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Abstract
Requirements selection is a decision-making process that enables project managers to focus on the deliverables that add 
most value to the project outcome. This task is performed to define which features or requirements will be developed in the 
next release. It is a complex multi-criteria decision process that has been focused by many research works, because a balance 
between business profits and investment is needed. The spectrum of prioritization techniques spans from simple and qualita-
tive to elaborated analytic prioritization approaches that fall into the category of optimization algorithms. This work studies 
the combination of the qualitative MoSCoW method and cluster analysis for requirements selection. The feasibility of our 
methodology has been tested on three case studies (with 20, 50 and 100 requirements). In each of them, the requirements 
have been clustered, and then the clustering configurations found have been evaluated using internal validation measures 
for the compactness, connectivity and separability of the clusters. The experimental results show the validity of clustering 
strategies for the identification of the core set of requirements for the software product, being the number of categories pro-
posed by MoSCoW a good starting point in requirements prioritization and negotiation.
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1  Introduction

Requirements engineering identifies, documents, negoti-
ates and manages the desired features and constraints of 
software-intensive systems and the assumptions about the 
environment [1]. The most serious problems in complex 
systems development frequently arise from requirements 
engineering [2, 3]. The processes related to requirements 
are knowledge-intensive tasks that are often supported by 
human effort and expertise. Requirements are the glue that 
keeps together the stages in project development, because 
they collect the needs or conditions that the product under 
construction should meet to succeed.

A requirements engineering decision process, in software 
product development, is the definition of which features or 
requirements will be developed in the next release under 

technical, resource, risk and budget constraints [4]. It is a 
complex multi-criteria decision process that, most times, 
entails achieving a balance between the value the require-
ments add to the project outcome and their cost. A clear 
instance is agile projects, because requirements and solu-
tions quickly evolve through the collaborative teams and 
customers effort, making requirements selection a critical 
process.

Requirements selection has been the focus of attention in 
many research works, and the software industry [5–10]. The 
proposed techniques use different information associated 
with requirements. Some proposals use only one attribute, 
others a combination of them. Besides, both stakeholders’ 
or developers’ side could be considered inside the process. 
The range of suitable techniques to be applied is broad and 
diverse. However, both a deep knowledge of the domain and 
a skilful quantification capability have to be involved to suc-
ceed at using most of these techniques [1].

Although requirements engineering decision processes 
have been typically based both on the stakeholders’ intui-
tion and experience and on rational schemes (such as crite-
ria, options or arguments), the recent soaring of data driven 
approaches in requirement engineering [11] puts pressure on 
practitioners to use and integrate quantitative data to decide 
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automatically on what requirements and features should be 
added to or removed from future releases. The use of experi-
ments, case studies, surveys, and whatever available quanti-
tative data is being extrapolated from software engineering 
empirical approaches, which emphasize the use of all kinds 
of empirical studies to accumulate knowledge in require-
ments related tasks [9].

We investigate if some kind of synergy can be found 
between two well-known methods, MoSCoW and cluster-
ing, as a model to automatically support the problem of 
requirements selection. MoSCoW is a qualitative technique 
for requirements prioritization which is based on the clas-
sification of requirements using plain English meaning of 
the prioritization categories. It helps stakeholders to make 
up their minds about the next release objectives, and it has 
the value of providing them a better understanding of the 
impact of their categorization decision. Clustering methods 
aim to partition n observations into k clusters in such a way 
that observations in one cluster are more similar to each 
other than those in other clusters. The notion of similarity 
used by clustering algorithms is related to that of distance 
and is based on quantitative data. There are several measures 
associated with requirements, such as development effort 
and stakeholders’ satisfaction, which can be used for finding 
out requirements groups.

The research has been conducted stating a goal, which 
brings us into some research questions, and finally, carry-
ing out some empirical experiments, we get the informa-
tion needed to give the answers to the research questions. 
Our goal is to check if available quantitative records about 
requirements, in particular estimated development effort and 
clients’ satisfaction, are reliable enough to define automati-
cally the core set of requirements in a software development 
project (i.e. the mandatory requirements for a successful 
software product). Based on this goal, we derived three 
research questions:

•	 RQ1 Can quantitative data about requirements (such as 
satisfaction and effort) be used to cluster and prioritize 
requirements automatically?

•	 RQ2 Which clustering algorithm gets better results for 
requirements selection?

•	 RQ3 Can the obtained requirements clusters be inter-
preted to assist in the selection of the requirements set to 
be developed?

The structure of the rest of the paper starts by describing 
the background of well-known techniques for requirements 
selection in Sect. 2. Then, Sect. 3 describes the quantita-
tive formulation of the selection problem using development 
effort and customers’ satisfaction and the two methods to be 
combined, MoSCoW and clustering. Section 4 is devoted 
to defining the process followed to check the suitability of 

the combined approach and how to set the number of clus-
ters and map MoSCoW categories to clusters. The results 
of the effectiveness study of the proposal for three differ-
ent data sets are shown and discussed in Sect. 5. Section 6 
addresses the limitations and threats to validity. Finally, 
Sect. 7 includes the conclusions.

