
Vol.:(0123456789)1 3

Requirements Engineering (2023) 28:3–22
https://doi.org/10.1007/s00766-021-00368-y

ORIGINAL ARTICLE

A negotiation support system for defining utility functions
for multi‑stakeholder self‑adaptive systems

Rebekka Wohlrab1  · David Garlan1

Received: 14 June 2021 / Accepted: 24 November 2021 / Published online: 11 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
For realistic self-adaptive systems, multiple quality attributes need to be considered and traded off against each other. These
quality attributes are commonly encoded in a utility function, for instance, a weighted sum of relevant objectives. Utility
functions are typically subject to a set of constraints, i.e., hard requirements that should not be violated by the system. The
research agenda for requirements engineering for self-adaptive systems has raised the need for decision-making techniques
that consider the trade-offs and priorities of multiple objectives. Human stakeholders need to be engaged in the decision-
making process so that constraints and the relative importance of each objective can be correctly elicited. This paper presents
a method that supports multiple stakeholders in eliciting constraints, prioritizing quality attributes, negotiating priorities,
and giving input to define utility functions for self-adaptive systems. We developed tool support in the form of a blackboard
system that aggregates information by different stakeholders, detects conflicts, proposes mechanisms to reach an agreement,
and generates a utility function. We performed a think-aloud study with 14 participants to investigate negotiation processes
and assess the approach’s understandability and user satisfaction. Our study sheds light on how humans reason about and how
they negotiate around quality attributes. The mechanisms for conflict detection and resolution were perceived as very useful.
Overall, our approach was found to make the process of utility function definition more understandable and transparent.

Keywords  Self-adaptive systems · Quality attributes · Utility functions · Analytic hierarchy process · Blackboard
architecture · Requirements prioritization · Requirements negotiation · Non-functional requirements

1  Introduction

For self-adaptive systems, multiple quality attributes (such
as performance, availability, and security) need to be consid-
ered and traded off against each other. These quality attrib-
utes are often encoded in a utility function, i.e., a single
aggregate function whose expected value should be maxi-
mized by the system [22, 31, 35, 56]. In self-adaptive sys-
tems, utility functions are typically used by automated plan-
ning mechanisms to identify the relative costs and benefits
of alternative strategies. In related work, utility functions are
often defined as the weighted sum of relevant objectives [12,
21, 26, 61]. For most approaches using utility functions, it
is simply stated that they should be manually defined, but
little guidance for this task is provided [35, 61]. While the

issue of utility function definition is prevalent in a variety
of domains (e.g., in environmental sciences and consumer
research [11, 30]), we focus on the domain of self-adaptive
systems in this paper. In this domain, it is particularly chal-
lenging to correctly identify utility function weights and
consider trade-offs between multiple quality attributes, as
reported in the research agenda for requirements engineering
for self-adaptive systems [56].

Moreover, self-adaptive systems often have multiple stake-
holders (e.g., end users or business owners) whose preferences
need to be consolidated to identify the overall relative impor-
tance of each objective [55]. Decision-making techniques are
needed to help stakeholders prioritize and negotiate quality
attributes and determine appropriate utility function weights
[56]. Besides determining utility function weights, it is also
important to capture constraints on specific quality attributes
[5, 9, 70]. For instance, in practice, a self-adaptive system
would be unsatisfactory if it ran out of energy while complet-
ing a task. For this reason, utility functions are typically sub-
ject to a set of hard constraints [70] that indicate the acceptable

 *	 Rebekka Wohlrab
	 wohlrab@cmu.edu

1	 Institute for Software Research, Carnegie Mellon University,
Pittsburgh, PA, USA

http://orcid.org/0000-0002-5449-7900
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00368-y&domain=pdf

4	 Requirements Engineering (2023) 28:3–22

1 3

values for quality attributes (e.g., that the battery charge should
always be above a certain value). In practice, it is difficult for
stakeholders to collect and consolidate preferences and con-
straints, reach an agreement, and define a utility function that
can be used by a self-adaptive system [56].

In this paper, we present a lightweight tool-supported
method for utility function definition for multi-stakeholder
self-adaptive systems. The method is based on the Analytic
Hierarchy Process (AHP) [54] and the Delphi technique
[34]. It supports stakeholders in prioritizing quality attrib-
utes, specifying constraints, negotiating priorities to reach
an agreement, recording rationales and comments, and giv-
ing input to define utility functions. For utility functions,
we use the weighted sum approach, as it is lightweight and
commonly used in related work [12, 16, 26, 61]. It assumes
that the weighted quantity of one quality attribute can be
traded off (or “substituted” [1]) with another one. Moreo-
ver, our approach supports the elicitation and consolidation
of constraints, conflict detection, and mechanisms to help
stakeholders reach a consensus when conflicting constraints
occur. We created tool support in the form of a blackboard
system to help stakeholders collect relevant information and
process it to arrive at a final utility function and constraints.

The paper is based on a previous conference publication
[71] and has been extended by a more detailed description
of the method, as well as developed tool support, including
mechanisms for constraint specification, conflict detection,
and suggestions for (semi-)automatic resolution mecha-
nisms. Moreover, we present findings from a think-aloud
study with 14 participants evaluating the approach’s under-
standability and user satisfaction. Our findings indicate that
the explanations provided by the tool, as well as the conflict
resolution mechanisms, help to define a utility function in
a transparent and understandable way with traceability to
the initial user input. Our data suggests that our participants
were generally satisfied with the tool support, although
refinements to the usability are needed to increase the tool’s
maturity further.

The remainder of this paper is structured as follows:
Sect. 2 describes our research method. Section 3 presents
our AHP-based approach for utility function definition. In
Sect. 4, we describe the tool support we implemented. The
example system used in our think-aloud study is presented
in Sect. 5. Section 6 presents the findings of our study. In
Sect. 7, we describe related work. We discuss our findings
in Sect. 8 and conclude the paper in Sect. 9.

2 � Research method

We developed our contributions in several iterations based
on an informal literature review, an investigation of related
methods, our previously proposed approach for utility

function definition [71], and internal discussions. We moti-
vate our design decisions and the underlying reasoning in the
sections where we present our approach and tooling.

To evaluate our approach, we performed a think-aloud
study [43]. The think-aloud method [19] is a widely used
technique to investigate problem-solving processes and par-
ticipants’ cognitive models [42, 65]. The main idea is that
participants make spoken comments about their thoughts
while working on a task. Think-aloud protocol analysis has
previously been used by software engineering researchers,
for instance, when evaluating user interfaces and understand-
ing how developers perform and reason about tasks [42, 53,
69]. In the context of this paper, we decided to perform a
think-aloud study because we were interested in the cogni-
tive processes of utility function definition, negotiation, and
conflict resolution.

For our think-aloud sessions, we prepared a series of tasks
to be performed by the participants. The participants were
asked to think-aloud while performing their work. We also
conducted a short post-task interview in which we asked
questions about the participants’ experiences with the tool
and encouraged them to think-aloud while answering.

We conducted the study with 14 academic participants
who had an understanding of complex, software-intensive
systems to analyze how they reason about utility functions,
constraints, and preferences. We aimed to understand the
applicability and understandability of our approach, as well
as our participants’ satisfaction levels with the employed
mechanisms. Our think-aloud study and its findings will
form a basis for further empirical studies focusing on the
approach’s applicability to real-world systems.

We were especially interested in how our participants
experienced the approach, how they negotiated, and whether
any tool mechanisms were challenging to understand.
Assessing the mechanisms’ understandability allowed us to
analyze the mental models that human users develop when
working with the negotiation support system, which can lead
to better insights for the future development of approaches
for utility function definition and stakeholder negotiation.
Apart from understandability, we also focused on user satis-
faction to investigate our participants’ expectations and areas
of improvement. Our research questions were as follows:

RQ1: How understandable are the blackboard system’s
resolution mechanisms?

RQ2: How satisfied are users with the blackboard sys-
tem’s output?

In the following, we elaborate on the study design, par-
ticipant selection, data collection, data analysis, and threats
to validity.

Study Design: The think-aloud sessions started with an
introduction to the problem domain, where the facilitating
researcher explained an example system that we used in the
remainder of the study (more details will be provided in

5Requirements Engineering (2023) 28:3–22	

1 3

Sect. 5). The goal was to ensure that the participants were
aware of the system’s context and the objectives of the study.
The introduction was followed by a learning phase, in which
the participants were given a role description of a stake-
holder and were asked to try out the tool, enter constraints
and preferences, and explore information on the blackboard.
Conflict resolution was supported by the tool’s mechanisms
and negotiation was performed using the chat. We had pre-
viously determined role descriptions for all stakeholders,
so that the interviewing researcher could adopt the role of
another stakeholder and have a chat conversation with the
participant in the negotiation phase.

Finally, we leveraged methods to elicit our participants’
mental models of utility function definition. Following Hoff-
man et al.’s suggestions to evaluate solutions for explain-
able AI [32], we decided to conduct glitch detector tasks
(in which people identify things that are wrong in a system/
explanation) and prediction tasks (in which users are asked
to predict a system’s results and explain their predictions).
These tasks help to understand whether the current system
or explanation is understandable and in line with what par-
ticipants would expect. The tasks were related to an estima-
tion of the final weights of the utility function, participants’
understanding of constraint resolution, concordance, and
consistency. For instance, one of the tasks involved show-
ing the participants a bar chart with non-concordant prefer-
ences for which a wrong utility function was generated. The
participants should indicate whether or not they expected the
preferences to be concordant and what weights they would
expect the final utility function to have.

In the post-task interviews, we presented a list of Lik-
ert-scale questions to our participants and asked them to
answer on a scale from “strongly disagree” to “strongly
agree.” Moreover, we asked about the experience of using
the tool, difficulties, strategies for negotiation, and sugges-
tions to develop the tool further. More details about the study
procedure, as well as the material we used during the study,
can be found online1.

Participant Selection: We selected 14 participants with
an understanding of complex, software-intensive systems
(e.g., robotics or software systems). Several participants had
worked with robot planning applications before and were
aware of the challenge of defining utility functions. We
selected participants with different backgrounds and roles,
including four university faculty members, one researcher
involved in industrial projects, two technical staff members/
researchers, six PhD students, and one business office staff
member.

Data Collection: All sessions were conducted via a video
conferencing platform and took between 46 and 84 minutes,

with an average of 64 minutes. The audio of the think-aloud
sessions was recorded and transcribed for easier data analy-
sis. Moreover, we collected tool data and observations dur-
ing the sessions.

