
Vol.:(0123456789)1 3

Requirements Engineering (2021) 26:481–508
https://doi.org/10.1007/s00766-021-00352-6

ORIGINAL ARTICLE

A framework for evaluating and improving requirements
specifications based on the developers and testers perspective

Ana Carolina Oran1 · Gleison Santos2 · Bruno Gadelha1 · Tayana Conte1

Received: 1 July 2020 / Accepted: 15 April 2021 / Published online: 25 June 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Requirements specifications are essential to properly communicate requirements among the software development team
members. However, each role in the team has different informational needs in order to perform their activities. Thus, the
requirements engineer should provide the necessary information to meet each team member’s necessities to reduce errors in
software development due to inadequate or insufficient communication. Although some research is concerned with commu-
nicating requirements among clients and analysts, no related research has been found to evaluate and improve requirements
communication within the software development team. With this in mind, we present the ReComP framework, which assists
in the identification of problems in the artifacts used to communicate requirements, identification of informational require-
ments for each role of the development team, and provide improvement suggestions to address requirements communication
problems. ReComP was developed using the Design Science Research (DSR) method and this paper presents the results of
two DSR cycles considering the use of ReComP for the developer and tester roles by using, respectively, user stories and
use cases as requirements specifications. The results provide evidence that ReComP helps software development teams to
identify and improve issues in the requirements specifications used for project communication. In two independent studies,
ReComP was able to decrease the frequency of problems by 77% in user stories identified by developers and the frequency
of all (100%) problems in use cases identified by testers.

Keywords Requirements engineering · Requirements specification · Requirements based on perspectives · Requirements
communication · Design Science Research

1 Introduction

Requirements communication plays an essential role in
software development projects for coordinating clients,
commercial project functions, and software engineers [1].
According to Fricker et al. [2], requirements communication

is the process of transmitting a customer’s needs to a devel-
opment team to implement a solution. Successful require-
ments communication leads to a common understanding
among stakeholders and the development team about what
the relevant requirements and their meaning for the system
to be developed are. Bjarnason et al. [3] state that require-
ments communication starts with contact with the customer
and continues throughout the development of the project,
involving different roles, for example, requirements engi-
neers, developers, and testers. The authors also state that the
requirements initially elicited need to be communicated and
altered to the requirements negotiated and communicated
among all affected roles. During software development, the
team needs to communicate effectively and share require-
ments information in order to achieve understanding, con-
sensus, and commitment to the project’s objectives. Require-
ments communication problems can cause productivity
losses or even design failures. For example, misunderstood
or unreported requirements can lead to software that does

 * Ana Carolina Oran
 ana.oran@icomp.ufam.edu.br

 Gleison Santos
 gleison.santos@uniriotec.br

 Bruno Gadelha
 bruno@icomp.ufam.edu.br

 Tayana Conte
 tayana@icomp.ufam.edu.br

1 Federal University of Amazonas (UFAM), Manaus, AM,
Brazil

2 Federal University of the State of Rio de Janeiro (UNIRIO),
Rio de Janeiro, RJ, Brazil

http://orcid.org/0000-0002-6446-7510
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00352-6&domain=pdf

482 Requirements Engineering (2021) 26:481–508

1 3

not meet the customer’s requirements and a subsequent low
number of sales or additional costs to alter or recreate the
implementation [1, 4]. Méndez Fernández et al. [5] highlight
that the critical requirements engineering (RE) problems are
related to communication problems and incomplete/hidden
or unspecified requirements.

The failure or success of any software depends mainly on
the software requirement specification, as it contains all the
requirements and characteristics of the product [6]. There
are different ways to represent the requirements of a system,
from the use of free texts to more structured forms, such as
use cases, user stories, and prototypes. The use case is a
description that is widely used to specify the purpose of a
software system and produce a report in terms of interactions
between the actors and the system [7–10]. Differently from
user stories, use cases are often used to describe the behav-
ior of a system from a more technical point of view [11].
User stories are a structure most often used in agile software
development [12, 13]. User stories can help the develop-
ment team to understand the requirements from the user’s
perspective [14]. However, according to Lucassen et al. [15],
user stories are often poorly written in practice, and this can
create communication problems during development. Pro-
totypes are drawings that show what the system’s user inter-
face (UI) should look like during the interaction between the
system and the end-user [16]. Prototypes can be used along
with use cases and user stories to improve understanding of
functional requirements and to gain a better understanding
of them.

It is important to represent the requirements in such a
way that all involved stakeholders can establish a common
understanding of the system’s functionalities so that the
final product developed meets the customers’ expectations.
According to Hoisl et al. [17], the way the analyst specifies
the requirements information for stakeholders can influence
the understanding of what should be developed. Different
stakeholders have different roles and tasks within a project
[18], as well as different information needs [19]. For this
reason, the requirements specification documents (besides
communicating the requirements to the customer) must
provide each stakeholder with all the information necessary
to perform their specific tasks properly. Stakeholders have
difficulties related to the validation and understanding of
the information found in the requirements specifications [5,
20]. Therefore, it is worth emphasizing the importance of
understanding the requirements of each team member since
each member has a role in the development of the system.

We conducted an in-depth study of related work [6, 7,
20, 34, 41] on software development teams’ requirements
communication problems. In the results, we identified the
relevance of the problems raised and this motivated us to
carry out our research. As such, the problem addressed
in this study is related to the difficulty of communicating

requirements between the development team members,
considering the informational needs of each team mem-
ber’s role. Our objective is to support the improvement of
requirements communication through requirements speci-
fication artifacts, considering the perspectives of different
development team members. To achieve this goal, we cre-
ated the ReComP framework (a framework for Requirements
Communication based on Perspectives) to identify the dif-
ficulties of developers and testers in finding requirements
information in specifications such as use case, user stories
and prototypes, in order to perform their activities within the
project. Furthermore, to meet team members’ informational
needs, ReComP is composed of a set of practical solutions
to mitigate or eliminate problems, such as information that
has been omitted, is poorly described, or lacking in detail or
which has errors.

To conduct our research, we applied a Design Science
Research (DSR) approach. DSR has been widely used in
information systems to create and evaluate new artifacts
[21–23]. In addition, we conducted exploratory studies in
order to fully understand the problem and the evolution of
the ReComP framework. In this paper, we report two design
cycles carried out to evaluate and evolve ReComP for user
story artifacts based on the developers’ perspective, and use
cases based on the testers’ perspective.

The results of the two cycles show that ReComP helps
software development teams in identifying and improving
problems in the requirements specifications used for com-
munication in software projects. In the first cycle, the use of
ReComP managed to decrease the frequency of the problems
identified by the developers in the user stories by 77%. In
the second cycle, ReComP decreased the frequency of all
(100%) problems identified by testers in use cases.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the concepts and related work. Section 3
details the DSR cycles for creating ReComP. Section 4 pre-
sents ReComP first version. Section 5 discusses the design
of the empirical studies in which ReComP was assessed.
Section 6 addresses the execution of the first DSR cycle
and improvements that led to the ReComP second version.
Section 7 presents the second DSR cycle and the ReComP
third version, with new improvements. Section 8 presents the
limitations and threats to validity. Finally, Sect. 9 presents
conclusions and an outlook on future work.

2 Background and related work

This research involves concepts regarding requirements
specifications that can used as a means for improving
requirements communication in software development
teams. The following sections present the background and
related work.

483Requirements Engineering (2021) 26:481–508

1 3

2.1 Requirements specifications

The representation of software requirements is a topic that
has been widely addressed in the literature. As such, a
variety of methods, techniques and approaches have been
applied in different domains [7]. Bjarnason et al. [24] state
that requirements specifications are used for different pur-
poses and support the main activities associated with obtain-
ing and validating stakeholder requirements, software veri-
fication, tracking and management of requirements, and can
also be used for contractual purposes through the documen-
tation of customer agreements. The requirements specifica-
tion contains the user and system requirements, that is, the
specification of functional requirements and non-functional
requirements [25].

According to Medeiros et al. [26], there are different ways
to specify requirements. Three of the most used in the indus-
try are use cases [8, 27], user stories [28] (due to the growth
of agile development), and prototypes [12].

2.2 Use case

The use case description is a way to specify the functional
requirements of a software system [29]. It is a technique used
to specify the purpose of a software system and produce its
description in terms of interactions among the actors and the
system in question [7]. However, some common problems,
such as ambiguities, incompleteness and inconsistencies,
can arise when trying to describe the requirements through
use cases. These problems can cause difficulties in under-
standing the requirements and, consequently, defects in the
software system under development [7].

In their work, Tiwari and Gupta [29] identified the exist-
ence of different ways of representing use cases, which can
be applied to various activities in the software development
lifecycle. The authors observed that the use case models
share some standard fields, such as the use case name,
actors, preconditions, basic restrictions, alternative flows,
postconditions. One of the structures widely used by require-
ments engineers is the structure proposed by Phalp et al.
[30], which complements the fields suggested by Tiwari
and Gupta [29] with items such as: description, containing
a brief description of the use case and description of the pur-
pose of the use case; exception flows, which describe ways
to recover from errors that may occur in specific steps of the
use case; and business rules, which are policies, procedures,
or restrictions that must be considered during the execution
of the use case.

2.3 User story

User stories are the artifacts most frequently used in agile
software development [12, 28]. They consist of brief

descriptions, from the perspective of the end-user, of the
desired functionalities, and encompass several aspects of the
requirements specification represented in natural language
[31]. However, when improperly defined, they can trigger
several challenges in agile software development, due to
incomplete or incorrect documentation [11, 32].

Gilson and Irwin [13] state that many templates have been
proposed over the past years, ranging from templates with-
out restrictions and free format to very stringent ones. How-
ever, Cohn’s [33] initial suggestion remains the most used
model for stories. Cohn proposed the following structure:
“As a < type of user > I want < some goal > so that < some
reason > ”.

According to Soares et al. [34], the lack of a detailed
specification in user stories can lead to the development of
features that are not properly aligned with the customer’s
expectations. This limitation of information imposed by the
template makes it difficult to understand the requirements
that are to be implemented. Thus, to make the specification
of user stories more complete, the definition of acceptance
criteria becomes necessary. The acceptance criteria describe
the limits of a user story, and they are used as a parameter to
measure whether a user story has been completed [35]. The
acceptance criteria may contain information that was not
originally in the user story template, such as business rules,
exceptions, specific non-functional requirements, system’s
screen specification, and other information that the team
deems necessary to develop the specified requirement.

2.4 Prototype

The prototype is an excellent way to generate ideas about
a user interface (UI) and allows one to evaluate a solution
at an early stage of the project [36]. De Lucia et al. [37]
recommend the use of prototypes to document the require-
ments for communication and knowledge sharing between
stakeholders and agile teams. For Blomkvist et al. [38],
some of the benefits of using prototypes is that the proto-
types are easier to interpret, give a clearer overview of the
design and function as a stronger means of communication
between stakeholders because of interactive qualities inher-
ent in prototypes.

Several authors also use the terms “mockups” and “wire-
frames” to talk about prototypes [11]. Prototypes can be cat-
egorized into low, medium and high fidelity [39]. According
to Walker [40], prototypes that are the most similar to the
final product are “high fidelity” (e.g., prototypes made in
HTML). In contrast, those less similar are “low fidelity”
(e.g., paper prototype or sketches). According to Preece et al.
[39], the overriding consideration is the prototype’s purpose
and what level of fidelity is needed to get useful feedback.
Low-fidelity prototypes are useful because they tend to be
simple, inexpensive, and quick to produce. They serve to

484 Requirements Engineering (2021) 26:481–508

1 3

identify issues in the early stages of design and, through role
interpretation, users can get a real sense of what it will be
like to interact with the product. High-fidelity prototyping
is useful for selling ideas to people and for testing technical
problems.

Prototypes can be used in conjunction with use cases and
user stories to simultaneously improve the understanding
of functional requirements [7], and allow the representa-
tion of non-functional requirements related to the user
interface [41]. However, prototypes are not just support for
understanding the requirements and are a fundamental part
of requirements specifications when they present relevant
information which is not documented in use cases or user
stories [42].

This study focuses on using low-fidelity prototypes, since
the study participants created drawings on paper to repre-
sent the system’s user interface and the interaction between
the user and the system. For Reggio et al. [7], mockups are
drawings that show what the system’s user interface should
look like during the interaction between it and the end-user
(user-system interaction). Therefore, throughout this article,
we will use the UI Mockups nomenclature to reference the
prototypes developed by the participants in the studies.

2.5 Related work

Hess et al. [43] present a comparison between traditional
requirements artifacts and agile practices used to document
requirements information. They conducted empirical stud-
ies to investigate the priorities of agile RE practices most
frequently used in projects (user stories, sprint backlog,
epics, product backlog, planning meetings, and face-to-
face communication, personas, requirements prioritization,
time-boxed iterations) from the point of view of members
(developer/tester, Scrum master, product owner and require-
ments engineer). In addition, Hess et al. [43] also investi-
gated the challenges faced by participants in their projects.
Analysis of the study data revealed that the relevance of
agile RE practices differed among different members of the
agile team, and that the biggest challenges in agile projects
are insufficient communication with customer(s) due to
lack of documentation, and rework due to neglect of non-
functional requirements, rework due to inadequate quality
of documented requirements, Communication lapse due
to unavailability of appropriate customer representative(s)
(product owner), insufficient requirements communication
in teams due to lack of documentation, and communication
lapses due to sudden changes in the requirements.