2 � Background

Software project planning strategies are becoming the cor-
nerstones of software industries, because they not only 
define the features to be built but also exactly when they will 
be released and help to manage cost. The Standish Group 
annually reported that around 80% of surveyed software pro-
jects do not achieve their definition of success based on time, 
cost and scope criteria [3]. In fact, since 2015 the scope 
criterion, which represents how requirements have been ful-
filled, has been relaxed. They also reported that one of the 
most relevant reasons for software project to fail, is shifting 
requirements, because requirements are often documented 
textually and the requirements specifications themselves are 
rarely changed [12]. This suggests that software projects fail 
is due to their inability to evolve efficiently to match the 
shifting requirements or to afford the new ones that appear 
in project evolution, reinforcing the importance of releases 
management. In consequence, making a proper decision 
about what functionality a release of an evolving software 
product should have, is critical for the success or failure 
of the whole project. The better the selection made is, the 
fewer problems with shifting requirements would be found 
in next releases.

To answer what to release, many approaches represent 
the problem as a constraint problem or as an analytic study 
of the features values, features dependencies, or even stake-
holder’ priorities or dislikes. Researchers in requirements 
triage, requirements prioritization, requirements selection, 
next release problem or release planning have been prolific 
from their origin [9, 13–16]. Each one, directly or indirectly, 
contributes to model different points of view and devises 
diversified solving methods.

When a software product is being developed, especially if 
agile methodologies are applied, requirements prioritization 
and selection are recurrent activities. Not only is it a process 
to identify and filter the important requirements, but also 
to solve conflicts and plan the different product deliveries. 
These complex decisions require a detailed knowledge of the 
domain and good quantification and estimation techniques 
of the requirements properties, also involving contradictory 
criteria [17]. However, the variety of prioritization methods 
makes it hard to select the most useful one.

Various factors and dimensions can be considered for 
requirements selection. Some of them are defined either by 
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customers or stakeholders (e.g. requirement perceived value, 
deadline), others by the development team (e.g. available 
effort, team size), or maybe by both (e.g. risk, volatility) 
or, going further, by external factors such as market value 
issues.

Many ranking techniques and prioritization techniques 
have been defined, each one using a subset of the informa-
tion collected for requirements [8, 10, 18] or applying only 
people expertise. These methods may differ in the way pri-
orities are computed, in the scale of values used to represent 
the resulting ordering and in the accuracy of the results. 
Classifying them is difficult, because several classification 
criteria could be used, either conjointly or independently.

Some methods are ad hoc, others use the attributes, 
mainly quantitative, that characterize requirements. There 
are techniques that manage only one attribute, but others use 
a combination of them, considering dependencies between 
requirements or not. Other techniques study only the cli-
ent’s position, only the team point of view, or both. Even 
their goals can be slightly different, since some methods 
select which are the requirements that should be included or 
rejected, or how to distribute them in releases. Prioritization 
approaches list is wide, even more, because some of them 
can be combined. Next, the most representative are briefly 
revised.

One well-known technique that does not use quantitative 
data about requirements attributes is the MoSCoW method. 
It proposes arranging requirements in four categories based 
on expert judgment and the elicited information. The term 
MoSCoW is derived from the first letter of each of four 
categories (Must have, Should have, Could have and Won’t 
have), embedding a semantic meaning, as well [17]. Top-Ten 
technique can be used when a completely sorted or prior-
itized list of requirements is needed. The 10 most important 
requirements are selected by the clients.

The Kano model provides a different method to assist 
developers to understand customers’ perspectives on prod-
uct features by assessing two measures for each candi-
date requirement: the satisfaction and dissatisfaction. The 
responses to these two measures will arrange requirements 
into different scoring categories [19].

Another type of methods are those that use a numerical 
approach but without mapping numbers to specific quantita-
tive attributes. Simple ranking is one of them. The require-
ments have to be sorted based on the prioritization criterion. 
For quantitative or ranked criteria, this approach becomes a 
sort problem, but the final ranking has to reach an agreement 
among how each client or expert ranks requirements. Cumu-
lative voting method allows voters to distribute an explicit 
number of points amongst requirements. In the 100-point 
method, 100 units are given to stakeholders to cast their vote 
for their most valuable requirements [20]. Planning games 
approaches [21] actively involves stakeholders in ranking 

processes. Time-boxing technique assesses the amount of 
work that the project team can deliver during the prescribed 
period. It is a way of focusing on achieving what needs to 
be done without delay or procrastination based on the effort 
bound, by selecting the requirements that fit in this bound.

More formal and systematic approaches are the analytic 
hierarchy process (AHP) and prioritization matrix [22] that 
use more than two criteria to prioritize requirements. AHP 
evaluates requirements using only one attribute (e.g. effort, 
value, risk) by doing a pairwise comparison in a square 
matrix. It converts these values to a total order relationship 
between the requirements for this attribute [13]. This tech-
nique can be extended to combine more than one attribute 
or criterion. Another cost-value method combines AHP and 
a graphical approach for two attributes, value and effort. It 
has as the overall goal to select requirements that give maxi-
mum value for minimum cost within allowable cost limits 
of a software system, by applying a variant of 0-1 knapsack 
model [23].

Requirements selection problem has been also defined as 
an optimization problem, called next release problem [14], 
that lately has been reformulated as a multi-objective prob-
lem where contradictory objectives can be defined. Search-
based software engineering (SBSE) combines computational 
methods that use the estimated attributes of a software arte-
fact, with expert human expertise to achieve best ranking 
results [9, 24, 25], giving automatic support to requirements 
selection. Not only release related problems but also many 
processes in software engineering can be formulated as opti-
mization problems throughout the software engineering life 
cycle, such as non-dominated sorting of the component to be 
reused, or the process of automatically generating test data 
according to a test adequacy criterion using search-based 
optimization algorithms. These approaches apply meta-
heuristic search techniques from requirements and project 
planning to maintenance and re-engineering [26].

