
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:53–81
https://doi.org/10.1007/s00766-021-00361-5

ORIGINAL ARTICLE

TracIMo: a traceability introduction methodology and its evaluation
in an Agile development team

Salome Maro1  · Jan‑Philipp Steghöfer2,5 · Paolo Bozzelli3 · Henry Muccini4

Received: 5 September 2019 / Accepted: 17 August 2021 / Published online: 29 August 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Software traceability, the ability to relate software development artifacts such as requirements, design models and code to
each other, is an important aspect in software development. It yields a number of benefits such as facilitating impact analysis
and tracking software changes. However, for companies to reap these benefits, a proper traceability strategy—a plan for
how traceability should be managed—needs to be defined and implemented. Existing literature lacks concrete guidelines for
practitioners to systematically define such a strategy. In this study, we address this gap by defining a Traceability Introduc-
tion Methodology (TracIMo), which is a methodology for systematically designing, implementing and evaluating software
traceability in practice. We used design science research to design TracIMo and evaluated it in a case study with an agile
development team of a company in the finance domain. Our results show that TracIMo is feasible as it allows incremental
definition and evaluation of a traceability strategy that is aligned with the company’s traceability goals and the existing
development process. We also report practical challenges encountered when designing a traceability strategy such as defin-
ing the right level of granularity and the need for defining intermediate development artifacts.

keywords  Traceability · Software traceability · Traceability management

1  Introduction

Traceability is defined as “the ability to interrelate any
uniquely identifiable software engineering artifacts to any
other, maintain required links over time, and use the result-
ing network to answer questions of both the software prod-
uct and its development process” [12]. Software engineer-
ing artifacts include artifacts such as requirements, design

models, implementation, and tests as well as process-related
artifacts such as tasks and tickets. Traceability is an impor-
tant aspect in software development, providing benefits such
as supporting change impact analysis [14, 30], program
comprehension [5] and compliance to standards [57].

Even with all the promised benefits, many companies
developing software lack systematic traceability strate-
gies [37]. Trace links are created and maintained in an ad
hoc manner and therefore benefits are not visible due to the
mismatch between the established strategy and the trace-
ability needs of the company [56]. A traceability strategy is
a plan of action for how traceability should be established
and maintained in an organization. The strategy defines how
traceability activities such as creation, maintenance and use
of traceability should be conducted. This includes defining
the purpose of traceability and how it should be managed
both in terms of tools and processes [23].

One of the reasons for ad hoc traceability is the lack of
concrete guidelines for practitioners on how to establish
traceability [11, 37, 43]. This can lead to effort invested in
creating and maintaining trace links which are ultimately
inconsistent, incomplete and never used [9]. While there
is literature reporting on case studies in which traceability

 *	 Salome Maro
	 maro.salome@udsm.ac.tz

	 Jan‑Philipp Steghöfer
	 jan-philipp.steghofer@gu.se

	 Paolo Bozzelli
	 paolo.bozzelli@gmail.com

	 Henry Muccini
	 henry.muccini@univaq.it

1	 University of Dar es Salaam, Dar es Salaam, Tanzania
2	 Chalmers | University of Gothenburg, Gothenburg, Sweden
3	 Knab, Amsterdam, The Netherlands
4	 University of L’Aquila, L’Aquila, Italy
5	 Chalmers, Gothenburg, Sweden

http://orcid.org/0000-0003-1560-6833
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00361-5&domain=pdf

54	 Requirements Engineering (2022) 27:53–81

1 3

is established (see, e.g., [3, 49]), these studies do not give
concrete guidelines that are still generic enough, so they
can be easily transferred to other cases. Other studies, e.g.,
Dömges et al. [15], give abstract descriptions on how to
establish and maintain project-specific traceability that are
not directly actionable in practice. Moreover, Cleland-Huang
et al. explicitly point to the lack of guidance for practition-
ers when establishing traceability in their paper discussing
future research directions for traceability [11]. An attempt
toward addressing a related, but different problem is the
study by Rempel et al. [56], which provides a framework
for assessing an existing traceability strategy in companies,
in particular the alignment of the strategy with the trace-
ability needs at the company. This work however, does not
give concrete guidelines to follow when traceability is not
yet established.

The aim of our contribution is therefore to extend the
state of the art by defining a methodology for systemati-
cally designing and deploying company-specific traceability
strategies. We used design science to design and evaluate
our methodology, called TracIMo, short for Traceability
Introduction Methodology, in collaboration with an agile
development team in the finance domain.

With this study, we pursue the following research goal:

RG:	 Provide support for establishing a traceability strat-
egy that allows the organization to achieve its goals and
measure the impact of the traceability strategy.

The contribution of this paper is threefold: first, we present
TracIMo, a structured methodology for designing a trace-
ability strategy and introducing traceability in software
development organizations; second, we describe in detail
how we used TracIMo to design a traceability strategy in a
concrete organization; and third, we discuss challenges and

important decisions that need to be made when designing a
traceability strategy in order to maximize its benefits. Our
aim is to give both researchers and practitioners practical
insights into how to establish traceability.

The rest of the paper is structured as follows: In Sect. 2
we discuss previous studies related to our work and compare
them to TracIMo. Section 3 describes our research meth-
odology. In Sect. 4, we describe Traceability Introduction
Methodology (TracIMo), while Sect. 5 describes how we
applied and evaluated TracIMo at a company. Section 6
provides a discussion with respect to the research goal.
Section 7 describes the threats to validity of our study, and
Sect. 8 concludes the paper and outlines future work.

2 � Related work

A vast amount of traceability research covering various
topics is available. We performed two distinct steps when
looking for existing approaches to establish traceability in
an organization. First, we started with related work on trace-
ability strategies that we were familiar with and performed
an opportunistic literature search using a variety of search
strings in Google Scholar, IEEE Xplore, Scopus, and the
ACM Digital Library to identify further studies. Second, to
ensure that we did not miss any important papers, we per-
formed a lightweight systematic mapping study by search-
ing the eleven top software engineering publication venues
where traceability research is usually published (see Table 1)
using SCOPUS. To be as broad as possible, we searched for
papers that specifically mentioned the term “traceability”
in the title. For conferences, we used conference names or
abbreviations, and for journals we used the ISSN number as
shown with the specific search strings in Table 1.

Table 1   Publication venues and the number of papers on software traceability

Venue Search string No. of papers

Requirements Engineering Conference (RE) TITLE(“Traceability”) AND
CONFNAME(“Requirements Engineering”).

77

Requirements Engineering Foundations for Software Quality Confer-
ence (REFSQ)

TITLE(“Traceability”) AND CONFNAME(“REFSQ”) 15

International Conference of Software Engineering Conference (ICSE) TITLE(“Traceability”) AND CONFNAME(“ICSE”) 36
Automated Software Engineering (ASE) TITLE(“Traceability”) AND CONFNAME(“ASE”) 27
Foundations of Software Engineering Conference (FSE) TITLE(“Traceability”) AND CONFNAME(“FSE”) 9
Transactions of Software Engineering Journal (TSE) TITLE(“Traceability”) AND ISSN (0098-5589) 9
Journal of Software and Systems (JSS) TITLE(“Traceability”) AND ISSN (0164-1212) 17
Information Software Technology Journal (IST) TITLE(“Traceability”) AND ISSN (0950-5849) 15
Requirements Engineering Journal (REEN) TITLE(“Traceability”) AND ISSN (0947-3602) 4
ACM Transactions of Software Engineering and Methodology

(TOSEM)
TITLE(“Traceability”) AND ISSN (1049-331X) 2

Empirical Software Engineering Journal (EMSE) TITLE(“Traceability”) AND ISSN (1382-3256) 9

55Requirements Engineering (2022) 27:53–81	

1 3

The search was performed in mid-2020, and we did not
restrict the publication time of the papers. We also allowed
for inclusion of workshop papers in order to get a full
understanding of the research conducted in the traceability
area. An overview of the papers we found is included in
our online supplementary materials [2]. We screened the
identified papers by reading the title and abstract specifically
looking for papers suggesting frameworks or methodolo-
gies for introducing traceability. We also screened for papers
reporting industrial case studies of introducing traceability.
We did not find a paper that provided a readily applicable
framework or methodology. Our mini-review also allowed
us to identify the main topics of research w.r.t. traceability
published in these venues.

Overall the main topics of traceability are research on
specific tools and technologies for managing traceability
(e.g., [39, 69]), automation of trace link creation using infor-
mation retrieval and machine learning approaches (e.g. [10,
25, 44]), traceability between specific artifact types, e.g.,
business models to architecture [17] or requirements to
code [19], as well as research that leverages model-based
development techniques for traceability, e.g., [9, 63]. A large
amount of this research is evaluated using example systems
from universities (e.g., [69]) or using example systems taken
from industry which are not publicly available (e.g., [25]).
There are only few studies where approaches are evaluated
on running industrial projects (e.g., [59]).

Specifically, there is little research describing how to
define traceability strategies. In practice, practitioners strug-
gle with defining traceability strategies suitable to their spe-
cific company needs [11]. In this area, most of the research
is focused on designing traceability strategies to support
development of safety-critical products since traceability is
mandated by safety standards. For instance, Nair et al. [46]
provide an overview of traceability for safety evidence cer-
tification. They discuss what the goals for traceability of
safety evidence are (e.g., safety assurance and change impact
analysis) and propose a traceability information model
(TIM) which describes the artifacts and trace link types
needed for safety evidence traceability. Rempel et al. [57]
provide an approach to parse safety standards in order to
identify which trace link types are needed in order to fulfill
that standard and check the suggested trace link types against
the trace links maintained in the company to determine if
they are compliant.

In addition to the mini mapping study, previous system-
atic literature reviews such as [7, 45] and [65] on traceabil-
ity as well as overview papers on traceability research such
as [11] also support our observations. For instance, [43, 45]
and [54] all report that practitioners lack knowledge and
guidance on traceability management and further empirical
studies that yield guidelines for practitioners are needed.

We discuss the few studies that exist on the overall design
of traceability strategies below in Sect. 2.1 and compare
them with the needs we are addressing in this paper. Addi-
tionally, industrial case studies which report on the introduc-
tion of traceability are relevant for our research since they
provide lessons learned and experiences from industry on
how to plan for and introduce traceability. These case studies
are discussed in Sect. 2.3.

2.1 � Frameworks for designing traceability
strategies

The study by Rempel et al. [56] discusses the suitability of
explicit traceability strategies for different companies and
different projects. The authors study existing traceability
strategies and development processes in 17 companies and
show that there is a mismatch between existing strategies,
the development processes, and the project-specific trace-
ability goals. These findings emphasize the need to system-
atically define a traceability strategy based on the current
development process and traceability needs before imple-
mentation. The authors therefore propose a framework to
investigate the suitability of already existing traceability
strategies. TracIMo uses the steps provided in this frame-
work to understand an organization’s goals and existing pro-
cess. TracIMo then extends the framework with steps that
make it possible to design, deploy and evaluate traceability
strategies.

Similarly, the book by Gotel et al. [23] contains a chap-
ter that describes a traceability process model. This model
consists of three main activities: planning and managing the
traceability strategy; creating and maintaining trace links;
and finally using them. The activity for planning and man-
aging of traceability strategy ensures that the traceability
strategy is designed according to the needs of the specific
project or organization. TracIMo assumes similar concepts
and there is some overlap with the steps in TracIMo. How-
ever, TracIMo’s activities are more detailed and concrete
and include specific steps, roles, and work products that are
involved in defining a traceability strategy.

Closely related to our study is research on tailoring trace-
ability to specific domains. Dömges and Pohl [15] define a
framework for designing project-specific traceability strate-
gies. Their work investigates existing tools and gives guide-
lines on how to design a traceability management tool that
supports definition of project-specific traceability strategies.
Their framework is similar to ours as it stresses the need to
investigate which traceability strategy is suitable for which
project. However, the framework is tool-oriented, defined on
an abstract level (without concrete steps of how each activity
should be conducted), and does not discuss how to measure
and evaluate the designed strategy.

56	 Requirements Engineering (2022) 27:53–81

1 3

Espinoza and Garbajosa [18] propose a traceability
metamodel for the definition of traceability strategies. The
authors report that in order to design traceability strategies
that are not specific to a development process, it is important
that traceability tools support the definition of custom trace
links (e.g., satisfied_by), user roles (e.g., tester), and
linkage rules (e.g., when a requirement and a test should be
linked with a tested_by trace link). The proposed trace-
ability information model (TIM), i.e., a model describing
artifact types and permissible trace link types in a develop-
ment environment, can be used to define company-specific
traceability strategies. However, their work is geared towards
defining the traceability information model, but not the pro-
cess. It does not provide details on aspects such as metrics
to evaluate the process and tool selection.

Additionally, Mäder and Gotel [36] describe steps for
defining project-specific traceability which consists of the
first three steps in TracIMo but do not go as far as tool selec-
tion and evaluation of the traceability strategy designed.

2.2 � A comparison of TracIMo with existing works

From our review of the related work and the discussions
between the researchers and collaborators from the company
where the case study was conducted, we defined six criteria
that we used to compare TracIMo to the existing frameworks
or methodologies presented above:

1.	 Allows designing a traceability strategy. For this, we
check if the methodology facilitates designing a trace-
ability strategy either by providing the steps which need
to be carried out or proposing how the traceability infor-
mation model should be created. This criterion is there-
fore divided into two sub-criteria: provides guidance on
the definition of the traceability process; and provides
guidance on the definition of a traceability information
model.

2.	 Allows the assessment of the existing traceability strat-
egy. In this criterion, we check if the proposed method-
ology includes steps for analyzing the existing traceabil-
ity strategy for improvement and alignment purposes.
This is inspired by Rempel et al. [56] and work in soft-
ware process improvement which emphasizes the need
for assessing process changes (see, e.g., [16]).

3.	 Provides guidance on measurement design. For this cri-
terion, we analyze if the framework gives any guidance
on how to define concrete and customized quantitative
and qualitative measurements for the existing traceabil-
ity strategy. Again, this is inspired by work in the soft-
ware process improvement area, e.g., [16, 62].

4.	 Provides guidance for tool selection. We added this
criterion that assesses if the methodology provides any
information on how to select suitable traceability tools
based on the reported difficulty to select and customize
traceability tools in industrial practice (see, e.g., [33,
41]).

5.	 Provides guidance on deployment of traceability, where
we check if the methodology provides information and
guidance on how to roll out the defined traceability
strategy. This is motivated by the reported difficulties in
deploying process improvement initiatives and ensure
long-term adoption, e.g., in [47].

6.	 Describes concrete steps in each activity involved in
designing, deployment and evaluation of traceability
strategies. We added this as an extra characteristic to
check the level of detail provided by the methodol-
ogy since this is useful if practitioners want to apply
the methodology in question. We therefore assess if the
methodology provides detailed and concrete description
of how the steps and guidance provided need to be car-
ried out.

As depicted in Table 2, TracIMo takes inspiration from the
existing proposed methodologies and addresses the gaps
that these methodologies do not cover. A missing aspect in
many of them is the definition of metrics to understand if the

Table 2   An analysis of how TracIMo compares to existing frameworks for defining traceability strategies

The ✓mark indicates that the methodology fulfills the respective characteristic while the ✗mark indicates the opposite

Characteristics Rempel
et al. [56]

Gotel et al. [23] Dömges and
Pohl [15]

Espinoza and
Garbajosa [18]

Mäder
et al. [36]

TracIMo

Provides process guidance ✗ ✓ ✓ ✓ ✓ ✓
Provides guidance on TIMs ✓ ✓ ✓ ✓ ✓ ✓
Allows assessment of existing traceability strategies ✓ ✓ ✓ ✗ ✗ ✓
Provides guidance on measurement design ✗ ✓ ✗ ✗ ✗ ✓
Provides guidance on tool selection ✗ ✗ ✗ ✗ ✗ ✓
Provides guidance on process deployment ✗ ✗ ✓ ✓ ✗ ✓
Describes concrete steps in each activity ✓ ✗ ✗ ✓ ✓ ✓

57Requirements Engineering (2022) 27:53–81	

1 3

defined strategy works. While some methodologies briefly
mention that the strategy needs to be continuously assessed
and improved, there is no guidance on how to go about this.
TracIMo covers this gap by proposing the use of GQM as
well as recommending steps for when to collect the metrics.
The application of TracIMo at the case company also shows
examples of metrics in practice. Additionally, the level of
detail in the existing methodologies is quite low. This leaves
practitioners with questions on how to concretely perform
the different steps required to define a traceability strategy.
TracIMo covers this gap by proposing concrete activities and
examples in each of the required steps.

