is developed to specifically
address the new technological or business perspectives.
Utilizing GRLMerger in this scenario involves integrating
the newly developed model with the baseline, treating the
new model as the base during conflict resolution. Given
the shared requirements context of both models, the auto-
mated mode of GRLMerger proves more efficient, reducing
effort and time compared to manual or interactive merging.
Practitioners may also experiment with different semantic
similarity thresholds in this scenario. If the resulting con-
solidated model is unsatisfactory, they have the option to
switch to the interactive mode for further refinement.

It is important to highlight that partial GRL models are not
simply discarded post-integration; rather, they are retained
to document the merging rationale.

7.3 � Threats to validity

The proposed GRLMerger approach and the experimental
validation are subject to several threats to validity that are
categorized according to three important types identified
by Wright et al. [45].

–	 Construct Validity: There is a potential threat concern-
ing the need to specify a base model to be able to resolve
the emerged conflicts automatically. In addition, choos-
ing a different base model would lead to a different inte-
grated model. To mitigate this risk, we have provided an

Fig. 20   Merge requiring weight redistribution

240	 Requirements Engineering (2024) 29:209–259

interactive mode, where the user decides how conflicts
are resolved.

	  Another possible risk is related to the selection of a
similarity threshold, based on which intentional elements
are matched and merged. Having different threshold val-
ues would lead to different integrated models. To miti-
gate this risk, the GRLMerger tool computes the seman-
tic similarity between all pairs of elements and presents
them to the user. This would help the user to select an
appropriate similarity threshold.

	  There is a potential criticism concerning the lack
of validation of the integrated models by experts. To
mitigate this risk, we have used three metrics (correct-
ness, completeness, and freeness from errors) as perfor-
mance indicators to evaluate the proposed GRLMerger
approach. However, validating the results by experts
could increase its validity.

	  Furthermore, a potential concern that may affect
the performance of the matching process in the GRLM-
erger tool is the domain of the input models. To mitigate
this threat, SBERT is chosen, having been trained on the
Stanford Natural Language Inference (SNLI) corpus, a
diverse collection of human-authored sentences. Con-
sequently, the GRLMerger tool is not constrained by a
specific domain.

–	 Internal Validity: The first threat is related to the per-
formance of the used sentence embedding model, which
may impact the effectiveness of GRLMerger matching
process and hence affect the overall results. This threat
is mitigated by selecting SBERT sentence embedding
model, which outperforms other state-of-the-art embed-
ding models proposed in the literature.

	  A second possible risk is related to the size of the
used models in the experiments. Indeed, although the
size of the used examples is comparable to those pub-
lished in GORE papers, they are considered of medium
size. The use of bigger models would increase the valid-
ity of the proposed GRLMerger approach and tool.

	  A third potential risk is that the GRLMerger
approach may introduce cycles, reciprocal child-parent,
and intentional elements with multiple decomposition
types in the integrated model. To mitigate this risk, we
have introduced the model sanitization phase to resolve
and document such issues. A related risk is that the
sanitization step involves the removal of some links to
break a cycle or to resolve the reciprocal child-parent
issue (having the base model as a reference). To miti-
gate this risk, the user may run choose the interactive
mode and choose which link to break.

–	 External Validity: As for external validity, a possible
threat is that our proposed GRLMerger approach is tai-
lored to the GRL language [19] and more specifically
the TGRL notation [1]. However, the GRLMerger tool

can be easily adjusted to cover the textual URN syntax
proposed by Kumar and Mussbacher [22]. In addition,
the four main steps of the integration process (match,
merge, transform, sanitize) can likely be adjusted and
applied to other goal-oriented languages, like iStar, that
support actors, intentional elements, and their relation-
ships. However, it is imperative to conduct a proof of
concept and additional experiments to assess the effec-
tiveness of GRLMerger in GORE languages that share
similar constructs.

	  Another possible threat is related to the use of two
models (University–Alumni and Seminars Management
System) to derive the 24 models used in the 12 experi-
ments. Having additional models from other domains
would support the generalization of our results.