Most SBSE works that deal with requirements focus on 
the problem that involves the determination of what features 
or requirements should be covered by the software product 
under construction based on the cost-value criterion [23]. 
The starting point is the set of candidates requirements (or 
product backlog) with their associated development effort 
and a defined number of clients, each one with their particu-
lar demands about what to include in the next version of the 
product under development.

3 � Quantitative MoSCoW requirements 
selection

The strong semantic approach of MoSCoW method can be 
supported by the data (value, effort) postulated for the cost-
value criterion [23], which is described in this section by 
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combining the pioneering next release models [14, 27]. This 
quantitative formulation offers a suitable solution for the 
problem by applying clustering approaches; nonetheless, the 
robustness of clustering algorithms could allow extending 
this formulation by using additional scoring dimensions for 
the problem, such as risks or volatility. These methods have 
a solid base with many successfully developed algorithms 
that can manage and prove the suitability of the intertwining, 
and the research questions proposed.

Our purpose is to use clustering as an assistant in the 
critical decision process about which features or require-
ments will be developed in the next release. This task falls 
into the conflict resolution subtopic [1]. In most cases, it is 
unwise for the developers to make a unilateral decision, so, it 
becomes necessary to make an agreement. It is often impor-
tant, for contractual reasons, that such decisions be traceable 
back to the stakeholders. Figure 1 shows the workflow we 
propose to use clustering in this decision-making process. 
In the usual workflow, once the requirements are elicited 
and scored by stakeholders and developers, specification and 
analysis tasks should be executed. Analysis is where require-
ments prioritization is usually performed.

Our proposal extracts an automated clustering activity 
being in charge of the definition of the core set of require-
ments, those that belong to the ’must have’ category. 
According to the resources which are available, also called 
team capacity or effort bound, the next release objective 
could be easily negotiated starting from the obtained core 
set of requirements.

3.1 � Quantitative problem formulation

Let � = {r1, r2,… , rn} be the set of requirements to be con-
sidered. These requirements represent enhancements or new 

features that are suggested by m customers and are also can-
didates to be solved in the next software release. Customers 
are not equally important. So, each customer i will have a 
weight wi , which measures its importance for the software 
project. Let � = {w1,w2,… ,wm} be the set of customers’ 
weights.

Each requirement rj in � has an associated development 
effort ej , which represents estimated cost for its develop-
ment. Let � = {e1, e2,… , en} be the set of requirements 
efforts. The same requirement can be suggested by several 
customers showing a different priority for each customer. 
Thus, the importance that a requirement rj has for customer 
i is given by a value vij . The higher the vij value, the higher 
is the priority of the requirement rj for customer i.

The added value given by the requirement inclusion rj in 
the next software release, also called global satisfaction, sj , 
is measured as a weighted sum of its importance values for 
all the customers ( sj =

∑m

i=1
wi ⋅ vij ). The set of requirements 

satisfactions is denoted as � = {s1, s2,… , sn}.
Some extended models [28] also include dislikes about 

a requirement to take into account user opinion regardless 
of the effort that its development involve. We would rather 
maintain the widely agreed formulation of the next release 
problem [14, 27] putting in the same level the stakeholders’ 
and developers’ point of view.

The problem presents several constraints that should be 
fulfilled in the solution found. The one is due to the effort 
bound, also called cost limit or capacity B, which represents 
the amount of available development resources. Besides, 
requirements present different types of interactions or 
dependencies, which are also problem constraints. These 
interactions must be considered forcing us to check whether 
any conflict is present whenever we try to select a new 
requirement. This fact forces to implement the requirements 

Fig. 1   Workflow for requirements selection
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in a specific order [13, 29]. Dependencies can be broken 
down into two groups. The first can be explicitly repre-
sented as a graph G [30, 31] and comprises the functional 
dependencies: Implication or precedence ( ri ⇒ rj ) depend-
ency stands for that the requirement rj cannot be selected if 
a requirement ri has not been implemented yet, Combination 
or coupling ( ri ⊙ rj ) represents that a requirement ri can-
not be included separately from a requirement rj , Exclusion 
dependency ( ri ⊕ rj ) means that the requirement ri cannot 
be included together with the requirement rj . The second 
group (denoted as ΔS and ΔE ) includes those dependen-
cies that imply changes in the amount of resources needed 
or the benefit related to each requirement: Revenue-based 
appears whether the development of a requirement ri implies 
that some other requirements will increase or decrease their 
value; Cost-based relationship carries that the develop-
ment of a requirement ri implies some other requirements 
will increase or decrease their implementation cost. These 
dependencies can be modelled as a pair of n × n symmet-
ric matrices: ΔS , where each element represents the incre-
ment or decrease of sj and ΔE , that represents a change 
in the effort when implementation of two requirements 
take place in the same release [31]. So, we have a fivefold 
problem (R, S,E, L, R̂) , being R̂ the set of requirements to 
be developed in the next release, that is the solution to the 
problem and L = (B,G,ΔS,ΔE) the set of constraints to be 
considered.

3.2 � MoSCoW method

Using a consistent language makes it easier to identify 
different classes of requirements. A simple example of 
this is the use of ’shall’ as a keyword could indicate that a 
requirement is present in the written-down sentence. Some 
approaches go further and use ’shall,’ ’should’ and ’may’ 
to indicate different priorities of a requirement. MoSCoW 
method reproduces this use of the language. Its basis is the 
fact that, even all requirements are important, the identifi-
cation of vital requirements is a fundamental task. These 
requirements are those that contribute the most to the project 
success, and they are mandatory. If some of them are not 

accomplished, the final product won’t be a viable product. 
Besides, including the more important functionalities first 
facilitates the reception of an incremental feedback from 
users, schedule adjustments, and the removal of errors and 
misunderstandings between developers and clients in early 
stages which leads to customer satisfaction.