Data Analysis: We performed data analysis using Qual-
Coder 2.4 [15]. QualCoder is a tool for qualitative data anal-
ysis of text, images, audio, and video. We performed coding,
following Creswell’s guidelines for qualitative analysis [14],
and applied an editing approach. Our initial set of codes
was based on the research questions and the predefined set
of tasks. Two examples of these a priori codes are “under-
standability” and “concordance of preferences”. The codes
were refined, new codes were added, and several codes were
merged during the analysis. To identify the research find-
ings to report on in this paper, we went through the codes to
analyze relationships and group them into categories. Our
findings are reported in Sect. 6.

2.1 � Threats to validity

We identified several threats to internal, construct, con-
clusion, and external validity. Internal validity/credibility:
Threats to internal validity or credibility were partially miti-
gated by providing rich descriptions describing the contexts
of statements in the think-aloud sessions. The decision to
conduct a think-aloud study helped us to not limit ourselves
to a fixed set of factors (as in a survey) but explore poten-
tially confounding factors. Collecting data based on the tran-
scripts of our sessions, tool data, and answers to glitch detec-
tor/prediction tasks helped us to triangulate different sources
of information and elicit participants’ mental models. What
should be noted is that the participants of the study were
given a description of their roles and asked to act accord-
ing to that description. Studying utility function definition
and stakeholder negotiation in a real-world context would
likely lead to different findings. For instance, stakeholders
might fight for their positions more than in our example
scenario. In Sect. 8, we discuss further implications of this
threat. We aimed for high transparency both when it comes
to the explanation of our research method and the descrip-
tion of our findings. Using quotes ensured that findings can
be traced back to statements from the think-aloud sessions
which strengthens our findings’ credibility.

Construct validity: Construct validity is concerned with
how well our measures are suited to study the phenomenon
under study. In our case, it was central to establish a com-
mon terminology with the participants, e.g., when it comes
to terms like negotiation, consensus, priorities, or agree-
ment. For this reason, we spent five to ten minutes at the
beginning of the sessions to clarify the context of the study
and ensure that all participants’ questions were answered.
We provide information about the introductory part of the
study in the external document with our study’s material1.1  https://​doi.​org/​10.​6084/​m9.​figsh​are.​17019​125.​v1

https://doi.org/10.6084/m9.figshare.17019125.v1

6	 Requirements Engineering (2023) 28:3–22

1 3

Evaluation apprehension is another threat to construct
validity and relates to participants trying to appear intelligent
or good in the eyes of the researcher. It would be problematic
to confound the effect of a treatment with apprehension. We
acknowledge the issue of evaluation apprehension, although
we investigate utility function definition in an exploratory
fashion rather than intending to arrive at the finding that our
tool (as a treatment) would lead to any measurable changes.

Conclusion validity: Conclusion validity focuses on the
extent to which the findings in this paper are reasonable. It is
especially concerned with whether we found relationships in
our data that do not exist or whether we missed relationships
that should have been found. While we did not aim to arrive
at statistically significant conclusions in this study, conclu-
sion validity is still relevant for our think-aloud study. The
degree of reliability might have been compromised by the
fact that we collected data from 14 participants in sessions
of an average length of 64 minutes. Collecting data from an
even larger number of participants would have led to a larger
amount of information and the potential detection of fur-
ther findings. To mitigate threats to reliability, we aim to be
transparent about our research method and provide informa-
tion about our study design material as external documents.
We thoroughly discussed and refined the study material over
several weeks to avoid issues related to a potentially incoher-
ent structure or poor question-wording.

External validity: The study reported in this paper does
not have broad generalizability as its goal, but rather pre-
sents an in-depth think-aloud study focusing on practical
experiences with utility function definition. We selected
the participants of this study based on their knowledge of
complex, software-intensive systems, which is why the find-
ings of this study are not necessarily transferable to other
populations. However, involving participants with different
roles helped us get a variety of perspectives on the topic and
strengthen external validity.

One central threat is the presence of the main researcher
who has both assumed a central role when developing the
tool and facilitated the sessions. This threat related to reac-
tivity might entail that our participants responded more
positively because they knew that we were evaluating our
tool. To mitigate this threat, we stressed that the participants
should openly share their thoughts and that suggestions for

improvement were especially welcome. Our results indicate
that the participants followed these instructions and freely
shared points of criticism, as 40% of the participants stated
that the tool was not easy to use and suggested aspects to
improve. A potential way to mitigate this threat further is
to involve an independent group of researchers performing
the same study. To facilitate the replication of our study, we
provide supplementary material online1.

3 � A method for defining utility functions

Figure 1 shows the steps of our method for utility function
definition, which was previously published in [71]. The
method can be used either for the initial definition or the
refinement of a utility function, in case stakeholders’ prefer-
ences evolve. We assume that the involved stakeholders are
aware of the quality attributes under consideration and know
how they can be measured. For instance, stakeholders might
be concerned with speed as a quality attribute (indicating
how fast a system arrives at its target destination), safety
concerns (penalizing collisions with objects), and energy
consumption (indicating the battery charge). The leftmost
steps in Fig. 1 are performed individually by each stake-
holder. The guard conditions refer to whether an AHP matrix
is consistent and whether an agreement has been reached.
Each step is labeled with the paragraph of this section in
which it is described.

Human stakeholders participate in all steps of the method
shown in Fig. 1. The activities labeled with H are manually
performed. For the activities marked with C  , we developed
tool support that performs checks, gives feedback to human
stakeholders, and asks for input if needed. Our approach
is based on the creation of a matrix that captures pairwise
comparisons of quality attributes (A). When checking for
consistency (B), the transitive property of pairwise compari-
sons is crucial [54]. In this context, consistency entails that
if quality attribute X is preferred over quality attribute Y and
Y is preferred over quality attribute Z, it must follow that X
is also preferred over Z. The check for agreement in step (D)
is concerned with the concordance of pairwise comparisons
made by several stakeholders. For concordance, we compare
the rankings of quality attributes (indicating which attribute

Fig. 1   Our utility function definition method. Activities marked with (H) are performed by a human user, whereas activities marked with (C) are
performed semi-automatically

7Requirements Engineering (2023) 28:3–22	

1 3

is considered most, second, ..., and least important) and ana-
lyze how strongly different stakeholders’ rankings agree with
each other. Moreover, it is identified whether the specified
constraints agree or conflict with each other. In the final step
(E), our method supports stakeholders in negotiating and
adjusting their input preferences and constraints.

(A) Perform pairwise comparisons: For the prioritization
of quality attributes, we use the AHP, which is especially
useful when subjective, abstract, or non-quantifiable criteria
are relevant for a decision [54]. A central part of the AHP
is to elicit stakeholders’ priorities of different objectives in
pairwise comparison matrices, which are positive and recip-
rocal (i.e., aij = 1∕aji ). For utility functions, we are inter-
ested in the degree of preference of one quality attribute over
another, with the goal of increasing the overall utility of a
system. Verbal expressions are used for these pairwise com-
parisons (e.g., “I strongly prefer X over Y”). Table 1 shows
how the verbal expressions correspond to numerical values.
When working with our tool, users are not required to cre-
ate or understand AHP matrices. It is sufficient to perform
pairwise comparisons and indicate their preferences.

For a robot planning problem, Table 2 shows an exam-
ple of an AHP matrix with the attributes safety (expected
number of collisions), speed (duration of a mission), and
energy consumption (consumed watt-hours). In the example,
safety is very strongly preferred over speed (7) and extremely
preferred over energy consumption (9). Speed and energy
consumption are equally preferred.

The relative priorities of the quality attributes can then be
calculated using the principal eigenvector of the eigenvalue
problem Aw = �maxw [54]. A is the matrix of judgments and
�max is the principal eigenvalue. For the matrix in Table 2,
the principal eigenvalue is �max ≈ 3.01 . A corresponding

normalized eigenvector to �max is (0.8, 0.1, 0.1)T , which cor-
responds to the relative priorities of the quality attributes. A
priority indicates the importance of a quality attribute with
a value between 0 and 1, where a priority of 0 indicates
that the quality attribute is not important at all. The relative
priorities always sum up to 1 (given that they originate from
the corresponding normalized eigenvector).

Utility functions are often used by automated plan-
ners to calculate the optimal plan for a self-adaptive sys-
tem. The utility function for a plan p can be defined as
U(p) = 0.8 ⋅ �������safety(p) + 0.1 ⋅ �������duration(p) + 0.1 ⋅ �������energy(p)  .
�������safety(p) is related to the expected number of collisions
when executing the plan, �������duration(p) captures the utility
with respect to the duration of the plan, and �������energy(p) is
concerned with the consumed watt-hours. The preference
of a quality attribute can often be described with a sigmoid
function defining an interval for the quantity that is consid-
ered as good enough and an interval for the quantity that is
insufficient [49]. Appropriate methods need to be selected to
elicit these thresholds and define quality attributes’ prefer-
ence functions.

(B) Check for consistency: AHP matrices can be checked
for consistency. A matrix is consistent if ajk = aik∕aij for
i, j, k = 1,… , n [54]. Saaty proved that a necessary and suf-
ficient condition for consistency is that the principal eigen-
value of A be equal to n, the order of A [54]. He defined the
consistency index CI as (�max − n)∕(n − 1) . For our exam-
ple in Sect. 3, CI is 0.004. To compare consistency values,
Saaty also calculated the random consistency index RI by
calculating CI for a large number of reciprocal matrices with
random entries [54]. For a 3 × 3 matrix, the average random
consistency index was 0.58. According to Saaty, the consist-
ency ratio CR = CI∕RI shall be less or equal to 0.10 for the
matrix to be considered consistent [54]. In our example, the
consistency ratio is 0.01. If the condition for consistency is
not fulfilled, stakeholders are required to refine their AHP
matrices. The matrix can be automatically analyzed to point
out the triples of quality attributes QAi , QAj , and QAk where
ajk ≪ aik∕aij or ajk ≫ aik∕aij.

(C) Input constraints: Besides determining stakeholders’
preferences, it is often important to elicit constraints when
developing real-world systems [5]. These constraints cannot
be traded off against other quality attributes, but need to be
fulfilled in any case [71]. Our tool supports the specification
of such constraints. We support both lower bound and upper
bound constraints that can be associated with a real number
(e.g., stating that the speed should be at least 2.0 m/s or at
most 1.0 m/s). Moreover, stakeholders are asked to add a
rationale explaining underlying reasons.