2.3 � Case studies on introducing traceability

Arkley and Riddle [3] describe tailoring traceability to meet
the business needs of a company. Based on an investigation
of why the company needed traceability, they derived a suc-
cessful traceability strategy. This work, like ours, stresses
the importance of understanding why specific projects or
companies require traceability before introducing any trace-
ability strategy. However, the tailoring approach is not sys-
tematized and therefore the steps are not easily transferable.

Asuncion et al. [4] conducted a case study on design-
ing and implementing an end-to-end traceability manage-
ment tool. From the lessons learned in the case study, they
provide guidelines on how to establish traceability. While
the guidelines are useful, they are more tool-oriented than
process-oriented. Similarly, Kirova et al. [32] report their
experiences of implementing an automated traceability envi-
ronment for a mobile phone company. The study provides
guidelines that practitioners should consider when introduc-
ing traceability. While some of these guidelines overlap with
the steps proposed in our methodology, we give concrete
details on how to instantiate these steps.

Panis [49], describes a successful implementation of
traceability at Teradyne. The author describes the trace
link types maintained as well as traceability benefits such
as identifying unimplemented requirements, identifying
the rationale of requirements during implementation and so
on. The study gives recommendations for success such as

making sure traceability is available in everyday tasks of
developers and not a separate report.

Stål et al. [59] report on a successful industry-developed
traceability solution to support continuous integration and
delivery at Ericsson. In this study, the authors report how the
solution maps to the needs of the company by first eliciting
these needs through interviews with practitioners. This study
shows how to align the needs of the company to the solution
as well as how to evaluate the traceability solution.

Amalfitano et al. [1] report their experiences on using
tool integration to support traceability specifically for the
testing process. In this study, the authors show three steps in
which they used to design the tool integration solution which
involves analyzing the existing development processes and
tools before designing the tool integration solution.

In summary, there are very few studies on the introduction
of traceability. This leaves practitioners with a knowledge
gap on how to establish traceability in software develop-
ment projects. Our study aims to address this gap by provid-
ing TracIMo, a methodology to introduce traceability with
concrete, actionable steps and activities. We also report on
practical insights into how it was used to establish trace-
ability in a company.

3 � Research method

In this study, we used design science [66] as our research
method. Design science allows the researcher to systemati-
cally investigate a problem, create artifacts to solve the prob-
lem, and evaluate how the artifacts solve the problem in a
certain context [66]. The aim of design science is to solve a
real-world problem through designing innovative artifacts.
We used design science because the problem we study (how
to systematically introduce traceability) is a practical prob-
lem and the goal of our research was to design and evaluate
an artifact (a methodology for how to systematically intro-
duce traceability). We followed the design science activities
described by Peffers et al. [50]: (1) problem identification
and motivation; (2) definition of the objectives for a solu-
tion; (3) design and development; and (4) evaluation. These
activities are described in the next subsections. Figure 1

Fig. 1   The design science
process we followed for this
contribution. Adapted from [50]

58	 Requirements Engineering (2022) 27:53–81

1 3

shows the design science research methodology process of
our study.

3.1 � Problem identification and motivation

This first step in design science is to understand the problem.
In our case, the business analyst (BA) of a company reached
out to us with a traceability problem. This was followed by
emails and phone conversations where two researchers col-
lected data to understand what the problem was. The BA
explained that at that point in time, the organization’s devel-
opment process lacked traceability and, as a result, manual
impact analysis was time consuming and error prone. If
a change was required, all artifacts related to the change
needed to be manually identified. Additionally, in many
cases development artifacts were out of sync because the
change set identified during a change was incomplete. The
company therefore wanted to introduce traceability to deal
with this problem but did not have the necessary expertize
for such an endeavour. From a research perspective, this was
a valid problem that is not only relevant for this particular
company but also for many others as reported e.g., in Mäder
et al. [38] and Maro et al. [43]. Design and introduction of a
traceability strategy is a challenging task for organizations
because there are no systematic guidelines for practitioners
on how to introduce traceability [21] (see also Sect. 2). As
such, practitioners can end up managing traceability in an
ad hoc manner that where created trace links are not used
as they do not support the activities in the development life
cycle.

Our review of existing literature also showed that no
methodology for the introduction of traceability existed to
solve the issue. We thus formulated our problem and thus
our problem as follows:

RP:	There is a lack of systematic guidelines to define and
introduce a traceability strategy.

3.2 � Definition of the objectives for a solution

From previous work on software traceability (e.g., [15, 37,
41, 43, 55, 68] as discussed in Sect. 2), we know that ad hoc
definition of a traceability strategy is bound to fail since it
leads to wasted effort in creating and maintaining trace links
which are not used or underused. A traceability strategy
needs to be systematically designed in order to reap benefits.
Currently, practitioners struggle with defining tailored trace-
ability strategies due to the many aspects involved in making
the strategy a success, e.g., making sure the strategy captures
stakeholders’ needs, is aligned with the development pro-
cess and supported with proper tools [23]. Our objective or
research goal is therefore:

RG:	 Provide support for establishing a traceability strat-
egy that allows the organization to achieve its goals and
measure the impact of the traceability strategy.

We achieve this by defining TracIMo, a methodology for sys-
tematically designing and introducing traceability strategies.

3.3 � Design and development

In this step, we developed TracIMo itself. We (the research-
ers together with the BA at the company) used the existing
studies described in Section 2 as a foundation to derive a
more fine-grained and concrete methodology to introduce
traceability at the company. The aim was to make sure
that the method captures all tasks necessary to not only
design but also introduce and evaluate traceability in an
industrial setting. We used the assessment framework by
Rempel et al. [57] as a starting point and analyzed which
steps would be needed to allow the design, deployment and
measurement of a traceability strategy in a systematic man-
ner. This led to addition and modification of some steps of
the Rempel framework. For instance, the assessment steps
were extended to also include the definition of metrics that
would allow tracking the success of the designed traceability
strategy in a project team or an organization over a longer
period of time. Importantly, we added steps for adapting
tools, deploying the strategy, and measuring its effects in
the organization.

The design of the methodology was done in an itera-
tive manner through brainstorming sessions between the
researchers and between the researchers and the BA at the
company. The researchers created the first version of the
methodology, discussed and improved it in several brain-
storming sessions and once a stable version evolved, it was
shared with the BA of the company to gauge its feasibility
and facilitate further improvements. This was done over a
period of two months. The resulting methodology was then
evaluated by designing, introducing, and assessing a trace-
ability strategy at the company.

3.4 � Evaluation

In this step, we evaluate the applicability of the designed
artifact (TracIMo). This was done through a case study
described in Sect. 5, where TracIMo was used to design,
deploy and evaluate a traceability strategy for the devel-
opment team in the company we collaborated with. This
evaluation acts as proof of concept on how TracIMo can be
applied in practice as well as shows areas for improvement
of TracIMo. Case studies are a valid and often used tool to
evaluate the artifact developed in design science research
[50, 51, 64].

59Requirements Engineering (2022) 27:53–81	

1 3

3.4.1 � The case and context

The case is an agile development team of a company in the
finance domain which wishes to introduce traceability. We
worked with the IT department development team (unit of
analysis) which consists of roles such as business analyst,
lead developer, and other roles as necessary. The researchers
applied the different steps of TracIMo to define the strategy
and refined them in several iterations. Further details of the
company are described in Section .

3.4.2 � Data collection

The researchers used TracIMo to define and deploy a trace-
ability strategy for the company. This was done by perform-
ing each step as prescribed in TracIMo in several iterations
and in close contact with the company as described in detail
in Sects. 5.1– 5.6. The designed traceability strategy was
deployed at the company. Data were collected for evaluation
of the strategy in three iterations (see Sect. 5.7). The first
iteration was conducted in the same week as the traceability
strategy was deployed. We conducted one semi-structured
interview with the product owner (PO) to get his opinion and
feedback on how to improve the strategy. We interviewed the
PO because he was not involved in the initial design of the
strategy to get his opinion on how the strategy works and fits
in their development activities. The interview was recorded
and transcribed for analysis. We also conducted one focus
group meeting with the BA, lead developer and two front-
end developers. During the focus group, the researchers
took notes which were later used in the analysis. The second
iteration was conducted after two weeks. This made sure
that the interviewed stakeholders had time to work with the
traceability strategy. We conducted one interview with the
BA via Skype to understand how the traceability strategy
works out for them. The third iteration was conducted after
five months; we interviewed the BA and one developer for
more feedback on how the strategy worked. All interviews
were recorded and transcribed. We also collected data from
the bug tracking system used by the company. For instance,
we collected the number of closed tickets per sprint and
the number of tickets planned per sprint to understand how
accurate the development team was at effort estimation since
the measurement plan required this data.

3.4.3 � Data analysis

Thematic coding was used to analyze the transcribed data.
The two researchers first coded one interview separately
and later held a coding workshop to discuss the codes they
came up with and harmonize them. The codes were inspired
by TracIMo and our research question. For example, we
had a code specifically for the traceability process and for

challenges. The harmonized codes were then used for the
rest of the interview transcripts. In total, we coded four inter-
views. We also coded the notes that were taken in the focus
group meeting using the same codes. The data collected
from the bug tracking system were analyzed according to
the metrics defined using TracIMo.

4 � TracIMo: a methodology to introduce
traceability

In this section, we describe TracIMo, the Traceability Intro-
duction Methodology, which can be used to establish trace-
ability strategies in companies. The methodology, depicted
in Fig. 2, consists of ten steps which are split into two
phases. Since TracIMo reuses and extends parts of Rem-
pel et al.’s traceability assessment methodology [56], Fig. 2
indicates whether each step was reused as is, modified, or
added. One step was reused, four steps were enhanced, and
five steps are added. We also describe the purpose, the inputs
and outputs, as well as the activities for each step.

4.1 � Phase 1: Define traceability strategy

The aim of TracIMo’s first phase is to understand the issues
and the goals of the company and prepare a suggestion for a
suitable traceability strategy.

4.1.1 � Steps 1 and 2—Analyze development process
and traceability goals

The purpose of Step 1 is to understand the development
process of the company while the purpose of Step 2 is to
identify traceability goals. Since these steps use the same
data, they are presented together.

Activities The main activities in these steps are:

1.	 Collect data on the development process and traceability
goals These data can be collected through interview-
ing members of the development team, observing the
development team or studying process documentation
that describes the development process and traceability
needs, or a combination of these data collection tech-
niques. This should be done in close collaboration with
the company and include different roles, e.g., developers
and analysts in order to get the full picture of the devel-
opment process and traceability needs. For interviews,
we propose an interview guide that we have created and
made available as part one of the supplemental mate-
rial [2]. While observations and document analysis are
good ways to determine the status quo within the organi-
zation, interviews are the main source of information
about practiced process and traceability goals.

60	 Requirements Engineering (2022) 27:53–81

1 3

2.	 Analysis of the data to derive process goals and trace-
ability goals This is achieved by going through the data
collected either through interviews, documentation or
observations. Thematic coding can be used to analyze
the transcribed interviews, observation notes, or pro-
cess documentation. The coded data can then be used
to derive a conceptual model of the process which can
be modelled using a language like SPEM1 or Essence2
or a non-formal format that shows the flow of informa-
tion between activities. This information is later used in
Step 6 to derive the traceability process and ensure that
the traceability process is aligned with the development
process.

	  Coded data from the interviews can be used to derive
process and traceability goals. Process goals state what
the organization wants to achieve with the different
activities in their development process. For instance, in
the requirements engineering activity, one of the process
goals could be to effectively identify which requirements
have already been validated from the requirements engi-
neer’s perspective. This information is later important
to identify conflicts with the traceability goals and also
identify traceability goals that do not support any pro-
cess goal. The traceability goals in turn describe what
the organization would like to achieve with the intro-
duction of traceability. Both types of goals should also
include a rationale that describes the goal further and
clearly states why it is important for the organization.

	  As an addition to the Rempel et al. framework,
TracIMo uses the Goal/Question/Metric (GQM)
approach [62] to achieve a standardized format for the
goals. They follow the format purpose, issue, object,
viewpoint. Purpose is a verb such as “increase,”
“decrease,” or “limit,” the issue describes the problem
being addressed such as “correctness” or “speed,” the
object defines what the goal pertains to such as “effort
estimations” or “test coverage,” and the viewpoint is one
of the roles such as “developer,” “product owner,” or
“customer.” An example of a goal defined using GQM
could be “increase the correctness of identifying change
sets for a given requirement, from the developer’s point
of view.”

3.	 Derive metrics for traceability goals The GQM approach
is also used to define questions and metrics that allow
understanding if a goal has been achieved and measuring
the success of the derived strategy. For each traceability
goal, questions are defined whose answers help under-
stand if the goal has been achieved. For each question,
metrics are defined that provide quantitative and qualita-

tive evidence to answer the questions. For instance, the
example traceability goal “increase the correctness of
identifying change sets for a given requirement, from the
developer’s point of view” could be associated with the
metric “fraction of the number of artifacts in the change
set identified during change impact analysis using trace
links and the actual number of artifacts changed.” If this
metric is close to one, then the trace links fulfill the goal
of identifying a correct change set. Additionally, a meas-
urement plan is required for each metric that defines
how and when to collect the information. For instance,
a measurement plan can state that measurements are
taken at the end of each sprint, some after two sprints
and some at the end of the project. The measurement
plan should also include details how the data for the
metrics will be collected, who will be responsible for
taking these measurements and how the measurements
will be communicated.

4.	 Create exemplary traceability scenarios Another addi-
tion to Rempel et al. is that TracIMo recommends the
definition of scenarios. These scenarios are concrete
examples for how trace links are going to be used. Sce-
narios are a helpful tool in the evaluation of the goals
and the traceability information model. We recommend
to define a small set of typical exemplary artifacts as
they would be created during development and describe
how these artifacts should be related to each other and
to which purpose. Each traceability goal can be associ-
ated with one or several scenarios. A good starting point
for definition of traceability usage scenarios is the work
by Bouillon et al. [8], who conducted a survey with 56
traceability practitioners and identified a list of 29 trace-
ability usage scenarios relevant for practitioners.

Output The outputs of step 1 and 2 are:

1.	 a conceptual model of the process, including roles,
activities, artefacts, and tools that are used in the devel-
opment process;

2.	 the process goals along with their rationales;
3.	 the traceability goals along with their rationales;
4.	 traceability metrics and a measurement plan; and
5.	 exemplary traceability scenarios.

4.1.2 � Step 3—Derive traceability information model

The purpose of this step is to define a company-specific
Traceability Information Model (TIM) that adheres to the
traceability needs of the company. A TIM captures the
semantics of the trace links and provides the structure of
the links. It defines which artifact types can be linked to
each other and which cardinalities and directions the links
have. Depending on the traceability goals, a link can also

1  https://​www.​omg.​org/​spec/​SPEM/​About-​SPEM/.
2  https://​www.​omg.​org/​spec/​Essen​ce/​About-​Essen​ce/.

https://www.omg.org/spec/SPEM/About-SPEM/
https://www.omg.org/spec/Essence/About-Essence/

61Requirements Engineering (2022) 27:53–81	

1 3

carry additional meta-data, such as when it was created or
who created it.

Input The inputs to this step are:

1.	 the process model from Step 1;
2.	 the traceability goals from Step 2; and
3.	 the traceability scenarios from Step 2.