MoSCoW gets its name from an acronym formed by the 
following priority labels: Must have, Should have, Could 
have and Won’t have. The letter o is added to make the 
acronym pronounceable. The classifications are shown in 
Table 1. MUST can also be considered an acronym for the 
minimum usable subset, because this category represents 
the compulsory requirements for the release, that is, those 
that have to be included in the software product in order to 
get clients’ acceptance.

The main difference from other techniques, which clas-
sify using ’high’, ’medium’, or ’low’, is that MoSCoW pro-
vides a semantic meaning. The stakeholders, in charge of the 
classification, know the real effect that their requirements 
assessment will produce. Human expertise and involvement 
is the basis of this qualitative prioritization method. MoS-
CoW provides a way to reach a common understanding on 
the relative importance of including a specific feature in the 
product. The categories define an agreed ’red line’ that can-
not be passed.

The pursued goal is to identify the set of requirements 
that will make up the core of a software product. That is to 
say, the set of fundamental requirements that the software to 
be developed ’must have’ using as little human effort as pos-
sible. Could we match quantitative requirement attributes, 
such as effort or satisfaction, with MoSCoW categories to 
arrange requirements automatically or semi-automatically 
becoming the starting point for requirements negotiation? 
What we need next is a protocol to make groups of require-
ments using their associated quantitative properties.

Some other well-known models also classify the proper-
ties or features of a product into categories, such as the Kano 
model. This method collects a set of ideas and techniques 
that help us determine customers’ satisfaction with product 
features, by describing the connection between customer 
satisfaction and the realization of customer requirements. 

Table 1   MoSCoW categories

Label Meaning

M Must have Contains the requirements that must be satisfied in the final solution for the solution to be considered a success. Must can be also 
thought of as a minimum usable subset

S Should have Represents the high-priority items that should be included in the solution if it is possible. These are often critical requirements 
but which can be satisfied in other ways if strictly necessary. Should requirements are as important as Must but may not be 
time-critical or may have a work around

C Could have Describes the requirements considered as desirable but unnecessary. These will be included if time and resources permit
W Won’t have Represents the requirements that stakeholders have agreed will not be implemented in a release, but may be considered for the 

future
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While many works establish three types of attributes to prod-
ucts and services (must be, one-dimensional, attractive) [32] 
or (dissatisfiers, satisfiers, delighters) [33], other works also 
manage the customers’ emotions and satisfaction/dissatis-
faction defining five or even six categories [34]. In conse-
quence, the starting point will be the number of categories 
indicated by MoSCoW, but without taking it for granted.

3.3 � Clustering

Nowadays, large amounts of data are being collected con-
tinuously, and it is becoming increasingly important to dis-
cover knowledge in multidimensional data. Here is where 
clustering methods come into play, because their goal is to 
discover groups of similar objects within a data set. Thus, 
clustering approaches require some methods for measuring 
the distance or the (dis)similarity between objects, so that 
objects in the same group should be closer to each other 
and further than those in other groups of objects. Common 
clustering approaches can be classified into one of the next 
bigger groups:

•	 Partitioning methods that divide the data into a pre-spec-
ified number of groups. K-means and K-medoids (i.e. par-
titioning around medoids algorithm) belong to this group 
[35, 36].

•	 Hierarchical methods [37] that do not require pre-speci-
fying the number of clusters to be generated. They return 
a dendogram, a tree-based representation of objects and 
groups. Here, agglomerative clustering is the most rep-
resentative approach.

K-means algorithm [35, 36] is perhaps the most popular 
strategy to finding clusters in data. Each cluster is repre-
sented by its centroid, which is the mean of the observations 
assigned to the cluster. Initially, once the number k of groups 
has been specified, k observations are chosen as centroids 
for the clusters. The clusters are defined so that the distance 
between each observation in a cluster and its centroid is a 
minimum. Even though K-means is simple, fast and can 
deal with large data sets, the number k of clusters has to be 
specified in advance and the results obtained depend on the 
initial centroids selection. Besides, it is sensitive to the data 
ordering (i.e. if you rearrange your data, possibly you’ll get 
a different solution) and, finally, the K-means method is also 
sensitive to anomalous data points and outliers.

Partitioning around medoids (PAM) [38] rests on the 
concept of medoid, which is an observation within a clus-
ter such as the sum of the distances between it and all the 
other observations in the cluster is a minimum. Clusters are 
constructed by assigning each observation to the nearest 
medoid. Then, PAM tries to improve the quality of the clus-
tering by interchanging medoids with the other observations 

and checking whether the distances respect to the medoid 
are reduced. Although being more reliable and less sensi-
tive to outliers, PAM requires more computation effort than 
K-means.

In contrast to partitioning methods (i.e. K-means and 
PAM), agglomerative hierarchical clustering groups obser-
vations based on their similarity and does not require pre-
specifying the number of clusters to be produced. Initially, 
each observation is considered as a separate cluster (i.e. a 
leaf in the dendogram). Then, the less distant clusters are 
successively merged until there is just one single cluster (i.e. 
the root of the dendogram). Several agglomeration methods 
have been proposed to determine the distance between clus-
ters, such as the maximal distance between any two observa-
tions in the clusters, the average distance between the obser-
vations in the two clusters, the distance between centroids 
or Ward’s minimum variance criterion which minimizes the 
total within-cluster variance.