Soares et al. [34] analyzed the use of agile requirements
(user stories) with traditional approaches (use cases) for
specifying requirements in software development projects.
For this, they carried out a literature review, which identified
the main difficulties when working with agile requirements,

and an exploratory study that characterized the difficulties
in using user stories compared to use cases. The results indi-
cated that the main difficulties in using user stories to specify
requirements are related to: sparse detailing of requirements
information, difficulty in identifying non-functional require-
ments, non-definition of dependency between requirements,
user dependence, lack of definition of business rules, vola-
tility of requirements, communication and collaboration
with users, lack of information for validation of require-
ments. In view of this, prototypes may be needed to assist
in understanding this type of specification. In addition, the
study participants’ perceptions indicated that, although user
stories can provide an initial time gain during the require-
ments specification activities, difficulties such as the lack
of a detailed specification can lead to the development of
features that are poorly aligned with customer expectations.
Furthermore, using user stories to specify requirements can
bring additional challenges to other development activities,
such as maintenance and architecture design.

Tu et al. [20] state that the use of more transparent docu-
ments, with greater visibility of information for stakehold-
ers, is an essential factor in communication effectiveness
in software projects. The authors conducted a study with
students and software professionals with different profiles
using requirements documents of varying levels of transpar-
ency and employed two questionnaires. One had questions
about the system described in the received document and
required the subjects to identify problems if they could not
answer the question about the requirement in the document,
and the other asked them to give an opinion on the three
attributes of transparency (accessibility, ease of understand-
ing and relevance) in the document they received. The study
results showed evidence that participants with the most
transparent document spent less time seeking information,
answered more questions correctly, and were more confident
in their answers than participants with the least transparent
document. As such, having a transparent requirements docu-
ment is useful for communicating requirements to interested
parties.

To improve the quality of requirements specification
documents, Ali et al. [6] developed a methodology to iden-
tify and solve problems with the quality of the requirements
specification using four processes to improve different
quality attributes. In the first step, in the analysis phase, the
input requirements are added, which ensures the integrity
of the requirements, especially the domain requirements of
the product. Then, the output requirements are inserted in
the mapping phase, which acts as a stage for validating and
verifying requirements from different stakeholders’ perspec-
tives. After removing the incorrect requirements using the
mapping process, the requirements are added to the SRS
(software requirement specification) and then supplied to
the stakeholders for further inspection. After inspecting the

485Requirements Engineering (2021) 26:481–508

1 3

SRS using inspection templates and assigning the total qual-
ity score (TQS), the person responsible for the inspection
sends a detailed report to the requirements engineering team.

Reggio et al. [7] proposed DUSM (disciplined use cases
with screen mockups), a method for describing and refining
requirements specifications based on use cases and screen
mockups. The results show that, thanks to the screen pro-
totypes, requirements specifications produced with DUSM
are easier to understand, less prone to inconsistencies, ambi-
guities, and do not suffer from incompleteness, thanks to
the glossary and many well-formed constraints. In general,
DUSM produces “good quality” specifications and is inex-
pensive to apply.

2.6 Discussion

In the related work, we identified that the main problems in
requirements communication are related to incomplete, inac-
curate, or incorrect requirements specifications [3, 5] and a
lack of standardization of terminologies, models, and docu-
ments used to communicate the requirements [5, 20, 25].
We also identified that different roles have different informa-
tional needs in relation to the requirements in the software
development project [3, 19, 43]. According to Bjarnason
et al. [3], the communication gaps between the requirements
team and the testers and developers result in problems in
specifying unclear, ambiguous, and non-verifiable require-
ments and subsequent problems when implementing and
verifying them. However, the solutions to the problems in
the requirements specifications presented by these studies
did not consider the difficulty that the team members have
in identifying the requirements information that is necessary
to carry out their project activities.

In view of this, we identified an opportunity to create the
ReComP framework to evaluate and improve requirements
communication. This is addressed to requirements speci-
fication artifacts and considers the informational require-
ments needs of the developers and testers in order to execute
activities on the project. Since the primary artifacts used to
specify requirements are use cases [7, 8, 13, 19, 27, 29], user
stories [12, 13, 28] and prototypes [12, 19, 37, 38], we have
limited the evaluation and improvements in these types of
specifications.

3 Applying DSR to develop ReComP

This section presents ReComP and how it was developed by
following the Design Science Research (DSR) method. DSR
aims to assist in the creation and evaluation of new artifacts
in a given context [21, 22]. DSR seeks to understand the
problem and build and evaluate artifacts that allow us to
transform situations by changing their conditions to better

and more desirable states [44]. According to Hevner [45],
DSR is an iterative process that proposes three interlinked
research cycles: the relevance cycle, the design cycle, and
the rigor cycle.

Figure 1 presents the Design Science Research applied in
this research. The design cycle considers the relevance cycle
and the rigor cycle. These three cycles must be present and
clearly identifiable in any Design Science Research project
[45]. The inputs for Design Science Research are require-
ments of the relevance cycle and the theories and methods
of design and evaluation that are extracted from the rigor
cycle. The relevance cycle links the application domain to
the DSR effort, suggesting requirements and, specifically,
requiring the artifact to be applied to the application domain
to validate its practical use. The design cycle is repeated in
two DSR activities: construction and evaluation. Finally, the
rigor cycle bases the other cycles on the existing knowledge
base and, due to research activities, determines which new
knowledge should contribute to the growing knowledge base
[45].

Fig. 1 Overview of the Design Science Research cycles in this
study—based on Hevner and Chatterjee [22]

486 Requirements Engineering (2021) 26:481–508

1 3

The purpose of the relevance cycle is to define the prob-
lem to be addressed, the requirements for the new artifact,
and to define acceptance criteria for evaluating the research
results [45]. To highlight the relevance of the present
work, we conducted an in-depth study of papers related to
the objective of identifying requirements communication
problems within development teams and artifacts used for
requirements communication. Furthermore, in this cycle, we
conducted the following two exploratory studies to more
fully understand the problem:

1. A comparative study between types of the specification:
we compared the issuance and reception of requirements
using a use case and user story, and evaluated and com-
pared the degree of correction of the specifications and
the UI mockups created. The study comprised three
steps: In step 1, groups received the scenarios to create
the specifications with user story and use case. In step 2,
the main activity was constructing UI mockups simulat-
ing the real system based on the specifications created.
It is noteworthy that each group received a different use
case and user story specification than the one speci-
fied in step 1. In step 3, the UI mockups were inspected
by the groups that created the specification using the
inspection checklists. To assess the correctness of the
study participants’ specifications, the researchers carried
out inspections on the specifications by using the inspec-
tion checklists to assist in the verification of defects
in the use case specification and user stories. From a
quantitative and qualitative analysis of the data [46],
we observed that different specification formats could
provide similar results when communicating require-
ments, but we should not ignore the human factor. We
also noted that the impact and number of defects found
in the requirements specification and the construction of
UI mockups are not sufficient to determine which of the
two specifications is better or worse for communicating
requirements between software development teams. So,
in this perspective, software development teams that are
in doubt about which of the specification forms to adopt
can choose to use both user story and use case.

2. Observation study with use cases: We improved the
understanding of the needs of developers in the con-
struction of UI mockups. We evaluated the difficulties
faced by developers when building UI mockups that
employ use cases. In this study, participants received a
use case specification developed by professional require-
ments analysts for a real industry system to construct
prototypes, and simulate the real system. Participants
also inspected the specification to detect defects that hin-
dered understanding the requirements for constructing
the prototype. Finally, they highlighted what information
specified in the use case was necessary for the construc-

tion of the prototype. From a quantitative and qualitative
analysis of the data [47], we observed that the four rea-
sons why developers do not follow the specifications of
use cases. These are the existence of specification errors,
ambiguous information, lack of detailed specification
or incomplete information and due to suggestions for
improvement. In addition, the types of defects that most
impacted the creation of UI mockups were cited as being
due to omission, ambiguity, and incorrect fact.

In these studies, it was possible to identify some require-
ments information needed in the use case specifications and
user stories to help participants build UI models simulat-
ing real system construction. It was also possible to identify
different formats adopted by the participants to specify use
cases and user stories and to create prototypes.

Different studies were necessary for a better understand-
ing of the requirement communication problems within
software development teams and the diverse informational
needs of the different roles of the members in the develop-
ment teams. Therefore, the problem addressed by the pre-
sent study involves the need to improve the communica-
tion of requirements within development teams based on
the perspective of team members who use the requirements
specification documents as input for the execution of their
activities.

Thus, our main motivation for developing ReComP is
related to the difficulty in communicating requirements
between members of the development team. Although
there are different ways of representing the requirements of
a system, which range from the use of free texts to more
structured forms, problems with requirements communica-
tion may arise due to the specification model chosen for
the system development process [48]. Moreover, since each
development team member has different informational needs
to execute their activities in the software project problems
may arise with the communication of requirements due to
the specification model chosen for the system development
process [46] and also due to the non-fulfillment of the differ-
ent informational requirements of the team [19]. These prob-
lems occur because requirements engineers do not consider
the information needs of each member of their development
team when specifying the requirements.

After considering the identified problem, we decided
to assist requirements engineers in identifying the flaws in
existing requirements information in their artifacts, from the
team members’ point of view, and propose improvements
according to the development team members’ need for infor-
mation. We thus defined two requirements for ReComP:

• R1—ReComP should help team members to identify
problems in the artifacts used to communicate require-
ments within the software development team.

487Requirements Engineering (2021) 26:481–508

1 3

• R2—ReComP should provide suggestions for improve-
ments to requirements communication problems found
in the artifacts.

These requirements were established based on the aspects
identified in the literature and exploratory studies. R1
requirement was defined based on Liskin [19] and Tu et al.
[20]. They state that the requirements artifacts are used by
different people, with different roles and different needs to
carry out their activities throughout the project. The authors
also claim that there is often no perfect type of artifact that
suits the needs of all participants, which makes it necessary
to adopt a variety of different artifacts. The R2 requirement
was defined based on Méndez Fernández et al. [25], who
state that the lack of an adequate template in the require-
ments specification can lead to failures in communication.
We present other metrics for the evaluation of ReComP in
Sect. 5.4.

The purpose of the design cycle is to develop a solu-
tion to the problem raised in the previous cycle and evalu-
ate the solution against the requirements until reaching a
project that is considered satisfactory [45]. We conducted
two design cycles (empirical studies) to evaluate the use of
ReComP. In the first design cycle, we generated and evalu-
ated the first version of ReComP (v1) through a case study
at the Federal University of Amazonas and at the Federal
University of the State of Rio de Janeiro. Further informa-
tion about this version is presented in Sect. 4.

In the second design cycle, we evolved the second version
of ReComP (v2) and conducted a new empirical study at the
Federal University of Amazonas. Further information about
ReComP (v2) is presented in Sect. 6.3. This paper presents
the results of both evaluations. Sections 7.3 and 7.4 presents
the improvements made to the second version of ReComP
that led to the creation of the third version.

Finally, the purpose of the rigor cycle is the use and
generation of knowledge [45]. According to Thuan et al.
[49], the rigor cycle bases the other cycles on the existing
knowledge base and, due to research activities, determines
that new knowledge should add to the knowledge base. In
this study, the main fundamentals are the knowledge related
to the communication problems within the development
teams, the requirements communication artifacts, the spe-
cific information that each member within the development
team needs to perform their activities, and the evaluation
method (the case study).

The main contribution to the knowledge base is ReC-
omP itself, as a new framework to aid in the identification
of requirements communication problems in the artifacts
used by software development teams. Also, studies con-
ducted to evaluate ReComP can serve as examples for oth-
ers in the application of ReComP. We have also contributed
with knowledge regarding: (1) the main artifacts used to

communicate requirements within software projects; (2)
the requirements communication problems within software
projects; (3) informational needs of requirements from the
perspective of the role of developer and testers; (4) aspects to
be considered when creating the requirements specification
for software development teams.

4 ReComP—framework requirements
communication based on perspectives
(v1)

ReComP was built using the results found in the related
work and the results of the exploratory studies. The ReC-
omP framework1 is a structure that supports the improve-
ment of requirements communication through the supply of
artifacts capable of assisting the requirements engineer in the
identification of problems in the specification and suggested
improvement of the identified problems. Table 1 presents
the results found in the relevance cycle that supported the
creation of the ReComP framework.

We divided ReComP into two specific artifacts: TAX
(Team Artefact eXperience) and TAI (Team Artifact
Improvement), as described below. In its current version,
there are different adaptations of TAX and TAI to assess
various artifacts and these are specific to each member that
will make the assessment. In other words, both artifacts sup-
port two independent, but complementary perspectives for
the roles of developer and tester and the specification arti-
facts, UI mockups, use cases, and user stories:

1. Team Artifact eXperience (TAX)—Support for evalu-
ating the experience of team members regarding the
artifacts used to communicate requirements during the
software project.