8 � Conclusions and future work

The manual integration of GRL models requires intensive
human effort and time. It is an error-prone process that
could be biased by the conflicts between stakeholders’
intentions, the usage of different vocabularies and the
subjectivity of the requirements engineer/analyst per-
forming the integration. In this paper, we have proposed
the GRLMerger approach to integrate automatically (and
interactively) two TGRL models into one consolidated
model that is correct, complete, and free from any conflict
that may arise during the merging process. GRLMerger
considers both syntactic and semantic aspects (based on
semantic similarity) when merging sub-models. GRLM-
erger has four main sequential steps: matching, merging,
transforming, and sanitizing. A prototype tool was devel-
oped to implement the GRLMerger approach. In addition
to the integrated model, the tool documents all matched
and merged constructs, the resolved conflicts and error
cases, and provides a copy of the model before cycle res-
olution. The GRLMerger approach and tool have been
validated using three experiments showing very promis-
ing performance.

As future work, we plan to extend the proposed GRLM-
erger approach to be able to integrate more than two GRL
models at a time. Furthermore, in order to increase its
adoption, we plan to integrate the developed GRLMerger
tool within jUCMNav [20].

Appendix A: fostering university–alumni
relationships GRL sub‑models

See Figs. 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32.

241Requirements Engineering (2024) 29:209–259	

Fig. 21   Input model MF1

Fig. 22   Input model MF2

242	 Requirements Engineering (2024) 29:209–259

Fig. 23   Input model MF3

Fig. 24   Input model MF4

Fig. 25   Input model MF5

243Requirements Engineering (2024) 29:209–259	

Fig. 26   Input model MF6

Fig. 27   Input model MF7

Fig. 28   Input model MF8

244	 Requirements Engineering (2024) 29:209–259

Fig. 29   Input model MF9

Fig. 30   Input model: MF10

245Requirements Engineering (2024) 29:209–259	

Fig. 31   Input model MF11

Fig. 32   Input model MF12

246	 Requirements Engineering (2024) 29:209–259

Appendix B: seminars managing system GRL
sub‑models

See Figs. 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 and 44.

Fig. 33   Input model MS1

247Requirements Engineering (2024) 29:209–259	

Fig. 34   Input model MS2

248	 Requirements Engineering (2024) 29:209–259

Fig. 35   Input model MS3

249Requirements Engineering (2024) 29:209–259	

Fig. 36   Input model MS4

250	 Requirements Engineering (2024) 29:209–259

Fig. 37   Input model MS5

251Requirements Engineering (2024) 29:209–259	

Fig. 38   Input model MS6

252	 Requirements Engineering (2024) 29:209–259

Fig. 39   Input model MS7

253Requirements Engineering (2024) 29:209–259	

Fig. 40   Input model MS8

254	 Requirements Engineering (2024) 29:209–259

Fig. 41   Input model MS9

255Requirements Engineering (2024) 29:209–259	

Fig. 42   Input model MS10

256	 Requirements Engineering (2024) 29:209–259

Fig. 43   Input model MS11

257Requirements Engineering (2024) 29:209–259	

Fig. 44   Input model MS12

258	 Requirements Engineering (2024) 29:209–259

Funding  Funding was provided by King Fahd University of Petroleum
and Minerals (Grant No. SB201022).

Declarations 

Conflict of interest  All authors declare that they have no conflicts (fi-
nancial and non-financial) of interest.

References

	 1.	 Abdelzad V, Amyot D, Alwidian SA, Lethbridge T (2015) A tex-
tual syntax with tool support for the goal-oriented requirement
language. In: iStar, pp 61–66

	 2.	 Baslyman M, Amyot D (2019) Goal model integration: advanced
relationships and rationales documentation. In: International con-
ference on system analysis and modeling. Springer, pp 183–199

	 3.	 Beckers K, Faßbender S, Heisel M, Paci F (2013) Combining
goal-oriented and problem-oriented requirements engineering
methods. In: International conference on availability, reliability,
and security. Springer, pp 178–194

	 4.	 Boronat A, Carsí JÁ, Ramos I, Letelier P (2007) Formal model
merging applied to class diagram integration. Electron Notes
Theor Comput Sci 166:5–26