The unsupervised nature of these methods makes them 
valuable for requirements selection, as they try to discover 
patterns into data by assigning each observation to a previ-
ously unknown group. Clustering methods can be applied 
based on the quantitative properties associated with require-
ments without human involvement. Once the requirements 
are clustered, that remains is to identify (or, perhaps, relate 
somehow) a MoSCoW category they fit in.

4 � Experimental method design

The relationships between MoSCoW and clustering should 
be investigated, as a model to support the problem of 
requirements selection. The goal of the experimental pro-
cess followed, as mentioned in the introduction, is to validate 
whether quantitative data about requirements (satisfaction 
and effort) are reliable enough to select requirements auto-
matically by applying clustering methods (RQ1), including 
the assessment of the methods to find which gets a better 
solution to the problem of requirements selection (RQ2). 
Besides, a matching between groups and requirements 
importance categories has to be found (RQ3). The feasibility 
of tackling the requirements selection problem using cluster-
ing has been studied using both an experimental approach on 
three case studies and a practical one to compare the results 
with the manual prioritization made by some developers. 
The stages defined next will be also applied to empirically 
assess the validity of our proposal: 

	 (i)	 Prepare the data. Clustering algorithms are affected 
by disparity in units, since this influences distance 
computation. It can be avoided if all the variables are 
transformed to have a mean value of 0 and a standard 
deviation of 1, which makes the standard deviation 
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the unit of measurement. As data are provided by 
several sources, such as software engineers (effort) 
or customers (values/satisfaction), different scales 
are used. This first standardization step ensures that 
experiments are performed under comparable condi-
tions.

	 (ii)	 Estimate the number k of clusters. Since a relation 
between the groups of requirements discovered by 
clustering methods and MoSCoW categories is 
expected, we set k = 4 (MoSCoW categories num-
ber) as the fons et origo for finding out the true 
relationship, cross-checking is needed (RQ1). The 
number of categories should be pore over, because 
other prioritization models, such as the Kano model, 
define different numbers of categories (RQ3). There 
are various methods for determining the optimal 
number of clusters k̂ , such as:

•	 Elbow method [39]. The number of clusters, k̂ , has 
to be chosen in a way that adding a new cluster does 
not produce a significant improvement in the total 
intra-cluster variation (or total within-cluster sum of 
squares), which is given by 

 where xi is an observation belonging to the clus-
ter Ck and �k is the mean value of the observations 
assigned to the cluster Ck . That is, the number of 
clusters k̂ is chosen so that the total within-cluster 
sum of squares is minimized.

•	 Silhouette method [38, 40, 41]. This technique is 
based on the silhouette value which measures the 
cohesion and separation of clusters. Let xi be an 
observation, its silhouette s(xi) is defined as: 

 where a(xi) is the average distance between xi and 
the rest of observations in the same cluster, and b(xi) 
is the lowest average distance between xi and all 
observations in any other different cluster. Silhouette 
value, s(xi) , ranges from −1 to +1 , where a high value 
indicates that the observation is very close the ones 
in its cluster and very different from observations 
in neighbouring ones. The clustering configuration 
will be appropriate when most observations have a 
high silhouette value. However, if many observations 
have a low or negative value, it could be either too 
many or too few clusters in the current clustering 

(1)WSS =

k
∑

k=1

∑

xi∈Ck

(xi − �k)
2,

(2)s(xi) =
a(xi) − b(xi)

max{a(xi), b(xi)}
,

configuration. Thus, the average s(xi) on all observa-
tions can be considered as a measure of how appro-
priate the clusters are. That is, the optimal number 
of clusters, k̂ , should be the one that maximizes the 
average silhouette over a range of candidate values 
for k [38].

•	 Gap Statistic method [42]. This technique compares 
the total within cluster variation with that expected 
under a reference null distribution of the observa-
tions, i.e. a distribution with no obvious clustering. 
The gap statistic for a given k is defined as: 

 where Wk is the total within-cluster sum of squares 
(i.e. WSS considering k clusters) and E∗

n
 denotes the 

expectation under a sample of size n obtained from 
the reference distribution. The optimal number of 
clusters k̂ is chosen as the smallest value of k being 
the gap statistic within one standard deviation of the 
gap statistic at k + 1.

		     While elbow and silhouette methods only measure 
a global clustering characteristic, gap statistic for-
malizes the heuristics of the former methods. The 
optimal number of clusters k̂ is estimated by applying 
the majority rule to the answers returned by the three 
methods, i.e. it is selected the value in which at least 
two of the three methods coincide. Once set, it will 
provide some insights into the answers to RQ1 and 
RQ3.

	 (iii)	 Choose the best clustering method based on clus-
ter validation measures. Once the optimal number 
of clusters is set, the next step is to apply different 
clustering methods (i.e. k-means, PAM and hierarchi-
cal) and evaluate the clustering configuration found 
that will give an answer to RQ2. Ideally, we want the 
distance within each group to be as small as possible, 
keeping the average distance between groups as big 
as possible. Therefore, to assess a clustering configu-
ration, internal validation measures of the clusters 
could be used, because they reflect the compactness, 
connectivity and separability of the clusters. Among 
the most common measures or indexes are:

•	 Connectivity index measures to what extent items are 
placed in the same cluster as their nearest neighbours 
in the observations space. For a given clustering con-
figuration, a lower Connectivity indicates better clus-
tering.