Activities To derive the TIM, the following activities should
be conducted:

1.	 Identify trace link types and traceable artifacts from the
traceability goals and the process model The traceabil-
ity goals inform which link types are needed as well
as the semantics they have to carry, while the process
model informs which traceable artifacts are available in
the development process. For instance, system require-
ments and software requirements are produced in the
requirements elicitation process and a relevant trace-
ability goal could be to understand how system require-
ments are broken down into software requirements from
the point of view of the business analyst. Based on this
traceability goal and the associated traceability scenar-
ios, we derive a trace link type that connects system
requirements to the software requirements it generates.
The use of traceability scenarios constitutes an extension
in comparison with Rempel et al. [56]. Additionally, if
one system requirement can have many associated soft-
ware requirements, but one software requirement only
has one parent system requirement, the link cardinality
can be defined as one to many (1..*), for this link type.
When identifying traceable artifacts, it is important to
check that these artifacts can be uniquely identified in
the development process, as this is a pre-requisite for
traceability implementation. In case artifacts cannot be
uniquely identified, unique naming schemes should be
introduced. To derive the complete TIM, all traceability
goals should be analyzed in this way.

2.	 Represent the link types in a model After all the link
types have been identified, they should be represented
in a model for easy presentation. A common way to rep-
resent a TIM is to use UML class diagrams or a simi-
lar formalism. Textual representation is also possible,
but for easy visibility during discussions on the TIM,
TracIMo recommends a graphical representation. Fig-
ure 3 shows an example of a TIM with one link type
called “generates” that connects system require-
ments to software requirements. The example also shows
that one system requirement can generate many software
requirements.

3.	 Identify duplicate trace paths Once the TIM is devel-
oped, it should be checked for different trace paths that
link the same elements and have the same semantics.

The traceability scenarios can again support this task
since it is possible to apply the created TIM to the
selected artifacts and see how they would be connected.
Duplicates should be removed from the TIM as they will
add to the effort of creating and maintaining links but do
not yield benefits.

Output The output of step 3 is:

•	 the traceability information model (TIM).

4.1.3 � Step 4: Assess process goals against traceability goals

The purpose of Step 4 is to assure that process goals and
traceability goals are compatible and achievable. In particu-
lar, it is necessary to evaluate if all process goals that require
traceability are covered by at least one traceability goal.

Input The required inputs are:

1.	 the process goals from Step 1;
2.	 the traceability goals from Step 2;

Activities To assess the traceability goals w.r.t. the process
goals, the following activities should be performed:

1.	 Identify process goals that require traceability Each pro-
cess goal has to be evaluated to understand how trace-
ability can support it. This is supported by the rationales
of the process goals. For instance, a process goal that
is related to translating requirements into a high-level
system model has a relation to traceability since the ele-
ments in the system model should be traceable to the
requirements they address. This step will yield a list of
process goals that have to be aligned with traceability
goals.

2.	 Match traceability goals to specific process goals The
list of relevant process goals is then matched to the trace-
ability goals to ensure that there is alignment between
what the organization aims to achieve with the devel-
opment process and what it expects from a traceability
strategy. This is done by going through all the process
goals that require traceability identified previously, and
checking if each of these goals has at least one corre-
sponding traceability goal that supports the process goal.
This step can lead to a refinement of the goals or even to
revisiting the goals internally to determine which are of
highest priority in case some goals cannot be fulfilled.

Output The outputs of this step are:

1.	 an assessment report of the process goals against the
traceability goals, represented as a table relating the pro-
cess goals and the corresponding traceability goals;

62	 Requirements Engineering (2022) 27:53–81

1 3

2.	 a list of refined process and/or traceability goals
(optional).

4.1.4 � Step 5: Assess traceability goals against TIM

The purpose of Step 5 is to assure that the TIM’s structure
supports the traceability goals. In particular, it is necessary
to evaluate if the TIM supports the storage and analysis of
all necessary information to achieve them.

Input The required inputs are:

1.	 the traceability goals from Step 2;
2.	 the traceability scenarios from Step 2; and
3.	 the TIM from Step 3.

Activities To assess the TIM w.r.t. the traceability goals, the
following steps should be taken:

1.	 Identify trace link types associated with each traceability
goal Traceability goals often imply that certain artifacts
should be traceable to each other. A traceability goal
about being able to identify missing test cases, e.g.,
implies that test cases are connected to requirements, to
design models, or to source code. Such information can
also be derived from the rationales of the goals.

2.	 Check that all required link types are represented in the
TIM In this step, it is not only important to check that the
TIM contains all required links, but also that the TIM
has no links that are not connected to any traceability
goals. In addition to Rempel et al., example trace links
for specific traceability scenarios from Step 2 should
be created to determine if the TIM’s expressiveness is
sufficient. In case of misalignment, the goals and the
TIM are revisited iteratively until alignment is achieved.
This provides an early evaluation of the suitability of the
TIM.

Note that these assessment steps are iterative and can lead
to changes in the traceability goals, the TIM as well as the
process goals.

Output The outputs of this step are:

1.	 an assessment report of the traceability goals against
the TIM, represented as a table relating the traceability
goals to a description of how the TIM supports them;
and

2.	 a list of exemplary trace links created for specific trace-
ability scenarios.

4.1.5 � Step 6: Derive traceability process

The purpose of this step is to define an explicit traceability
process. The traceability process defines the traceability

activities (e.g., creation, maintenance and usage of trace
links), as well as the roles responsible for each of the
activities. It also defines a workflow of how and where in
the development process, trace links will be created and
maintained as artifacts evolve. If any automation will be
used to create links or enforce the traceability workflow,
this also needs to be defined in the traceability process.
Finally, the traceability process describes how and when
to use established trace links.

Input The inputs to this step are:

1.	 the process model from Step 1;
2.	 the traceability goals and associated metrics from Step 2;
3.	 the traceability scenarios from Step 2;
4.	 the TIM from Step 3.

Activities To derive the traceability process the following
activities are conducted:

1.	 Identify when trace links will be created The current pro-
cess model is used as a foundation to define the process
stages in which links will be created. In order to under-
stand when this should happen, the traceability goals,
their associated traceability scenarios, and the TIM can
be used. For instance, a scenario could show that links
between requirements and test cases should be created
during requirements analysis. The concrete link type is
defined by the TIM. Existing activities in the process
model can be extended or new activities can be created.

2.	 Identify which roles will create trace links The roles
responsible for creating certain link types are partially
prescribed by the activity in the process model. If a link
is created during requirements analysis, e.g., the roles
involved in this activity are candidates to take on the
responsibility for the creation of the link. However, the
analysis based on the traceability scenarios and trace-
ability goals may show that additional roles need to be
involved. The viewpoint that is part of the traceability
goal can be a helpful pointer here.

3.	 Identify when trace links will be updated or deleted In
order to avoid that the trace model becomes stale, trace
links need to be updated or even deleted. This can, again,
happen during existing activities in the process or during
newly defined activities, if necessary. It is possible that
several activities are extended to update or delete links.

4.	 Identify which roles will update or delete the trace links
Likewise, who is responsible for the update or deletion
of trace links needs to be defined in the process model.

5.	 Identify when and how trace links will be used Using
the traceability goals and the traceability scenarios, the
activities in which the traceability information is used
are defined. At this stage, it is also important to describe

63Requirements Engineering (2022) 27:53–81	

1 3

how and when the links are used (e.g., to find dependen-
cies or identify missing tests).

6.	 Identify which roles will use the trace links Finally,
which roles are going to use the trace links is defined.
The viewpoint in the traceability goal can give insight
into this. It is important to note that the respective roles
need access to the trace model and the artifacts the trace
links connect in order to use them effectively.

7.	 Integrate measurement plans The definition of the trace-
ability goals also included metrics and associated meas-
urement plans. Collecting the data needed and recording
the measurements should be included as explicit activi-
ties in the traceability process along with responsible
roles and a defined way to access the information.

The outcome of each activity should be captured in a trace-
ability process model. Among other things, it contains the
link types to be created, how they will be created, who will
create them and how the links will be updated. The pro-
cess can be documented in different ways based on the level
of formality required. If a formal description is necessary,
e.g., to integrate it into an existing formal process descrip-
tion, modelling languages such as SPEM or Essence can
be used. On the more informal end of the spectrum, wiki
entries or even just informal communication within the team
can be used. However, TracIMo recommends to document
the traceability processes in written form in order to be able
to revisit and evolve it. The aforementioned modelling lan-
guages also provide hints on what should be documented.
Activities, e.g., should include a purpose, input and output,
the role responsible, and the concrete steps to be taken.

Output The output of this step is:

•	 a traceability process model.

4.2 � Phase 2: Refine, deploy, and evaluate strategy

The aim of the second phase of TracIMois to deploy the
traceability strategy and evaluate its effectiveness.

4.2.1 � Step 7: Select and customize tool

Once the conceptual traceability strategy is created, the
company needs to think about tool support for the different
activities that need to be carried out. These activities include
creation, maintenance and use of trace links. If tool support
does not already exist, a traceability management tool needs
to be selected and customized to support the different trace-
ability activities.

Input The input to this step is:

1.	 the process model defined in Step 1;
2.	 the TIM defined in Step 3; and

3.	 the traceability process defined in Step 6.

Activities The following activities are conducted in this step:

1.	 Identify tool requirements from the traceability process
The TIM and the process provide information about
which links have to be created and which artifacts need
to be supported. The need to link requirements stored in
spreadsheets to design models in UML, e.g., means that
the traceability tool has to support tracing to and from
spreadsheets, and to and from UML models. Addition-
ally, the tool needs to support granularity and different
link directions if so specified by the TIM. The process
model also provides other information such as the exist-
ing tool chain. Additional requirements might be elicited
here, e.g., if the solution can be commercial or has to be
available without license fees.

2.	 Analyze existing traceability tools and select tool based
on derived tool requirements Scientific literature pro-
vides some guidance on traceability tool selection that
can be used to facilitate the process. Rempel et al. [55],
e.g., gives an overview of steps to elicit tool require-
ments and important factors to consider. Additionally,
Gotel and Mäder [20] provide characteristics that can be
used to compare different traceability tools. The latest
work is a study by Steghöfer [61] which defines cat-
egories that can be used to assess trace links aimed at
helping practitioners identify which tools are suitable
for their needs. The paper uses factors and guidelines
defined in Maro et al. [41] to define concrete trace-
ability tool characteristics and provides an evaluation
of 23 existing traceability tools based on these charac-
teristics. We recommend that a systematic assessment
of the tools is done using the categorization defined by
Steghöfer [61] or Rempel et al. [55]. However, the char-
acteristics or criteria from these studies should only be
used as a starting point and the systematic assessment
should focus on the traceability tool requirements from
the company which are inferred from the existing devel-
opment process, existing tool chain, existing skills and
knowledge, as well as the traceability goals and the TIM.
In case there is not tool to support the traceability needs
of the company, the company can develop an in-house
solution. It should be noted that in some cases, more
than one tool is needed to satisfy the traceability goals
of the company.

3.	 Customize selected tool Since every company has unique
requirements when it comes to traceability, it is common
that the selected traceability tool needs to be customized
to fit the company needs. At the very least the tool needs
to use the TIM defined in previous steps. Additional cus-
tomizations can, e.g., include collection of data for use
in the metrics. It is important to ensure that the selected

64	 Requirements Engineering (2022) 27:53–81

1 3

tool can be customized in a reasonable time frame and
cost.

Output The outputs of this step are:

1.	 an assessment report of existing traceability tools and
reasons for selecting the tool which can be used to jus-
tify how the tool was selected and how it fits the com-
pany needs;

2.	 a customized traceability tool or an off-the-shelf trace-
ability tool or an in-house developed tool.

4.2.2 � Step 8: Deployment of the designed traceability
strategy

The purpose of this step is to deploy the traceability strategy,
which consists of the traceability process and customized
traceability tool, at the organization. TracIMo recommends
to deploy the process incrementally, i.e., one project at a
time.

Input The inputs of this step are:

1.	 the traceability process from Step 6; and
2.	 the customized traceability tool from Step 7.

Activities The following activities are required for the
deployment:

1.	 Create a deployment schedule This schedule defines
when the tool will be installed at the company, when
training takes place, when the traceability tasks will
start and who will be responsible for each process. To
ensure a successful deployment, it should be scheduled
explicitly. In agile environments, the roll-out can e.g., be
included as a task in sprint planning or the velocity can
be lowered for the sprints in which the new activities are
introduced.

2.	 Create baseline measurements In order to measure the
effectiveness of the traceability strategy, it is important
to create a baseline against which the new process can
be compared. For this purpose, initial measurements
according to the measurement plan for the metrics
associated with the traceability goals should be taken
now. This also ensures that the necessary steps to collect
measurements used to evaluate the metrics are in place.

3.	 Inform all involved stakeholders All involved stakehold-
ers should be informed of the process, how it is going
to affect their work and what is expected of them. For
instance, it is important to make the roles responsible for
each task in the traceability process aware of their new
duties. It is also important to ensure that those who cre-
ate the links know whom they create them for. This can
be done by distributing the process documentation cre-

ated in Step 6 as well as the deployment plan. Personal
discussions with the stakeholders can ensure buy-in and
alleviate anxiety associated with the changes.

4.	 Train involved stakeholders Before deployment, all
stakeholders should participate in training activities such
as workshops that demonstrate the new activities and
allow the responsible roles to develop the skills to per-
form them. These workshops can also be used to teach
the relevant tools.

5.	 Integrate the traceability tool into the development tool-
chain The traceability tool has to be included into the
development tool-chain and installed on the machines
of all stakeholders that produce or consume trace links
before the process is rolled out.

6.	 Roll-out the process Once training is complete and all
necessary tools are in place, the traceability process can
be rolled out. Again, this roll-out should be scheduled
accordingly and can have an impact on the velocity in
the first sprints after roll-out since additional time might
be required for on-the-spot training or due to issues that
occur when the traceability process is applied in practice
for the first time.

Output The outputs of this step are:

1.	 a deployment plan describing the concrete steps and
their timing to introduce traceability tools, practices,
and training;

2.	 baseline measurements before the roll-out of the trace-
ability process; and

3.	 a deployed traceability strategy used by the involved
stakeholders.

4.2.3 � Step 9: Evaluation

The purpose of this step is to evaluate the deployed process
in order to find out if the traceability goals are achieved and
identify areas of improvement.

Input The inputs to this step are:

1.	 baseline measurements before the roll-out of the trace-
ability process from Step 8; and

2.	 traceability goals and associated metrics from Step 2.

Activities While there are different ways to evaluate the
deployed process, TracIMo recommends the following
evaluation activities:

1.	 Immediate evaluation of the strategy during the deploy-
ment period The evaluation is performed by collecting
data according to the measurement plans and analysing
it using the metrics defined in Step 2. It is also helpful
to observe how the stakeholders work with the process

65Requirements Engineering (2022) 27:53–81	

1 3

and tool and also discuss the process with the stakehold-
ers. The discussions could be informal meetings, focus
groups or structured interviews depending on the com-
pany and availability of the stakeholders. Since unan-
ticipated challenges can occur, lessons learned from the
deployment should quickly be taken up and the tool and
process improved as necessary.

2.	 Long-term evaluation of the strategy The metrics defined
in Step 2 can also be used to monitor the success of the
strategy over a longer period of time, in particular in
terms of improvement over the baseline. For instance,
after the first three months, the measurements can be
analyzed to identify areas of improvement and traceabil-
ity goals that are not fulfilled by the existing traceabil-
ity strategy. Additionally, a qualitative evaluation of the
established strategy should be conducted. The involved
stakeholders can be interviewed for their views in the
strategy in order to elicit areas of improvement.

Output The output of this step is an evaluation report that
contains details on how well the traceability strategy works
and which areas need improvement. The evaluation report
also contains the measurements that were taken to show to
what extent the goals have been achieved with the deployed
strategy as well as lessons learned and recommendations
for future improvement. Depending on the organizations’
requirements, this report can be a formal report or informal
documentation stored as, e.g., a wiki page.

4.2.4 � Step 10: Anchor process and tool

The purpose of this step is to anchor the new process and
tool within the team and the organization. This step requires
that the traceability strategy is deployed and used in the
organization.

Activities TracIMo recommends the following activities
to ensure that the deployed process is anchored:

1.	 Continuously educate developers and stakeholders Both
current and new employees need to be educated about
traceability, its benefits, and the necessary steps to incor-
porate it into the development process continuously.