	 5.	 Brunet G, Chechik M, Easterbrook S, Nejati S, Niu N, Sabetzadeh
M (2006) A manifesto for model merging. In: Proceedings of the
2006 international workshop on global integrated model manage-
ment, pp 5–12

	 6.	 Cer D, Yang Y, Kong S, Hua N, Limtiaco N, John RS, Constant
N, Guajardo-Cespedes M, Yuan S, Tar C, Strope B, Kurzweil R
(2018) Universal sentence encoder for English. In: Blanco E, Lu
W (eds) Proceedings of the 2018 conference on empirical meth-
ods in natural language processing, EMNLP 2018: system dem-
onstrations, Brussels, Belgium, October 31–November 4, 2018.
Association for Computational Linguistics, pp 169–174. https://​
doi.​org/​10.​18653/​V1/​D18-​2029

	 7.	 Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-functional
requirements in software engineering, vol 5. Springer, Berlin

	 8.	 Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017)
Supervised learning of universal sentence representations from
natural language inference data. In: Palmer M, Hwa R, Riedel
S (eds) Proceedings of the 2017 conference on empirical meth-
ods in natural language processing, EMNLP 2017, Copenhagen,
Denmark, September 9–11, 2017. Association for Computational
Linguistics, pp 670–680. https://​doi.​org/​10.​18653/​V1/​D17-​1070

	 9.	 Darimont R, Ponsard C, Lemoine M (2018) Goal-driven elabora-
tion of OCL enriched UML class diagrams. In: MODELS work-
shops, pp 118–131

	10.	 Das S, Deb N, Cortesi A, Chaki N (2021) Sentence embedding
models for similarity detection of software requirements. SN
Comput Sci 2(2):1–11

	11.	 Deb N, Chaki N (2020) Goal model maintenance. In: Business
standard compliance and requirements validation using goal mod-
els. Springer, pp 81–130

	12.	 Diaconescu A, Frey S, Müller-Schloer C, Pitt J, Tomforde S
(2016) Goal-oriented holonics for complex system (self-) inte-
gration: concepts and case studies. In: 2016 IEEE 10th interna-
tional conference on self-adaptive and self-organizing systems
(SASO). IEEE, pp 100–109

	13.	 Feng Z, He K, Peng R, Wang J, Ma Y (2009) Towards merging
goal models of networked software. In: SEKE, pp 178–184

	14.	 Giorgini P, Mylopoulos J, Sebastiani R (2005) Goal-oriented
requirements analysis and reasoning in the tropos methodology.
Eng Appl Artif Intell 18(2):159–171

	15.	 Gomaa WH, Fahmy AA et al (2013) A survey of text similarity
approaches. Int J Comput Appl 68(13):13–18

	16.	 Hablutzel KR, Jain A, Grubb AM (2022) A divide & concur
approach to collaborative goal modeling with merge in early-
re. In: 2022 IEEE 30th international requirements engineering
conference (RE), pp 14–25. IEEE

	17.	 Hassine J, Amyot D (2016) A questionnaire-based survey
methodology for systematically validating goal-oriented
models. Requir Eng 21(2):285–308. https://​doi.​org/​10.​1007/​
s00766-​015-​0221-7

	18.	 Ilyas M, Kung J (2009) A similarity measurement framework for
requirements engineering. In: 2009 fourth international multi-
conference on computing in the global information technology.
IEEE, pp 31–34

	19.	 ITU-T (2018) Recommendation Z.151 (10/18) User Requirements
Notation (URN) language definition, Geneva, Switzerland. http://​
www.​itu.​int/​rec/T-​REC-Z.​151/​en

	20.	 jUCMNav: v7.0.0. https://​github.​com/​JUCMN​AV/, University of
Ottawa, Canada. Last Accessed May 2023

	21.	 Jurafsky D, Martin JH (2000) Speech & language processing.
Pearson Education India, Bengaluru

	22.	 Kumar R, Mussbacher G (2018) Textual user requirements nota-
tion. In: System analysis and modeling. languages, methods, and
tools for systems engineering: 10th international conference, SAM
2018, Copenhagen, Denmark, October 15–16, 2018, proceedings
10. Springer, pp 163–182