•	 Dunn index [43] aims to identify sets of clusters that 
are compact and well-separated. That is, when the 
diameter of the clusters is expected to be small and 

(3)Gapn(k) = E∗
n
⋅ log(Wk) − log(Wk),
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the distance between cluster to be large. For a given 
clustering configuration, a higher Dunn index indi-
cates better clustering.

•	 Silhouette index [40] provides a validation of consist-
ency within clusters. It is computed as the average of 
all observations silhouettes (see equation 2) and rep-
resents a measure of suitability with which they have 
been clustered. For a given clustering configuration, 
a higher Silhouette index indicates better clustering.

•	 Caliński-Harabasz index [44] is a variance ratio cri-
terion to evaluate the cluster validity. It is defined as 
the ratio of the between-cluster variance (the vari-
ance of all cluster centroids from the centroid of the 
observations) to the total within-cluster variance (the 
average WSS of the clusters, see equation 1). Higher 
Caliński-Harabasz index values indicate better clus-
tering, for a given clustering configuration.

		     Once the indicators indexes are obtained for all 
the clustering algorithms, the best is the one that gets 
the best measurement (minimizes connectivity and 
maximizes Dunn, Silhouette and Caliński-Harabasz 
indexes) (RQ2).

	 (iv)	 Analyse the clusters obtained and prioritize require-
ments. At this point, we are ready to solve the 
problem of requirements selection using clustering 
and get an answer to the research questions RQ1, 
RQ3. We would redefine imprecisely MoSCoW 
categories in terms of satisfaction and effort of the 
requirements, as shown in Table 2. The objective is 
to validate if one of the identified cluster maximizes 
satisfaction and minimizes effort, becoming the core 
of the software product as a viable product. The algo-
rithm selected (from step iii) is run, both to find the 
4 groups (suggested by MoSCoW) and the optimal 
number of groups (determined in step ii). Besides, a 
statistical summary for each group, an element rep-
resentative of the members of each cluster (i.e. its 
centroid) and a graphical representation of the clus-
ters, should go together to analyse the clustering con-
figuration found. These three elements will help to 
get an insight into the relationship between clusters 
and MoSCoW categories (see Table 2), to interpret 

it as a mean to select requirements. Since clustering 
is an unsupervised technique, requirement selection 
will need less human effort.

5 � Evaluation results

Three cases have been used for testing the effectiveness of 
our approach. The first one (20-Problem) is taken from [45]. 
It comprises 20 requirements and 5 customers weighed both 
in the 1 to 5 range. Each requirement has an associate effort 
scored between 1 and 10. Also, we consider implication and 
combination interactions between requirements. The second 
one (50-Problem) is taken from [46] that performs a case 
study of a project planned in 2008 that has been derived 
from the commonly known word processing tool MS Word. 
The raw data have been preprocessed to match problem for-
mulation. In the case at hand, it comprises 50 requirements 
and 81 functional dependencies that have been elicited from 
4 weighted customers. Each customer gives a value to the 
requirements and the effort that implies the development 
of each requirement has been estimated in person-hours by 
the development team. Finally, the third data set (100-Prob-
lem) is taken from [31]. It was generated randomly with 
100 requirement, 5 customers and 44 requirements interac-
tions, following the quantitative problem formulation given 
in Sect. 3.1. Prior to clustering, as our method indicates, the 
data has to be prepared. So, all these data sets were stand-
ardized to avoid the influence of the disparity in the units of 
satisfaction and effort associated with requirements. For the 
sake of clarity, the next stages will be discussed regarding 
each data set, giving special emphasis to the cluster analysis 
and requirements selection, to answer the research questions.

5.1 � Empirical results for the 20 requirements 
problem

As the elbow and silhouette methods coincide (observe the 
vertical dashed line in Fig. 2 indicating the optimal num-
ber of clusters found by each method), the majority rule 
dictates that the optimal number of clusters can be set at 
k̂ = 3 . In consequence, a cluster configuration for k = 3 and 
for k = 4 (suggested by MoSCoW) groups are going to be 
explored using k-means, PAM and hierarchical clustering 
algorithms. Table 3 collects the values achieved by the vali-
dation indexes used and best overall values are highlighted 
in boldface. PAM gets the best values on two indexes (i.e. 
Silhouette and Dunn), which suggest its choice as the best 
clustering algorithm for the problem at hand.

Table 2   Re-interpretation of MoSCoW categories in terms of the sat-
isfaction and effort of the requirements

Category Meaning

M Must have High satisfaction–Low effort
S Should have High satisfaction–High effort
C Could have Low satisfaction–Low effort
W Won’t have Low satisfaction–High effort
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Fig. 2   Determining the optimal number of clusters (dashed line) for 
the 20-Problem