2.	 Integrate traceability in reviews To ensure that trace-
ability activities are performed, their outcome can be
included in code reviews and sprint reviews or other
opportunities for feedback. In code reviews, the guide-
lines can, e.g., state that new test cases need to be traced
to the original requirement for the review to pass. Like-
wise, in sprint reviews the trace model can be reviewed
to find missing links or links that need to be updated or
deleted.

3.	 Include traceability metrics in dashboards Many devel-
opment teams use dashboards (see, e.g., [6]) to visualize

the current state of the product being developed. Some
metrics about traceability can be evaluated automati-
cally and integrated into these dashboards to provide a
view on the quality and number of trace links and how
they support the team. Indirect metrics (e.g., accuracy of
estimates) can also be visualized this way to incentivize
stakeholders to stick to traceability practices.

Such steps often require a more formalized definition of the
traceability process. If this was not done in Step 6, the trace-
ability process description should be revisited. At this point,
going through another iteration of TracIMo can also be use-
ful to establish additional process and traceability goals and
refine the process to accommodate more teams.

Output The outputs of this step are:

1.	 updated training material for the development process
and the traceability strategy;

2.	 guidelines for including traceability in reviews; and
3.	 automated measurement of relevant data for traceability

metrics and inclusion in dashboards.

5 � Case study to evaluate TracIMo
in a company

To evaluate TracIMo, we applied it in a company in the
finance domain. The company is a digital mortgage advice
company located in Amsterdam, whose main business is
to provide customer-tailored advice about mortgage prod-
ucts and connect customers to money lenders. The company
develops a web-application where customers can register,
select mortgages, provide documentation for eligibility, and
book appointments with mortgage advisers. The company
is small: the IT department consists of around 14 employ-
ees. The main problem for the company was the inability
to perform impact analysis when a change requests comes
in. From time to time, the company receives changes from
the central federal bank on how mortgages should be issued
including how the rates should be calculated. The company
translates the change request into requirements which are
then broken down into tasks and assigned to developers for
implementation in the system. Due to lack of traceability,
the impact analysis of the new requirements is performed
manually and therefore is time consuming and error prone.
We used the steps defined in TracIMo to design a traceability
strategy that would tackle this challenge in the company.
The development team in the IT department was our unit
of analysis.

The following subsections describe how TracIMo was
applied to introduce traceability in the company. Some of
the steps (e.g., Step 1 and Step 2) use the same data and were
therefore carried out in parallel.

66	 Requirements Engineering (2022) 27:53–81

1 3

5.1 � Step 1 and 2: Analyze existing process
and identify traceability goals

To understand the development process and the traceability
goals for the company, we conducted two interviews, one
with the business analyst and one with the lead developer.
The interviews were conducted via Skype and each inter-
view lasted around one hour. The interview guide we used
is described as part 1 of our interview guide document avail-
able in the supplemental material [2]. Both interviews were
recorded, transcribed and analyzed. We used the thematic
coding approach [13] on the transcribed data. Examples of
the codes we used are “process goal,” “traceability goal,”
“traceable artifact,” “traceability challenge,” and “trace
link type”. These codes are derived from what TracIMo pre-
scribes. Even though we know exactly what we are looking
for in the transcripts, the thematic coding approach ensures
that we derive this information systematically and therefore
avoid missing any needed information. Two researchers then
used the data to build the conceptual models of the process
and the abstract goals. These were checked with the inter-
view partners for accuracy and correctness. Based on the
traceability goals and process goals, we applied GQM to
derive potential metrics. For example, in an interview with
the lead developer he said:

“Sometimes we underestimate tickets because we forget
about some parts of the system which should be touched by
the changes and that’s a problem.”

From this quote, we derived the goal improve the accu-
racy of effort estimations for tasks, from the lead developer’s
point of view which is detailed in Table 3. Table 3 also shows
the rationale of the goal and the metrics derived for evaluat-
ing the goal. Further details on the metrics derived for all
the traceability goals can be found in our supplementary
material describing the case study [2]. The researchers inves-
tigated each goal and proposed a number of possible metrics.
These metrics were analyzed for feasibility together with
the BA to see if the data needed to evaluate the metrics are
actually available and a subset was selected. Measurement
plans for when the measurements should be taken were cre-
ated for each metric. For instance, the number of deviating
tasks is to be measured at the end of each sprint by the BA.
For each goal, we also derived traceability scenarios which
were later used to asses if the traceability goals are achieved.
An example of a scenario defined for goal 3 is also included
in Table 3.

The results of step 1 and 2 are: (1) the process model,
which includes a description of the development process
activities and process goals as summarized in Table 5; and,
(2) traceability goals which are summarized in Table 4.
Additionally, the traceability goals include questions, met-
rics and scenarios as exemplified in Table 3. A summary
of the development process at the company is given below.

Development process at the case company The develop-
ment team uses Scrum and comprises the following roles:
PO, scrum master, developer, and quality engineer (tester).
The developer role is refined into back-end developers, front-
end developers, UI designers and web designers. In addition,
a business analyst is responsible for breaking down high-
level requirements into user stories and assuring that the
development of the software coincides with business goals
and regulatory requirements.

The company is structured into four value teams: opera-
tions, execution-only, sales qualified and the analytics team
(cf. Fig. 4). A value team is a group of people with dif-
ferent expertise (development, marketing, operations) that
work together to achieve a defined goal. The development
team is a horizontal group distributed over four different
value teams. Each value team has dedicated developers that
implement features to achieve the team’s goal. Some of the
developers are located abroad and therefore work remotely.

Each value team works autonomously and has a Scrum
master who ensures that the Scrum principles are applied
correctly and helps team members to address any obstacles.
Each value team also has its own PO who is responsible
for defining the team’s focus by defining the scope of each
sprint. It is possible that some of the development team
members are assigned to tasks belonging to different value
teams.

Sprints last two weeks. At the beginning of these two
weeks, a planning meeting is held to decide which tasks
need to be accomplished in the sprint and to assign the tasks
to responsible developers. Once a developer is done with a
task, they send a pull request. If this is accepted, the changes
are deployed to the testing system. Once testing is complete,
the feature is released. The sprint ends with a retrospective
meeting to reflect on how the sprint went and identify how
the process can be improved. Furthermore, at the beginning
of each sprint, the POs from the four value teams gather to
coordinate the overall direction and to analyze which steps
should be taken next in the roadmap by identifying issues
with high business value. Every morning during the sprint,
the development team and each value team have separate
stand-up meetings.

5.2 � Step 3 and 5: Derive traceability information
model and assess traceability goals against TIM

We analyzed the development process, traceable artifacts
and the traceability goals and designed a Traceability Infor-
mation Model (TIM). Existing traceability practices were
taken into account to ensure that the designed TIM sup-
ports them. We carried out step 3 and 5 together because
of the synergy that exists between the steps. Since the TIM
is derived from the traceability goals, we also assessed the
TIM with respect to the traceability goals during the creation

67Requirements Engineering (2022) 27:53–81	

1 3

of the TIM. This ensured that the resulting TIM will fulfill
all the traceability goals. This also means that the TIM is
created in iterations.

Whether the traceability goals can be achieved or not
depends on the expressiveness of the TIM as well as the
traceability practices that are put into place. Since we focus
on the TIM, the object of the analysis is the artifacts that are
connected via trace links and the semantics of these links.
In this step, we also used the scenarios defined in Step 2
in the assessment. An example a traceability scenario for
traceability goal 3 is shown in Table 3. Using this scenario,
we assessed if the TIM supports tracing between all relevant
artifacts, i.e., from tickets to requirements, model elements,
implementation, tests, copies, wireframes and art designs.
As can be seen in Fig. 5, the TIM supports these link types
and this scenario. From a ticket, there are direct links to
requirements, copies, wireframes and art designs. Addition-
ally, transitive links exist from tickets to model elements,
implementation and tests. We also investigate which granu-
larity level the TIM requires, if any and if that is sufficient
to fulfill the goal, which is to improve the accuracy of effort
estimation. The evidence used in the assessment is mainly
the structure of the TIM, e.g., that the right kinds of artifacts
are connected to achieve the desired goal. Table 4 shows
all the traceability goals and how the TIM helps to achieve
them. The descriptions also provide hints for the practices,
e.g., that some trace links can be used for analysis once they
are established. After several iterations of feedback from
the BA, the TIM shown in Fig. 5 emerged, which was later
deployed in the company. All links in the model are one-to-
one (one link can connect exactly two artifacts) and unidi-
rectional as indicated by the directed arrows.

5.3 � Step 4: Assess process goals against traceability
goals

Using the process model and the traceability goals, we
assessed the process goals with respect to the traceability
goals. This is to ensure that each process goal that requires
traceability is covered by at least one traceability goal. This
analysis was first done by two researchers who read all the
process goals to identify goals that required traceability and
identified the matching traceability goal(s) from the list of
traceability goals derived from step 2. For instance, one of
the process goals is to improve the understanding of the rela-
tionship between code and requirements, from a developer’s
point of view. In the assessment, we matched this goal with
traceability goal 4, to increase efficiency of identifying arte-
facts relevant to a change from BA’s point of view. This is
because traceability goal 4 is fulfilled by having trace links
from tickets to requirements, requirements to model ele-
ments, model elements to implementation and implementa-
tion to tests. This makes the artifacts relevant to a change not

only visible for the BA but also for the developer. The result
of the analysis was then shown to the BA for confirmation
and feedback and is summarized in Table 5.

5.4 � Step 6: Derive traceability process

In this step, we defined how trace links were going to be cre-
ated, maintained and used. The inputs we considered for this
step were the process model, the traceability goals, metrics,
scenarios and the defined TIM. Since the BA was already
responsible for conducting the manual impact analysis, we
decided that he should also create the trace links because
he knows the system well and was already creating links
implicitly in the existing development process. The BA is
also responsible for updating the links when artifacts evolve.
Due to the difficulty in tracking what has changed manu-
ally, it was decided that the BA will need tool support to
help maintain the trace links. This requirement was noted
and later used when selecting the traceability tool. The end
users of the trace links will be the development team, the
lead developer, the PO as well as the BA. Due to the fact that
there were no existing links and the systems developed at the
company already had a large number of artifacts, the links
will be created in a retrospective manner. To reduce the load
for the BA, the links will also be created incrementally. For
each sprint, the BA will create links to tickets planned for the
sprint and make these links available to the developers. This
is a lightweight approach for creating links as the BA can
focus the effort on the links that yield immediate benefits.
Furthermore, links between development artifacts are also
created incrementally, e.g., links between model elements
and implementation and between implementation and tests.
These links can be reused the next time a change involves
an artifact that already has trace links.

We used the metrics and measurement plan defined in
Step 2 to define a data collection strategy for inclusion in the
traceability process. The data from JIRA, e.g., the average
number of tickets per sprint, can be automatically obtained
from the JIRA system. We agreed that data that had to be
elicited from stakeholders, e.g., developers and the PO, will
be collected by the BA.

5.5 � Step 7: Select and customize tool

To select a suitable tool that will support the defined trace-
ability strategy, we considered the existing development
process, the tools used in the company, the TIM and the
traceability process defined for the company. The tools
used in the development process are depicted in Table 6.
We also considered additional tool-specific requirements.
For instance, it was important to the BA to have tool sup-
port in terms of notifications when artifacts evolve, so that
he can update the respective trace links. The BA also wanted

68	 Requirements Engineering (2022) 27:53–81

1 3

the developers to have as little change as possible in their
tooling. One additional but important requirement from the
company was to use an open source tool that would require
little customization, because the change was driven by the
BA’s interest and had no budget for acquiring a commercial
tool. This also means that knowledge on how to customize
the tool needs to be available. We used the tool categori-
zation defined in [61] where the authors have analyzed 23
existing traceability tools, to select a tool to use. This catego-
rization evaluates the traceability tools using six main char-
acteristics: (1) information storage, which describes where
the tool stores the trace links; (2) level of integration, which
describes whether the tool is a holistic tool supporting all
software engineering activities or a standalone traceability
tool; (3) Tool type, which describes if the tool has a spe-
cific purpose e.g., requirements management; (4) integration
context which describes which other tools the traceability
tool can be integrated with; (5) configuration options which
describe which parts of the tool are customisable; and (6)
automation which describes which trace activities the tool
automates. Table 7 shows the six characteristics and possible
values. We disregarded commercial tools and remained with
five tools whose categorization is shown in Table 8.

Based on the tool assessment and the requirements from
the company, we selected Eclipse Capra [40] due to the fol-
lowing reasons: (1) it allows the definition of a custom TIM;
(2) it can be extended to support additional artifact formats;
(3) the visualization can be customized; (4) it supports link
maintenance through notifications; and (5) the researchers
have the knowledge needed to customize it.

The fact that the researchers are familiar with the cus-
tomization of the tool was probably the most relevant.
Since Eclipse Capra is based on the popular Eclipse IDE,3 it
requires the use of this development environment. Addition-
ally, both the BA and the lead developer had prior experience
with using tools based on the Eclipse IDE. However, the
company did not use Eclipse at this point in time. This meant
that a rather heavy-weight new tool had to be integrated into
the development tool-chain. A traceability plug-in for JIRA,
e.g., would have had less impact on the tool-chain. However,
a plug-in that fulfilled the requirements of the company and
allowed achieving the traceability tools was not available.
In the end, the willingness of the BA and the lead developer
to adopt a new tool that would also allow them to work with
the UML models of the software (see below), the fact that
Eclipse Capra could be adapted quickly and without addi-
tional cost and that work with Eclipse would be limited to
the BA and the lead developer, while the rest of the team
would only use the results, trumped the concern of introduc-
ing a new tool.

In order to support the new traceability process at the
company, the traceability management tool Eclipse Capra
was customized in three ways: (1) the company-specific TIM
from Step 3 was created and incorporated in the tool; (2) two
artifact adapters were implemented, one to support linking
to and from requirements in Google spreadsheets and one
to support linking to and from PHP code; and (3) the visu-
alization of the tool was customized to include direction of
the links and to allow filtering based on selected tickets.
Overall, this customization took around 3 weeks where one
student developer from the university worked on creating the
adapter to link to Google spreadsheets and one researcher
spend some hours on the rest of the customization.

To use the tool, the BA or the lead developer would
import the artifacts into an Eclipse workspace and create
the links between them. The links can be shared using a
git repository so that it is available to both the BA and the
lead developer. After the links are created, the tool can
automatically generate a graphical representation of how
the artifacts are related to each other. For each ticket, such
a graph is uploaded by the BA in the bug tracking system
JIRA so that the developers have a clear understanding of
the relationships between the different artifacts concerning
the ticket. To maintain the links, the tool has a notification
feature that shows warnings on artifacts that have changed
and are associated with trace links. The responsible person
can thus check if the trace links need to be updated as well.

5.6 � Step 8: Deploy process and tool

The deployment was scheduled to take place during one
week. During that week, the two researchers were present
full time at the company. The schedule (which can be found
on page 18 in document (2) in the supplemental material [2])
was created in collaboration with the BA and the BA com-
municated this to his team. On the first day, the researchers
were introduced at the company and explained the purpose
of the visit during the morning stand-up meeting. Since
this was communicated to the development team before our
arrival, it was brief. Additionally, since only the BA and lead
developers were going to be working with the traceability
tool and the rest of the developers would only use the images
in the JIRA tickets, the development team required no train-
ing on the tool but only information on how to use the links.

After setting up the tool, an initial workshop with the
researchers, the BA and the lead developer was conducted.
This revealed an important aspect: some projects only had
requirements, tickets, source code and tests, but were miss-
ing design models. We had two options to solve this chal-
lenge: (1) to add support in the TIM to link tickets to code;
or (2) to create the missing design models. The BA and lead
developer decided to create the missing design models since
one of the best practices for the company is to have such 3  http://​www.​eclip​se.​org.

http://www.eclipse.org

69Requirements Engineering (2022) 27:53–81	

1 3

models for all projects in order to facilitate comprehension
of the system without referring to code. Enforcing this best
practice through the TIM ensures consistency and adds an
additional incentive for the company to maintain the design
models.