	23.	 Li R, Zhao X, Moens MF (2022) A brief overview of universal
sentence representation methods: a linguistic view. ACM Comput
Surv (CSUR) 55(3):1–42

	24.	 Li T, Horkoff J, Mylopoulos J (2014) Integrating security pat-
terns with security requirements analysis using contextual goal
models. In: IFIP working conference on the practice of enterprise
modeling. Springer, pp 208–223

	25.	 Li T, Mylopoulos J (2014) Modeling and applying security pat-
terns using contextual goal models. In: iStar. Citeseer

	26.	 Liu Y, Liu L, Liu H, Gao S (2020) Combining goal model
with reviews for supporting the evolution of apps. IET Softw
14(1):39–49

	27.	 Mandelin D, Kimelman D, Yellin D (2006) A Bayesian approach
to diagram matching with application to architectural models. In:
Proceedings of the 28th international conference on software engi-
neering, pp 222–231

	28.	 Maoz S, Ringert JO, Rumpe B (2010) A manifesto for semantic
model differencing. In: International Conference on model driven
engineering languages and systems. Springer, pp 194–203

	29.	 Melnik S (2004) Generic model management: concepts and algo-
rithms. In: Lecture notes in computer science, vol 2967. Springer.
https://​doi.​org/​10.​1007/​b97859

	30.	 Melnik S (2004) Generic model management: concepts and algo-
rithms, vol 2967. Springer, Berlin

	31.	 Mihany FA, Moussa H, Kamel A, Ezzat E, Ilyas M (2016) An
automated system for measuring similarity between software
requirements. In: Proceedings of the 2nd Africa and middle east
conference on software engineering, pp 46–51

	32.	 Miller GA, Beckwith R, Fellbaum C, Gross D, Miller KJ (1990)
Introduction to WordNet: an on-line lexical database*. Int J Lexi-
cogr 3(4):235–244. https://​doi.​org/​10.​1093/​ijl/3.​4.​235

	33.	 Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA (2013)
An empirical study of the state of the practice and acceptance of
model-driven engineering in four industrial cases. Empir Softw
Eng 18(1):89–116

https://doi.org/10.18653/V1/D18-2029
https://doi.org/10.18653/V1/D18-2029
https://doi.org/10.18653/V1/D17-1070
https://doi.org/10.1007/s00766-015-0221-7
https://doi.org/10.1007/s00766-015-0221-7
http://www.itu.int/rec/T-REC-Z.151/en
http://www.itu.int/rec/T-REC-Z.151/en
https://github.com/JUCMNAV/
https://doi.org/10.1007/b97859
https://doi.org/10.1093/ijl/3.4.235

259Requirements Engineering (2024) 29:209–259	

	34.	 Mohammed MA, Alshayeb M, Hassine J (2022) A search-based
approach for detecting circular dependency bad smell in goal-
oriented models. Softw Syst Model 21(5):2007–2037

	35.	 Nejati S, Sabetzadeh M, Chechik M, Easterbrook S, Zave P (2007)
Matching and merging of statecharts specifications. In: 29th inter-
national conference on software engineering (ICSE’07). IEEE, pp
54–64

	36.	 Petersohn D, Ma WW, Lee DJL, Macke S, Xin D, Mo X, Gon-
zalez J, Hellerstein JM, Joseph AD, Parameswaran AG (2020)
Towards scalable dataframe systems. Proc VLDB Endow
13(11):2033–2046

	37.	 Pottinger RA, Bernstein PA (2003) Merging models based on
given correspondences. In: Proceedings 2003 VLDB conference.
Elsevier, pp 862–873

	38.	 Reimers N, Gurevych I (2019) Sentence-bert: sentence embed-
dings using siamese bert-networks. In: Inui K, Jiang J, Ng V, Wan
X (eds) Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint con-
ference on natural language processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3–7, 2019. Association for Com-
putational Linguistics, pp 3980–3990. https://​doi.​org/​10.​18653/​
V1/​D19-​1410