2. Team Artifact Improvement (TAI)—Support for improv-
ing the artifacts, proposing improvement suggestions to
solve or mitigate the problems in the artifacts used to
communicate requirements, with the aim of meeting the
informational needs of requirements. The suggested pat-
terns consist of the adoption of templates or elements in
the artifacts to present the necessary information for the
different roles of the members of the development team.

In a similar manner to the framework definition used
by Lucassen et al. [15] and Jiang and Eberlein [50], the
ReComP framework contains specific artifacts addressed

1 We defined ReComP framework according to the Cambridge dic-
tionary, “a supporting structure around which something can be built”
and “a system of rules, ideas, or beliefs that is used to plan or decide
something”.

488 Requirements Engineering (2021) 26:481–508

1 3

to identify informational needs of developers and testers
roles, as well as, to assess how requirements specification
using user story, use case, and UI mockups meet these needs.
Table 2 shows the name of the artifacts.

Because TAX evaluates the team members’ experience
with the quality of requirements documents, it can be used
independently of TAI. That said, TAI does need the results
obtained in assessing TAX. In this way, the organization can
only use TAX to discover possible problems in communi-
cating requirements within the team and should not adopt
TAI for improvements in artifacts. The solutions proposed
by TAI are optional, and the requirements engineer decides
whether to use them or not.

In the context of this research, we defined the experi-
ence of the members of the development team in a simi-
lar manner to the definition of Hassenzahl [51] for user
experience (User Experience—UX). Hassenzahl [51]
states that a good UX is a consequence of fulfilling human
needs through interaction with the product or service.
Thus, we consider that the experience of the development
team members regarding artifacts consists in identifying
the informational needs regarding requirements by team
members when using a specific artifact as a source of infor-
mation that aids them in the development of their activities
within the project.

The primary users of the framework are requirements
engineers, developers, and testers. ReComP aids require-
ments engineers in evaluating the informational needs of
members of the development team and in improving the

requirements specifications used in the project. Initially,
developers and testers answer a guided TAX form to iden-
tify the problems in the specifications used to perform
their activities on the project. After that, the require-
ments engineer has the opportunity to minimize these
problems by using the TAI to make improvements in the
specification.

The steps for using ReComP are (1) identify the arti-
facts that will pass the evaluation and are used to com-
municate the requirements, (2) identify the team member
roles that will evaluate the artifact, (3) apply the assess-
ment through TAX, (4) verify the result of the evaluation
with the problems identified in the artifacts and, option-
ally, if you want to solve the problems (5), apply the TAI
improvement solutions. If you are going to perform a new
evaluation of the improved artifact, you should go back
to step (3).

Table 1 Results that aided in ReComP’s creation

Results found in the relevance cycle Influence on the creation of ReComP

Source: related work
Main artifacts used by the team to requirements communicate: use

cases [7, 8, 13, 19, 27, 29], user stories [12, 13, 28] and prototypes
[12, 19, 37, 38]

1. ReComP supports the following types of requirement specification:
use cases, user stories and prototypes.

Specification problems with poorly described information, lack of
detail and errors [3, 5]

2. ReComP is composed of a guided form to inspect specifications,
emphasizing the difficulty in finding the information needed to per-
form the team members’ activities.

3. We defined a set of fields (data) to be inspected in the specifications,
based on the specification’s original template.

Problems with the lack of standardization of terminologies, models
and documents used to communicate requirements [5, 20, 25]

4. ReComP is composed of guidelines to standardize the requirements
specification.

5. We define solution models for the problems inherent to the set of
information inspected. These models are based on the original tem-
plate of the specification.

Informational requirements needs for each member’s role in the devel-
opment team [3, 19, 43]

6. ReComP works from the perspective of the following team members:
developers and testers.

Source: exploratory studies [46, 47]
Difficulty in specifying a use case 7. We reviewed of the set of fields (data) to be inspected in the specifi-

cations.
8. We reviewed the solution models for the problems inherent to the set

of fields (data) that were inspected.

Difficulty specifying user stories
Difficulty in building prototypes

Table 2 ReComP artifacts

Specification artifacts Role

Developers Testers

User stories TAX_US_Dev
TAI_US_Dev

TAX_US_Test
TAI_US_Test

Use case TAX_UC_Dev
TAI_UC_Dev

TAX_UC_Test
TAI_UC_Test

UI mockups TAX_UI_Dev
TAI_UI_Dev

TAX_UI_Test
TAI_UI_Test

489Requirements Engineering (2021) 26:481–508

1 3

4.1 Initial proposal for TAX guided forms

TAX is composed of a guided form to be applied by the
development team in order to identify problems in the
artifacts used to communicate requirements by different
roles of the members in the team, and identify the neces-
sary information that each role of the member considers
important to carry out their activities in the development
of the project.

Table 3 summarizes the TAX questions for the user
story specification, from the developer’s perspective in a
simplified way. We defined the questions for each speci-
fication type and member’s role that use the artifact to
develop activities in the project according to the origi-
nal templates of the use case specifications, user stories,
and prototypes. In addition, we added questions about the
informational needs requirements identified in the explora-
tory studies. The questions were divided into two aspects:
(i) evaluation of the difficulty in obtaining information
from the artifact used and (ii) evaluation of the needs for
information about the artifact for the development of their
activity.

It is important to note that the guided forms have
requirements information that originally may not have
been in the specification template used. However, accord-
ing to the literature [35] and the result of exploratory stud-
ies [46] and [47], this requirement information that is not
originally in the template is complementary information
necessary for the execution of the activities of developers
and testers in software projects.

If the team members have any difficulty in identify-
ing any information related to requirements in the artifact
adopted by the team, the requirements engineer can make
the improvements suggested by the TAI guidelines pre-
sented in the following section.

4.2 The initial proposal for TAI guidelines

The templates used in the requirements documentation
may be insufficient to communicate some information
to all members of the development team. Thus, there
was a need to propose suggestions for improvements
to problems identified in the artifacts. With the use of
TAX, the objective is to meet the informational needs of
requirements for members of the software project devel-
opment team. We created the proposed improvement
suggestions according to the information obtained in
publications related to requirements specification prob-
lems and exploratory studies. We defined two pieces of
information to facilitate the adoption of the standard in
the artifact to be improved. These were (1) the descrip-
tion of the problem that can occur in the artifact, and (2)
suggestions for improving the artifact. All suggestions
for TAI improvements related to the problems identi-
fied in TAX. Example: The problem identified in ques-
tion TX1 has the proposed TI1 improvement solution.
Each suggestion from TAI has a usage example to better
assist the requirements engineer in changing require-
ments specifications.

Firstly, the company must use TAX to identify problems
in the specification of requirements used in the project
and, if the company so desires, it can use TAI as an aid to
solve the problems identified. The improvement sugges-
tions proposed are adaptations of the artifacts that already
exist in the company so that they meet the needs of the
members of the development team.

Table 4 presents part of the TAI guideline for user story
specification from the developer’s perspective. The TAI
and TAX used in the second empirical study can be found
in the technical report available in [52].

Table 3 Part of the TAX for user story specification and developer role (TAX_US_Dev)

Questions Type

1—Questions regarding the user stories utilized for the development of the activity
TX1. Do you have difficulty identifying which customer requirement the user story is describing? Single Choice (SC)
TX1.1. If it is possible to identify the customer’s requirement in the description of the user story, how was it specified? Open
TX2. When there is a dependency between user stories, is it easy to identify it in the description? Single Choice (SC)
TX2.1. If it is possible to identify the dependencies between user stories in the description of the user story, how were they

specified?
Open

…
2—Questions regarding the information needs of the user stories for the development of your activity
TX14. Is the information presented in the user story sufficient for the development of your activities? Single Choice (SC)
TX14.1. What information do you need to develop your activities that is not described in this type of specification? Open
TX15. Does the user story contain irrelevant information? Single Choice (SC)
TX15.1. What information in the user story do you consider irrelevant to the development of your activities? Open

490 Requirements Engineering (2021) 26:481–508

1 3

5 Evaluating ReComP

To guide the research, we defined the research question:
“How to aid the requirements communication based on
the perspectives of each member role in the development
team’s members?” To achieve this objective and answer
the research question, we developed ReComP (a frame-
work for Requirements Communication based on Perspec-
tives). It was necessary to evaluate ReComP by applying it
to the problem and context, checking whether it produced
the desired effects and whether a new interaction and DSR
cycle were necessary, while corroborating or questioning the
validity of the theoretical assumptions [23]. Thus, to evalu-
ate the use of ReComP in a practical context, we performed
two cycles of DSR with an empirical study in each cycle.
The following sections present the study planning, execu-
tion, and data analysis.

5.1 ReComP evaluation plan

In order to evaluate ReComP (v1) for the user story artifact
from the perspective of software developers (ReComP_US_
Dev), the first DSR cycle included an empirical study, which
was planned based on the research question: “What are the
difficulties encountered by developers when building UI
mockups using user stories?”. In order to evaluate the ReC-
omP (v2) for the use case artifact from the perspective of
software testers (ReComP_UC_Test), the second DSR cycle
featured yet another empirical study, which was planned
based on the research question: “What are the difficulties

encountered by testers when building test cases using use
cases and UI mockups?”.

In both evaluations, initially, the participants create their
artifacts from an actual requirements specification, make the
evaluation of the specification using TAX, and improve the
specification using TAI. After each evaluation, we evolved
ReComP to solve the problems found in the study that was
carried out. Figure 2 shows the stages of the execution of the
two ReComP evaluations.

5.2 Participants

We carried out the first DSR cycle (1st empirical study) in
two universities, with 50 undergraduate students taking the
Agile Requirements and Systems Analysis and Design class.
In total, 37 participants were characterized as novices, since
they had only academic experience with the specification
of user story requirements. The 13 participants who had
already worked with user stories in the industry were char-
acterized as experienced. The participants played the role
of developers since they received a requirements specifica-
tion in the format of user stories to build UI mockups, thus
simulating the initial development of a system.

We carried out the second DSR cycle (2nd empirical
study) in a university with 37 undergraduate students tak-
ing the Analysis and Systems Design class. In total, 32 par-
ticipants were characterized as novices since they had only
academic experience with the use case specification. Five
participants had development experience in the industry and
were characterized as experienced. Participants played the

Table 4 Part of the TAI for user story specification and developer role (TAI_ US_Dev)

Problem Improvement suggestions for User Story

TI8. I cannot identify which are the error handling flows or how to
resolve situations that prevent the flow of the user story

Suggestion:
Create exception scenarios for those described in the user story to

describe ways to solve any problems that may occur in the execution
of the user story

Example:
…
As a product reseller,
I want to add products to my order
so I can buy Amora products to resell in my store
Exception scenarios
ES1—If the quantity of products ordered exceeds the quantity of stock,

the system displays the message MSG2
TI11. I cannot identify the business rules (restrictions/premises) neces-

sary for the operation of the user story
Suggestion:
Create a field to identify the business rules that must be developed in

the user story
Example:
…
As a reseller of Amora products
I want to add products to my order
So you can buy Amora products to resell in my store
Business rules:
BR1—The product order quantity cannot exceed 100 units

491Requirements Engineering (2021) 26:481–508

1 3

role of testers because they received a specification of use
cases and UI mockups to build test cases. Table 5 presents
the synthesis of the participants and the use of ReComP.

5.3 Study artifacts

All the participants signed the informed consent form, in
which they agreed to provide the results for analysis. In addi-
tion, the participants answered a characterization question-
naire so that we could verify their experience with software
development in the industry and understand their degree of
familiarity with requirements specification documents and
test cases. At the end of each cycle, all participants answered
an evaluation questionnaire about the ease of use and the
usefulness of ReComP for improving requirements com-
munication. The other artifacts used during the study were
requirements specifications with a similar complexity level
and the specific ReComP for each study. Table 6 shows the
artifacts used in each cycle.

The final evaluation questionnaire has been defined based
on the Technology Acceptance Model (TAM) for utility and
ease of use of the indicators [53]. This consists of a 7-point
Likert scale that assesses the participant’s level of agree-
ment for each statement regarding technology. The defined
indicators were (1) perceived usefulness, which defines the
degree in which a person believes that the technology could
improve their performance at work, and (2) perceived ease
of use, which defines the degree in which a person believes
that using a specific technology would be effortless. The rea-
son for focusing on these indicators is that these aspects are
strongly correlated to the user’s acceptance of the technol-
ogy [53]. The response scale used was as follows: strongly
agree, generally agree, partially agree, neutral, partially
disagree, generally disagree, and strongly disagree. Table 7
presents the ReComP evaluation questionnaire applied in
the cycles.

In addition to these artifacts, the first cycle also used:
(a) textual description of two systems in the user story

Fig. 2 Procedures followed in the studies

Table 5 ReComP participants and artifacts

Evaluation Participants ReComP

Quantity Profile Role Profile Origin Artifact Target Artifact

1 50 Novice (37)
Intermediate (13)

Developer ReComP (v1)—US_Dev User Story UI mockups

2 37 Novice (32)
Intermediate (5)

Tester ReComP (v2)—UC_Test Use Case, UI mockups Test Case

492 Requirements Engineering (2021) 26:481–508

1 3

template with similar levels of complexity, evaluated by
the researchers; and (b) TAX_US_Dev and TAI_US_
Dev—ReComP for user stories and the role of developers.