(D) Check for agreement: One of the aspects when
checking for agreement is to identify conflicts in stake-
holders’ constraints. Conflicts occur when a lower
bound constraint for a specific quality attribute specifies

Table 1   AHP judgment/preference options with numerical values
[54]

Extremely preferred 9
Very strongly preferred 7
Strongly preferred 5
Moderately preferred 3
Equally preferred 1
Intermediate values 2, 4, 6, 8

Table 2   Example of an AHP matrix

Safety Speed Energy
consump-
tion

Safety 1 7 9
Speed 1

7

1 1

Energy consumption 1

9

1 1

8	 Requirements Engineering (2023) 28:3–22

1 3

an interval that does not overlap with an upper bound
constraint’s interval for the same quality attribute. For
instance, stating that speed should be at least 2.0 m/s is in
conflict with specifying that it should be at most 1.0 m/s.
These conflicts need to be resolved in step (E). Besides
conflict resolution, it is also possible that there exists an
overlap between constraints, so that one constraint super-
sedes another. In these cases, both constraints are lower
bound (or upper bound) constraints. For instance, if one
stakeholder requires speed to be at least 2 m/s and another
one requires speed to be at least 3 m/s, the former con-
straint would be superseded by the latter (since ‘speed at
least 3’ is a stronger constraint).

For users’ preferences, we use another check for agree-
ment. We consider the rankings of n quality attributes by
k stakeholders (where each quality attribute’s rank is a
number between 1 and n). The lower the rank, the more
important is the quality attribute for a specific stakeholder.
If all stakeholders rank energy as the most important qual-
ity attribute (rank 1), its ranking would be 1k = k , the low-
est possible ranking. For QAi , the sum of ranks by all
stakeholders is Ri , and the mean value of these ranks is
R̄ =

1

n

∑n

i=1
Ri . If the stakeholders’ rankings do not agree,

we can assume that the sums of ranks of several quality
attributes are approximately equal [38]. It is therefore
natural to consider the sum of squared deviations from the
mean values of ranks S =

∑n

i=1
(Ri − R̄)2 [38]. The maxi-

mum possible value of S is k2(n3 − n)∕12 [38]. Kendall’s
concordance coefficient, describing the agreement of rank-
ings in a [0,1] interval, is therefore: W =

12S

k2⋅(n3−n)
 [38]. If

the concordance coefficient is at least 0.3, the agreement
is at least at a moderate level.

(E) Negotiate and adjust input: In case an agreement is
not reached, a tool-supported negotiation and reprioriti-
zation phase starts. When it comes to conflict resolution
for constraints, several options are suggested by the tool.
The typical options for a user are to drop their constraint,
decide based on stakeholders’ authority levels (which
allows the stakeholder with the highest authority to decide
to drop another constraint), or negotiate in the chat.

For preferences, another negotiation and adjustment
approach is used. To aggregate AHP matrices, the “most
recommendable aggregation technique” is to calculate the
weighted arithmetic mean of individual priorities (AIP)
[46]. Stakeholders’ priorities can be weighted differently,
as their influence and stake may differ. In our approach,
stakeholder authority levels can be defined to indicate their
authority.

To resolve conflicts, we adapt the Delphi technique [34]
for remote consensus building. The Delphi technique can
be used “to seek out information which may generate a
consensus”, “to correlate informed judgments on a topic

spanning a wide range of disciplines”, and “to educate
the respondent group as to the diverse and interrelated
aspects of the topic” [34]. In our adapted version of the
Delphi technique, interactive tooling is used to present
the nature of the conflict(s), give participants a transpar-
ent overview of each other’s preferences and constraints,
and explain potential solution strategies (see Sect. 4.4 for
details). Users can also declare that they do not want to
indicate any preferences. Participants are encouraged to
use the chat feature to discuss underlying objectives and
arrive at an agreement. Comments and rationales are pre-
sented to the participants and the input can be revised,
both with respect to constraints and with respect to prefer-
ences. The resulting utility function is a weighted sum of
the objectives, where the final weights are the participants’
aggregated weighted priorities (using AIP).

4 � A negotiation support system for utility
function definition

We developed our system for utility function definition
based on the blackboard architecture pattern. The following
sections introduce the system, starting with its architecture
in Sect. 4.1.

The system follows the approach described in Sect. 3.
The initial steps are concerned with the collection of user
input (based on the pairwise comparison for AHP and the
specification of constraints). Afterward, an automated ‘con-
solidation agent’ checks for agreement, identifies conflict-
ing and superseded constraints, and feeds that information
back to users. Moreover, the system supports negotiation and
input adjustment. When an agreement has been reached, the
resulting utility function is shown and explained to users.

Users interact with a web application and user interface
that are described in Sect. 4.2. We present how our consoli-
dation agent processes and consolidates stakeholders’ input
in Sect. 4.3, followed by a description of conflict resolution
mechanisms in Sect. 4.4.

4.1 � Blackboard system implementation

The blackboard architecture pattern is a software architec-
ture pattern that was initially used for speech recognition
[20] and has been applied in a variety of domains [13]. The
pattern is based on the metaphor of several experts or agents
looking at a blackboard, analyzing its current state, and add-
ing information to it. These agents add and refine informa-
tion on the blackboard until a problem has been solved. The
pattern allows for diverse problem-solving techniques and
flexible representation of information [13]. We found the
pattern to be applicable for the problem of utility function

9Requirements Engineering (2023) 28:3–22	

1 3

definition where multidisciplinary stakeholders need to col-
lect a variety of information and create a common utility
function for a given system. The blackboard’s agents can be
human stakeholders or can be automated.

Figure 2 shows an overview of the architecture of our util-
ity function definition and negotiation system. It consists of
the blackboard system and several agents. To interact with
human stakeholders, we developed an end user agent (imple-
mented as a Vaadin 14 web application [27]). Moreover, we
created a consolidation agent that processes and aggregates
information. The consolidation agent evaluates the black-
board’s status, detects and explains conflicts, and determines
the utility function weights. It is described in further detail
in Sect. 4.3.

The blackboard system consists of a blackboard manager
component and a database to store information. The storage
is implemented as a MySQL database. The information in
the database is stored in “facts” and we distinguish between
constraint facts, preference facts (for stakeholders’ prefer-
ences), definition facts (establishing common definitions of
the fact types), authority facts (indicating the stakeholder
authority level for a quality attribute), as well as utility facts
(indicating the final weights of the utility function). Facts
can be linked to each other with superseded, removed, or
parent relationships. These relationships between facts help
to establish and maintain traceability.

The blackboard manager observes the storage and exe-
cutes the next agent based on observed changes. It pushes
a message to the next agent to indicate that it is its turn to
update the blackboard system. The next agent is selected
based on their authority levels and depending on what has
changed in the system. For instance, if facts have been added
and a human user has requested to generate the utility func-
tion, the consolidation agent is executed. If the consolidation

agent needs information to resolve a conflict, it adds that
information to the storage. The blackboard manager, in turn,
sends a message to an end user agent about the nature of the
conflict and requests information.

4.2 � Web application and user interface

We used Vaadin 14 to implement the web application for
the end user agent [27]. Vaadin supports several princi-
ples of user interface design out of the box, e.g., by pro-
viding control components, ensuring that designers choose
appropriate color schemes, and supporting straightforward
mechanisms to embed information or error dialogues [25,
27]. For our particular user interface design, we used the
dashboard design pattern [68]. Our dashboard helps users
to get an overview of the current state of the utility func-
tion definition process. The dashboard was enriched with
forms (located in a bar on the left side of the screen) to
allow users to provide input using control elements (i.e.,
sliders, text fields, drop-down lists, and chat/log textfields
[25]). The advantage of applying the dashboard pattern is
that users are not required to click many times to navigate
through a (potentially complex) navigation structure. Over-
all, we relied on common elements for interface design [25,
68] that our participants were familiar with. What should
be noted is that we developed the user interface on a device
with a resolution of 1920x1080 pixels. The user interface is
not as easy to use on smaller devices, which might motivate
the need to redesign parts of the interface when using the
system on other devices in the future.

Figure 3 depicts a screenshot of the user interface. The
dashboard shows all information and blackboard facts at
once. The user can input their preferences using the edi-
tor in the top-left corner 1  , where sliders are provided for

Fig. 2   Overview of the archi-
tecture of the utility function
definition system

10	 Requirements Engineering (2023) 28:3–22

1 3

pairwise comparisons of the quality attributes. The sliders
have a pin with an initial position at the center (indicat-
ing that both attributes are equally preferred) that can be
moved toward the left or right to indicate the preference of
one quality attribute over another. Rather than filling in an
AHP matrix, sliders help users to focus on the pairs of qual-
ity attributes to be compared and visualize how strong the
preference is by supporting different positions of the sliders’
pins. One advantage of using sliders is that stakeholders do
not need to work with AHP matrices or numerical values,
which greatly reduces the mathematical complexity they
need to deal with. Moreover, a constraint editor is provided,
allowing the specification of constraints that state that the
value of a quality attribute shall be at least or at most a cer-
tain value 2  . It is also possible to define a rationale for a
constraint. At the center, the blackboard facts are displayed.
A list of facts shows all currently inserted facts, including
the attribute, stakeholder, description, and rationale 3  .
Below the list, two buttons are provided allowing users to
generate a utility function and to request an explanation of
what happened. Preferences are visualized as bar charts
to help end users get an overview of the priorities that the
stakeholders assign to the quality attributes 4  . Finally, the
bottom right part is a chat/log window 5  , indicating the
current state of the consolidation, but also allowing users to
send messages to each other (e.g., in the negotiation phase).

The web application is used to support the steps shown
in Fig. 1, i.e., performing pairwise comparisons (using the

sliders), inputting constraints (using the form), getting feed-
back from the consolidation agent regarding consistency
and agreement issues, as well as negotiating and adjusting
the initial input. Depending on the state of the blackboard
system, the user is prompted to give input to resolve con-
flicts and reach an agreement. When an agreement has been
reached, a summary is shown to users, describing what the
final weights of the utility functions are and what constraints
the utility function is subject to. Moreover, it is possible
to view information related to the constraints by clicking
on them in the list of facts. Figure 4 shows an example of
information for an end user constraint, requiring speed to
be at least 2.0. It is shown that a fact was removed due to
a conflict with this constraint, namely the safety expert’s
constraint requiring speed to be at most 1.0. The number
line below shows the speed values that are allowed accord-
ing to the two constraints and it can be seen that there is no
overlap between the two constraints’ lines. For superseded
constraints, a similar explanation is generated by the con-
solidation agent.