Table 3   Evaluation of clustering methods for the 20 requirements 
problem

Algorithm K Connectivity Dunn Silhouette CH

K-means 3 12.8206 0.2090 0.4666 22.9273
PAM 3 11.5250 0.2607 0.4843 22.6144
Hierarchical 3 11.1429 0.2576 0.4549 18.6832
K-means 4 20.5603 0.2527 0.4176 24.3832
PAM 4 19.9687 0.3151 0.4116 24.0329
Hierarchical 4 19.9782 0.2482 0.3561 18.7909
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Fig. 3   Clustering for the 20-Problem
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Let us consider the MoSCoW clustering configura-
tion (i.e. k = 4 ) found by PAM (see Fig. 3a, Table 4 and 
Fig.  4 for a graph representation of the solution). The 
core of requirements identified as those that should be 
included in the software development project comprises 
{r1, r4, r8, r9, r10, r11, r14, r15} , which has an associated effort 
value of 15 (which covers 17.65% of the total effort) and 
a satisfaction value of 413 (that represents 46.25% of the 
total satisfaction). However, if we want to get a minimum 
usable subset of requirements for developing a viable soft-
ware product, the dependencies that exists between require-
ments have to be taken into account. Because of the coupling 
dependence r11 ⊙ r13 , requirement r13 has to be included as 
part of the core of requirements, shown as doted node in 
Fig. 4. Thus, the viable product obtained, shown in grey 
in Fig. 4, has an effort value of 23 (covering 27.06% of the 
total effort) and a satisfaction of 448 (a 50.18% of the total 
satisfaction). Comparing the viable product with the core of 
requirements, the percentage of relative increase in satisfac-
tion is 8.47% at the expense of a relative increase in effort of 
53.33% . Figure 4 shows requirements satisfaction and effort 

within each node, single arrows represent implication, and 
double ones depict combination.

The study of the cluster configuration found by PAM 
using the optimal number of clusters k̂ = 3 suggests (see 
Fig. 3b, Table 5) that the requirements core set identified is 
{r1, r2, r4, r5, r6, r8, r9, r10, r11, r12, r14, r15} with an effort of 35 
( 41.18% of total effort) and satisfaction of 638 ( 71.45% of 
total satisfaction). The viable product comprises the core set 
enlarged with two requirements {r3, r13} , because of the cou-
pling dependencies r3 ⊙ r12 and r11 ⊙ r13 . Thus, the viable 
product has an effort value of 45 ( 52.94% of total effort) and 
a satisfaction of 702 ( 78.61% of total satisfaction). Compar-
ing it with the requirements core set, the relative percentage 
increments are 10.03% in satisfaction and 28.57% in effort. 
It is interesting to point out that the reduction in the num-
ber of classes (from the 4 suggested by MoSCoW to the 
optimal number of 3) has as the result the union of the two 
classes in the upper left quadrant of Fig. 3a) obtained by 
PAM for k = 4 , which translates into a significant increase 
in the viable product in terms of the number of requirements, 
effort and satisfaction.

Table 4   Clusters summary 
( k = 4 ) for the 20-Problem

Size Cluster 1 Cluster 2 Cluster 3 Cluster 4

8 4 4 4

Eff. Sat. Eff. Sat. Eff. Sat. Eff. Sat.

Min. 1.00 41.00 4.0 49.00 2.0 20.00 8 24.00
1st. Qu. 1.00 48.00 4.0 53.50 3.5 25.25 8 32.25
Median 2.00 52.00 4.5 56.50 4.0 28.00 9 37.00
Mean 1.87 51.62 5.0 56.25 3.5 27.75 9 36.00
3rd. Qu. 2.25 56.00 5.5 59.25 4.0 30.50 10 40.75
Max. 3.00 62.00 7.0 63.00 4.0 35.00 10 46.00
Centroids 1.87 51.62 5.00 56.25 3.50 27.75 9.00 36.00

Table 5   Clusters summary 
( k = 3 ) for the 20-Problem

Size Cluster 1 Cluster 2 Cluster 3

 12 4 4

Eff. Sat. Eff. Sat. Eff. Sat.

Min. 1.000 41.00 2.0 20.00 8.0 24.00
1st. Qu. 1.750 49.00 3.5 25.25 8.0 32.25
Median 2.500 54.50 4.0 28.00 9.0 37.00
Mean 2.917 53.17 3.5 27.75 9.0 36.00
3rd. Qu. 4.000 56.50 4.0 30.50 10.0 40.75
Max. 7.000 63.00 4.0 35.00 10.0 46.00
Centroids 2.916 53.166 3.500 27.750 9.000 36.000
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5.2 � Empirical results for the 50 requirements 
problem

When determining the optimal number of clusters, all meth-
ods (elbow, silhouette and gap statistic) coincide (see Fig. 5) 
and indicate that k = 4 should be the number of clusters. 
Then, only the MoSCoW cluster configuration will be found 
and analysed. The validation indexes values achieved by the 
different clustering algorithms are shown in Table 6 (the 
best overall values are highlighted in boldface). K-means is 

the best clustering algorithm, whose cluster configuration is 
shown in Fig. 6, see also Table 7 for detailed data.

The identified requirements core set is {r
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} , which has to be enlarged with 

{r1, r2, r4, r5, r6, r7, r8, r9, r10, r11, r19, r38, r43} , because of 
implication dependencies to resemble a viable product that 
is shown in Fig. 7, where single arrows to represent impli-
cation, and double ones for combination. The requirements 
core set has an effort value of 122 ( 26.41% of total effort) and 
a satisfaction of 3913 ( 60.41% of total satisfaction). Once 
dependencies are taken into account, the viable product has 
an associated effort of 314 ( 67.97% of total effort) and sat-
isfaction of 5700 ( 87.99% of total satisfaction), which, with 
respect to the core set, supposes an increase of 45.67% in sat-
isfaction at the expense of increasing the effort by 157.38% . 
As it can be seen in Table 8, the set of functionalities that has 
not being included in the project comprises complementary 
views for the document, external links and specific location 
editing options, text formatting (change case and document 
background), additional tools and data import.