In order to reduce the effort of creating the models, we
reverse-engineered the current source code and created a
UML model and relevant diagrams using the existing PHP
code and BOUML [48]. The resulting UML models were
imported into Papyrus4 and thus became viewable and edit-
able within Eclipse.

Once the development artifacts were in place, the BA
selected one project to work on. For this project baseline
metrics were noted down so that they can be used for com-
parison later on. Using Eclipse Capra, the BA imported all
the artifacts relevant to the project, i.e., requirements, design
models, code, and tests and created four types of links: (1)
from requirements defined in Google spreadsheets to tickets
in JIRA; (2) from requirements to model elements in UML;
(3) from model elements to implementation code written in
PHP; and (4) from implementation to tests which were also
written in PHP.

At the end of the first day, the two researchers and the BA
had a meeting to discuss if the process and the resulting links
are sufficient. As shown in Fig. 5, all the links were from
requirements to other artifacts, including tickets. However,
the developers use tickets and not the requirements during
the sprints. The developers therefore needed to know which
artifacts are related to a single ticket and not necessarily to
the whole requirement. We therefore modified the TIM and
made it “ticket-centric.” This is depicted in Fig. 6, where a
requirement is linked to a ticket and the rest of the develop-
ment artifacts are linked from a ticket. While the deployed
TIM was already assessed using the scenarios in a “dry run”
manner in step 5, the need for this change was only vis-
ible once the tool was deployed and actual trace links were
created.

From day two to day five, the BA continued to create the
links while the researchers were present to fix any issues that
arise. The researchers also observed how the team worked
and conducted interviews and focus group meetings with the
team members as a first step towards evaluating the trace-
ability process. Details on evaluation are given in Sect. 5.7.

5.7 � Step 9: Evaluate process and tool

TracIMo suggests to continuously evaluate the devel-
oped traeability strategy. We implemented three evalua-
tion phases: one initial evaluation during and immediately

following deployment, one follow-up evaluation after two
weeks, and a final evaluation five months after deployment.

For an initial evaluation during the deployment stage,
we used focus groups and interviews with the members of
the development team to evaluate both the process and tool.
The evaluation started on the second day of the deployment
week. During the stand-up meeting, the business analyst
showed examples of the links to the team and asked them
for feedback. The researchers took note of the feedback from
the team and met with the business analyst afterwards to
discuss the needed changes. The developers explained that
the links were too fine grained and that they preferred links
on a higher level of granularity, for instance to link to the
class and not to the method in the PHP code. Based on the
evaluation of day one and two, we made changes to the TIM
and the granularity of the links, thus adapting the traceability
strategy early.

To further evaluate the deployed process and tool, we
also interviewed the PO, in order to get his opinion on the
process and the links that were created by the BA. We used
an interview guide that we defined and made available as
part of the supplemental material [2]. Additionally, we con-
ducted a focus group meeting with the BA, two front-end
developers and the lead developer to discuss and prioritize
the previously elicited goals and how the new process would
help achieve them. Based on the feedback collected from the
interview with the PO and focus group, we further custom-
ized the tool and provided a new version to the company.
The changes made to the tool were mainly bug fixes. Early
evaluation helped us tailor the process and tool, as exempli-
fied by how the TIM evolved.

For the later evaluation steps, we used the metrics defined
using Steps 1 and 2 of TracIMo in Sect. 5.1. After two weeks,
we conducted an interview with the BA via Skype to discuss
how the links were used, which qualitative short-term ben-
efits were evident, and if the company was facing any issues
with the process or the tool.

Five months after the pilot deployment, we conducted two
additional interviews, one with the business analyst and one
with a developer. These interviews investigated the benefits
and challenges brought by the new traceability process. All
the interviews were recorded, transcribed and analyzed.

Evaluation after several sprints enabled us to elicit short-
term benefits of traceability. We also collected quantitative
data from JIRA tickets. From January 2017 to May 2017, we
collected data for 134 tickets, associated with four projects.
After the introduction of traceability, we collected data for
17 tickets in which trace links were used associated with the
same projects. Since the sample size of the latter tickets is
small, we do not perform statistical analysis. However, we
use the data to indicate trends.

We identified the following benefits of the traceability
strategy defined using TracIMo:4  https://​www.​eclip​se.​org/​papyr​us/.

https://www.eclipse.org/papyrus/

70	 Requirements Engineering (2022) 27:53–81

1 3

Estimation of tasks One of the challenges at the company
was difficulty in estimating how much effort a task will need.
In the interviews, the business analyst and one developer
reported that the links embedded in the tickets made task
estimation easier and more accurate since the developers
could now not only see how many elements are associated
with the tickets, but also which elements these are (e.g.,
classes, methods, tests, etc.).

Additionally, the developer reported improved estima-
tion especially for tasks that affect third-party libraries, as
such dependencies were not visible without the trace links.
Table 9 shows that the number of incorrectly estimated
tickets slightly decreased for three projects (A, B and C)
after the introduction of traceability. With support from the
qualitative data from the interviews, this is an indication
that Traceability Goal 3 is met by the current traceability
process.

Task Understandability The developer reported that the
traceability graph embedded in the ticket makes tasks more
understandable. The traceability graph is beneficial for nov-
ice developers, as they can see which artifacts are affected by
the task and how these artifacts are connected:

“The advantage [of the new traceability approach] is,
you can see which part of the system or the communication
between the models and some parts of your code [are related
to the task]. So it is some kind of visualization and makes it
easy to understand.” – [Developer]

Trace links to the requirements help developers under-
stand the rationale of the different tasks. Our metrics from
JIRA show the number of comments decreased after the
introduction of traceability (cf. Table 9). A further analy-
sis of these comments showed a decrease in the number of
comments that suggested changes to the tickets or discussed
dependency issues, indicating that developers understand the
tasks and do not have to discuss them further. This is in line
with Traceability Goals 2, 4 and 5.

Detecting missing artifacts Through the links, the devel-
opment team was able to identify missing artifacts. This was
reported by the BA after a sprint planning meeting. If a ticket
is, e.g., linked to a model element and this model element to
implementation but not to tests, the latter are missing. The
developers still have to investigate whether the tests were
required or not but this investigation is simplified since the
relevant elements are already identified.

5.8 � Step 10: Anchor process and tool

The traceability strategy and tool needs to be anchored at
the company. After the pilot study, the company needed to
define how this new strategy will be adopted by all the devel-
opment projects at the company. While this anchoring step
is very important to ensure long-term benefits of traceability
in the company and to develop the capabilities within the

organization, we could unfortunately not follow this process
to its conclusion since the company was acquired and there
was a change of personnel which hindered the progress of
the project.

6 � Discussion

In this section, we discuss the results of the study with
respect to the research goal stated in Sect. 1:

RG:	 Provide support for establishing a traceability strat-
egy that allows the organization to achieve its goals and
measure the impact of the traceability strategy.

This research goal indicates that there are two aspects we
needed to address: provide guidance for designing a trace-
ability strategy to fill a gap for researchers and practitioners
(again, we refer to, e.g., [11, 37, 43]) and to include metrics
and measurements into the strategy to allow measurement
of potential benefits and drawbacks as indicated by literature
on software process improvement (as discussed in Section
and in, e.g., [16, 56]). We designed TracIMo to include both
aspects and demonstrated with the case study whose results
we reported in the previous section that TracIMo serves
these purposes.

In this section, we discuss key points w.r.t. to designing
a traceability strategy in Sect. 6.1 and measuring its impact
in Sect. 6.2. Additionally, we encountered several challenges
as a result of the traceability strategy we designed. These
challenges are discussed in Sect. 6.3.

6.1 � Designing a tailored traceability strategy

The study proposes TracIMo, a methodology to define a
traceability strategy for software development organiza-
tions. The steps in this methodology (cf. Fig. 2) are geared
towards analyzing the needs of the company and making
sure that the specific traceability strategy is tailored accord-
ingly, regardless of the development process used. They also
provide the opportunity to define metrics that allow measur-
ing the impact a traceability strategy defined with TracIMo
has. Simpler versions of steps 1 to 5 of the framework have
already been shown to be effective in practice [56] for
assessing traceability strategies. We extended these steps
and added steps 6 to 10 to allow us to define and refine a
traceability strategy for a development team that is used in
practice.

A particular strength of the proposed method is the align-
ment between the process goals and the traceability goals.
By using GQM [62], an established technique from software
process improvement, we were able to achieve both aspects.
As shown in Tables 4 and 5, the thorough analysis proposed

71Requirements Engineering (2022) 27:53–81	

1 3

by TracIMo allowed us to define a traceability information
model that is specific for the company. TracIMo also ensured
the traceability goals and process goals are compatible. In
communicating with the company, the clearly defined goals
allowed us to discuss the scope of the changes as well as
what is realistically achievable with traceability and gave us
a way to evaluate the defined traceability strategy.

TracIMo also exploits GQM’s strengths by defining
metrics that allow us to measure the benefits of the defined
traceability strategy. Each traceability goal was associated
with a number of metrics. In our evaluation case study,
we collected data as a baseline before the introduction of

traceability for some of them. This provision in TracIMo
thus allowed us to compare the baseline with data after
traceability was introduced. In our concrete case, advantages
could be identified as shown in Table 9.

The iterations built into phase 2 of TracIMo also proved
helpful. This is particularly evident in the evolution of the
traceability information model. In the case study, we dis-
covered the issues with the TIM only through deployment
and evaluation of traceability in practice. Since TracIMo is
iterative and a second iteration was planned for the time the
researchers were present at the company, the issues could
be quickly addressed.

Using TracIMo, we were able to design a tailored trace-
ability strategy that fits the agile team’s needs. Several
studies discuss traceability for plan-driven development
processes (e.g. [3, 4, 53]), where traceability is focused on
development artifacts that are assumed to be persisted and
maintained over the development life-cycle. Traceability is
therefore a requirements-centered activity where links are

Fig. 2   Schematic overview of TracIMo, indicating which steps have been reused or modified from Rempel et al. [56] and which were added. The
dashed lines represent going back to previous steps for refinement since TracIMo is iterative

Fig. 3   An example of a simple TIM with one trace link type (gener-
ates) which connects system requirements to software requirements

72	 Requirements Engineering (2022) 27:53–81

1 3

created from requirements to other development artifacts
like design models and code [24, 67]. In this agile context,
however, the development is driven by the tickets rather
than the requirements. Even though tickets are derived from
requirements, developers are used to dealing with tickets.
The lifetime of a ticket is the sprint(s) where it is worked
on. When a ticket is marked as done, developers do not look
at it again. We believe this is the case for many agile pro-
jects [31]. We tailored the traceability process to the devel-
opment process of the company by defining a ticket-centric
traceability strategy.

As shown in Fig. 6, tickets are linked to development arti-
facts such as requirements, design models and transitively to
code and tests. This means that the links created are specific
to a specific ticket. The advantage of this ticket-centric trace-
ability approach is that it allows for incremental creation of
links in situations where links are created retrospectively.
However, as the trace model grows, filtering mechanisms are
needed since existing links between development artifacts
which were created with previous tickets may not be relevant
for current tickets. In our case, we implemented a filtering

mechanism that allowed the BA to filter out unnecessary
links before attaching the trace links graph in the tickets.

In summary, the case study shows that the steps in TracI-
Moare necessary and sufficient to create a viable traceability
strategy that is aligned with the current development process
and includes the ability to measure its benefits. We therefore
consider the case study proof that our research goal has been
achieved.

6.2 � Measuring the impact of the traceability
strategy

As part of the steps of TracIMo, we defined metrics and a
plan how to collect the measurements to evaluate the new
traceability strategy in the context of the existing process.
In the following, we are going to discuss some of the chal-
lenges when putting this part of TracIMo into practice in our
evaluative case study. While the details will differ in other
strategies designed with TracIMo, we still believe that these
insights can provide additional insights when applying the
methodology in practice.

Table 3   Goal/Question/Metric to identify traceability goals and metrics

Goal 3 Improve the accuracy of effort estimations for tickets from the lead developer’s point of view

Rationale One of the main tasks for the lead developer is to estimate the effort a certain implementation task
is going to have. This has a major influence on the sprint and on the schedule for the develop-
ers since it essentially determines how many tickets the team will tackle during a sprint and
how much time they can devote to each ticket. Increasing the accuracy of the effort estimation
is therefore a goal. Trace links can support this goal by providing insight into dependencies
between artifacts and requirements, and by helping to identify which parts of the code have to be
touched for a change. Since an estimation can never be 100% accurate, an additional dimension
is how confident the lead developer feels with his estimations. If trace links do in fact support the
estimation, the lead developer should become more confident in estimating over time and high
confidence estimations should become more accurate at the same time

Question 1: Metrics How much does the estimated effort differ from the actual effort?
 Average number of tasks per sprint (analysis of Product Backlog/JIRA tickets)
 Average number of deviating tasks per sprint (analysis of Product Backlog/JIRA tickets)
 Percentage of deviating tasks per sprint (derived)
 Initial estimation for each task in story points (analysis of Product Backlog/JIRA tickets)
 Updated estimation for each task in story points (analysis of Product Backlog/JIRA tickets)
 Average increase/decrease in effort per task (derived)
 Number of JIRA comments about effort per task (analysis of JIRA tickets)

Question 2: Metrics How confident is the lead developer in the estimation of tasks?
 Likert scale confidence
 1—not confident at all
 5—very confident per task (Questionnaire with lead developer)
 Number of low confidence tasks that required a change (analysis of Product Backlog/JIRA tickets)
 Number of high confidence tasks that required a change (analysis of Product Backlog/JIRA

tickets)
Scenario Given a ticket, it should be possible to identify those parts of the system that are affected by the

change in the ticket. By being able to conduct a change impact analysis down to the code, copy,
and wireframe level, the lead developer can make better estimations of the tickets. This means
that a ticket needs to be linked to requirements, model elements, implementation, tests, copy,
wireframes and art designs

73Requirements Engineering (2022) 27:53–81	

1 3

From the interviews and our measurements, we gathered
qualitative and quantitative data to support three benefits: (1)
improvement in effort estimation, (2) improvement in task
understandability and (3) improvement in identification of
missing artifacts, as reported in Sect. 5.

As discussed in [27], defining traceability goals and
ensuring that a company captures the information required
to fulfill these goals is a first step towards ensuring the return
on investment (RoI) of traceability. We observed in our case
that the benefits we elicited are due to Goal 2 (improve vis-
ibility of decision rationale), Goal 3 (improve accuracy
of effort estimation), Goals 4 and 5 (increase efficiency

of identifying artifacts relevant to a change). While the
designed TIM and process are aimed to fulfill all goals, fur-
ther evaluation is needed to elicit the benefits of Goals 1, 6
and 7.

Table 4   Assessment of Traceability Goals against the TIM

Traceability Goal How the TIM supports the goal

Goal 1 Increase the awareness of stakeholders about product changes
from the BA’s point of view

The change impact analysis enabled by the existence of trace links,
allow the business analyst to communicate product changes to the
stakeholders and to give an indication which impact they have. For
instance, the links show which artifacts are connected to a task and
if these artifacts require stakeholders that are not in the development
team to be involved. The BA can spot this and inform the appropriate
stakeholders

Goal 2 Improve the visibility of the decision rationale from the devel-
opment team’s perspective

Links between requirements and tickets allow the developers to go to
the requirement(s) associated with a ticket in order to read the ration-
ale of the requirement

Goal 3 Improve the accuracy of effort estimations for tasks from the
Lead Developer’s point of view

Links between the tickets and the model elements allow identifying
all aspects of the system that are affected by a change. The transi-
tive links to the implementation and tests indicate the code elements
that need to be changed. This change impact analysis improves the
overview and should support the development team in estimating the
ticket. For instance, if a ticket is connected to many complex classes,
then it is an indication that the ticket needs more effort

Goal 4 Increase the efficiency of identifying artifacts relevant to a
change from the developers’ point of view

This goal can be achieved due to the same reasoning as for Goal 3

Goal 5 Increase the efficiency of identifying artifacts relevant to a
change from the BA’s point of view

This goal can be achieved due to the same reasoning as for Goal 3

Goal 6 Improve the visibility of the dependencies of the process steps
from the lead developer’s point of view

The process steps correspond to different activities that need to be
performed by different stakeholders. For instance, copy needs to be
provided before the web page can be programmed. The existence of
a trace link between a requirement and copy thus indicates that the
step has been done. The developers can therefore plan for tasks based
on these dependencies, e.g., the task of copy writing will be planned
before that of web page development

Goal 7 Improve the visibility of progress from the PO’s point of view The TIM makes it easier to track progress since it clearly identifies
the elements affected by a change. When comparing with which
elements have already been changed (e.g., tests, customer content,
models) to which have to be changed, a notion of completeness can
be derived. Notably, however, traceability does not help establishing
to which degree the different elements have already been completed,
just if they have been touched at all

Fig. 4   Organization structure of the company

Fig. 5   Initial traceability information model. Links shown as dotted
lines were already captured at the company

74	 Requirements Engineering (2022) 27:53–81

1 3

Ta
bl

e 
5  

A
ss

es
sm

en
t o

f P
ro

ce
ss

 G
oa

ls
 a

ga
in

st
Tr

ac
ea

bi
lit

y
G

oa
ls

 (c
f.