4.3 � Consolidation agent

The consolidation agent’s role is to detect and explain
conflicts that arise in the constraints or preferences of
multiple stakeholders, as well as to generate the utility
function weights. The consolidation agent uses the rea-
soning engine Drools [50]. Drools has previously proven

Fig. 3   Screenshot of the utility function definition system

11Requirements Engineering (2023) 28:3–22	

1 3

applicable as the reasoning engine for blackboard systems,
e.g., in the domain of legal decision making [62]. Drools
is based on the Rete algorithm [24] and supports both
forward and backward chaining. In our case, we speci-
fied Drools rules in a dedicated file to handle conflict
detection and resolution and insert new facts. Each rule
is formulated based on a condition (“when”) that triggers
an action (“then”). Every rule can have a salience value
indicating the priority of the rule, to ensure that if sev-
eral rules fulfill their conditions, they will be fired in a
deterministic order. An overview of the Drools rules for
our blackboard system is shown in Table 3. It can be seen
that the rules are concerned with superseded and conflict-
ing constraints, concordance checks for preferences, the
creation of new utility facts, the consolidation of prefer-
ences, and the creation of authority facts. These rules can
be adjusted for future use cases, e.g., in case different reso-
lution mechanisms are required for a certain application.
For instance, for the concordance check (3. in Table 3),

we check whether Kendall’s concordance coefficient is at
least 0.3 (see Step (D) in Sect. 3). Depending on the level
of agreement required for a certain application, this value
can be easily adjusted.

Listing 1 shows the rule for the detection of superseded
lower bound constraints. In the example, a constraint fact
$fact is superseded by another constraint fact $otherFact.
It is superseded because $fact always holds when $oth-
erFact is fulfilled. The rule’s when condition requires a
lower bound constraint fact $fact for a specific quality
attribute that is not superseded, as well as another lower
bound constraint fact $otherFact that has a constraint value
greater than $fact’s value. For instance, $fact might indi-
cate that the speed of the robot should be at least 1 m/s,
whereas $otherFact specifies that speed shall be at least 2
m/s. If the condition is fulfilled, the then part of the rule
adds a message to the user indicating that $fact has been
superseded and adds $fact to the collection of $otherFact’s
superseded facts.

Fig. 4   Information about an end user constraint (speed at least 2.0)

Table 3   Overview of Drools rules for our blackboard system

1. Superseded constraints If one constraint for a specific quality attribute implies another (not superseded or removed) constraint, the latter
constraint is added to the superseded facts of the former.

2. Conflicting constraints If one constraint for a specific quality attribute is in conflict with another (not superseded or removed) constraint,
the latter constraint is added to the removed facts of the former (provided that the latter constraint’s stakeholder’s
authority level is lower than the other one’s).

3. Concordance check If the concordance value of the current preference facts is less than a certain value (0.3), an explanation is generated
to inform stakeholders about non-concordant preferences and present them with options.

4. Create utility facts If there exists a preference fact for a quality attribute but no utility fact, a utility fact is created setting the weight to
the priority value of that preference fact and adding the preference fact to the superseded facts.

5. Consolidate preferences If there exists a utility fact and a non-superseded preference fact for a quality attribute, the utility fact’s weight is
updated and the preference fact is added to the list of superseded facts.

6. Default authority level If a stakeholder has a constraint for a quality attribute but does not have a specified authority level for it, a new
authority fact is created setting the stakeholder’s authority level to a default value.

12	 Requirements Engineering (2023) 28:3–22

1 3

rule supersededLowerBound
salience 110
when

$fact: ConstraintFact($myQA: getQA(),
!isSuperseded (), isLowerBound (),
$myValue: getValue ())

$otherFact: ConstraintFact(getQA() == $myQA,
isLowerBound (), getValue () > $myValue)
then
addMessage($otherFact + " supersedes " + $fact);
addToSuperseded ($otherFact,$fact);
end

4.4 � Conflict detection and resolution

Three mechanisms for conflict detection and resolution are
supported: (1) Constraints can be in conflict with each other,
(2) preferences can be non-concordant, or (3) preferences
can be inconsistent. We describe these three cases in the
following.

4.4.1 � Conflicting constraints

As described in Step (D) in Sect. 3, conflicts between con-
straints can occur. Our tool supports conflict detection,
explains conflicts to users, and suggests ways to resolve
them. The supported options are to drop a constraint or to
(temporarily) keep both and (re-)negotiate. Figure 5 shows
a dialogue that is prompted to the end user describing an
example conflict, stakeholders’ rationales, authority levels,
and options. Stakeholders’ authority levels are crucial in sit-
uations in which no easy conflict resolution strategy can be
found and it is necessary to decide between two conflicting
constraints. In the example situation shown in Fig. 5, two
speed constraints are in conflict with each other and the end

user can decide which constraint should be kept, given that
they have a higher authority level than the safety expert.
The end user can decide to drop their constraint or drop the
safety expert’s constraint. If a constraint has been dropped,
it is then possible to inspect them and access an explanation
similar to the one in Fig. 4.

4.4.2 � Non‑concordant preferences

When preferences are not concordant, an information mes-
sage by the consolidation agent is shown, explaining the issue
of non-concordance and potential ways to solve the conflict.
As described in Step (D) in Sect. 3, non-concordant prefer-
ences arise because the rankings of different stakeholders do
not agree. To analyze what changes are required to create a
concordant solution, the consolidation agent analyzes stake-
holders’ rankings and calculates possible changes to reach an
agreement. In the current implementation, unilateral changes
are considered, i.e., we analyze how an individual’s rank-
ing could be changed to reach a concordant solution. For
instance, if a stakeholder has a first-ranked quality attribute
that is not one of the other stakeholders’ first-ranked quality
attributes, we analyze which sliders/pairwise comparisons
need to be adjusted to ensure that the second-ranked qual-
ity attribute has the same priority as the first-ranked quality
attribute. Using an adjusted matrix, we run the AHP and cal-
culate whether this change is sufficient to reach concordance.

To reach a consensus, you need to align your prefer-
ences.

•	 Option 1) @End user: To reach a concordant solu-
tion, it is enough if you lower the top slider and
indicate that you strongly prefer speed over safety.
If you do that, you slightly increase your ranking
of safety, which is more in line with the others’
preferences.

Fig. 5   dialogue shown to the user to resolve a conflict related to two speed constraints

13Requirements Engineering (2023) 28:3–22	

1 3

•	 Option 2) You can also convince the safety expert
to lower their preference for safety. If the safety
expert prefers safety as much as energy or speed,
your preferences are concordant.

•	 Option 3) You can also convince the energy expert
to lower their preference for energy. If the energy
expert prefers energy as much as safety or speed,
your preferences are concordant.

Write in the chat and negotiate with other stakehold-
ers.

The stakeholders can then negotiate with each other using
the chat.

4.4.3 � Inconsistent preferences

In case the AHP input of a single stakeholder is inconsist-
ent (see Step (B) in Sect. 3), the web application provides
an information message in the chat/log window. Inconsist-
encies can arise because pairwise comparisons are not pro-
portional to each other or because they violate the property
of transitivity. The following quote shows an example of
what the information message can look like:

Consolidation Agent: Your ranking is inconsistent.
Your preferences indicate that
(1) safety >> speed, (2) speed > energy, and (3)
energy >> safety
However, if you state that safety >> speed and speed
> energy, it must follow that safety > energy.
This is in conflict with your statement (3) (energy >>
safety), which is why your ranking is inconsistent.

5 � Example

The example system we use in the think-aloud study is a
robot (e.g., a vacuum cleaner). The relevant quality attributes
of the system are energy, safety, and speed. In this context,
energy is measured by the battery charge of the robot and
safety based on the expected number of collisions. Speed is
measured in meters per second and thus related to the dura-
tion of the robot’s mission. The stakeholder roles are energy
expert, safety expert, and end user. In our study, the end user
role was adopted by the participants. As mentioned before,
stakeholder authority levels can be defined to indicate that a
stakeholder is particularly knowledgeable when it comes to a
certain quality attribute. In this example, a high stakeholder
authority level is assigned to the energy expert for energy,
the safety expert for safety, and the end user for speed. All
other authority levels are set to a default value.

Figure 6 presents an overview of the stakeholders’ pref-
erences in our running example. The left part of the figure
shows the bar chart depicting the stakeholders’ priorities
for the three quality attributes. They were calculated using
AHP based on the user input shown in the right part of
the figure. The example was designed in a way that stake-
holders’ priorities are not initially concordant: the energy
expert clearly prioritizes energy, the safety expert has a
strong preference for safety, and the end user prefers speed
over the other quality attributes.

Apart from the preferences, the following constraints
are specified:

1.	 Energy expert: Energy (battery charge) at least 5.0 —
Rationale: The battery charge needs to be at least 5mAh
so that the robot never runs out of energy

Fig. 6   An overview of the stakeholders’ preferences in our example

14	 Requirements Engineering (2023) 28:3–22

1 3

2.	 Safety expert: Speed at most 1.0 — Rationale: The speed
should not be higher than 1 m/s (because we conducted
experiments and saw that the system would be unsafe
otherwise).

3.	 Safety expert: Safety (expected collisions) at most 2.5
— Rationale: We cannot accept more than 2.5 collisions
because of SAFETYLEG363.

4.	 End user: Speed at least 2 — Rationale: The system
needs to have a speed of at least 2 m/s (so that it can
meet deadlines).

5.	 End user: Energy (battery charge) at least 1.0 — Ration-
ale: The battery charge should be at least 1 (because it
would be undesirable to run out of power).

It can be seen that the end user’s speed constraint (5. in the
list above) is in conflict with the safety expert’s speed con-
straint (2.). In our study, the participants were presented with
the issues of non-concordant preferences and constraint con-
flicts and asked to select appropriate resolution mechanisms.

6 � Findings

To answer our research questions, we categorized our
findings into themes focusing on the understandability of
the tool (Sect. 6.1, RQ1), as well as on user satisfaction
(Sect. 6.2, RQ2).

6.1 � Understandability (RQ1)

When assessing our participants’ mental models and under-
standing of the system, we identified that the overview that
the system provided was very much appreciated. All partici-
pants had an immediate understanding of the preference bar
charts and could read and interpret them without requiring
any assistance. The list of constraints was also understand-
able, but required more processing time for our participants.
Several participants stressed that they especially liked the
rationales connected to constraints. When being asked about
what the most helpful aspect of the tool was, a faculty mem-
ber pointed out that it was “being able to drill down into this
tool for some information.” A researcher answered: “I see
very clearly where everybody stands with respect to their
position. I think the rationale was also useful, just seeing
exactly why people say speed or safety is important.”