In the first cycle, we used two specifications of user
stories adopted in real industry projects, one regarding a
job offers system and the other about ferry ticket sales. A
summary of the scenarios is presented herein:

1. “The App RH Mobi is a system that allows users to view
job opportunities offered by an HR consulting company
and job seekers to submit their resume for analysis. The
objective of this web system is for the HR analysts of the
consulting company to register job openings for compa-
nies and analyze the resumes sent by the application”.

2. “The NetBarco app is a system developed to run on
an Android platform that allows sellers, authorized by
boats, to sell tickets to passengers who want to travel
from one municipality to another by ferryboat. The Net-
Barco app has two databases, the local one stored on the
smartphone itself and the web one located on one of our
servers hosted in the cloud”.

Further details about scenarios and requirements speci-
fications are available in the technical report [52].

In the second cycle, the artifacts used were (a) Prob-
lem scenario, a textual description of a use case; (b) UI
mockups of the use case; and (c) TAX_UC_Test and TAI_
UC_Test—ReComP for specification with use case and
tester’s role.

In this cycle, we used a use case specification adopted
by a real industry project regarding a document manage-
ment system to prevent documents from running out of their
validity and causing business expenses such as fines and
stoppages. The following scenario was presented:

The whole process of the company’s legal docu-
mentation control is carried out through the use of a
spreadsheet where information is updated manually.
This document management model can result in poten-
tial risks, such as the expiration of some important
tax documents for company compliance with the tax
authorities. Thus, the software will be responsible for
serving the sectors that need document validity con-
trol. It will allow real-time monitoring of the com-
pany’s documents to avoid them from running out of
their validity and cause expenses to the company (fines
and stoppage of activities).

We highlight that the specifications used in the studies,
created by software engineers of real projects, had additional
information that was not part of the original template of use
cases and user stories. Further details of the scenario and
specification of requirements are available in the technical
report [52].

5.4 ReComP evaluation indicators

To assess whether ReComP achieved its objective, we must
consider the two requirements set out in the relevance cycle
presented in Sect. 3. The ability of ReComP to aid in the
identification and improvement of problems found in the
requirements specifications was also evaluated. For this,
we considered its viability and utility. In this perspective,
ReComP must be considered viable if it can be executed
according to its description if it produces what it promises
to deliver and if its execution requires a level of effort that is
deemed acceptable. On the other hand, the ReComP frame-
work should be considered useful if it provides benefits to
the team that is using it. Thus, we defined viability and util-
ity indicators as follows (Table 8).

For analysis purposes, when assessing the specification
carried out by the participants, the following interpretations
were considered regarding the responses indicated in the
guided TAX forms and shown in Table 9.

To analyze the participants’ perceptions regarding their
use of ReComP, the following interpretations were consid-
ered regarding the responses indicated in the final evaluation

Table 6 Artifacts used in the studies

Evaluation Documents ReComP Examples of artifacts

Components Version External artifact

1 Consent form
Characterization questionnaire
Final evaluation questionnaire

based on TAM

TAX, TAI ReComP (v1)—US_Dev User Story—RH Mobi
User Story—NetBarco

2 TAX, TAI ReComP (v2)—UC_Test Use Case—Document configuration
UI mockups—Document configuration

Table 7 ReComP evaluation questionnaire

S1. The TAX questions are easy to understand
S2. The TAX questions are useful for detecting problems in user

stories
S3. The TAI improvement suggestions are easy to understand
S4. The TAI improvement suggestions are useful for solving prob-

lems in user stories

493Requirements Engineering (2021) 26:481–508

1 3

questionnaire based on TAM. These are presented in
Table 10.

6 First DSR cycle (1st empirical study)

In the first cycle, we carried out the following 6 steps
(Fig. 2): (1) building UI mockups using the user story, (2)
application of TAX_US_Dev, (3) improvement of user story
with TAI_US_Dev, (4) improvement of UI mockups with
user story, (5) reapplication of TAX_US_Dev, and if its exe-
cution application of TAX_US_Dev and (6) final evaluation
of ReComP. From this point on, we will adopt the following
nomenclatures: Round 1 for the first evaluation using the
original specification without changes and without worrying
about the team role; and Round 2, for the second evaluation
using the specification with improvement concerned with
the informational need of the team role.

Thus, the execution of the study was divided into two
rounds:

• Round 1: using the original specification without
changes (traditional)—without worrying about the
team role. In Step 1, we divided the participants ran-
domly into two groups, one group received the specifi-
cation from RH Mobi, and the other group received the
specification from NetBarco. In Step 2, the participants
used the ReComP artifact TAX_US_Dev to evaluate
the specification received to construct the UI mockup.
In Step 3, the participants improved the specification
received based on the problems they pointed out in the
assessment. For this, they used the improvement sug-
gestions provided by TAI_US_Dev.

• Round 2: using the specification with the improvement
suggested by TAI. In this scenario, the participants
used the specified document regarding the developer
role. In Step 4, participants received improved specifi-
cations to create the UI mockups. In this step, the par-
ticipants did not make the UI mockup of the specifica-
tions they had received in Step 1. For this, we ensured
the rotation of specifications among the participants
of Round 1 and Round 2. For example, those who used
the RH Mobi user story in Step 1, used the NetBarco
user story (improved) in Step 4. Thus, we endeavored
to reduce the learning bias in the type of specification.

In Step 5, participants received the TAX_US_Dev guided
form and re-evaluated the specification received. It is worth

Table 8 Viability and utility indicators

Measure Description Evaluation

Viability = applicability and effectiveness and ease of use
Ease of application Ability to run the ReComP, as described in

Sect. 4
Did ReComP run adequately without the need

to create new steps or change the order of
execution of the steps previously described?

Effectiveness ReComP will be considered effective if the
number of problems identified decreases
after the suggested improvement

Number of problems identified in the evaluation
N + 1 < Number of problems identified in the
evaluation N

Ease of use ReComP must be considered easy to use by
participants

Evaluation questionnaire (based on TAM) after
using ReComP (Questions 1 and 3 in Table 6)

Usefulness = the use of ReComP provides benefits for the organization
Benefits ReComP must be considered useful by par-

ticipants
Evaluation questionnaire (based on TAM) after

using ReComP (Question 2 and 4 in Table 6)

Table 9 Analysis of the specification assessment

Responses marked by participants Interpretation

“Yes” and “In some cases” The participant
faced problems
identifying the
information

“No” The participant
had no problems
identifying infor-
mation

Table 10 Analysis of the post-
ReComP questionnaire

Responses marked by participants Interpretation Interpretation

“Strongly agree” and “Generally agree” The participant agrees with the statement
“Partially agree,” “Neutral” and “Partially disagree” The participant has no clear opinion or was neutral
“Generally disagree” and “Strongly disagree” The participant does not agree with the statement

494 Requirements Engineering (2021) 26:481–508

1 3

mentioning that at this stage, the option “I do not need this
information” was added to the guided TAX form so that par-
ticipants had the option to indicate the information that they
considered irrelevant to the development of their activities.
Finally, in Step 6, a questionnaire was applied to assess the
communication of requirements to the participants.

6.1 ReComP_US_Dev study results

In this section, we present the quantitative and qualitative
results regarding the analysis of the difficulties encountered
by developers building UI mockups using user stories. We
also analyzed the informational requirements needs to build
the UI mockup by the developer. In addition, we analyzed
the developers’ perceptions regarding the ReComP ease of
use and usefulness.

6.1.1 Requirements specification evaluation

The guided TAX_US_Dev form applied in Round 1 allowed
us to analyze the participants’ perceptions concerning the
fields of the user story specification. In this round, the user
stories of the RH Mobi or NetBarco systems were created
without considering the needs for a developer’s role. Fig-
ure 3 presents the result of the problems encountered by the
participants when building UI mockups using a user story
in Round 1.

The information that most participants pointed out as hav-
ing difficulty in identifying was related to the following:
precondition (80%), the dependence between user stories
(74%), messages (68%), and exception path (64%). On the
other hand, the information that the participants had less

difficulty in finding in the user story was related to customer
requirements (26%), the reason for the functionality (14%),
the user of the functionality (12%), and purpose of the func-
tionality (10%).

6.1.2 Requirements specification improvements

As for the improvements made in the user story using TAI_
US_Dev, we analyzed the quality of the improvement made
by the participants. We checked the information registered
in the TAX_US_Dev guided form and checked if the par-
ticipants improved the US.

Analyzing the user stories, we classified them as: “Great”
if the participants made all the improvements pointed out in
the TAX (100% improvement); “Good” if the participants
made most of the improvements pointed out in the TAX
(51%-75% improvement); “Bad” if the participants made
half or less of the improvements pointed out in the TAX
(< = 50% improvement); “Not recommended” if the partici-
pants made incorrect improvements (changes that modified
the specified requirement instead) or made no improvements
noted and, therefore, it was not possible to build UI mockups
from the modified US (0% improvement). Figure 4 presents
the evaluation of user stories.

Only 11 (22%) user stories were evaluated as "Great", 27
(54%) user stories evaluated "Good", 7 (14%) were evaluated
as "Bad" and 5 (10%) user stories were evaluated as “Not
recommended”.

The guided TAX_US_Dev form applied in Round 2
allowed us to analyze the participants’ perceptions regard-
ing the fields of user story specification improved by other
participants in Round 1 (RH Mobi or NetBarco—based on

Fig. 3 Difficulty in identifying
information in the user story—
Round 1

495Requirements Engineering (2021) 26:481–508

1 3

the developer’s perspective) that they had difficulty in iden-
tifying for the UI mockup development. Figure 5 presents
the result of the problems found by the participants when
building UI mockups using user stories in Round 2.

During the execution of Round 2, the number of partici-
pants was reduced to 49 because one participant did not
show up at the study site. We observed that the information
that most of the participants indicated they had difficulty
in identifying were precondition, the dependence between
user stories, and alternative paths. The information that
the participants had less difficulty finding in the user story
were the following: the reason for functionality, purpose of Fig. 4 User stories evaluation

Fig. 5 Difficulty in identifying
information in the user story—
Round 2

Fig. 6 ReComP_US_Dev evaluation

496 Requirements Engineering (2021) 26:481–508

1 3

functionality, and customer requirements. Some participants
indicated that they did not need to carry out their activities,
such as dependence between the US (3), the user of the func-
tionality (1), the purpose of the functionality (1), navigabil-
ity (1), screen layout (1), and non-functional requirements
(7).

6.1.3 Final analysis of the participants’ perception
when using ReComP_US_Dev

In this section, we present the results of the analysis of the
participants’ responses (P) to the questionnaire applied after
the study was carried out. Our objective was to investigate
the acceptability of ReComP. In this questionnaire, the par-
ticipants answered regarding their level of agreement in rela-
tion to ReComP’s usefulness and ease of use. Figure 6 shows
the participants’ perceptions of ReComP_US_Dev.

The results shown in Fig. 6 reveal mainly positive percep-
tions and few negative perceptions. There were few partici-
pants who disagreed about the ease of use and usefulness of
ReComP for improving the communication of requirements
in the team. Further on in the paper, the participants’ percep-
tion of TAX and TAI will be detailed.

6.1.3.1 TAX_US_Dev Regarding the TAX_US_Dev ease
of use, we analyzed the answers regarding the first state-
ment (S1. The TAX questions are easy to understand), we
can observe in Fig. 6 that 47% of the participants consid-
ered the questions in the guided TAX_US_Dev form easy
and clear to understand. Also, the participants reported that
the guided form helped them to identify problems in user
stories.

They have a vocabulary that is easy to understand
because they clearly specify the objective of the ques-
tion and use the same terms used in the user story.—P8
“Questions can clearly address what they want to be
specified”—P7

Only 4% of the participants disagreed that the ques-
tions found in the guided TAX_US_Dev form were easy to
understand.

“The questions presented at TAX were not entirely
clear, but they are important questions”—P13
“The questions could be asked more informally;
they had a negative impact when reading for the first
time”—P5

Figure 6 shows that 49% of the participants had no clear
opinion or were neutral about the TAX_US_Dev’s ease of
use.

Regarding the TAX_US_Dev’s usefulness, we analyzed
the answers to the statement (S2. The TAX questions are
useful for detecting problems in user stories), and it can be

observed in Fig. 6 that 57% of the participants agreed that
the questions in the guided TAX_US_Dev form were useful
for detecting problems in user stories.

“(…) I can identify problems more efficiently and
safely”-P1
“TAX focuses on the main points that the US should
contain, so if those points are not present or if they
are confused, it means that there is a problem in the
description, and TAX helps to identify precisely those
problems”.—P17B.

Only 4% of the participants disagreed that the questions
found in the guided TAX_US_Dev form were useful.

“For the questions to be useful, it would be necessary
for those who were applying the technique to have
good knowledge of user story and prototyping.”—P6

The number of participants who had no clear opinion or
were neutral about the usefulness of TAX_US_Dev is 39%.