Ta
bl

e
4)

C
ur

re
nt

 p
ra

ct
ic

e
Pr

oc
es

s g
oa

l
Su

pp
or

t b
y

tra
ce

ab
ili

ty
 g

oa
ls

 (T
G

)

Re
qu

ire
m

en
ts

 E
ng

in
ee

ri
ng

 T
he

 P
O

s a
nd

 th
e

BA
 a

re
 re

sp
on

-
si

bl
e

fo
r t

he
 re

qu
ire

m
en

ts
 e

ng
in

ee
rin

g
ta

sk
s w

hi
ch

 a
re

 to

el
ic

it
re

qu
ire

m
en

ts
 fr

om
 th

e
di

ffe
re

nt
 v

al
ue

 te
am

s,
do

cu
m

en
t

th
es

e
re

qu
ire

m
en

ts
 a

nd
 m

ak
e

su
re

 th
ey

 a
re

 tr
an

sl
at

ed
 in

to

ac
tio

na
bl

e
ta

sk
s.

Th
e

re
qu

ire
m

en
ts

 a
re

 w
rit

te
n

in
 G

oo
gl

e
D

riv
e

sp
re

ad
sh

ee
ts

 so
 th

at
 th

ey
 c

an
 b

e
ea

si
ly

 sh
ar

ed
. W

he
n

re
qu

ire
m

en
ts

 c
om

e
fro

m
 e

xt
er

na
l e

nt
iti

es
, e

.g
.,

re
gu

la
tio

n
bo

ar
ds

, t
he

y
ar

e
in

 P
D

F
fo

rm
at

Pr
oc

es
s G

oa
l 1

 E
lic

it
al

l r
eq

ui
re

m
en

ts
 fr

om
 th

e
PO

/B
A’

s p
oi

nt

of
 v

ie
w

Pr
oc

es
s G

oa
l 2

 A
llo

w
 b

re
ak

do
w

n
of

 a
ll

re
qu

ire
m

en
ts

 in
to

ac

tio
na

bl
e

ta
sk

s f
ro

m
 a

 P
O

/B
A’

s p
oi

nt
 o

f v
ie

w
Pr

oc
es

s G
oa

l 3
 Im

pr
ov

e
th

e
id

en
tifi

ca
tio

n
of

 re
la

te
d

re
qu

ire
-

m
en

ts
 fr

om
 th

e
PO

/B
A’

s p
oi

nt
 o

f v
ie

w
Su

pp
or

te
d

by
 T

G
 5

 to
 in

cr
ea

se
 th

e
effi

ci
en

cy
 o

f i
de

nt
ify

in
g

ar
tif

ac
ts

 re
le

va
nt

 to
 c

ha
ng

e
fro

m
 th

e
BA

’s
 p

oi
nt

 o
f v

ie
w.

Ev

en
 th

ou
gh

 th
e

tra
ce

ab
ili

ty
 g

oa
l i

s f
or

m
ul

at
ed

 fr
om

 th
e

le
ad

de

ve
lo

pe
r’s

 p
oi

nt
 o

f v
ie

w
, b

ot
h

th
e

BA
 a

nd
 P

O
 c

an
 u

se
 li

nk
s

be
tw

ee
n

tic
ke

ts
 a

nd
 re

qu
ire

m
en

ts
 to

 id
en

tif
y

re
la

te
d

re
qu

ire
-

m
en

ts
, e

.g
.,

if
th

e
re

qu
ire

m
en

ts
 a

re
 li

nk
ed

 to
 th

e
sa

m
e

tic
ke

t
So

ftw
ar

e
D

es
ig

n
A

t t
he

 b
eg

in
ni

ng
 o

f p
ro

je
ct

s,
th

e
de

ve
lo

p-
er

s d
es

ig
n

a
hi

gh
-le

ve
l o

ve
rv

ie
w

 e
ith

er
 o

n
th

e
w

hi
te

 b
oa

rd

(s
to

re
d

as
 p

ic
tu

re
s)

 o
r i

n
a

U
M

L
m

od
el

lin
g

to
ol

 (s
to

re
d

in

th
e

co
rr

es
po

nd
in

g
fo

rm
at

)

Pr
oc

es
s G

oa
l 4

 Im
pr

ov
e

th
e

un
de

rs
ta

nd
in

g
of

 th
e

so
ftw

ar
e

re
qu

ire
m

en
ts

 fr
om

 a
 d

ev
el

op
er

’s
 p

oi
nt

 o
f v

ie
w

Pr
oc

es
s G

oa
l 5

 A
llo

w
 c

re
at

io
n

of
 a

 h
ig

h-
le

ve
l d

es
ig

n
ba

se
d

on

th
e

re
qu

ire
m

en
ts

 fr
om

 a
 d

ev
el

op
er

’s
 p

oi
nt

 o
f v

ie
w

Su
pp

or
te

d
by

 T
G

 2
 to

 im
pr

ov
e

th
e

vi
si

bi
lit

y
of

 th
e

de
si

gn

ra
tio

na
le

 fr
om

 th
e

de
ve

lo
pm

en
t t

ea
m

’s
 p

er
sp

ec
tiv

e,
 a

nd

ac
hi

ev
ed

 u
si

ng
 a

 si
m

ila
r r

ea
so

ni
ng

 a
s f

or
 P

ro
ce

ss
 G

oa
l 3

D
ev

el
op

m
en

t T
he

 d
ev

el
op

er
s w

or
k

on
 th

e
tic

ke
ts

 a
ss

ig
ne

d
to

th

em
 a

nd
 p

ro
du

ce
 c

od
e.

 T
he

 c
od

e
is

 w
rit

te
n

m
an

ua
lly

 in

PH
P

an
d

sto
re

d
in

 g
it

re
po

si
to

rie
s

Pr
oc

es
s G

oa
l 6

 A
llo

w
 im

pl
em

en
tin

g
ne

w
 fe

at
ur

es
 fr

om
 a

de

ve
lo

pe
r’s

 p
oi

nt
 o

f v
ie

w
Pr

oc
es

s G
oa

l 7
 A

llo
w

 im
pl

em
en

tin
g

ch
an

ge
s o

f e
xi

sti
ng

fe

at
ur

es
 fr

om
 a

 d
ev

el
op

er
’s

 p
oi

nt
 o

f v
ie

w
Pr

oc
es

s G
oa

l 8
 Im

pr
ov

e
th

e
id

en
tifi

ca
tio

n
of

 a
rti

fa
ct

s t
ha

t
ne

ed
 to

 c
ha

ng
e

fro
m

 a
 d

ev
el

op
er

’s
 p

oi
nt

 o
f v

ie
w

Su
pp

or
te

d
by

 T
G

 4
 to

 in
cr

ea
se

 th
e

effi
ci

en
cy

 o
f i

de
nt

ify
in

g
ar

tif
ac

ts
 re

la
te

d
to

 a
 c

ha
ng

e.
 T

ra
ce

 li
nk

s f
ro

m
 ti

ck
et

s t
o

ot
he

r
de

ve
lo

pm
en

t a
rti

fa
ct

s s
ho

w
 w

hi
ch

 a
rti

fa
ct

s a
re

 a
ffe

ct
ed

 b
y

th
e

ch
an

ge
 d

es
cr

ib
ed

 in
 th

e
tic

ke
t

Pr
oc

es
s G

oa
l 9

 Im
pr

ov
e

th
e

un
de

rs
ta

nd
in

g
of

 th
e

re
la

tio
ns

hi
p

be
tw

ee
n

co
de

 a
nd

 re
qu

ire
m

en
ts

 fr
om

 a
 d

ev
el

op
er

’s
 p

oi
nt

 o
f

vi
ew

Su
pp

or
te

d
by

 T
G

 4
 a

nd
 a

ch
ie

ve
d

us
in

g
a

si
m

ila
r r

ea
so

ni
ng

 a
s

fo
r P

ro
ce

ss
 G

oa
l 8

Pr
oc

es
s G

oa
l 1

0
Im

pr
ov

e
th

e
pl

an
ni

ng
 p

ro
ce

ss
 fo

r f
ut

ur
e

ch
an

ge
s f

ro
m

 a
 d

ev
el

op
er

’s
 p

oi
nt

 o
f v

ie
w

Su
pp

or
te

d
by

 T
G

 6
 to

 im
pr

ov
e

th
e

vi
si

bi
lit

y
of

 th
e

pr
oc

es
s

ste
ps

. T
ra

ce
 li

nk
s a

llo
w

 to
 d

et
er

m
in

e
w

hi
ch

 p
ar

ts
 o

f t
he

 p
ro

-
ce

ss
 n

ee
d

to
 b

e
ex

ec
ut

ed
 fi

rs
t a

nd
 th

er
ef

or
e

pl
an

 a
cc

or
di

ng
ly

.
A

 m
is

si
ng

 li
nk

 fr
om

 m
od

el
 to

 im
pl

em
en

ta
tio

n,
 e

.g
.,

in
di

ca
te

s
th

at
 th

e
co

de
 h

as
 n

ot
 y

et
 b

ee
n

w
rit

te
n

Q
ua

lit
y

As
su

ra
nc

e
Th

e
de

ve
lo

pe
d

fe
at

ur
e

is
 te

ste
d

ag
ai

ns
t i

ts

re
qu

ire
m

en
ts

 to
 v

er
ify

 th
at

 it
 w

or
ks

 c
or

re
ct

ly
. T

he
 c

om
-

pa
ny

 h
as

 d
ed

ic
at

ed
 te

ste
rs

 w
ho

 w
rit

e
te

sts
 fo

r i
m

pl
em

en
te

d
fe

at
ur

es
. T

he
 te

sts
 a

re
 st

or
ed

 in
 g

it
re

po
si

to
rie

s t
og

et
he

r w
ith

th

e
co

de
 th

ey
 te

st

Pr
oc

es
s G

oa
l 1

1
Im

pr
ov

e
th

e
un

de
rs

ta
nd

in
g

of
 re

qu
ire

m
en

ts

fro
m

 a
 te

ste
r’s

 p
oi

nt
 o

f v
ie

w
Su

pp
or

te
d

by
 T

G
 2

 a
nd

 a
ch

ie
ve

d
us

in
g

a
si

m
ila

r r
ea

so
ni

ng
 a

s
fo

r P
ro

ce
ss

 G
oa

l 3
Pr

oc
es

s G
oa

l 1
2

A
llo

w
 v

er
ify

in
g

fe
at

ur
es

 fr
om

 a
 te

ste
r’s

 p
oi

nt

of
 v

ie
w

Su
pp

or
te

d
by

 T
ra

ce
ab

ili
ty

 G
oa

l 4
 a

nd
 a

ch
ie

ve
d

us
in

g
a

si
m

ila
r

re
as

on
in

g
as

 fo
r P

ro
ce

ss
 G

oa
l 8

Pr
oc

es
s G

oa
l 1

3
Im

pr
ov

e
th

e
un

de
rs

ta
nd

in
g

of
 w

hi
ch

 a
rti

fa
ct

s
ne

ed
 to

 b
e

te
ste

d
af

te
r a

 c
ha

ng
e

is
 m

ad
e

fro
m

 a
 te

ste
r’s

 p
oi

nt

of
 v

ie
w

75Requirements Engineering (2022) 27:53–81	

1 3

Having said this, one of the major challenges of traceabil-
ity is the inability to measure its RoI [22, 54]. This is because
the benefits of traceability require time to manifest and may
be affected by other factors such as the type of project and
employee turnover [27]. It is also difficult to determine the
entire cost of traceability in the development life-cycle [22].
One of our long-term goals, independent of TracIMo, was to
investigate the RoI of traceability for the company. However,
due to organizational changes that occurred at the company,
this data collection was not possible. While it is possible to
quantify the amount of effort invested to design the trace-
ability strategy, deploy the strategy at the company and the
average amount of time it takes the BA to create links, these
kinds of measurements do not allow to quantify the RoI after
a short time. We did, however, observe perceived benefits in
a qualitative manner using the follow-up interviews.

To make sure that the amount of time invested in apply-
ing TracIMo is manageable and plannable, we provide our
recommendations on how to effectively apply TracIMo in
Sect. 6.4.

6.3 � Challenges of traceability

While TracIMo contains explicit steps for, e.g., the defini-
tion of a traceability information model, the concrete form
of such artefacts is based on many factors. We encountered
five challenges as well as important decisions that needed
to be made during the design of the traceability strategy
with TracIMo that we believe can be encountered in other
cases as well:

1.	 trace link granularity;
2.	 scope of the trace links;
3.	 the need for intermediate artifacts;
4.	 time required to create links; and
5.	 adoption of the traceability process.

While these challenges are not new to the research com-
munity, we discuss how they manifested in the case study
and how we dealt with them in order to provide additional
practical insights for both practitioners and researchers.Ta

bl
e 

5  
(c

on
tin

ue
d)

C
ur

re
nt

 p
ra

ct
ic

e
Pr

oc
es

s g
oa

l
Su

pp
or

t b
y

tra
ce

ab
ili

ty
 g

oa
ls

 (T
G

)

Pr
oj

ec
t M

an
ag

em
en

t T
hi

s a
ct

iv
ity

 is
 a

ss
oc

ia
te

d
w

ith
 p

la
nn

in
g

de
ve

lo
pm

en
t a

nd
 fo

llo
w

in
g

up
 o

n
th

e
pr

og
re

ss
 o

f d
ev

el
op

-
m

en
t t

o
m

ak
e

su
re

 th
at

 fe
at

ur
es

 b
ei

ng
 d

ev
el

op
ed

 a
lig

n
w

ith

th
e

go
al

s o
f t

he
 c

om
pa

ny

Pr
oc

es
s G

oa
l 1

4
Im

pr
ov

e
th

e
un

de
rs

ta
nd

in
g

of
 so

ftw
ar

e
re

qu
ire

m
en

ts
 fr

om
 a

 P
O

/B
A’

s p
oi

nt
 o

f v
ie

w
Su

pp
or

te
d

by
 T

G
 2

 a
nd

 a
ch

ie
ve

d
us

in
g

a
si

m
ila

r r
ea

so
ni

ng
 a

s
fo

r P
ro

ce
ss

 G
oa

l 3

Pr
oc

es
s G

oa
l 1

5
Im

pr
ov

e
eff

or
t e

sti
m

at
io

n
of

 re
qu

ire
m

en
ts

fro

m
 a

 P
O

/B
A’

s p
oi

nt
 o

f v
ie

w
Su

pp
or

te
d

by
 T

G
 3

, w
hi

ch
 is

 g
ea

re
d

to
w

ar
ds

 im
pr

ov
in

g
ac

cu
-

ra
cy

 o
f e

ffo
rt

es
tim

at
io

n.
 P

O
 a

nd
 B

A
 c

an
 u

se
 li

nk
s b

et
w

ee
n

th
e

re
qu

ire
m

en
ts

 a
nd

 ti
ck

et
s a

nd
 to

 o
th

er
 d

ev
el

op
m

en
t a

rti
-

fa
ct

s t
o

se
e

ho
w

 m
an

y
ar

tif
ac

ts
 w

ill
 n

ee
d

to
 b

e
in

sp
ec

te
d

an
d

ch
an

ge
d

Pr
oc

es
s G

oa
l 1

6
A

llo
w

 p
rio

rit
iz

in
g

re
qu

ire
m

en
ts

 fr
om

 a
 P

O
/

BA
’s

 p
oi

nt
 o

f v
ie

w

Pr
oc

es
s G

oa
l 1

7
Im

pr
ov

e
re

qu
ire

m
en

ts’
 p

ro
gr

es
s m

on
ito

rin
g

fro
m

 a
 P

O
/B

A’
s p

oi
nt

 o
f v

ie
w

Th
e

ta
bl

e
sh

ow
s w

hi
ch

 p
ro

ce
ss

 g
oa

ls
 m

ap
 to

 w
hi

ch
 tr

ac
ea

bi
lit

y
go

al
s a

nd
 h

ow
 th

e
ac

hi
ev

em
en

t o
f t

he
 tr

ac
ea

bi
lit

y
go

al
 su

pp
or

ts
 th

e
ac

hi
ev

em
en

t o
f t

he
 p

ro
ce

ss
 g

oa
l

Table 6   Development artifacts and tools at the company

Artifact Tool

Requirements and Copy Google Drive (Spreadsheets)
Change sets PDF
Tickets Jira
Customer content Media wiki
Models Papyrus
Code and Tests Git (PHP code)
Wireframes Axure (exported as PNG)