6.1.1 � Preferences

When it comes to stakeholders’ preferences, a majority of
the participants found the sliders easy to use for pairwise

comparisons. In our glitch detector task, all participants were
able to validate whether a stakeholder’s preference bar chart
was in line with the values of the corresponding sliders or not.

At the same time, we found that it was difficult to judge
whether different stakeholders’ preferences were concord-
ant without any additional tool explanations. When asking
participants to perform prediction tasks using a set of stake-
holders’ preference bar charts, we found that our participants
faced difficulties. A PhD student stated that “it is hard to
say whether [the preferences] are concordant just by look-
ing at them. I would have to write them down or analyze it
more.” Given a set of concordant preferences, several par-
ticipants suggested that there might still be a discussion and
indicated preferences that were not completely aligned. We
found that it is not immediately apparent what changes are
required to make preferences concordant. The explanations
of non-concordance and the presentation of different options
to reach an agreement were appreciated by the participants.
A PhD student stated that it was helpful to get an overview
of possible negotiation strategies to solve agreement issues:

My favorite thing is how we get to the negotiation
part at the end. It lists all of the possible changes
that would make things work. Because it seems like
that would be difficult to figure out if it didn’t come
straight out and tell you. By just looking at it, it’s
really hard to see if it’s concordant or not.

A researcher pointed out that the transparent nature of the
utility function definition process was beneficial:

What I found helpful is the way the aggregated
weight was being calculated. So, I give my own pref-
erences. But then at the end without much work, I
can quickly see that the weights are being found and
then conflicts are being highlighted. And then con-
flicts are being attempted to resolve with an expla-
nation. So all that gives me more transparency into
what’s going on and then I can think more about it.

An interviewee stressed that the explanations that guided
stakeholders to create concordant preferences were espe-
cially useful. A faculty member suggested that even more
explanations might be beneficial to help stakeholders
understand the mechanisms of the tool, depending on the
level of expertise of the users: “I think the system could
show information or explanations on different levels of
detail. One of the things I was wondering was how we
actually go from the individual preferences to the final
weights of the utility function.”

6.1.2 � Constraints

The specification of constraints was considered “straight-
forward” by several participants. It was more challenging for

15Requirements Engineering (2023) 28:3–22	

1 3

a few participants to reason about superseded and removed
constraints. To analyze participants’ understanding, we
included several glitch detector tasks focusing on constraints
that were superseded or removed. On average, it took our
participants more than 30 seconds to identify glitches or
arrive at the conclusion that the explanation was correct. A
researcher stated that it was “tricky how one constraint was
picked over another.”

The current tool supports different mechanisms to
remove constraints, either because a stakeholder decides to
drop their constraint or because a stakeholder with a higher
authority level decides to remove a constraint of a stake-
holder with a lower authority level. It is also possible to start
a conversation and agree on a new or modified constraint.
When presented with these options, we found that our par-
ticipants reasoned quite differently about constraint resolu-
tion. The constraints in question were speed constraints. The
end user had a constraint requiring speed to be at least 2 m/s
(because of deadlines), whereas the safety expert constrained
speed to be at most 1 m/s. Given the same speed constraint-
related conflict and adopting the end user role, we saw that
the following decisions were taken by our participants:

1.	 Deciding that the own constraint shall be kept and
removing the safety expert’s constraint (because the end
user had the top authority level for speed in our exam-
ple)

2.	 Deciding to drop their constraint
3.	 Negotiating and convincing the other stakeholder to drop

theirs

A majority of participants started a negotiation process in the
chat. The participants deciding to go for decision 1.) insist
on the fact that the top authority level was assigned to them
(as the end users). After asking the safety expert about their
rationales, one participant stated that “Well, as the end
user, my main concern is meeting these deadlines. So I’m
going to keep my constraints. And take a little [safety] risk.”
Another participant explained their decision as follows: “For
me, dealing with end users is just that they are stubborn
and obstinate, so I also went into that role, especially when
dealing with deadlines. I know that you know a lot of people
are very strict and concerned about meeting deadlines, and
they panic about it, and they’re willing to sacrifice safety.”
The participants who decided to drop their own constraints
argued that the safety expert is an expert and would not add
a speed constraint without having good reasons. One partici-
pant initially dropped the end user’s constraint (speed at least
2 m/s) and added a new one (setting the speed to at least 1
m/s) that did not conflict with the safety expert’s constraint.

One participant suggested that removing conflicting con-
straints should not be a suggested alternative.

I feel like just dropping a constraint entirely might not
make experts happy and they may be very unhappy and
they may complain or walk away from it. So maybe
there is a negotiation process that involves compro-
mises and relaxation instead of overriding someone
else’s constraints.

A researcher stressed that the alternatives shown for con-
straint resolution were beneficial for the blackboard system’s
understandability.

It was extremely clear what was going on. ‘You said this,
that person said that, here are some of the alternatives’.
[...] and I can look at those alternatives and say: ‘OK, I
can live with alternative X’ or I could say ‘no there’s no
way to make those work for me’ so then you keep going.

One participant stated that the constraint resolution “is what
the tool is really good at. [...] And for humans it’s hard to
see when you have a lot of constraints [...] if they are satisfi-
able or not.” For this reason, the participant considered the
constraint consolidation aspect especially helpful in terms
of understandability.

6.2 � Satisfaction (RQ2)

To analyze how satisfied users are with the blackboard sys-
tem’s output, we collected Likert-scale answers measuring
satisfaction levels. Our questions were inspired by the can-
didate Likert items used to evaluate user experience [23].
An overview of the answers is shown in Fig. 7. It can be
seen that our participants indicated that they were generally
satisfied with how information was considered and resolved.
The usability of the system was not considered as positive
as many of the other aspects. We asked our participants to
motivate their answers and describe the findings below.

6.2.1 � Negotiation

One finding related to negotiation was that different negotia-
tion outcomes were considered satisfactory. Several partici-
pants aimed to ensure that their own concerns and prefer-
ences were well represented in the final utility function and
constraints. Four participants actively searched for infor-
mation about the rationales for constraints and preferences.
When dealing with conflicting constraints, a staff member
argued that they would use the negotiation part to make an
informed decision: “I would want to understand why we’re
so far apart and what has led me to believe that a minimum
speed of ten is required to complete the task. What has led
them to believe that a maximum speed of nine is safe?”

The size of a required change was also an aspect that sev-
eral participants took into account. One participant stressed

16	 Requirements Engineering (2023) 28:3–22

1 3

that avoiding unilateral changes and motivating various
stakeholders to slightly cede their preferences could be ben-
eficial: “It could be a smaller change for each of them than
it would be if just one person decided to make a change. [...]
But then you have to convince more people to change, which
I imagine in practice could be harder than just convincing
one person.” When analyzing the alternatives to reach a con-
sensus with respect to the preferences, another participant
stated that it was acceptable to perform a small change on
their own preferences, rather than starting a discussion with
another stakeholder and motivating the other stakeholder to
perform an even bigger change. One participant stressed that
in certain situations, it might be easier to see that changes are
necessary: “I might not want to change my preference [ini-
tially] but if I see that we’re close to conversion, I might say
that it’s ok to change my preferences or drop a constraint.”

6.2.2 � Real‑world applications and scalability

Several participants mentioned that scalability could be an
issue when deploying the tool for real-world applications.
The issue that for many quality attributes, the AHP requires
a large number of pairwise comparisons, was mentioned.
When it comes to real-world applications, a faculty mem-
ber asked how many discussions/negotiation conversations
would typically occur. This interviewee suggested structur-
ing the chat/log window in a better way and grouping con-
versations related to different conflicts. The faculty mem-
ber also wondered whether there would always be pairwise
negotiations between stakeholders or whether more than two
stakeholders might be important when resolving conflicts.
Another participant suggested that sending text messages in
a chat is not the ideal way of exchanging information. Hav-
ing a phone or video call could convey information more
efficiently and effectively.

92% of the participants thought that the tool could be use-
ful for real-world applications. One participant stressed that
in practice, utility functions are often defined on an ad-hoc
basis: “With the tool, I can actually reason about the utility
function. Otherwise, I would simply create a function out of
the blue and not put in a lot of thought.”

One participant pointed out that this tool is especially
beneficial because it could be used early on in the require-
ments engineering process and not when all components of
the system are already built. Another participant stressed
that the tool might be especially useful when a running sys-
tem is analyzed and the preferences are re-adjusted. This
participant stated that data from simulations or the running
system would be beneficial to understand the impact of the
utility function’s weights, so that “you run the system, you
see how it behaves and then you can adjust the utility func-
tion that way, too.”

6.2.3 � Usability

The usability of the tool was one of the areas where our
participants had suggestions for improvement. 40% of the
participants indicated that the system is not easy to use and
27% found it frustrating to work with the system. Several
interviewees stated that it would be difficult to work with
the tool on their own, without guidance from a tutorial or
tool expert. The setup of the study as a think-aloud session
was considered beneficial, as it allowed for clarification and
support where needed.

The visualizations were stressed as very helpful by a
majority of the participants. A PhD student stated:

”I particularly liked the bar plots of the utility of each
attribute for each stakeholder. The discussion/chat can
also be useful. I like how it is easy to specify your

Fig. 7   Likert-scale answers measuring the satisfaction levels ( n = 14)

17Requirements Engineering (2023) 28:3–22	

1 3

preferences between attributes. I think it’s intuitive to
just say ‘I prefer this one over that one.”’

The number lines that visualize the upper/lower bounds of
superseded/conflicting constraints (see Fig. 4) were consid-
ered more difficult to understand, but were still considered
helpful by multiple participants.

7 � Related work

Utility functions have been widely applied in the context
of human decision-making, in particular, based on von
Neumann and Morgenstern’s contributions to expected util-
ity theory [66]. In the field of optimization in autonomic
computing systems, utility functions have become widely
used since the early 2000s [70]. While utility functions are
a common mechanism in self-adaptive systems [12, 16, 22,
26, 31, 61], there exist only a few approaches to defining
them. This paper addresses the need for preference elicita-
tion techniques to ensure that utility functions meet stake-
holders’ needs [70]. In the following, we describe several
related approaches.

Adjusting utility functions at run time: It is important to
keep in mind that utility functions cannot be specified once
and for all at design time, but that elicitation and readjust-
ment of preferences at run time is typically needed, espe-
cially when it comes to self-adaptive systems [39]. Song
et al. [60] propose an approach that collects user feedback
after every round of adaptation to adjust the weights of con-
straints. A related approach relies on user feedback to switch
between “variants” with associated utility function weights,
depending on the current usage context [36].