6.1.3.2 TAI_US_Dev Regarding the ease of use of TAI_
US_Dev, we analyzed the answers regarding the state-
ment (S3. The TAI improvement suggestions are easy to
understand), in Fig. 6, we can observe that 63% of the
participants agreed that the suggestions for improving
TAI_US_Dev were easy to understand. A total of 35% of
the participants had no clear opinion or were neutral about
the ease of understanding TAI_US_Dev. Only 2% of the
participants disagreed with the statement. As for the posi-
tive points of TAI ease of use the, we can highlight the
following quotes from the participants:

“The suggestions for improvement are simple to
understand, and it is easy to implement them with
the aid of examples”- P7
“It is possible to understand all the issues necessary
for a better understanding of the requirements, and
the examples presented further help in understand-
ing.”—P2

Regarding the negative points of the ease of use of
TAI, we can highlight the following quotes from the
participants:

“It points out what should be done to correct errors,
but at times I found the suggestions too generic”—P6
“Some explanations of errors are very formal, thus
making the suggestions less useful.”—P20B

As for the usefulness of TAI_US_Dev, we analyzed
the answers to statement (S4. The TAI improvement sug-
gestions are useful for solving problems in user stories),
we observed that 69% of the participants considered the
suggestions provided by TAI_US_Dev useful for improv-
ing user stories. A total of 29% of the participants had

497Requirements Engineering (2021) 26:481–508

1 3

no clear opinion or were neutral about the usefulness of
TAI_US_Dev, and only 2% of the participants disagree
that the suggestions for improvement are useful. Regarding
the positive points of TAI’s usefulness, we can highlight
the following quotes from the participants:

“It is very useful to find missing data at each stage
of creating the story.”—P2
“It helped to rewrite the critical points and those that
were in doubt on how to redo.”—P1B

Regarding the negative points of the usefulness of
TAI, we can highlight the following quotes from the
participants:

“I was not able to apply the suggestions very well
because I had a hard time transferring the examples
to my case.”—P6B
“At the time of applying the TAI, the technique seemed
too vague. When correcting the user story, I used
my knowledge about user story more than the tech-
nique.”—P6

It is worth mentioning that we considered all the opinions
of the participants regarding the ease and usefulness of TAX
as a point of improvement in the ReComP version.

6.1.3.3 General perception of ReComP As for the general
perception of ReComP in the evaluation and improvement
of user stories, the participants acting in the role of develop-
ers highlighted that they would use it again, since ReComP
was useful and straightforward, helped in the writing of user
stories, served as an inspection guide, and presented itself
as a manual for construction and error prevention. Below

are some quotes from participants regarding the ease and
usefulness of ReComP.

“It is useful because you do not need to review the
entire description because the problems have already
been identified by TAX, and TAI already shows the
suggestion for improvement in the specific prob-
lem.”—P7B
“They are easy because if we identify a problem with
TAX, the TAI solution already indicates exactly where
and why the problem occurred.”—P17B
“All the problems that I identified in TAX and that I
looked for in TAI were easy to implement.”—P22B

We observed that the participants approved of the way of
applying TAX to assess the quality of the requirements spec-
ification and TAI to solve the problems with the improve-
ments suggestions presented. Thus, ReComP proved to be
effective in its purpose.

6.1.3.4 Improvement suggestions Regarding suggestions
for improvements in ReComP_US_Dev, the participants
mainly pointed out improvements in the TAX guided form.
The first suggestion for improvement refers to the need for
improvement in the questions in the guided TAX form. In
relation to this, participant P2 said that “… In TAX, it would
be good to standardize the questions,” and P9 comple-
mented the suggestion by saying that “A better description
of the TAX questions is necessary.”

It was also suggested that some fields questioned in TAX
should be part of TAI. Regarding this suggestion, P9 com-
mented that: “… the main path and acceptance criteria
should be part of TAI”. In addition, according to P13, TAX

Fig. 7 Difficulty in identifying information in the user story in Round 1 and Round 2

498 Requirements Engineering (2021) 26:481–508

1 3

is “incomplete” and they mentioned that “TAX lacks several
important issues for the user story. In addition, there are
poorly worded questions”. They also added that in TAI “the
questions presented are easier to understand.”

6.2 Discussion

According to the analysis carried out on the results obtained
in Round 1 (first assessment using the actual specification
without changes and without considering the role) and in
Round 2 (second assessment using the specification with
improvement considering the role), we can see in Fig. 7 that,
out of 13 problems found in the specification of the user
story in Round 1, 10 (77%) problems decreased their fre-
quency in Round 2 after the use of ReComP. Only 3 (23%)
problems in the specification increased their frequency in
relation to Round 1 (the user of the functionality, the pur-
pose of the functionality, and non-functional requirements).

We observed that, in Round 2, 10 (20%) participants
said they had problems identifying the information “func-
tionality user”, 7 (14%) participants had problems iden-
tifying the information “purpose for functionality,” and
20 (41%) participants had trouble identifying the “non-
functional requirements” information. These participants
confronted the problem of receiving user stories with
improvement problems in Round 2. In other words, the
participants who should have improved the US in Round
1 with the use of TAI_US_Dev did not do it correctly,
creating difficulties for the participants who used the US
in Round 2.

Due to the addition of the field “I don’t need this infor-
mation” in the guided TAX form applied in Round 2, we
can see that only 6 fields of information were considered
unnecessary for the execution of activities. Only 1 (2%)
participant pointed out that they do not need the function-
ality user information, the purpose of the functionality,
navigability, screen layout. Another 3 (6%) participants
pointed out the dependency information among user sto-
ries as unnecessary and, finally, 7 (14%) participants said
that information on non-functional requirements is not
necessary for the performance of their activities.

Regarding the improvements made in user stories
through the application of TAI_US_Dev, 38 (76%) par-
ticipants improved the user stories according to the pro-
posed suggestions and only 12 (24%) participants had
their improvements in the user story considered “bad” and
“not recommended.” The number of negative improve-
ments may have occurred due to the difficulty in edit-
ing the user story that was carried out manually by the
participants. However, it is worth mentioning that the
improvements made by the participants minimized the
occurrence of problems found in the specifications of

the second round, showing that ReComP was effective in
identifying and improving the problems in user stories.

From the analysis of the user’s perception, we can see
that, in general, most participants agreed with the state-
ments about ease of use and usefulness in identifying
problems in the user stories (TAX_US_Dev) and sug-
gestions for improving the user stories (TAI_US_Dev).
These results show evidence of ease of use when applying
ReComP (v1). The fact that ReComP was widely accepted
by the participants may indicate that this technique is
also suitable for development teams that want to evaluate
and improve their user stories in order to communicate
requirements.

Regarding the negative points of the ReComP’s utility
mentioned by the participants, we highlight the need to
have a minimum amount of knowledge of the specifica-
tion template used for best use of the framework. Moreo-
ver, the application of the improvement suggestions pre-
sented in TAI is optional. However, the problems pointed
out by TAX must be considered to meet the needs of the
specification user.

The participants pointed out some difficulties in using
ReComP in this study. Based on these difficulties, some
improvements were made to ReComP, with the aim of
improving its usefulness, ease of use, and effectiveness.

6.3 ReComP improvements (v2)

The main problems pointed out by the participants related
to the guided TAX_US_Dev form were that the questions
were very general, non-standardized and very extensive,
which made their use difficult. Through this, we realized
that R1—ReComP should allow team members to identify
problems in the artifacts used to communicate requirements
within the software development team—and this was not
fully achieved in the study.

Therefore, we revised the guided form and made it more
compact, removed the open questions from all fields, stand-
ardized it, and gave the questions a more direct approach. In
addition, we added the option for the participants to indicate
that they “do not need the information” to gain insights from
what was described in a specification that is not necessary
for a given role, thereby helping to reduce irrelevant infor-
mation in the specification.

Regarding R2, ReComP should provide suggestions for
solutions to improve the requirements communication prob-
lems found in the artifacts. As such, we noticed that some
information was missing from the improvement standards
and the use, as well as TAX_US_Dev being confusing.
Therefore, we reviewed all the ReComP TAI guidelines and
added all the suggestions to improve the fields correspond-
ing to the problems found in TAX and added the instructions

499Requirements Engineering (2021) 26:481–508

1 3

on how to use the ReComP to help in its use. ReComP (v2),
which was used in the second empirical study, can be found
in the technical report available in [52].

7 Second DSR cycle (2nd empirical study)

In the second DSR cycle, we conducted only one round of
evaluation and improvement of ReComP (v2) that led to
ReComP third version. As shown in Fig. 2, we performed
this study in the following 4 steps: (1) Specification of the
test cases, (2) Application of TAX_UC_Test, (3) Improve-
ment of the use case with TAI_UC_Test, (4) ReComP final
evaluation.

In Step 1, the participants received the use case specifi-
cation—UC01: Configure Document and the use case UI
mockup. In Step 2, they used ReComP artifact TAX_UC_
Test to evaluate the specification received in order to con-
struct the test cases. In Step 3, the participants improved
the specification received based on the problems identified
in the assessment. For this, they used the TAI_UC_Test
improvement suggestions. In Step 4, we applied an evalu-
ation questionnaire to assess the participants’ opinions
regarding the communication of the requirements.

7.1 ReComP_UC_Test study results

In this section, we present the results regarding the analysis
of the difficulties encountered by testers when building test

cases using use cases and UI mockups. We also analyzed the
testers’ informational requirements needs to build test cases.
In addition, we analyzed the perception of ReComP’s ease
of use and usefulness.

7.1.1 Requirements specification evaluation

The result of the guided TAX_UC_Test form allowed us
to perform an analysis of the participants’ perceptions con-
cerning the fields of the use case specification (not based
on the tester’s perspective) in which they had difficulty in
identifying in order to create the test cases. Figure 8 shows
the result of the problems encountered by the participants
when creating test cases using use cases.

Most participants pointed out that they had difficulty in
identifying some information, such as screen field mask
(70%), mandatory fields (62%), dependencies among use
cases (57%), and size of screen fields (46%). The informa-
tion that the participants had less difficulty finding in the
use case were in regard to exception flows (16%), busi-
ness rules (16%), main scenario (5%), and purpose of the
use case (3%). In some cases, problems were attributed to
alternative flows (14%) and messages (11%). Some partici-
pants pointed out that they do not need some information
to perform their activities, such as main scenario (3%),
screen layout (3%), types of screen fields (3%), screen
fields mask (3%), navigability (5%), post-condition (8%),
size of screen fields (8%), and dependencies among use
cases (14%).

Fig. 8 Difficulty in identifying
information in UC

500 Requirements Engineering (2021) 26:481–508

1 3

7.1.2 Requirements specification improvements

As for the improvements made in the use cases using the
TAI_US_Test, we analyzed the quality of the improvement
made by the participants. We checked the information
marked in the guided TAX_US_Test form and checked
to see if the participants made any improvement in the
use case.

By analyzing the use cases, we classified them as:
“Great” (76%–100% improvement) the use cases that the
participants made all the improvements pointed out in the
guided form, “Good” (51%–75% improvement) the use cases
that the participants failed to make a few improvements, in
other words, they indicated the problem in the TAX, “Bad”
(< = 50% improvement) for the use cases that the partici-
pants made half of the improvements pointed out, and “Not
recommended” (0% improvement) for the use cases that par-
ticipants made incorrect improvements (improvements that
modified the specified requirements) or did not make any of
the improvements pointed out. Figure 9 shows the evaluation
of the use cases.

Overall, all participants made improvements in the use
cases using the TAI_UC_Test; 16 (43%) use cases were
evaluated as "Great", 20 (54%) use cases evaluated "Good”,
only 1 (3%) use case was evaluated as "Bad". No use cases
identified as “Not recommended” were identified.

7.1.3 Final analysis of the participants’ perception
when using ReComP_UC_Test

After the quantitative analysis, we evaluated ReComP’s
acceptability. In this questionnaire, the participants provided
their degree of agreement concerning the usefulness and
ease of use of ReComP. Figure 10 shows the participants’
perceptions of ReComP_UC_Test.

The results shown in Fig. 10 reveal mainly positive per-
ceptions and a few negative perceptions. There is a slightly
negative perception that points to some participants who
felt that ReComP is neither easy nor useful for improving
requirements communication. In the following section, the
participants’ perception of TAX and TAI will be discussed
in detail.

7.1.3.1 TAX_UC_Test Regarding the ease of use of TAX_
UC_Test (S1. TAX questions are easy to understand), we
can see in Fig. 10 that 60% of the participants found the
questions in the guided TAX_UC_Test form easy to under-
stand. Furthermore, the participants reported that the guided
form helped them to identify problems in the use cases
through objective and precise questions, as shown by the
following quotes:

“Short, straightforward sentences, directly addressing
the problem. It made it easier.”—P5
“The questions were objective and helped me to find
the errors.”—P28

Only 3% of the participants disagreed that the ques-
tions found in the guided TAX_UC_Test form were easy
to understand.

“… maybe the questions do not help you very much if
you do not understand the subject well”—P10
“… it ends up being annoying to have to read many
questions”—P32

Figure 10 also points out that 37% of the participants
had no clear opinion or were neutral about the ease of using
TAX_UC_Test.

As for the usefulness of TAX_UC_Test, we analyzed the
answers to statement (S2. The TAX questions are useful for
detecting problems in use cases), and the results showed
that 62% of the participants agreed that the questions in the
TAX_UC_Test were useful for detecting problems in use
cases. A total of 33% of the participants had no clear opinion
or were neutral about the usefulness of the TAX_UC_Test.