76	 Requirements Engineering (2022) 27:53–81

1 3

Trace link granularity Several studies (e.g., [29, 38, 43])
report that it is difficult for companies to know the right
level of granularity for the trace links. In our study we also
encountered this challenge. This was especially tricky for
design artifacts (models) and implementation artifacts
(code). During the first day of deployment, links were cre-
ated as fine-grained as possible. A ticket was, e.g., linked to
a specific UML attribute in a UML class and to a specific
PHP method in a PHP class. The feedback from developers
was that there were too many links, making the traceability
graph difficult to understand. The development team sug-
gested to use more coarse-grained links on the class level
for both the models and the code. However, in the follow-
up interview, the BA reported that there are still tickets for
which it makes sense to create links to detailed design and
implementation. We thus decided that the granularity of the
links will be determined by the granularity of the ticket. If

Table 7   Characteristics used
to assess the tool and possible
values

Characteristic Possible value

Information storage Centralized, Distributed, Separate Model, Inline
Level of integration Holistic, Hybrid, Separate
Tool type Application Life cycle Management (ALM), Requirements Manage-

ment, Standalone traceability tool, Integration tool, Special purpose
tool, Link recovery tool

Integration context Tool-chain specific, Framework, Generic
Configuration options Traceability Information Model, Artifact adapters, Visualization
Automation Link generation, Consistency checking, Workflow enforcement

Table 8   Assessment of traceability tools [61]

Name License Type Information Stor-
age

Level of integra-
tion

Integration
context

Configuration
options

Automation

Tarski EPL Standalone Separate model Separate Framework
(Eclipse)

TIM Link generation

Eclipse Capra EPL Standalone Separate model Separate Framework
(Eclipse)

TIM, Adapters,
Reporting

Consistency
checks

RecCycle EPL Requirements
Management

Separate model Hybrid Framework
(Eclipse)

TIM None

OpenTrace AGPL Link recovery Inline Separate Tool-chain spe-
cific (GATE)

Reporting Link generation

OpenCert OSS Special Purpose
(Safety certifica-
tion)

Centralized Hybrid Framework
(Eclipse)

Reporting Unknown

Fig. 6   Evolved traceability information model. Links shown as dot-
ted lines are captured in JIRA. Note that all development artifacts are
now linked via the Ticket and the roadmap has been removed

Table 9   Selected metrics from
the JIRA ticketing system
before and after the introduction
of traceability

Project Total no. of
tickets before

Total no. of
tickets after

Wrong esti-
mates before

Wrong esti-
mates after

No. of com-
ments before

No. of com-
ments after

A 10 2 2 0 6 0
B 5 5 2 1 13 1
C 117 9 25 1 124 6
D 2 1 0 1 1 0

77Requirements Engineering (2022) 27:53–81	

1 3

the ticket contains low-level implementation details, then
it will be linked to detailed implementation and design and
vice versa. As a rule of thumb, the granularity between the
connected artifacts should match [38]. As a consequence,
traceability tools and the TIM should provide support for
linking to different levels of granularity so that users are
flexible.

Scope of trace links While links are created with respect
to specific tickets, the traceability graph for a certain model
element shows all existing links. If ticket A is, e.g., linked
to model element B, but model element B was previously
linked to ticket C, the developers see all this information in
the traceability graph. This can be confusing as the devel-
oper is only interested in links to the ticket she is work-
ing on. To overcome this challenge, we developed filtering
mechanisms that limit the links to those related to the ticket.
This was done by making sure that the traceability graph
contains links only to a selected ticket. While this solution
worked for the company, more sophisticated solutions exist.
For instance, the traceability tool Yakindu Traceability [28]
provides a query language that can be used to query the
trace model depending on what links the user is interested
in. Additionally research to process unstructured natural lan-
guage trace queries [52] and visual trace queries [35] also
exist.

Introduction of intermediate development artifacts for
traceability purposes As described in Sect. 5, supporting
the traceability goals and using the TIM as intended required
to introduce UML models of the current software in some
projects. As a consequence, the BA now needs to introduce
new model elements that are necessary to fulfill a require-
ment. This is necessary to show the new elements in the
traceability graphs. The company will thus make the models
the gold-standard and introduce new elements in the model
before they are implemented. A potential drawback of this
approach is that model and source code might get out of sync
and therefore the model will not be used. To solve this, noti-
fication mechanisms need to be put in place to notify the BA
of new classes that do not exist in the model. Such mecha-
nisms could automatically detect changes in the source code
and send a summary of these to the BA to incorporate cor-
responding changes in the UML model.

In more general terms, achieving traceability goals might
make it necessary to create new types of artifacts that need
to be maintained and integrated into the process. This can be
costly and might require additional changes to roles, activi-
ties, and processes. In the case of the organization, using
a UML model of the entire software was considered best
practice, so that the creation of the full UML model was con-
sidered a positive side aspect. In other cases, however, the
introduction of new development artifacts can be a liability
and the overall cost of introducing models into a develop-
ment process is very hard to estimate [60].

Time taken to create links Creating trace links in retro-
spect when plenty of development artifacts already exist is
a time consuming task. For instance, we measured that it
took the BA approximately 30 minutes to create seven links
to one ticket, which means an average of 4.2 minutes to cre-
ate one link. Note that this time involves the time to decide
on what needs to be linked and to locate the artifacts to be
linked. This is a well-known traceability problem [24]. There
is research on automation of this process (e.g., [7, 10, 26])
but the resulting links are not 100% correct and have to be
checked manually, which is also a time consuming task espe-
cially if the tool produces many false positives [42]. Since
trace links are created for specific tickets in this case, the BA
does not need to create all links at once. It is sufficient if the
developers have links for the tasks they are working on in a
particular sprint. This means that the task of creating links
can be performed incrementally and is therefore manageable
for the BA.

Adoption of the traceability process We faced some
resistance by the lead developer who did not make time for
creating or using trace links. This is because the lead devel-
oper had a lot of experience in the system. Even though in
the interview he showed an interest in traceability, he did not
have an immediate need for trace links and therefore was not
motivated to create them. He was not the main beneficiary of
the trace links, either, but still one of the best candidates to
create the links due to his experience in the system. Resist-
ance to change is a well-known challenge in change manage-
ment literature [34]. Specifically for traceability, the creators
of the links are usually not the ones who benefit the most
since they already know the system well [43]. This serves as
a reminder that for each change introduced in a company, it
is crucial to make sure that all people who will be affected
are involved in the change. It is also important to ensure that
all the involved stakeholders understand clearly what the
change is and how they will benefit from it.

6.4 � Reflections on applying TracIMo

In this section, we give our reflections on the experience of
applying TracIMo to the company. Since TracIMo consists
of ten steps and may seem like a heavy weight approach, we
give the following four recommendations on how it can be
applied effectively.

Carry out several steps at the same time While TracIMo
consists of ten distinct steps, in a realistic setting, some of
these steps can be carried out together in order to leverage
the synergies between them. For instance, Steps 1 and 2 both
use data from the development process and can be carried
out together. The same is true for Steps 3 and 5.

Choose the right roles Applying TracIMo in a company
requires data from different roles. It is important to choose
these roles with care in the beginning in order to reduce

78	 Requirements Engineering (2022) 27:53–81

1 3

the number of iterations needed to design a working trace-
ability strategy. For instance, in our case, we had the BA as
the main point of contact. However, we also interviewed
developers and POs in order to get the full picture at the
company. In cases where TracIMo will be used without the
help of researchers (which is what we envision), an experi-
enced person with a senior/managerial role at the company
with intimate knowledge of the development process as well
as the developed product should take the lead in conducting
the steps. This has the advantage that the person already
has a lot of information required by TracIMo and will thus
reduce the time needed to perform some of the steps that
require data collection. Care has to be taken, though, that all
stakeholders are included and implicit biases do not yield an
unsuitable traceability strategy.

Define metrics based on available data TracIMo requires
the definition of metrics in order to measure how the defined
traceability strategy is performing. It may be tempting to
define metrics whose data is not yet available and for which
systematic measurements need to be established. While
these metrics may prove useful, this is recommended if and
only if there is no alternative data available that can be used
to measure that particular aspect. We recommend to define
metrics that use already available data in the development
process, or data that can be automatically collected to reduce
the amount of effort needed in data collection.

Mind the level of formality For steps that require docu-
mentation, TracIMo gives recommendations on which nota-
tions are available. For instance when defining the traceabil-
ity process, on one end of the spectrum, it is possible to use
a formal language such as SPEM and on the other end, one
can use wikis to document the process. In a realistic setting,
we recommend that the level of formality matches with what
is expected in the organization. For example if an organiza-
tion follows agile principles where there is a need for lit-
tle documentation, the traceability strategy can be lightly
documented. However, if a company is in a safety critical
domain and requires the process to be formally documented,
a formal language can be used. This is to ensure that the
amount of effort spent on defining the traceability strategy
is minimized.

7 � Threats to validity

In this section we describe the limitations of our study first
with respect to the design of TracIMo and second with
respect to how TracIMo was evaluated.

To design TracIMo, we modified and extended the steps
in Rempel et al.’s [56] methodology and added our own.
When reasoning about which steps are needed, our aim was
to make sure that we cover all the steps needed to design,
implement and evaluate a traceability strategy. To verify that

the methodology makes sense we used a number of brain-
storming sessions with the researchers and the BA from the
company. As such, there is a chance that the methodology
may be lacking some steps that are specific to other contexts.
The company we conducted the study with is small, has one
small development team and uses agile development meth-
odologies in their development process. Therefore, TracIMo
needs to be applied in other contexts to verify both its appli-
cability and generalizability.

With respect to evaluation of TracIMo, we used a case
study in our design science cycle where we designed a
traceability strategy using TracIMo at a company. This is
a valid approach to evaluate an artifact such as TracIMo
as witnessed in the design science research literature (see,
e.g., [50, 51, 64]). There a number of threats to validity
applicable to the case study itself which are discussed below
using the threats to validity categories defined by Runeson
and Höst [58] for case studies.

Construct validity Construct validity aims to verify that
the concepts that are researched are understood by subjects
of the research. To evaluate the traceability strategy we
designed using TracIMo, we had multiple interviews and
focus groups after the introduction of traceability. To make
sure that the interviewees understood the concepts we were
researching we introduced the topic of traceability to all
respondents before the interview and gave examples. We
also performed member checking with the BA to verify the
data from the interviews.

Internal validity Internal validity is relevant when a
causal relationship is investigated. The immediate benefits
of the traceability strategy designed with TracIMo constitute
such a causal relationship. Researchers have to make sure
that there are no other factors that could affect this inves-
tigated relationship. While there were several speculated
benefits, we only reported benefits which where confirmed
by the evaluation interviews as well as the collected metrics.
Additionally, during the study, the company went through
several changes: (1) a change in the development process
(from an isolated development team to a cross cutting devel-
opment team); (2) a merger with another company; and (3)
one of the developers left the company. While we continued
the study according to the planned methodology, the changes
in the company may have an effect on our results, especially
since developers had less time to work with the links dur-
ing the merger. This also led to less data being available
for quantitative evaluation. Additionally, the lead developer
was reluctant to create trace links. We attribute this to the
fact that he already knew the system well and thought that
trace links would not be useful for him but only for the other
developers.

However, it needs to be noted that the benefits of the new
traceability strategy to the organization are not the main
subject of research in this paper. We used the case study to

79Requirements Engineering (2022) 27:53–81	

1 3

evaluate the applicability of TracIMo and whether it is pos-
sible to measure any benefits. The results of the case study
show that this is possible, independent of the concrete long-
term benefit of the concrete strategy. The internal validity
of the case study as an indicator for TracIMo’s applicability
is therefore given.

External validity External validity refers to how the
results of the study can be generalized. Since we evaluated
the methodology with one case study in one company, the
particularities of this company, e.g., that the company and
development team is small and works in an agile manner,
might have been conducive to the application of TracIMo.
The concrete strategy developed in the case study including
the process and traceability goals, the TIM supporting these
goals, and the concrete steps in the process are specific to
the case company. However, TracIMo itself has not been
developed to only fit this company and none of the steps in
TracIMo are specific to the organization or to the concrete
case we used to evaluate the methodology. We therefore
believe that the steps in TracIMo are generic enough and
independent of the context. However, further case studies
are needed to verify this.

Reliability This validity threat refers to whether the study
is repeatable. We have documented our case study process
as much as possible. For instance, our interview guide and
the detailed description of the case study are available in the
supplemental material for this paper [2]. This is to ensure
that other researchers who want to repeat the study have
all the materials they need and to allow practitioners to use
TracIMo as a basis for defining a tailored traceability strat-
egy for their organization.

8 � Conclusions and future work

This paper presents TracIMo, a methodology to systemati-
cally design and introduce a traceability strategy in compa-
nies. It describes the different steps in the methodology and
demonstrates how they are applied in practice using a design
science approach. We evaluated TracIMo in a case study
with an agile development team. This led to the creation of
a “ticket-centric” and incremental traceability strategy that
was used to effectively create trace links in retrospect. The
case study demonstrates that the steps in TracIMo support
the design of a traceability strategy that it is applicable in
the practical setting of a company.

Our study also shows that the design goals for TracI-
Moand how we implemented them support companies think-
ing about adopting traceability. The main takeaway is that, in
order to gain benefits from traceability, it is crucial to define
specific traceability goals upfront, and design a traceability
strategy that will enable the development team to reach these
goals. This requires tailoring the traceability information

model and the traceability tool and deriving metrics that to
measure how the goals have been fulfilled. All of these steps
are part of TracIMo and were successfully demonstrated in
the case study.

The case study revealed several challenges of introducing
traceability in practice. We have proposed solutions for these
challenges as part of our iterative application of TracIMo
in the case study. As part of our future work, we plan to
further evaluate TracIMo, particularly in different develop-
ment contexts, e.g., with larger organizations and with teams
using different development approaches. We also believe
that the ability of TracIMo to define metrics and measure
quantitatively and qualitatively if a traceability strategy is
successful is a necessary step towards identifying the return
of investment of traceability. We therefore plan to use these
future applications of TracIMo to elicit long term benefits of
traceability and devise strategies to quantitatively measure
the return on investment of traceability based on the set of
metrics.