When prioritizing quality attributes at run time, it is often
crucial to consider the system’s context and adapt require-
ments [17, 40, 59]. One approach [59] uses the AHP for
pairwise comparisons of quality attributes while taking con-
textual factors into consideration (e.g., related to the urgency
of tasks, the time period, or weather). The authors concluded
that the proposed elicitation technique was beneficial, but
that it is difficult to avoid overwhelming users when eliciting
preferences along with a large amount of contextual infor-
mation and scenarios. User-adaptive task models are used by
another approach that captures users’ tasks, contextual fac-
tors, as well as preferences [58]. Based on this information,
the self-adaptive system’s behavior can be adapted whenever
user preferences are readjusted, the context changes, or fail-
ures occur [58].

Several related techniques have been developed that
explicitly take the uncertainty of self-adaptive systems’
contexts into account. The ARRoW approach uses Primi-
tive Cognitive Network Process (P-CNP), an improved ver-
sion of the AHP, and dynamic decision networks to reassess

utility weights at run time [48]. Partially Observable Markov
Decision Processes are used by another approach to model
the satisficement of non-functional requirements, explicitly
considering the uncertainty of run-time contexts [47]. We
acknowledge the need to support varying system contexts
and consider it promising to extend our approach with auto-
matic mechanisms to adjust utility functions at run time. We
envision our approach to be used continuously, so that utility
function weights can be adjusted based on preference elici-
tation and a consensus between multiple stakeholders even
when the system is running. Quantifying contributions in
goal models: Besides using utility functions, goal-oriented
approaches are also a common mechanism to capture system
objectives in self-adaptive systems [70]. In the context of
goal-oriented requirements engineering, contribution labels
are commonly used to indicate how much goals contribute to
each other’s satisficement [33, 44]. These contribution labels
can be qualitative (e.g., “–” or “+”) or quantitative (e.g.,
0.8 or 0.1). Although it has been criticized that quantitative
labels add unwarranted precision and can overwhelm users,
they have still been found to be beneficial in empirical stud-
ies [44]. Several approaches to quantifying the contributions
of goals have been developed and many of them are based
on similar techniques as ours. For instance, an approach for
self-adaptive systems uses goal models that can be analyzed,
converted into arithmetic functions, and leveraged to select
optimal adaptation strategies at run time [4]. It is suggested
to use group decision techniques and AHP to arrive at the
weights of goals’ contributions. A similar study has also suc-
cessfully combined AHP for the quantification of goal con-
tributions with group decision techniques [3]. Our approach
does not require stakeholders to create a complete model of
goals, actors, and their relationships, but focuses on multi-
stakeholder preference elicitation to create a utility function
encoding the key quality attributes.

Utility functions in the context of goal models can also
be used to determine how multiple functional requirements
contribute to the satisficement of non-functional require-
ments in self-adaptive systems. For instance, Providentia
[10] uses a search-based technique to determine the weights
of such utility functions at run time with the goal of maxi-
mizing overall satisficement of requirements. The proposed
approach was found to lead to better and more robust results
than setting the weights manually or randomly [10].

Analytic Hierarchy Process for requirements prioritiza-
tion: The AHP has been used for analyzing requirements
trade-offs, especially because of its favorable mathemati-
cal properties (e.g., consistency and concordance checks)
[18, 45, 55]. One of the known disadvantages is the large
number of required comparisons, since n(n − 1)∕2 com-
parisons need to be performed for n quality attributes. In
practice, it can be difficult for end users to assign absolute
values for the pairwise comparisons [37, 67]. In certain

18	 Requirements Engineering (2023) 28:3–22

1 3

situations, it can be sufficient to use an ordinal scale, rather
than relying on ratio scale data (as in the case of the AHP)
[37]. Future extensions of our work can explore other pri-
oritization techniques, especially for applications where a
large number of quality attributes needs to be considered.
To deal with uncertainty and the difficulty of selecting
precise values when comparing quality attributes, fuzzy
extensions of AHP have been proposed [41].

Requirements negotiation and conflict resolution: Several
requirements negotiation techniques have been proposed in
the last decades [8, 28, 29, 57]. The WinWin spiral model [8]
is an early, well-known negotiation approach that helps mul-
tiple stakeholders gain an understanding of their conflicts and
arrive at a mutual agreement. It has led to the development
of other negotiation approaches, e.g., EasyWinWin [28], an
approach that is based on a group support system for negotia-
tion and conflict resolution. Many of the existing negotiation
techniques require an analysis of stakeholders, their objec-
tives, and potential conflicts before actual negotiation starts.
The conflict detection mechanisms in our negotiation support
system address this need and can assist stakeholders in identi-
fying conflicts (semi-)automatically. Different conflict resolu-
tion strategies might be beneficial in different situations. Tools
to automatically detect and resolve requirements conflicts have
been developed in the past, especially in the context of goal-
driven requirements engineering [51, 64]. For instance, Oz
is a tool that can automatically detect conflicts, categorize
them, and generate compromise resolutions using planning
techniques [52]. Typically, multiple resolution alternatives
exist and human input can be leveraged to decide how a con-
flict should be resolved in a specific situation. We support a
subset of resolution alternatives in our tool (Sect. 4.4) and
found that our participants adopted different conflict behavior,
which is in line with previous findings [29, 63].

Requirements prioritization is strongly connected to
requirements negotiation and often used as an input to focus
the negotiation process [6]. Our approach is based on these
insights and leverages AHP as a prioritization technique in
an initial step to inform the negotiation process. To support
distributed settings, some of the activities in our method are
performed individually by each stakeholder, whereas for the
actual negotiation, we recommend participants to collabo-
rate synchronously using the chat. This recommendation is
in line with the state of the art of requirements negotiation
tools, in which both synchronous and asynchronous collabo-
ration are supported [29].

8 � Discussion and future work

Our think-aloud study indicated that the explanations
provided by the tool, as well as the conflict resolution
mechanisms, helped to establish an understandable and

transparent utility function definition process with trace-
ability to the initial input. Participants were generally able
to identify glitches in explanations and required consider-
able time effort when aiming to identify and resolve con-
flicts on their own. Our interview data suggest that they
were generally satisfied with the tool support, although
refinements to the usability are needed to increase the
maturity of the tool further. What should be noted is that
the large number of elements that were included in our
dashboard resulted in the user interface being perceived
as crowded, especially on devices with smaller screens.
Redesigning the interface by introducing further naviga-
tion elements is one of the areas of future work.

An important aspect to consider is the level of abstrac-
tion at which quality attributes shall be compared and
reasoned about. Our approach assumes that involved
stakeholders are aware of the quality attributes under
consideration and know how they can be measured. For
our weighted sum approach for utility function definition,
quantifiable quality attributes are required. For instance,
the participants in our study were informed that we con-
sidered the expected number of collisions when reasoning
about safety. These aspects need to be taken into account
when performing pairwise comparisons of quality attrib-
utes (and possibly even details of how the system is or will
be implemented). To acknowledge the need for other forms
of requirements elicitation, we also support the collection
and specification of constraints in our approach. We expect
the negotiation support system to be adjustable to different
kinds of utility functions and input (e.g., requirements at
lower levels of abstraction) that can be prioritized, con-
solidated, and reasoned about in a collaborative effort.

We decided to focus on the weighted sum approach for
utility function definition in this paper, given that it is
applied in actual systems (e.g., [12, 21, 26, 61]) and we
aim to address a real-world concern with this research. It
should be noted that the weighted sum approach has the
property that quality attribute dimensions can be traded
off against each other—poor performance in one dimen-
sion can be compensated by good performance in another
dimension. In certain situations, it would be more ben-
eficial to define nonlinear utility functions. For instance,
multiplying the utilities of different quality attributes can
allow stakeholders to express logical “and”s and capture
a conjunction of constraints. Independently of whether a
utility function is described as a weighted sum or not, real-
world contexts commonly require eliciting the priorities of
requirements and negotiating constraints [6, 29]. We are
convinced that our proposed approach is of value to other
requirements prioritization and negotiation contexts and
not only relevant to define weighted sum utility functions.

We explicitly focus on self-adaptive systems in this paper;
however, the developed negotiation support system might

19Requirements Engineering (2023) 28:3–22	

1 3

be applicable to other contexts as well. The focus on self-
adaptive systems is motivated by the fact that many existing
self-adaptive systems rely on utility functions (e.g., [12, 21,
22, 26, 31, 35, 56, 61]) and we aimed to focus on real-world
problems in our research. Future work will investigate the
applicability of our approach to other contexts in which
requirements negotiation and conflict resolution are needed.
Non-self-adaptive systems generally have different kinds of
requirements that are not necessarily expressed in utility
functions, but whose consolidation would lead to different
strategic or design decisions [7].

Our blackboard system’s architecture supports future
extension and customization of our approach. To support
extension, we aimed to design the tool with a focus on the
separation of concerns and pluggability of context-specific
elements. For instance, we use a variety of “fact types” (e.g.,
constraint facts, preference facts, and definition facts) and
developed different kinds of agents to insert and process
facts. Resolution policies can easily be adjusted by chang-
ing the consolidation agent’s Drools rules (Sect. 4.3). It is
also possible to add further agents that are not limited to
our Drools-based agent and the Vaadin-based user interface.
For instance, the current tool can be augmented with analy-
sis agents relying on run-time or simulation data, as also
suggested by two participants. These mechanisms would
allow users to analyze and see the impact of their prefer-
ences and utility function weights on system behavior. Such
a tool could generate different plans to show users how the
actual behavior of the system would be affected by changes
to users’ preferences or to the utility function. For example,
it could be stated that a different path would be selected if
a user changed their preference for a specific pair of quality
attributes in a certain way. Such analyses could help stake-
holders to determine what their actual preferences are and
whether a utility function meets their needs.

Further future extensions of the tool include adding
support for other roles that partially reuse existing agents’
functionality (e.g., legal experts specifying different kinds of
hard requirements or human facilitators that do not specify
any own preferences but support the negotiation phase). The
negotiation support system can be adjusted to process differ-
ent kinds of information, e.g., hard or soft constraints, goals,
other kinds of utility functions, scenario-specific informa-
tion, stakeholder roles, or quality attributes. We imagine the
system to be used continuously, so that stakeholders can
engage in a discussion even as the system context or envi-
ronment changes. Mechanisms to allow users not only to
express their preferences on a general level, but elicit situ-
ation-specific preferences and utility functions, are another
area for future work.