Fig. 9 Use case evaluation

Fig. 10 ReComP_UC_Test Evaluation

501Requirements Engineering (2021) 26:481–508

1 3

Only 5% of the participants disagreed with the statement
that the questions found in the TAX_UC_Test were useful.
Regarding the positive points of TAI’s usefulness, we can
highlight the following quotes from the participants:

“An excellent guide, it basically works as a work
instruction.”—P3
“The questions direct the tester to points that are essen-
tial in any project.”—P20

Regarding the negative points in relation to the useful-
ness of TAX, we can highlight the following quotes from
the participants:

“Useless, this document must be delivered before
the TAI, there is just one more questionnaire to be
answered”—P9.
“… TAX depends a little on the opinion of those who
are reading the use case, that is, if I don’t think some-
thing is a problem, I will not mark it as a problem
on TAX. So, the usefulness of TAX depends on the
perception of those who use it.”—P27.

7.1.3.2 TAI_UC_Test Regarding the ease of use of the TAI_
UC_Test, we analyzed the answers to statement (S3. The
TAI improvement suggestions are easy to understand). The
results showed that 81% of the participants agreed that the
suggestions to improve TAI_UC_Test were easy to under-
stand. Only 16% of the participants had no clear opinion or
were neutral in regards to how easy it is to understand the
TAI_UC_Test, and 3% of the participants disagreed with
the statement. As for the positive points relating to the ease
of use TAI, we can highlight the following quotes from the
participants:

“As TAI is practically a direct mapping of TAX, it is
straightforward to understand and apply the improve-
ments.”—P10
“TAI presents solutions clearly and objectively, so it
is elementary to understand and know how to proceed
to improve the use case.”—P30

Regarding the negative points of the ease of use TAI,
we can highlight the following quotes from the participants:

“In certain instances, TAI only indicates that we have
to create a new field, but it does not help us to identify
for sure who the actors are, for example.”—P16
“I would like you to have more solution options in each
section, to cover more cases and choose from possible
solutions that better solve the error.”—P23

As for the TAI_UC_Test’s usefulness, we analyzed the
answers to the statement (S4. The TAI improvement sug-
gestions are useful for solving problems in user stories).
The results showed that 68% of the participants found the

TAI_UC_Test improvement suggestions useful for improv-
ing use cases. Only 29% of the participants had no clear
opinion or were neutral as to the usefulness of TAI_UC_
Test, and 3% of the participants disagreed with the statement
that the suggestions for improvement were useful. Regarding
the positive points in relation to TAI’s usefulness, we can
highlight the following quotes from the participants:

“They are handy for solving problems once they have
been identified in TAX.”—P11
“TAI shows exactly where in the UC, the changes
should take place.”—P14

Regarding the negative points in relation to the useful-
ness of TAI, we can highlight the following quotes from the
participants:

“I do not usually need TAI since, in general, for the
problems I identify, I immediately think of a solu-
tion.”—P3
“Generally, the solutions seem to be more complicated
than we think. The examples seem to increase the com-
plexity of the use case instead of showing a simpler
path.”—P13

7.1.3.3 General perception of ReComP As for the general
perception of ReComP for evaluating and improving the
use cases, the participants who played the role of testers
pointed out that it was useful and straightforward. Further-
more, ReComP helped in writing of use cases, served as an
inspection and error prevention checklist, as well as making
the specification more complete and simpler, as shown in
the quotes below:

“I found it a good tool in the process of refining the
use case and also fixing all my knowledge related to
it. However, I found the methodology, with regard to
the structure (on paper, the spreadsheet), in a way, too
rigid. TAX and TAI could be unified in software where
these mappings could be done in a more automated
way. I think it would make it a lot easier, less paper,
etc. And it would be good, since it would already be
in the environment that the developer uses, i.e., the
computer.”—P15.
“I would use TAI again, as it helped to correct errors,
but it works better with TAX, which helps to find
errors. With both, we can make a better use case.”—
P25

7.1.3.4 Improvement suggestions Regarding suggestions
for improvements in ReComP_UC_Test, the participants
pointed out that it would be better if the ReComP were digi-
tal, as we can note in their quotes below:

502 Requirements Engineering (2021) 26:481–508

1 3

“TAI is important to allow people who are “lost” in
not knowing how to solve some problems, but it is
not very practical, perhaps because it is a table full of
information thrown at you on a piece of paper. Perhaps
it would be more relevant if it were digital, and it was
possible to search only what is of interest to you. Per-
haps even with some suggestions for more common
mistakes.”—P16.
“… it would be easier to be an online tool.”—P29

7.2 Discussion

According to the analysis of the results achieved with TAX
(using the real specification without changes and without
worrying about the team member’s role) and in the evalu-
ation with TAI (using the specification with improvements
concerning the role), we can see in Fig. 11 that for all 17
problems found in the specification of the use case in Round
1, the frequency decreased after the improvements made in
the user stories (100%). More specifically, it is noteworthy
that 8 (47%) problems were completely remedied after their
identification using TAX_US_Dev and the application of
improvements using TAI_US_Dev. However, 9 (53%) prob-
lems were still identified in Round 2, quantifying a much
smaller amount than in Round 1.

Analyzing the remaining problems, the information
that participants had trouble identifying in the use case
specification is typically not part of the standard use case
template. Information such as the screen field size or its
mask does not need to be included in the UC. They could
be available in another specification artifact, for example,
in the database, UI mockups, or architecture document.

Regarding the information needed for testers, we can
see that only eight fields of information were considered
unnecessary for the execution of activities. Only 1 (3%)
participant pointed out that he does not need the primary
scenario information, screen layout, types of screen fields,
the mask of screen fields. Another 2 (5%) participants
pointed out that navigability information is unnecessary,
3 (8%) participants said that post-condition information
and screen field size is unnecessary and, finally, 5 (14%)
participants said that information dependency between
use cases are not necessary for the performance of their
activities.

Regarding the use case improvements using the TAI_UC_
Test, we found that 36 (97%) participants made improve-
ments considered to be “excellent” and “good” in the use
case, and only 1 (3%) participant made the improvements
in the use case considered “bad.” The high rate of positive
improvements can be explained by the ease of editing of the
use case being performed on the computer and the availabil-
ity of the original version. The participant who did not make
all the improvements pointed out in the use case generated
3 of the remaining problems: message, post-condition, and
dependency among UCs.

The results of this empirical study allowed us to note that,
in general, ReComP (v2) was well-received by the majority
of participants in terms of ease of use and utility in identify-
ing problems in use cases (TAX_UC_Test) and in regards to
suggestions for improvement in use cases (TAI_UC_Test).
The fact that the participants demonstrated positive accept-
ance of ReComP may indicate that this technique is also
suitable for development teams that want to evaluate and
improve their use cases to communicate requirements.

One of the prerequisites for using ReComP is the knowl-
edge that the team must have of the template adopted for the
requirements specification. It is worth mentioning that the
reason for applying the ReComP framework in such a way as
we do (by first applying TAX and then TAI) is because it was
not created to impose a template on the teams. Its purpose is
to verify whether the specification used in the project meets
the informational requirements of requirements or not and,
if so, to propose improvements to meet them.

For beginner teams, TAI can do the work of an experi-
enced requirements engineer, since it has a set of the main
problems found in communicating requirements and sug-
gestions to solve these problems. On the other hand, TAX
can be considered a quality assurance analysis, as it pro-
vides the necessary means to analyze the artifacts used in
the communication of requirements and indicates whether
they contain all the information necessary for a given role
within the team.

Despite the wide acceptance of ReComP (v2) by the par-
ticipants, we considered the negative points and suggestions

Fig. 11 Problems identified vs. Remaining problems

503Requirements Engineering (2021) 26:481–508

1 3

for improvement reported by the participants for a new ver-
sion of ReComP (v3).

7.3 ReComP improvements (v3)

The main problems identified by the participants concern-
ing the TAX_UC_Test were as follows: the guided form is
too long and difficult to use because it is not a software.
Thus, we realized that Round 1 (ReComP should allow team
members to identify problems in the artifacts used to com-
municate requirements within the software development
team) had not been fully achieved. Therefore, we revised the
guided form, developed the ReComP software, taking care to
reduce the guided form and make it more objective. In addi-
tion, we improved the dynamics of the ReComP application.

Regarding Round 2 (ReComP should provide suggestions
for improvements to the requirements communication prob-
lems found in the artifacts), we noted that there is a need to
present TAX and TAI together to facilitate their use. There-
fore, we reviewed the dynamics of the ReComP application
and made the application via software simpler.

7.4 ReComP‑web

In the two ReComP design cycles, we applied the framework
manually, using several artifacts defined in each study. To
meet the improvement requested in the last cycle (Sect. 7.3),
a web tool was created to automate the process of applying
ReComP based on the artifacts that support TAX and TAI.

Along with the development of the tool, we designed a
new application dynamic for the new version of ReComP.
The new dynamic was divided into three steps: (1) Creation
of the evaluation of the requirements specification artifact;
(2) Evaluation of the requirements specification artifact
by the team members (TAXs), and (3) Verification of the
results of the team evaluation and suggestion for improve-
ments (TAIs).

In Step 1, the requirements engineer creates a new assess-
ment. In this step, the requirements engineer registers the
project data, current assessment data, and which team mem-
bers will be part of the assessment. In Step 2, the partici-
pants defined in the “Team members” section will receive a
link, via email, to access the guided TAX form correspond-
ing to their role within the team, and the artifact used to
specify the requirements in the project.

In Step 3, the requirements engineer receives the answers
given by the team members and evaluates the problems
pointed out by them in the specification. Furthermore, he/
she receives the problems sorted by name or frequency. The
requirements engineer also has, on the same screen, access
to improvement suggestions, provided by TAI, which cor-
respond to each problem pointed out in the artifact analyzed
by the team members. Based on this information, require-
ment engineers adjust the requirements of communication
artifacts to minimize the highlighted problem. These adjust-
ments may or may not follow the improvement suggestions
provided by the tool.

To check whether the artifact has improved from the
team’s point of view, Steps 1 and 2 must be redone, and

Fig. 12 ReComP screen—Team view

504 Requirements Engineering (2021) 26:481–508

1 3

Step 3 should give a new result regarding the ability of the
artifacts to communicate the requirements to the members of
the development team. It is worth mentioning that, if needed,
the three steps can be repeated in specification improvement
cycles. The number of cycles can be repeated as many times
as the person responsible for the evaluation (requirements
engineer) deems necessary.

Figure 12 presents part of the ReComP-web screens with
more objective questions for the team members. Figure 13
presents part of the evaluation report of the requirements
specification artifact used in the project. It is noteworthy
that we intend to evaluate ReComp-web in future studies in
the industry.

8 Validity threats and limitations

As in all studies, some threats can affect the validity of the
results. In this section, we discuss the existing threats in the
two DSR cycles and, when possible, the manner by which
they have been mitigated. The main threats, based on Wohlin
et al. [54], were as follows:

1. The validity of the artifact evaluated as a representative
artifact—this was minimized with the use of a use case
specification developed by industry professionals and
corresponding to a real system;

2. Representativeness of the participants—the study par-
ticipants were undergraduate students and did not play
the developers’ and testers’ role in the industry. How-
ever, studies, such as Salman et al. [55], Höst et al. [56]
and Runeson [57], show that students can adequately
represent a population of industry professionals. The
results found in this study are encouraging and indicate
that ReComP could similarly be useful for profession-
als. Therefore, we believe that ReComP is also suitable
for professionals, although a study with that goal is still
to be executed. The results may not be generalizable to
experienced developers and testers.

3. Sample size: due to the limited number of participants,
there is a limitation in the conclusion of the results and,
as such, they are considered indicative and not conclu-
sive.

4. Evaluation apprehension—this threat was mitigated by
conducting evaluations without personal questions, only
about requirements specifications used to perform the
activities. Additionally, we carried out the entire evalu-
ation anonymously, and all participants were volunteers
and could withdraw from the study at any time.

5. Subject drops out of the study—To minimize the
impacts on the results, we discarded incomplete data of
the subjects who withdrew from the study.

Fig. 13 ReComP screen—Requirements engineer view

505Requirements Engineering (2021) 26:481–508

1 3

6. Researcher’s influence on the results—to minimize this
threat, all data collected were reviewed and analyzed
jointly with two other researchers.

In addition to the threats to the validity of the study
results, it is worth mentioning that the proposed ReComP
has three limitations:

1. It does not evaluate the quality of the requirements elici-
tation. It does not verify whether the elicitation was car-
ried out correctly. ReComP focuses on evaluating and
improving the communication of software requirements
between members of the development team, considering
the artifacts used, as well as the informational needs of
each role involved.

2. Guided evaluation forms are limited to the roles of
developers and testers. The reason for this limitation
was due to the number of publications found involving
the informational needs of these two roles.

3. The proposed standards are specific to the following arti-
facts: UI mockups, use case description, and user story.
The reason for choosing these three artifacts was due to
the number of publications found that were related to the
subject and because they are widely used by the software
industry to communicate requirements.