References

	 1.	 Amalfitano D, De Simone V, Maietta RR, Scala S, Fasolino AR
(2019) Using tool integration for improving traceability manage-
ment testing processes: an automotive industrial experience. J
Softw Evol Process 31(6):e2171

	 2.	 Maro S, Steghöfer J-P, Bozzelli P, Muccini H (2021) Supplemen-
tal information for “TracIMo: a traceability introduction method-
ology and its evaluation in an Agile development team”. https://​
doi.​org/​10.​5281/​zenodo.​41605​68

	 3.	 Arkley P, Riddle S, Brookes T (2006) Tailoring traceability
information to business needs. In: 2006 14th IEEE international
requirements engineering conference (RE). IEEE, pp 239–244

	 4.	 Asuncion HU, François F, Taylor RN (2007) An end-to-end indus-
trial software traceability tool. In: Proceedings of the the 6th joint
meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, pp 115–124

	 5.	 Asuncion HU, Asuncion AU, Taylor RN (2010) Software trace-
ability with topic modeling. In: Proceedings of the 32nd ACM/
IEEE international conference on software engineering, vol. 1.
ACM, pp 95–104

	 6.	 Biehl JT, Czerwinski M, Czerwinski M, Smith G, Robertson GG
(2007) Fastdash: a visual dashboard for fostering awareness in
software teams. In: Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, pp 1313–1322

	 7.	 Borg M, Runeson P, Ardö A (2014) Recovering from a decade: a
systematic mapping of information retrieval approaches to soft-
ware traceability. Emp Softw Eng 19(6):1565–1616

	 8.	 Bouillon E, Mäder P, Philippow I (2013) A survey on usage sce-
narios for requirements traceability in practice. In: International
working conference on requirements engineering: foundation for
software quality. Springer, pp 158–173

	 9.	 Cleland-Huang J, Hayes JH, Domel JM (2009) Model-based trace-
ability. In: 2009 ICSE workshop on traceability in emerging forms
of software engineering. IEEE, pp 6–10

	10.	 Cleland-Huang J, Czauderna A, Gibiec M, Emenecker J (2010)
A machine learning approach for tracing regulatory codes to
product specific requirements. In: Proceedings of the 32nd

https://doi.org/10.5281/zenodo.4160568
https://doi.org/10.5281/zenodo.4160568

80	 Requirements Engineering (2022) 27:53–81

1 3

ACM/IEEE international conference on software engineering.
ACM, pp 155–164

	11.	 Cleland-Huang J, Gotel OC, Huffman Hayes J, Mäder P, Zisman
A (2014) Software traceability: trends and future directions. In:
Future of software engineering proceedings, pp 55–69

	12.	 COEST (2015) Center of excellence for software traceability
(coest). http://​www.​coest.​org. Accessed 15 Oct 2017

	13.	 Cruzes DS, Dyba T (2011) Recommended steps for thematic
synthesis in software engineering. In: 2011 International sym-
posium on empirical software engineering and measurement.
IEEE, pp 275–284

	14.	 De Lucia A, Fasano F, Oliveto R (2008) Traceability manage-
ment for impact analysis. In: Frontiers of software maintenance,
2008. FoSM 2008. IEEE, pp 21–30

	15.	 Dömges R, Pohl K (1998) Adapting traceability environments
to project-specific needs. Commun ACM 41(12):54–62

	16.	 Dybå T (2005) An empirical investigation of the key factors for
success in software process improvement. IEEE Trans Softw
Eng 31(5):410–424

	17.	 Engelsman W, Wieringa RJ, van Sinderen M, Gordijn J, Haaker
T (2019) Realizing traceability from the business model to
enterprise architecture. In: International conference on con-
ceptual modeling. Springer, pp 37–46

	18.	 Espinoza A, Garbajosa J (2011) A study to support agile meth-
ods more effectively through traceability. Innov Syst Softw Eng
7(1):53–69

	19.	 Florez JM (2019) Automated fine-grained requirements-to-code
traceability link recovery. In: 2019 IEEE/ACM 41st interna-
tional conference on software engineering: companion proceed-
ings (ICSE-Companion). IEEE, pp 222–225

	20.	 Gotel O, Mäder P (2012) Acquiring tool support for traceability.
In: Software and systems traceability. Springer, pp 43–68

	21.	 Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A,
Grünbacher P, Antoniol G (2012a) The quest for ubiquity: A
roadmap for software and systems traceability research. In: 2012
20th IEEE international requirements engineering conference
(RE). IEEE, pp 71–80

	22.	 Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A,
Grünbacher P, Dekhtyar A, Antoniol G, Maletic J (2012b) The
grand challenge of traceability (v1. 0). In: Software and systems
traceability. Springer, pp 343–409

	23.	 Gotel O, Cleland-Huang J, Hayes JH, Zisman A, Egyed A,
Grünbacher P, Dekhtyar A, Antoniol G, Maletic J, Mäder P
(2012c) Traceability fundamentals. In: Software and systems
traceability. Springer, pp 3–22

	24.	 Gotel OC, Finkelstein C (1994) An analysis of the requirements
traceability problem. In: 1994., Proceedings of the first interna-
tional conference on requirements engineering (RE). IEEE, pp
94–101

	25.	 Guo J, Cheng J, Cleland-Huang J (2017) Semantically enhanced
software traceability using deep learning techniques. In: Pro-
ceedings of the 39th international conference on software engi-
neering. IEEE Press, pp 3–14

	26.	 Hayes JH, Dekhtyar A, Osborne J (2003) Improving require-
ments tracing via information retrieval. In: 2003 11th IEEE
international requirements engineering conference (RE). IEEE,
pp 138–147

	27.	 Ingram C, Riddle S (2012) Cost-benefits of traceability. In: Soft-
ware and systems traceability. Springer, pp 23–42

	28.	 Itemis (2019) Yakindu traceability. https://​www.​itemis.​com/​en/​
yakin​du/​trace​abili​ty/. Accessed 07 Aug 2019

	29.	 Javed MA, Zdun U (2014) A systematic literature review of trace-
ability approaches between software architecture and source code.
In: Proceedings of the 18th international conference on evaluation
and assessment in software engineering. ACM, p 16

	30.	 Jönsson P, Lindvall M (2005) Impact analysis. In: Engineering
and managing software requirements. Springer, pp 117–142

	31.	 Kinoshita F (2008) Practices of an agile team. In: Agile 2008
conference. IEEE, pp 373–377

	32.	 Kirova V, Kirby N, Kothari D, Childress G (2008) Effective
requirements traceability: models, tools, and practices. Bell
Labs Tech J 12(4):143–157

	33.	 Klimpke L, Hildenbrand T (2009) Towards end-to-end trace-
ability: insights and implications from five case studies. In:
2009 Fourth international conference on software engineering
advances. IEEE, pp 465–470

	34.	 Kotter JP, Cohen DS (2002) The heart of change: Real-life sto-
ries of how people change their organizations. Harvard Business
Press, Harvard

	35.	 Mäder P, Cleland-Huang J (2013) A visual language for mod-
eling and executing traceability queries. Softw Syst Modell
12(3):537–553

	36.	 Mäder P, Gotel O (2012) Ready-to-use traceability on evolv-
ing projects. In: Software and systems traceability. Springer,
pp 173–194

	37.	 Mader P, Gotel O, Philippow I (2009) Motivation matters in the
traceability trenches. In: 2009 17th IEEE international require-
ments engineering conference. IEEE, pp 143–148

	38.	 Mader P, Jones PL, Zhang Y, Cleland-Huang J (2013) Strategic
traceability for safety-critical projects. IEEE Softw 30(3):58–66

	39.	 Mahmoud A, Niu N (2013) Supporting requirements traceability
through refactoring. In: 2013 21st IEEE international require-
ments engineering conference (RE). IEEE, pp 32–41

	40.	 Maro S, Steghöfer JP (2016) Capra: a configurable and extend-
able traceability management tool. In: 2016 24th International
requirements engineering conference (RE). IEEE, pp 407–408

	41.	 Maro S, Anjorin A, Wohlrab R, Steghöfer JP (2016) Traceability
maintenance: factors and guidelines. In: 2016 31st IEEE/ACM
international conference on automated software engineering
(ASE). IEEE, pp 414–425

	42.	 Maro S, Steghöfer JP, Hayes J, Cleland-Huang J, Staron M
(2018a) Vetting automatically generated trace links: what
information is useful to human analysts? In: 2018 IEEE 26th
international requirements engineering conference (RE). IEEE,
pp 52–63

	43.	 Maro S, Steghöfer JP, Staron M (2018b) Software traceability in
the automotive domain: challenges and solutions. J Syst Softw
141:85–110

	44.	 Mezghani M, Kang J, Kang EB, Sedes F (2019) Clustering for
traceability managing in system specifications. In: 2019 IEEE
27th international requirements engineering conference (RE).
IEEE, pp 257–264

	45.	 Nair S, De La Vara JL, Sen S (2013) A review of traceability
research at the requirements engineering conference re@ 21. In:
2013 21st IEEE international requirements engineering confer-
ence (RE). IEEE, pp 222–229

	46.	 Nair S, de la Vara JL, Melzi A, Tagliaferri G, De-La-Beaujar-
diere L, Belmonte F (2014) Safety evidence traceability: Prob-
lem analysis and model. In: International working conference
on requirements engineering: Foundation for software quality.
Springer, pp 309–324

	47.	 Niazi M (2006) Software process improvement: a road to suc-
cess. In: International conference on product focused software
process improvement. Springer, pp 395–401

	48.	 Pages B (2018) Bouml. https://​www.​bouml.​fr/​index.​html.
Accessed 23 May 2019

	49.	 Panis MC (2010) Successful deployment of requirements trace-
ability in a commercial engineering organization... really. In:
2010 18th IEEE InternationalRequirements Engineering Con-
ference (RE), IEEE, pp 303–307

http://www.coest.org
https://www.itemis.com/en/yakindu/traceability/
https://www.itemis.com/en/yakindu/traceability/
https://www.bouml.fr/index.html

81Requirements Engineering (2022) 27:53–81	

1 3

	50.	 Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007)
A design science research methodology for information systems
research. J Manage Inform Syst 24(3):45–77

	51.	 Prat N, Comyn-Wattiau I, Akoka J (2014) Artifact evaluation in
information systems design-science research-a holistic view. In:
9th Pacific Asia conference on information systems. p 23

	52.	 Pruski P, Lohar S, Goss W, Rasin A, Cleland-Huang J (2015) Tiqi:
answering unstructured natural language trace queries. Requir Eng
20(3):215–232

	53.	 Ramesh B, Jarke M (2001) Toward reference models for require-
ments traceability. IEEE Trans Softw Eng 27(1):58–93

	54.	 Regan G, McCaffery F, McDaid K, Flood D (2012) The barriers
to traceability and their potential solutions: towards a reference
framework. In: 2012 38th Euromicro conference on software engi-
neering and advanced applications. IEEE, pp 319–322

	55.	 Rempel P, Lehnert S, Kuschke T et al (2012) A framework for
traceability tool comparison. Softwaretechnik-Trends 32(3):6–11

	56.	 Rempel P, Mäder P, Kuschke T (2013) An empirical study on
project-specific traceability strategies. In: 2013 21st IEEE inter-
national requirements engineering conference (RE). IEEE, pp
195–204

	57.	 Rempel P, Mäder P, Kuschke T, Cleland-Huang J (2014) Mind the
gap: assessing the conformance of software traceability to relevant
guidelines. In: Proceedings of the 36th international conference
on software engineering. ACM, pp 943–954

	58.	 Runeson P, Höst M (2009) Guidelines for conducting and report-
ing case study research in software engineering. Emp Softw Eng
14(2):131

	59.	 Ståhl D, Hallén K, Bosch J (2017) Achieving traceability in large
scale continuous integration and delivery deployment, usage and
validation of the eiffel framework. Emp Softw Eng 22(3):967–995

	60.	 Staron M (2006) Adopting model driven software development
in industry—a case study at two companies. In: Nierstrasz O,
Whittle J, Harel D, Reggio G (eds) Model driven engineering
languages and systems. Springer, Berlin Heidelberg, Berlin, Hei-
delberg, pp 57–72

	61.	 Steghöfer JP (2017) Software traceability tools: Overview and
categorisation. In: Report of the GI working group “traceability/

evolution”. German Informatics Society (GI), pp 2–7. http://​pi.​
infor​matik.​uni-​siegen.​de/​gi/​stt/​38_1/​01_​Fachg​ruppe​nberi​chte/​
ARC_​AKTE/​ARC_​AKTE_​2017_​p2_​stegh​oefer.​pdf

	62.	 Van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal/
question/metric (GQM) approach. Encyclopedia of Software
Engineering

	63.	 Vara JM, Bollati VA, Jiménez Á, Marcos E (2014) Dealing with
traceability in the mddof model transformations. IEEE Trans
Softw Eng 40(6):555–583

	64.	 Venable J, Pries-Heje J, Baskerville R (2012) A comprehensive
framework for evaluation in design science research. In: Inter-
national conference on design science research in information
systems. Springer, pp 423–438

	65.	 Wang B, Peng R, Li Y, Lai H, Wang Z (2018) Requirements trace-
ability technologies and technology transfer decision support: a
systematic review. J Syst Softw 146:59–79

	66.	 Wieringa R (2010) Design science methodology: principles and
practice. In: Proceedings of the 32nd ACM/IEEE international
conference on software engineering, vol 2. ACM, pp 493–494

	67.	 Winkler S, Pilgrim J (2010) A survey of traceability in require-
ments engineering and model-driven development. Softw Syst
Model (SoSyM) 9(4):529–565

	68.	 Wohlrab R, Steghöfer JP, Knauss E, Maro S, Anjorin A (2016)
Collaborative traceability management: challenges and opportuni-
ties. In: 2016 IEEE 24th international requirements engineering
conference (RE). IEEE, pp 216–225

	69.	 Wolfenstetter T, Basirati MR, Böhm M, Krcmar H (2018) Intro-
ducing trails: a tool supporting traceability, integration and visu-
alisation of engineering knowledge for product service systems
development. J Syst Softw 144:342–355

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://pi.informatik.uni-siegen.de/gi/stt/38_1/01_Fachgruppenberichte/ARC_AKTE/ARC_AKTE_2017_p2_steghoefer.pdf
http://pi.informatik.uni-siegen.de/gi/stt/38_1/01_Fachgruppenberichte/ARC_AKTE/ARC_AKTE_2017_p2_steghoefer.pdf
http://pi.informatik.uni-siegen.de/gi/stt/38_1/01_Fachgruppenberichte/ARC_AKTE/ARC_AKTE_2017_p2_steghoefer.pdf

	TracIMo: a traceability introduction methodology and its evaluation in an Agile development team
	Abstract
	1 Introduction
	2 Related work
	2.1 Frameworks for designing traceability strategies
	2.2 A comparison of TracIMo with existing works
	2.3 Case studies on introducing traceability

	3 Research method
	3.1 Problem identification and motivation
	3.2 Definition of the objectives for a solution
	3.3 Design and development
	3.4 Evaluation
	3.4.1 The case and context
	3.4.2 Data collection
	3.4.3 Data analysis

	4 TracIMo: a methodology to introduce traceability
	4.1 Phase 1: Define traceability strategy
	4.1.1 Steps 1 and 2—Analyze development process and traceability goals
	4.1.2 Step 3—Derive traceability information model
	4.1.3 Step 4: Assess process goals against traceability goals
	4.1.4 Step 5: Assess traceability goals against TIM
	4.1.5 Step 6: Derive traceability process

	4.2 Phase 2: Refine, deploy, and evaluate strategy
	4.2.1 Step 7: Select and customize tool
	4.2.2 Step 8: Deployment of the designed traceability strategy
	4.2.3 Step 9: Evaluation
	4.2.4 Step 10: Anchor process and tool

	5 Case study to evaluate TracIMo in a company
	5.1 Step 1 and 2: Analyze existing process and identify traceability goals
	5.2 Step 3 and 5: Derive traceability information model and assess traceability goals against TIM
	5.3 Step 4: Assess process goals against traceability goals
	5.4 Step 6: Derive traceability process
	5.5 Step 7: Select and customize tool
	5.6 Step 8: Deploy process and tool
	5.7 Step 9: Evaluate process and tool
	5.8 Step 10: Anchor process and tool

	6 Discussion
	6.1 Designing a tailored traceability strategy
	6.2 Measuring the impact of the traceability strategy
	6.3 Challenges of traceability
	6.4 Reflections on applying TracIMo

	7 Threats to validity
	8 Conclusions and future work
	References