An interesting observation of our study is that it con-
firms previous findings related to requirements negotiation.
The negotiation support system helps with the automatic

identification of conflicts and the proposition of alterna-
tive solutions, which are two of the crucial activities in the
requirements negotiation process [2]. Moreover, different
conflict behaviors reported by Thomas [63] were observ-
able in our study: Given the same role description of an end
user, some participants adopted a competing role, whereas
others were accommodating, and others used compromising
conflict resolution strategies. It is important to keep in mind
that humans react differently when facing conflicts. Future
approaches can build upon these lessons and ensure that
negotiation dynamics are not deteriorated by too competing
stakeholders and that crucial stakeholder input is still elic-
ited. It should be noted that our participants were provided
with a role description rather than representing their own
opinions. We expect stakeholders in real-world situations to
engage more strongly and insist more heavily on their posi-
tions than in our think-aloud study. The negotiation dynam-
ics in real-world situations are likely to be different from
the ones in our think-aloud study. For instance, we expect
that future case studies discover different negotiation tactics
and ways of reasoning than the ones reported in Sect. 6.2.1.
In practice, personal relations between stakeholders and an
in-depth understanding of the constraints’ rationales in their
real-world contexts certainly have an impact on negotiation.
While the findings we describe in the paper indicate how
humans reason about negotiation in general, we acknowl-
edge the need for a case study to explore the phenomenon
of requirements negotiation and prioritization in a practical
setting.

9 � Summary and conclusions

This paper presented a method that supports multiple stake-
holders in eliciting constraints, prioritizing relevant qual-
ity attributes, negotiating, and giving input to define util-
ity functions for self-adaptive systems. The tool-supported
method is based on the AHP for the pairwise comparison
of quality attributes and is supported by a blackboard sys-
tem that centrally stores information and coordinates several
agents. We implemented a consolidation agent that uses the
reasoning engine Drools to process information, identify
conflicts, and suggest resolution mechanisms to help stake-
holders arrive at a utility function.

To assess the approach with respect to its understand-
ability and user satisfaction, we performed a think-aloud
study with 14 participants. Our study sheds light on how
differently humans reason about and how they negotiate
around quality attributes. We found that it can be difficult
for participants to manually identify conflicts and arrive at
concordant preferences. Our tool’s mechanisms for conflict
detection, (semi-)automatic conflict resolution, and visuali-
zation of preferences were perceived as very useful. Overall,

20	 Requirements Engineering (2023) 28:3–22

1 3

our approach helps to make the process of utility function
definition more understandable and transparent.

The developed method and tool support appear useful
and applicable to other domains and systems that could
benefit from requirements negotiation. A promising direc-
tion for future work is to perform case studies to investigate
our approach’s applicability in practical contexts. Moreover,
future work can build upon the blackboard system and add
other kinds of information/requirements that are of relevance
to utility function definition. For instance, contextual infor-
mation is important to consider for real-world self-adaptive
systems. This information can be complemented with sup-
port for analysis tools that simulate and explain the impact
of different utility functions on the behavior of the system.

Acknowledgements  We would like to thank all participants for their
help and support with the study. This work is supported in part by the
Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, by award
N00014172899 from the Office of Naval Research and by the NSA
under Award No. H9823018D000. Any views, opinions, findings and
conclusions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Office of
Naval Research or the NSA.

References

	 1.	 Abdennadher I, Rodriguez IB, Jmaiel M (2018) A utility-based
approach for self-adaptive systems: Application to a smart build-
ing. In: Proceedings of the IEEE/ACS 14th international confer-
ence on computer systems and applications (AICCSA), pp 76–82.
https://​doi.​org/​10.​1109/​AICCSA.​2017.​41

	 2.	 Ahmad S (2008) Negotiation in the requirements elicitation and
analysis process. In: Proceedings of the 19th Australian con-
ference on software engineering (ASWEC 2008), pp 683–689.
https://​doi.​org/​10.​1109/​ASWEC.​2008.​44832​63

	 3.	 Akhigbe O, Alhaj M, Amyot D, Badreddin O, Braun E, Cartwright
N, Richards G, Mussbacher G (2014) Creating quantitative goal
models: governmental experience. In: Yu E, Dobbie G, Jarke M,
Purao S (eds) Conceptual modeling. Springer International Pub-
lishing, Cham, pp 466–473

	 4.	 Anda AA (2020) Combining goals and SysML for traceability
and decision-making in the development of adaptive socio-cyber-
physical systems. Ph.D. thesis, Université d’Ottawa/University of
Ottawa

	 5.	 Asadi M, Soltani S, Gasevic D, Hatala M, Bagheri E (2014)
Toward automated feature model configuration with optimizing
non-functional requirements. Inf Softw Technol 56(9):1144–1165.
https://​doi.​org/​10.​1016/j.​infsof.​2014.​03.​005

	 6.	 Berander P, Andrews A (2005) Requirements prioritization. In:
Engineering and managing software requirements, pp 69–94.
Springer

	 7.	 Boehm B (2003) Value-based software engineering: reinventing.
ACM SIGSOFT Softw Eng Notes 28(2):3

	 8.	 Boehm B, Bose P, Horowitz E, Lee MJ (1994) Software require-
ments as negotiated win conditions. In: Proceedings of the inter-
national conference on requirements engineering, May 1994, pp
74–83. https://​doi.​org/​10.​1109/​icre.​1994.​292400

	 9.	 Bowers KM, Fredericks EM, Cheng BHC (2018) Automated
optimization of weighted non-functional objectives in self-
adaptive systems. In: Colanzi TE, McMinn P (eds) Search
Based Softw Eng. Springer International Publishing, Cham, pp
182–197

	10.	 Bowers KM, Fredericks EM, Hariri RH, H C Cheng B (2020)
Providentia: Using search-based heuristics to optimize satis-
ficement and competing concerns between functional and non-
functional objectives in self-adaptive systems. J Syst Softw 162,
110497. https://​doi.​org/​10.​1016/j.​jss.​2019.​110497

	11.	 Cegan JC, Filion AM, Keisler JM, Linkov I (2017) Trends and
applications of multi-criteria decision analysis in environmental
sciences: literature review. Environ Syst Dec 37(2):123–133

	12.	 Cheng SW, Garlan D, Schmerl B (2006) Architecture-based
self-adaptation in the presence of multiple objectives. In: Pro-
ceedings of the 2006 international workshop on self-adaptation
and self-managing systems. https://​doi.​org/​10.​1145/​11376​77.​
11376​79

	13.	 Corkill DD (1991) Blackboard systems. AI Exp 6:40–47
	14.	 Creswell JW (2008) Research design: qualitative, quantitative, and

mixed methods approaches, 3 edn. Sage Publications Ltd.
	15.	 Curtain C (2021) QualCoder 2.4 [Computer software]. https://​

github.​com/​ccbog​el/​QualC​oder/​relea​ses/​tag/2.4
	16.	 Cámara J, Lopes A, Garlan D, Schmerl B (2016) Adaptation

impact and environment models for architecture-based self-adap-
tive systems. Sci Comput Program 127:50–75. https://​doi.​org/​10.​
1016/j.​scico.​2015.​12.​006

	17.	 Dell’Anna D, Dalpiaz F, Dastani M (2019) Requirements-driven
evolution of sociotechnical systems via probabilistic reasoning
and hill climbing. Auto Softw Eng 26(3):513–557

	18.	 Elahi G, Yu E (2012) Comparing alternatives for analyzing
requirements trade-offs—in the absence of numerical data. Inf.
Softw. Technol. 54(6):517–530. https://​doi.​org/​10.​1016/j.​infsof.​
2011.​10.​007

	19.	 Ericsson KA, Simon HA (1984) Protocol analysis: verbal reports
as data. MIT Press

	20.	 Erman LD, Hayes-Roth F, Lesser VR, Reddy DR (1980) The
Hearsay-II speech-understanding system: integrating knowledge
to resolve uncertainty. ACM Comput Surv 12(2):213–253. https://​
doi.​org/​10.​1145/​356810.​356816

	21.	 Esfahani N, Elkhodary A, Malek S (2013) A learning-based
framework for engineering feature-oriented self-adaptive software
systems. IEEE Trans Softw Eng 39(11):1467–1493

	22.	 Faniyi F, Lewis PR et al (2014) Architecting self-aware software
systems. In: WICSA’14, pp 91–94

	23.	 Finstad K (2010) The usability metric for user experience. Interact
Comput 22(5):323–327

	24.	 Forgy CL (1989) Rete: A fast algorithm for the many pattern/many
object pattern match problem. Readings in Artif Intell Databases,
pp 547–559. Elsevier

	25.	 Galitz WO (2007) The Essential guide to user interface design: an
introduction to GUI design principles and techniques. John Wiley
& Sons Inc., New York

	26.	 Ghezzi C, Molzam Sharifloo A (2013) Dealing with non-func-
tional requirements for adaptive systems via dynamic software
product-lines, pp 191–213. Springer, Berlin

	27.	 Grönroos M (2011) Book of Vaadin. Vaadin.com
	28.	 Grünbacher P (2000) Collaborative requirements negotiation with

EasyWinWin. In: Proceedings 11th international workshop on
database and expert systems applications, pp 954–958. IEEE

	29.	 Grünbacher P, Seyff N (2005) Requirements negotiation. In:
Engineering and managing software requirements, pp 143–162.
Springer

	30.	 Hauser JR, Urban GL (1979) Assessment of attr ib-
ute importances and consumer utility functions: Von

https://doi.org/10.1109/AICCSA.2017.41
https://doi.org/10.1109/ASWEC.2008.4483263
https://doi.org/10.1016/j.infsof.2014.03.005
https://doi.org/10.1109/icre.1994.292400
https://doi.org/10.1016/j.jss.2019.110497
https://doi.org/10.1145/1137677.1137679
https://doi.org/10.1145/1137677.1137679
https://github.com/ccbogel/QualCoder/releases/tag/2.4
https://github.com/ccbogel/QualCoder/releases/tag/2.4
https://doi.org/10.1016/j.scico.2015.12.006
https://doi.org/10.1016/j.scico.2015.12.006
https://doi.org/10.1016/j.infsof.2011.10.007
https://doi.org/10.1016/j.infsof.2011.10.007
https://doi.org/10.1145/356810.356816
https://doi.org/10.1145/356810.356816

21Requirements Engineering (2023) 28:3–22	

1 3

neumann-morgenstern theory applied to consumer behavior. J
Consum Res 5(4):251–262