9 Conclusion

This paper introduced ReComP, a framework for evaluation
and improvement of artifacts used by development teams
to communicate requirements in software projects. ReC-
omP was developed following the Design Science Research
method. The framework aims to support requirements com-
munication based on the perspective of the software devel-
opment team members, by: (a) assisting in identification of
problems in the artifacts used for communicating require-
ments within the software development team, (b) identifying
the informational needs for each role of the development
team, and (c) proposing suggestions for improvements to
problems found in the requirements communication. We
conducted two studies to assess the use of ReComP from
the perspective of developers by using user stories (first DSR
cycle) and testers by using use cases (second DSR cycle).

In the first DSR cycle, we carried out an empirical study
to verify the difficulties faced by developers when building
software UI mockups using user stories. For this, we used
ReComP to evaluate the specification (TAX_US_Dev) and
to suggest improvements for the artifact (TAI_US_Dev).
TAX_US_Dev proved to be effective in helping to identify
problems in the specification. TAI_US_Dev proved to be
effective in helping to improve the specification to meet the
developer’s informational needs.

With the application of just two rounds of ReComP, we
could observe a decrease in the number of problems found
by developers in the requirements specification. This result
motivates us to hypothesize that creating specifications by
considering the roles of users of this specification (develop-
ers) tends to decrease the number of defects in the develop-
ment, since the information necessary for the developer to
perform his activities will be present in the specification.
In this study, ReComP_US_Dev had a positive acceptance
regarding its ease of use and usefulness. Some improvement
points were suggested and were implemented in the second
version of ReComP.

In the second DSR cycle, we conducted another empiri-
cal study to verify the difficulties faced by testers when
constructing test cases using use cases and UI mockups.
For this, we used ReComP to evaluate the specification
(TAX_UC_Test) and to suggest improvements in the artifact
used for requirements communication (TAI_UC_Test). The
TAX_UC_Test proved to be effective in helping to identify
problems in specifications used by testers. The TAI_UC_
Test proved to be effective in helping to improve the speci-
fication to meet the informational needs of testers.

In this last study, we only performed one round. The
results showed that due to the use case specification hav-
ing more information than the user story, it thus presents a
higher level of detail for the tester and, consequently, there
was a low rate of problems identified by the application of
TAX_US_Test. Furthermore, the ReComP_UC_Test has
also received positive acceptance for its ease of use and
usefulness. Additionally, the participants suggested some
points of improvement that will be implemented in future
versions of ReComP.

Assessing the preference between the ReComP versions
(after the improvements presented in Sect. 6.3), we high-
light that the second version of the framework proved to
be more widely accepted. It is believed that this result is a
consequence of reducing the size of the guided forms, and
changing discursive questions to closed, standardized, and
direct questions.

9.1 Discussion

Requirement information transmitted in an incomplete,
inaccurate, or incorrect manner, and undocumented require-
ments changes often cause incorrect functionality, unimple-
mented software functionality, and rework. ReComP aids in
the improvement of requirements communication through
the supply of artifacts capable of identifying problems in
the requirement specification by considering the needs of
the team (TAX), suggesting improvements for the identi-
fied problems (TAI), and evaluation of the results achieved
(ReComP-web).

506 Requirements Engineering (2021) 26:481–508

1 3

The results presented in Sect. 2 identify problems in the
specifications and proposal for improving the specifica-
tions without considering the informational needs regard-
ing requirements that the users of the specification (team
members) use to carry out their activities in the project. We
emphasize the importance of understanding the informa-
tional needs related to requirements for each team member,
since each member has a role in system development. Given
this, we created ReComP to meet the perspectives of devel-
opers and testers in the use case, user stories, and prototypes
specifications.

Nevertheless, it is essential to establish a good practice
of knowing the user’s needs for requirements information.
Detailed knowledge of the team’s requirements information
needs is a valuable aid in the requirements engineer’s deci-
sion-making process when eliciting and specifying software
requirements. Once the team’s needs are known, the require-
ments engineer can obtain information from the customer
and transmit the necessary requirements information to the
team so that it can perform its activities more clearly and
effectively.

ReComP can be used in different software development
processes since its objective is to evaluate and improve the
requirements specification artifacts used to communicate
requirements between the development team members. ReC-
omP does not analyze the artifacts concerning the rules and
standards established by the development processes, but it
does analyze whether the specifications can communicate
the requirements informational needs that members of the
team need to perform their activities on the project.

In both DSR cycles, ReComP proved viable in applica-
tion, effective in evaluating and improving requirements
specifications, and it was considered easy to use by most
participants. The results also show that its application has
benefited the participants in improving the software develop-
ment team’s requirements communication.

The use of ReComP can benefit software development
companies that want to: (a) meet the informational needs of
the team’s requirements; (b) evaluate how much the speci-
fication used in the project meets the identified needs; (c)
find solutions to improve the problems encountered, and (d)
adjust the project specification to meet the team’s demand.

9.2 Future works

To consolidate the results that were found and improve the
framework, in the future, we intend to test ReComP-web in
software development companies in order to identify other
difficulties faced by developers and testers in the require-
ments specification artifacts used by them in the software
development project. As such, we intend to benefit the
participating companies by identifying problems in their

specifications and improving them to meet their team mem-
bers’ informational needs. In addition, we intend to extend
the ReComP framework to support other specification arti-
facts (e.g., data model and UML diagrams), considering the
perspectives of different team members (e.g., architects,
designers, and usability specialists).

Concerned with the training of requirements engineers,
we also intend to investigate the use of ReComP as an instru-
ment to support teaching requirements specification tech-
niques and document inspection techniques. In addition, one
hypothesis to be investigated in the future is whether the
application of ReComP can create empathy among future
software engineers and the team members by attending to
the informational needs in the specifications created by them
to communicate requirements.

9.3 ReComP contributions

ReComP can benefit the industry to identify problems in the
communication of requirements specifications considering
the informational needs of developers and testers in regards
to requirements. Furthermore, it can provide improvement
suggestions that are commonly used by other companies to
solve problems.

Based on related work and improving requirements com-
munication between members of the development team,
ReComP presents itself as a tool that is capable of assisting
in the identification and improvement of artifacts (use case,
user story and UI mockups) used to document and commu-
nicate requirements, considering the informational needs of
the roles (developer and tester) that participate in a software
development team.

Acknowledgments This research, according to Article 48 of Decree nº
6.008/2006, was partially funded by Samsung Electronics of Amazonia
Ltda, under the terms of Federal Law nº 8.387/1991, through agreement
nº 003/2019, signed with ICOMP/UFAM. This work was supported
by the Foundation for Research Support of the State of Amazonas
(FAPEAM)—POSGRAD, and the Coordination for the Improvement
of Higher Education Personnel—Brazil (CAPES)—Finance Code 001.
Besides, we recognize the financial support provided by CNPq through
process 314174/2020-6 and FAPEAM 062.00150/2020. UNIRIO
through process no. PPQ-UNIRIO 01/2019 e 04/2020. We thank all
participants in the empirical study and the researchers of the USES-
UFAM research group for their valuable contributions in carrying out
this study.

Author contributions Ana Carolina Oran: Conceptualization, Method-
ology, Formal analysis, Investigation, Data Curation, Writing—Origi-
nal Draft, Visualization. Gleison Santos: Validation, Writing—Review
and Editing, Supervision. Bruno Gadelha: Methodology, Verification,
Validation, Writing—Review and Editing. Tayana Conte: Validation,
Writing—Review and Editing, Supervision.

Funding Not applicable.

Availability of data and material Technical report available [52].

507Requirements Engineering (2021) 26:481–508

1 3

Declarations

Conflicts of interest The authors declare that they have no conflict of
interest.

References

 1. Bjarnason E, Sharp H (2017) (2017) The role of distances in
requirements communication: a case study. Requirements Eng
22(1):1–26. https:// doi. org/ 10. 1007/ s00766- 015- 0233-3

 2. Fricker SA, Schneider K, Fotrousi F, Thuemmler C (2016) Work-
shop videos for requirements communication. Requirements Eng
21(4):521–552. https:// doi. org/ 10. 1007/ s00766- 015- 0231-5

 3. Bjarnason E, Wnuk K, Regnell B (2011) Requirements are slip-
ping through the gaps—a case study on causes and effects of
communication gaps in large-scale software development. In:
19th international requirements engineering conference. IEEE.
pp 37–46.

 4. Begel A, Zimmermann T (2014) Analyze this! 145 questions for
data scientists in software engineering. In: Proceedings of the
36th International Conference on Software Engineering. ACM,
pp 12–23. https:// doi. org/ 10. 1145/ 25682 25. 25682 33

 5. Méndez Fernández D, Wagner S, Kalinowski M, Felderer M,
Mafra P, Vetrò A, Conte T et al (2017) Naming the pain in require-
ments engineering. Empir Softw Eng 22:1–41. https:// doi. org/ 10.
1007/ s10664- 016- 9451-7

 6. Ali SW, Ahmed QA, Shafi I (2018) Process to enhance the quality
of software requirement specification document. In: 2018 Inter-
national Conference on Engineering and Emerging Technologies
(ICEET). IEEE, pp 1–7. https:// ieeex plore. ieee. org/ docum ent/
83386 19/

 7. Reggio G, Leotta M, Ricca F, Clerissi D (2018) DUSM: a method
for requirements specification and refinement based on disciplined
use cases and screen mockups. J Comput Sci Technol 33(5):918–
939. https:// doi. org/ 10. 1007/ s11390- 018- 1866-8

 8. Anda B, Hansen K, Sand G (2009) An investigation of use case
quality in a large safety-critical software development project.
Inf Softw Technol 51(12):1699–1711. https:// doi. org/ 10. 1016/j.
infsof. 2009. 04. 005

 9. Cockburn A (2001) Writing effective use cases, vol 1. Addison-
Wesley, Boston

 10. Mohagheghi P, Anda B, Conradi R (2005) Effort estimation of
use cases for incremental large-scale software development. Intl
Conf Softw Eng. https:// doi. org/ 10. 1109/ ICSE. 2005. 15535 73

 11. Schon E-M, Winter D, Escalona MJ, Thomaschewski J
(2017) Key challenges in agile requirements engineering. In:
Baumeister H, Lichter H, Riebisch M (eds) Agile processes
in software engineering and extreme programming. Springer,
Cham, pp 37–51. https:// doi. org/ 10. 1007/ 978-3- 319- 57633-6_3

 12. Schön EM, Thomaschewski J, Escalona MJ (2017) Agile
requirements engineering: a systematic literature review. Com-
puter Standards and Interfaces 49:79–91. https:// doi. org/ 10.
1016/j. csi. 2016. 08. 011

 13. Gilson F, Irwin C (2018) From user stories to use case scenarios
towards a generative approach. In: Australasian Software Engi-
neering Conference (ASWEC). IEEE, pp 61–65.

 14. Jia J, Yang X, Zhang R, Liu X (2019) Understanding software
developers’ cognition in agile requirements engineering. Sci
Comput Program 178:1–19. https:// doi. org/ 10. 1016/j. scico.
2019. 03. 005

 15. Lucassen G, Dalpiaz F, van der Werf JME, Brinkkemper S
(2016) Improving agile requirements: the quality user story

framework and tool. Requirements Eng 21(3):383–403. https://
doi. org/ 10. 1007/ s00766- 016- 0250-x

 16. Ricca F, Scanniello G, Torchiano M, Reggio G, Astesiano E
(2014) Assessing the effect of screen mockups on the com-
prehension of functional requirements. ACM Trans Softw Eng
Methodol (TOSEM) 24:1–38. https:// doi. org/ 10. 1145/ 26294 57

 17. Hoisl B, Sobernig S, Strembeck M (2014) Comparing three
notations for defining scenario-based model tests: a controlled
experiment. In: International Conference on the Quality of
Information and Communications Technology (QUATIC 2014),
pp 180–189. https:// doi. org/ 10. 1109/ QUATIC. 2014. 62

 18. Gross A, Doerr J (2012) What you need is what you get!: the
vision of view-based requirements specifications. In: IEEE
International Requirements Engineering Conference (RE).
IEEE, pp 171–180. https:// doi. org/ 10. 1109/ RE. 2012. 63458 01

 19. Liskin O (2015) How artifacts support and impede require-
ments communication. In: International working conference
on requirements engineering: foundation for software quality,
vol 9013. Springer, Cham, pp 132–147. https:// doi. org/ 10. 1007/
978-3- 319- 16101-3_9

 20. Tu Y-C, Tempero E, Thomborson C (2016) An experiment on
the impact of transparency on the effectiveness of requirements
documents. Empir Softw Eng 21(3):1035–1066. https:// doi. org/
10. 1007/ s10664- 015- 9374-8

 21. Johannesson P, Perjons E (2014) An introduction to design sci-
ence. Springer. https:// doi. org/ 10. 1007/ 978-3- 319- 10632-8

 22. Hevner A, Chatterjee S (2010) Design Research in Information
Systems. Design Research in Information Systems. Springer,
Boston, pp 9–22. https:// doi. org/ 10. 1007/ 978-1- 4419- 5653-8_2