	39.	 Sabetzadeh M, Easterbrook S (2005) An algebraic framework for
merging incomplete and inconsistent views. In: 13th IEEE inter-
national conference on requirements engineering (RE’05). IEEE,
pp 306–315

	40.	 Sabetzadeh M, Easterbrook S (2006) View merging in the
presence of incompleteness and inconsistency. Requir Eng
11(3):174–193

	41.	 Van Lamsweerde A (2008) Requirements engineering: from
craft to discipline. In: Proceedings of the 16th ACM SIGSOFT

international symposium on foundations of software engineering,
pp 238–249

	42.	 Wang J, Dong Y (2020) Measurement of text similarity: a survey.
Information 11(9):421

	43.	 Wang J, He K, Gong P, Wang C, Peng R, Li B (2008) Rgps: a uni-
fied requirements meta-modeling frame for networked software.
In: Proceedings of the 3rd international workshop on applications
and advances of problem frames, pp 29–35

	44.	 Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén
A (2000) Experimentation in software engineering: an introduc-
tion. Kluwer Academic Publishers, Norwell

	45.	 Wright HK, Kim M, Perry DE (2010) Validity concerns in soft-
ware engineering research. In: Proceedings of the FSE/SDP
workshop on future of software engineering research. ACM, pp
411–414. https://​doi.​org/​10.​1145/​18823​62.​18824​46

	46.	 Yu ES (1997) Towards modelling and reasoning support for early-
phase requirements engineering. In: Proceedings of ISRE’97:
3rd IEEE international symposium on requirements engineering.
IEEE, pp 226–235. https://​doi.​org/​10.​1109/​ISRE.​1997.​566873

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.1145/1882362.1882446
https://doi.org/10.1109/ISRE.1997.566873

	GRLMerger: an automatic approach for integrating GRL models
	Abstract
	1 Introduction
	2 Research background
	2.1 Model management
	2.2 Goal-oriented Requirements Language (GRL)
	2.3 Text similarity
	2.3.1 Lexical-based similarity
	2.3.2 Semantic-based similarity

	3 Related work
	4 GRLMerger: the approach
	4.1 Integration of GRL actor containers
	4.1.1 Matching actor containers
	4.1.2 Merging actor containers

	4.2 Integration of GRL intentional elements
	4.2.1 Matching GRL intentional elements
	4.2.2 Merging GRL intentional elements

	4.3 Integration of GRL links
	4.3.1 Matching GRL links
	4.3.2 Merging GRL links

	4.4 Import unmatched GRL constructs
	4.5 Model sanitization
	4.5.1 Sanitizing parent intentional element having multiple decomposition types
	4.5.2 Sanitizing the reciprocal parent–child relationships
	4.5.3 Removing GRL cycles

	5 GRLMerger prototype tool
	5.1 Input models
	5.1.1 Converting TGRL to dataframes
	5.1.2 Checking the uniqueness of IDs
	5.1.3 Pre-processing
	5.1.4 Name embedding

	5.2 Supporting dataframes
	5.3 Integration of actor containers
	5.4 Integration of the intentional elements
	5.5 Integration of links
	5.6 Importing unmatched elements
	5.7 Model sanitization
	5.8 Output files

	6 Evaluation of the GRLMerger approach and prototype tool
	6.1 Subjects
	6.2 Experiment procedure
	6.2.1 Experiment 1: basic merging

	6.3 Experiment 2: conflict and error cases
	6.4 Experiment 3: semantic matching
	6.5 Effectiveness measurement
	6.5.1 Correctness
	6.5.2 Completeness
	6.5.3 Freeness from errors

	6.6 Experiment results
	6.6.1 Results of experiment 1
	6.6.2 Results of experiment 2
	6.6.3 Results of experiment 3

	6.7 Results interpretation
	6.8 Impact of threshold selection

	7 Discussion
	7.1 Limitations of the GRLMerger approach
	7.2 Practical considerations
	7.3 Threats to validity

	8 Conclusions and future work
	Appendix A: fostering university–alumni relationships GRL sub-models
	Appendix B: seminars managing system GRL sub-models
	References