	31.	 Heaven W, Sykes D, Magee J, Kramer J (2009) A case study in
goal-driven architectural adaptation. In: Software engineering for
self-adaptive systems, p 109–127. Springer-Verlag, Berlin. https://​
doi.​org/​10.​1007/​978-3-​642-​02161-9_6

	32.	 Hoffman R, Mueller S, Klein G, Litman J (2018) Metrics for
explainable AI: challenges and prospects. XAI Metrics

	33.	 Horkoff J, Yu E (2013) Comparison and evaluation of goal-ori-
ented satisfaction analysis techniques. Require Eng 18(3):199–
222. https://​doi.​org/​10.​1007/​s00766-​011-​0143-y

	34.	 Hsu CC, Sandford BA (2007) The Delphi technique: making sense
of consensus. Pract Assess Res Eval 12(1):10

	35.	 Inverardi P, Mori M (2013) A software lifecycle process to support
consistent evolutions. In: R. de Lemos (ed.) Self-adaptive systems,
vol 7475 LNCS, pp 239–264. Springer, Berlin

	36.	 Kakousis K, Paspallis N, Papadopoulos G (2008) Optimizing the
utility function-based self-adaptive behavior of context-aware
systems using user feedback. In: OTM 2008, pp 657–674

	37.	 Karlsson L, Host M, Regnell B (2006) Evaluating the practical
use of different measurement scales in requirements prioritisation.
Proceedings of the 5th ACM-IEEE international symposium on
empirical software engineering 2006, 326–335 (2006). https://​doi.​
org/​10.​1145/​11597​33.​11597​82

	38.	 Kendall MG, Smith BB (1939) The problem of m rankings. Ann.
Math. Statist. 10(3):275–287

	39.	 Kephart J (2021) Viewing autonomic computing through the lens
of embodied artificial intelligence: a self-debate

	40.	 Knauss A, Damian D, Franch X, Rook A, Müller HA, Thomo
A (2016) ACon: a learning-based approach to deal with uncer-
tainty in contextual requirements at runtime. Inf Softw Technol
70:85–99. https://​doi.​org/​10.​1016/j.​infsof.​2015.​10.​001

	41.	 Krejčí J (2018) Pairwise Comparison matrices and their Fuzzy
extension. Springer

	42.	 Lethbridge TC, Sim SE, Singer J (2005) Studying software
engineers: data collection techniques for software field studies.
Empirical Softw Eng 10(3):311–341. https://​doi.​org/​10.​1007/​
s10664-​005-​1290-x

	43.	 Lewis C (1982) Using the ”thinking-aloud” method in cogni-
tive interface design. IBM TJ Watson Research Center Yorktown
Heights, NY

	44.	 Liaskos S, Hamidi S, Jalman R (2013) Qualitative vs. quantita-
tive contribution labels in goal models: Setting an experimental
agenda. In: Proceedings of the 6th international i* workshop (iStar
2013), iStar, pp 37–42

	45.	 Liaskos S, Jalman R, Aranda J (2012) On eliciting contribution
measures in goal models. In: Proceedings of the 20th IEEE inter-
national requirements engineering conference, pp 21–230. IEEE.
https://​doi.​org/​10.​1109/​RE.​2012.​63458​08

	46.	 Ossadnik W, Schinke S, Kaspar RH (2016) Group aggregation
techniques for analytic hierarchy process and analytic network
process: a comparative analysis. Group Dec Negot 25(2):421–457

	47.	 Paucar LHG, Bencomo N (2018) RE-STORM: mapping the deci-
sion-making problem and non-functional requirements trade-off
to partially observable markov decision processes. In: Proceed-
ings of the 13th international conference on software engineering
for adaptive and self-managing systems, SEAMS ’18, pp 19–25.
Association for Computing Machinery, New York, NY, USA .
https://​doi.​org/​10.​1145/​31941​33.​31955​37

	48.	 Paucar LHG, Bencomo N, Yuen KKF (2019) ARRoW: automatic
runtime reappraisal of weights for self-adaptation. In: Proceedings
of the 34th ACM/SIGAPP symposium on applied computing, pp
1584–1591

	49.	 Poladian V, Sousa JP, Garlan D, Shaw M (2004) Dynamic con-
figuration of resource-aware services. In: Proceedings of the 26th
international conference on software engineering, pp 604–613 .
https://​doi.​org/​10.​1109/​ICSE.​2004.​13174​82

	50.	 Proctor M (2011) Drools: a rule engine for complex event pro-
cessing. In: International symposium on applications of graph
transformations with industrial relevance, pp 2–2. Springer

	51.	 Robinson WN (1996) Automated assistance for conflict resolution
in multiple perspective systems analysis and operation. In: Joint
proceedings of the 2nd international software architecture work-
shop (ISAW-2) and international workshop on multiple perspec-
tives in software development (Viewpoints ’96) on SIGSOFT’96
workshops, pp 197–201

	52.	 Robinson WN, Fickas S (1994) Supporting multi-perspective
requirements engineering. In: Proceedings of IEEE international
conference on requirements engineering, pp 206–215. IEEE

	53.	 Rojas JM, Fraser G, Arcuri A (2015) Automated unit test genera-
tion during software development: A controlled experiment and
think-aloud observations. In: ACM international symposium on
software testing and analysis (ISSTA), 2015. ACM

	54.	 Saaty R (1987) The analytic hierarchy process–what it is and how
it is used. Math Modell 9(3):161–176

	55.	 Salehie M, Tahvildari L (2012) Towards a goal-driven approach to
action selection in self-adaptive software. Softw Pract Exp 42(2),
211–233

	56.	 Sawyer P, Bencomo N, et al (2010) Requirements-aware systems:
a research agenda for RE for self-adaptive systems. In: RE’10, pp
95–103

	57.	 Schoop M, Jertila A, List T (2003) Negoisst: a negotiation sup-
port system for electronic business-to-business negotiations in
e-commerce. Data Knowl Eng 47(3):371–401

	58.	 Serral E, Sernani P, Dalpiaz F (2018) Personalized adaptation in
pervasive systems via non-functional requirements. J Ambient
Intell Human Comput 9(6):1729–1743

	59.	 Serral E, Sernani P, Dragoni AF, Dalpiaz F (2017) Contextual
requirements prioritization and its application to smart homes. In:
Braun A, Wichert R, Maña A (eds) Ambient intelligence. Springer
International Publishing, Cham, pp 94–109

	60.	 Song H, Barrett S, Clarke A, Clarke S (2013) Self-adaptation
with end-user preferences: using run-time models and constraint
solving. In: MODELS’13

	61.	 Sousa JP, Balan RK, Poladian V, Garlan D, Satyanarayanan M
(2008) User guidance of resource-adaptive systems. In: ICSOFT
2008, pp 36–44

	62.	 Szymanski L, Sniezynski B, Indurkhya B (2018) A multi-agent
blackboard architecture for supporting legal decision-making.
Comput Sci 19(4)

	63.	 Thomas KW (1992) Conflict and conflict management: Reflec-
tions and update. J Org Behav pp 265–274

	64.	 Van Lamsweerde A, Darimont R, Letier E (1998) Managing con-
flicts in goal-driven requirements engineering. IEEE Trans Softw
Eng 24(11):908–926. https://​doi.​org/​10.​1109/​32.​730542

	65.	 Van Someren MW, Barnard YF, Sandberg JA (1994) The think
aloud method: a practical approach to modelling cognitive pro-
cesses, 1 edn. Academic Press

	66.	 Von Neumann J, Morgenstern O (1953) Theory of games and
economic behavior. Princeton University Press, Princeton

	67.	 Voola P, Babu AV (2013) Comparison of requirements prioritiza-
tion techniques employing different scales of measurement. ACM
SIGSOFT Softw Eng Notes 38(4):1–10. https://​doi.​org/​10.​1145/​
24922​48.​24922​78

	68.	 Vora P (2009) Web application design patterns. Morgan Kaufmann
	69.	 Wallace C, Cook C, Summet J, Burnett M (2002) Assertions

in end-user software engineering: a think-aloud study. In:

https://doi.org/10.1007/978-3-642-02161-9_6
https://doi.org/10.1007/978-3-642-02161-9_6
https://doi.org/10.1007/s00766-011-0143-y
https://doi.org/10.1145/1159733.1159782
https://doi.org/10.1145/1159733.1159782
https://doi.org/10.1016/j.infsof.2015.10.001
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1109/RE.2012.6345808
https://doi.org/10.1145/3194133.3195537
https://doi.org/10.1109/ICSE.2004.1317482
https://doi.org/10.1109/32.730542
https://doi.org/10.1145/2492248.2492278
https://doi.org/10.1145/2492248.2492278

22	 Requirements Engineering (2023) 28:3–22

1 3

Proceedings IEEE 2002 symposia on human centric computing
languages and environments, pp 63–65. IEEE

	70.	 Walsh WE, Tesauro G, Kephart JO, Das R (2004) Utility functions
in autonomic systems. In: Proceedings of the international confer-
ence on autonomic computing, May 2014, pp 70–77. https://​doi.​
org/​10.​1109/​ICAC.​2004.​13013​49

	71.	 Wohlrab R, Garlan D (2021) Defining utility functions for multi-
stakeholder self-adaptive systems. In: F. Dalpiaz, P. Spoletini
(eds.) Require Eng Found Softw Quality, pp 116–122. Springer

International Publishing, Cham. https://​doi.​org/​10.​1007/​
978-3-​030-​73128-1_8

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICAC.2004.1301349
https://doi.org/10.1109/ICAC.2004.1301349
https://doi.org/10.1007/978-3-030-73128-1_8
https://doi.org/10.1007/978-3-030-73128-1_8

	A negotiation support system for defining utility functions for multi-stakeholder self-adaptive systems
	Abstract
	1 Introduction
	2 Research method
	2.1 Threats to validity

	3 A method for defining utility functions
	4 A negotiation support system for utility function definition
	4.1 Blackboard system implementation
	4.2 Web application and user interface
	4.3 Consolidation agent
	4.4 Conflict detection and resolution
	4.4.1 Conflicting constraints
	4.4.2 Non-concordant preferences
	4.4.3 Inconsistent preferences

	5 Example
	6 Findings
	6.1 Understandability (RQ1)
	6.1.1 Preferences
	6.1.2 Constraints

	6.2 Satisfaction (RQ2)
	6.2.1 Negotiation
	6.2.2 Real-world applications and scalability
	6.2.3 Usability

	7 Related work
	8 Discussion and future work
	9 Summary and conclusions
	Acknowledgements
	References