 23. Wieringa R (2014) Design science methodology for information
systems and software engineering. Springer, Berlin

 24. Bjarnason E, Unterkalmsteiner M, Borg M, Engström E (2016)
A multi-case study of agile requirements engineering and the
use of test cases as requirements. Inf Softw Technol 77:61–79.
https:// doi. org/ 10. 1016/j. infsof. 2016. 03. 008

 25. Méndez Fernández D, Wagner S, Lochmann K, Baumann A,
de Carne H (2012) Field study on requirements engineering:
Investigation of artefacts, project parameters, and execution
strategies. Inf Softw Technol 54(2):162–178. https:// doi. org/
10. 1016/j. infsof. 2011. 09. 001

 26. Medeiros J, Vasconcelos A, Silva C, Goulão M (2018) Qual-
ity of software requirements specification in agile projects: a
cross-case analysis of six companies. J Syst Softw 142:171–194.
https:// doi. org/ 10. 1016/j. jss. 2018. 04. 064

 27. Lauesen S, Kuhail MA (2012) Task descriptions versus use
cases. Requirements Eng 17(1):3–18. https:// doi. org/ 10. 1007/
s00766- 011- 0140-1

 28. Wang X, Zhao L, Wang Y, Sun J (2014) The role of requirements
engineering practices in agile development: an empirical study.
In: Proceedings of the Asia Pacific Requirements Engineering
Symposium. CCIS Springer 432:195–209. https:// doi. org/ 10.
1007/ 978-3- 662- 43610-3_ 15

 29. Tiwari S, Gupta A (2015) A systematic literature review of use
case specifications research. Inf Softw Technol 67:128–158.
https:// doi. org/ 10. 1016/j. infsof. 2015. 06. 004

 30. Phalp KT, Vincent J, Cox K (2007) Assessing the quality of use
case descriptions. Software Qual J 15(1):69–97. https:// doi. org/
10. 1007/ s11219- 006- 9006-z

 31. Zeaaraoui A, Bougroun Z, Belkasmi MG, Bouchentouf T (2013)
User stories template for object-oriented applications. In: Inno-
vative Computing Technology (INTECH), IEEE, pp 407–410.
https:// doi. org/ 10. 1109/ INTECH. 2013. 66536 81

 32. Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S (2015)
A systematic literature review on agile requirements engineer-
ing practices and challenges. Comput Hum Behav 51:915–929.
https:// doi. org/ 10. 1016/j. chb. 2014. 10. 046

https://doi.org/10.1007/s00766-015-0233-3
https://doi.org/10.1007/s00766-015-0231-5
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1007/s10664-016-9451-7
https://ieeexplore.ieee.org/document/8338619/
https://ieeexplore.ieee.org/document/8338619/
https://doi.org/10.1007/s11390-018-1866-8
https://doi.org/10.1016/j.infsof.2009.04.005
https://doi.org/10.1016/j.infsof.2009.04.005
https://doi.org/10.1109/ICSE.2005.1553573
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.scico.2019.03.005
https://doi.org/10.1016/j.scico.2019.03.005
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1145/2629457
https://doi.org/10.1109/QUATIC.2014.62
https://doi.org/10.1109/RE.2012.6345801
https://doi.org/10.1007/978-3-319-16101-3_9
https://doi.org/10.1007/978-3-319-16101-3_9
https://doi.org/10.1007/s10664-015-9374-8
https://doi.org/10.1007/s10664-015-9374-8
https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1016/j.infsof.2016.03.008
https://doi.org/10.1016/j.infsof.2011.09.001
https://doi.org/10.1016/j.infsof.2011.09.001
https://doi.org/10.1016/j.jss.2018.04.064
https://doi.org/10.1007/s00766-011-0140-1
https://doi.org/10.1007/s00766-011-0140-1
https://doi.org/10.1007/978-3-662-43610-3_15
https://doi.org/10.1007/978-3-662-43610-3_15
https://doi.org/10.1016/j.infsof.2015.06.004
https://doi.org/10.1007/s11219-006-9006-z
https://doi.org/10.1007/s11219-006-9006-z
https://doi.org/10.1109/INTECH.2013.6653681
https://doi.org/10.1016/j.chb.2014.10.046

508 Requirements Engineering (2021) 26:481–508

1 3

 33. Cohn M (2004) User stories applied: for agile software develop-
ment. Addison-Wesley Professional, Boston

 34. Soares HF, Alves NSR, Mendes TS, Mendonça MG, Spínola RO
(2015) Investigating the link between user stories and documen-
tation debt on software projects. In: International Conference on
Information Technology. IEEE, pp 385–390. https:// doi. org/ 10.
1109/ ITNG. 2015. 68

 35. Knight W (2018) Business Objectives vs. user goals. UX for
Developers. https:// doi. org/ 10. 1007/ 978-1- 4842- 4227-8_3

 36. Baumer D, Bischofberger W, Lichter H, Zullighoven H (1996)
User interface prototyping-concepts, tools, and experience. In:
Proceedings of IEEE 18th International Conference on Software
Engineering, pp 532–541. https:// doi. org/ 10. 1109/ ICSE. 1996.
493447

 37. De Lucia A, Qusef A (2010) Requirements engineering in agile
software development. J Emerg Technol Web Intell 2(3):212–220

 38. Blomkvist JK, Persson J, Åberg J (2015) Communication through
boundary objects in distributed agile teams. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2015. pp 1875–1884. https:// doi. org/ 10. 1145/
27021 23. 27023 66

 39. Preece J, Sharp H, Rogers Y (2015) Interaction design: beyond
human-computer interaction, 4th edition. Wiley, Hoboken

 40. Walker M, Takayama L, Landay JA (2002) High-fidelity or low-
fidelity, paper or computer? Choosing attributes when testing web
prototypes. In: Proceedings of the human factors and ergonomics
society annual meeting, vol 46(5), pp 661–665. https:// doi. org/ 10.
1177/ 15419 31202 04600 513

 41. Ferreira J, Noble J, Biddle R (2007) Agile development iterations
and UI design. Proc Agile 2007:50–58. https:// doi. org/ 10. 1109/
AGILE. 2007.8

 42. Reggio G, Ricca F, Leotta M (2014) Improving the quality and the
comprehension of requirements: disciplined use cases and mock-
ups. In: 2014 40th EUROMICRO Conference on Software Engi-
neering and Advanced Applications. IEEE, pp 262–266. https://
doi. org/ 10. 1109/ SEAA. 2014. 79

 43. Hess A, Diebold P, Seyff N (2019) Understanding information
needs of agile teams to improve requirements communication. J
Ind Inf Integr 14:3–15. https:// doi. org/ 10. 1016/j. jii. 2018. 04. 002

 44. Dresch A, Lacerda DP, Antunes Júnior JAV (2015) Design science
research: método de pesquisa para avanço da ciência e tecnologia.
Bookman, Porto Alegre

 45. Hevner AR (2007) A three-cycle view of design science research.
Scand J Inf Syst 19(2): 87–92. https:// aisel. aisnet. org/ sjis/ vol19/
iss2/4

 46. Oran AC, Nascimento E, Santos G, Conte T (2017) Analysing
requirements communication using use case specification and
user stories. In: Proceedings of the 31st Brazilian Symposium

on Software Engineering. Association for Computing Machinery,
New York, NY, USA, pp 214–223. https:// doi. org/ 10. 1145/ 31311
51. 31311 66

 47. Oran AC, Valentim N, Santos G, Conte T (2019) Why use case
specifications are hard to use in generating prototypes? IET Softw
13(6):510–517. https:// doi. org/ 10. 1049/ iet- sen. 2018. 5239

 48. Ibriwesh I, Ho S-B, Chai I, Tan C-H (2017) A controlled experi-
ment on comparison of data perspectives for software require-
ments documentation. Arab J Sci Eng 42(8):3175–3189. https://
doi. org/ 10. 1007/ s13369- 017- 2425-2

 49. Thuan NH, Drechsler A, Antunes P (2019) Construction of design
science research questions. Commun Assoc Inf Syst 44.1:332–
363. https:// doi. org/ 10. 17705/ 1CAIS. 04420

 50. Jiang L, Eberlein A (2008) A framework for requirements engi-
neering process development (FRERE). In: Proceedings of the
19th Australian Conference on Software Engineering, pp 507–
516. https:// doi. org/ 10. 1109/ ASWEC. 2008. 44832 40

 51. Hassenzahl M (2008) User experience (UX): towards an experi-
ential perspective on product quality. In: Proceedings of the 20th
French-Speaking Conference on Human-Computer Interaction
’08, ACM Press, pp 11–15. https:// doi. org/ 10. 1145/ 15127 14.
15127 17

 52. Oran AC, Santos G, Gadelha B, Conte T (2020) A framework for
evaluating and improving requirement specifications based on the
developers and testers perspective—technical report. https:// doi.
org/ 10. 6084/ m9. figsh are. 12563 756

 53. Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of
computer technology: a comparison of two theoretical models.
Manage Sci 35(8):982–1003. https:// doi. org/ 10. 1287/ mnsc. 35.8.
982

 54. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wess-
lén A (2012) Experimentation in software engineering. Springer,
Berlin, Heidelberg, p 9783642290

 55. Salman I, Misirli AT, Juristo N (2015) Are students representa-
tives of professionals in software engineering experiments?. In:
37th International Conference on Software Engineering (ICSE
2015), pp 666–676. https:// doi. org/ 10. 1109/ ICSE. 2015. 82

 56. Höst M, Regnell B, Wohlin C (2000) Using students as subjects—
a comparative study of students and professionals in lead-time
impact assessment. Empir Softw Eng 5(3):201–214. https:// doi.
org/ 10. 1023/A: 10265 86415 054

 57. Runeson P (2003) Using students as experiment subjects—an
analysis on graduate and freshmen student data. In: Proceedings
of the 7th international conference on empirical assessment in
software engineering. Citeseer, pp 95–102

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ITNG.2015.68
https://doi.org/10.1109/ITNG.2015.68
https://doi.org/10.1007/978-1-4842-4227-8_3
https://doi.org/10.1109/ICSE.1996.493447
https://doi.org/10.1109/ICSE.1996.493447
https://doi.org/10.1145/2702123.2702366
https://doi.org/10.1145/2702123.2702366
https://doi.org/10.1177/154193120204600513
https://doi.org/10.1177/154193120204600513
https://doi.org/10.1109/AGILE.2007.8
https://doi.org/10.1109/AGILE.2007.8
https://doi.org/10.1109/SEAA.2014.79
https://doi.org/10.1109/SEAA.2014.79
https://doi.org/10.1016/j.jii.2018.04.002
https://aisel.aisnet.org/sjis/vol19/iss2/4
https://aisel.aisnet.org/sjis/vol19/iss2/4
https://doi.org/10.1145/3131151.3131166
https://doi.org/10.1145/3131151.3131166
https://doi.org/10.1049/iet-sen.2018.5239
https://doi.org/10.1007/s13369-017-2425-2
https://doi.org/10.1007/s13369-017-2425-2
https://doi.org/10.17705/1CAIS.04420
https://doi.org/10.1109/ASWEC.2008.4483240
https://doi.org/10.1145/1512714.1512717
https://doi.org/10.1145/1512714.1512717
https://doi.org/10.6084/m9.figshare.12563756
https://doi.org/10.6084/m9.figshare.12563756
https://doi.org/10.1287/mnsc.35.8.982
https://doi.org/10.1287/mnsc.35.8.982
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1023/A:1026586415054
https://doi.org/10.1023/A:1026586415054

	A framework for evaluating and improving requirements specifications based on the developers and testers perspective
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Requirements specifications
	2.2 Use case
	2.3 User story
	2.4 Prototype
	2.5 Related work
	2.6 Discussion

	3 Applying DSR to develop ReComP
	4 ReComP—framework requirements communication based on perspectives (v1)
	4.1 Initial proposal for TAX guided forms
	4.2 The initial proposal for TAI guidelines

	5 Evaluating ReComP
	5.1 ReComP evaluation plan
	5.2 Participants
	5.3 Study artifacts
	5.4 ReComP evaluation indicators

	6 First DSR cycle (1st empirical study)
	6.1 ReComP_US_Dev study results
	6.1.1 Requirements specification evaluation
	6.1.2 Requirements specification improvements
	6.1.3 Final analysis of the participants’ perception when using ReComP_US_Dev
	6.1.3.1 TAX_US_Dev
	6.1.3.2 TAI_US_Dev
	6.1.3.3 General perception of ReComP
	6.1.3.4 Improvement suggestions

	6.2 Discussion
	6.3 ReComP improvements (v2)

	7 Second DSR cycle (2nd empirical study)
	7.1 ReComP_UC_Test study results
	7.1.1 Requirements specification evaluation
	7.1.2 Requirements specification improvements
	7.1.3 Final analysis of the participants’ perception when using ReComP_UC_Test
	7.1.3.1 TAX_UC_Test
	7.1.3.2 TAI_UC_Test
	7.1.3.3 General perception of ReComP
	7.1.3.4 Improvement suggestions

	7.2 Discussion
	7.3 ReComP improvements (v3)
	7.4 ReComP-web

	8 Validity threats and limitations
	9 Conclusion
	9.1 Discussion
	9.2 Future works
	9.3 ReComP contributions

	Acknowledgments
	References