5.3 � Empirical results for the 100 requirements 
problem

Figure 8 shows that the elbow and silhouette methods coin-
cide in the optimal number of clusters k̂ and, it is set to 
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Fig. 5   Determining the optimal number of cluster for the 50-Problem
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Fig. 6   Clustering for the 50-Problem

Table 6   Evaluation of clustering methods for the 50-Problem

Algorithm K Connectivity Dunn Silhouette CH

K-means 4 14.3071 0.1317 0.5801 89.1628
PAM 4 15.7456 0.0909 0.5765 87.6092
Hierarchical 4 16.0647 0.1249 0.5655 83.4536
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3. As it differs from the number of MoSCoW categories 
( k = 4 ), the clusters configurations using both values of k 
will be explored. According to the validation indexes (see 
Table 9), hierarchical clustering gets two, out of four, best 
values (which are highlighted in boldface) for the indexes, 
becoming the selected algorithm.

The MoSCoW clustering configuration found by hierar-
chical clustering (see Fig. 9a, Table 10), identified cluster 
4, {r
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} , as the requirements core set. This 

set has an associated effort value of 218 ( 21.02% of total 
effort) and a satisfaction value of 1089 ( 40% of total satis-
faction). From it the viable product is completed by adding 
the requirements set {r2, r3, r10, r14, r22, r30, r33, r47} , since 
the problem dependencies have to be fulfilled. Its effort and 
satisfaction values are 345 ( 33.27% of total effort) and 1282 
( 48.27% of total satisfaction), respectively. The relative per-
centage increments with respect to the requirements core set 
are 58.26% in effort and 17.72% in satisfaction.

However, if we use hierarchical clustering with the opti-
mal number of clusters k̂ = 3 (see Fig. 9b, Table 11), we get 

as requirements core set the union of clusters 4 and 3 found 
previously for k = 4 (Table 10 shows data for k̂ = 4 ). Once 
dependencies are taken into account, the viable product has 
an associated effort of 477 ( 50% of total effort) and satis-
faction of 1733 ( 65.25% of total satisfaction). With respect 
to the core set, the relative percentage increment in effort 
is 44.99% and 14.01% in satisfaction. Therefore, the viable 
product will enlarge that found for MoSCoW ( k = 4 ) and 
will be larger in terms of the number of requirements, effort 
and satisfaction.

5.4 � Comparison with developers’ classification

An additional validation has been made comparing our 
proposal with the subjective developers’ prioritization. The 
50-Problem is our testing scenario, because it is the only 
data set that includes requirements descriptions. This allows 
us to compare the automatic prioritization with a manual one 
made by developers. This comparison has certain risks such 
as the unknown skill level of researchers/participants or the 
different perceptions of the problem [47]. Nonetheless, this 
alternative validation approach could clarify if clustering is 
efficacious enough to classify requirement using MoSCoW 
model. Seven senior software engineering degree students, 
having no information on requirements dependencies, were 
requested to apply MoSCoW and get a prioritization of 
requirements. They relied only on requirements descriptions 
to come up with a prioritization without offering any value 
based rationale for making the decision about how to rate 
the priority [22].

Afterwards, the majority rule (i.e. the MoSCoW category 
selected was the one indicated more times by the students) 
was used to get the final students’ classification shown in 
Fig. 10 and the tie-breaker is the order of the MoSCoW 
classes. The first finding worth highlighting is that there isn’t 
a clear agreement between developers on the requirements 
that should be included in the ’must have’ set. Requirements 
marked with ’*’ are those whose class is agreed by half or 
more of the developers.

Table 7   Clusters summary 
( k = 4 ) for the 50-Problem

Size Cluster 1 Cluster 2 Cluster 3 Cluster 4

27 6 7 10

Eff. Sat. Eff. Sat. Eff. Sat. Eff. Sat.

Min. 1.00 108.0 10.00 182.0 18.00 76.00 2.00 36.0
1st. Qu. 3.00 129.5 10.75 191.2 25.00 86.00 3.25 66.0
Median 4.00 149.0 15.50 207.0 28.00 96.00 5.00 70.0
Mean 4.52 144.9 16.33 199.3 28.14 98.14 4.50 68.2
3rd. Qu. 6.00 157.0 21.00 207.0 31.50 111.00 5.75 77.5
Max. 11.00 173.0 25.00 207.0 38.00 121.00 6.00 95.0
Centroids 4.52 144.92 16.33 199.33 28.14 98.14 4.50 68.20

File

Format
Tool

Insert
View

Help

Data

Edit

Core Requirements 
Minimum Viable Product+

Fig. 7   The viable product for 50-Problem
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Table 8   50-Problem—
requirements description

Core requirements in bold
*Requirements included by effect of requirements implication and coupling

ID Short name Description

1 File-1 (*) New File Crete a New File
2 File-2 (*) Open File Open an Existing File
3 File-3 Close File Close Current File
4 File-4 (*) Save File Save a File
5 File-5 (*) Save as Save a File as a Different File Type
6 File-6 (*) Search File Search for a File in The computer containing some Text
7 File-7 (*) Protect File Make a File Password Protected
8 File-8 (*) Print Preview Print Preview a File
9 File-9 (*) Print File Print Current File
10 File-10 (*) Send To Send File To Email/FAX
11 File-11 (*) Set Properties Set File Header Inform ton
12 File-12 Exit Save and Exit from Word Processing Application
13 Edit-1 Undo a Task Undo a Task and goes back to previous state
14 Edit-2 Redo a Task Redo the most recent Change
15 Edit-3 Cut Delete a Text and Copy to Clipboard
16 Edit-4 Copy Copy a Text
17 Edit-5 Paste Paste a Text from Clipboard
18 Edit-6 Paste Special External Linking and Embedding
19 Edit-7 (*) Go To Go to a specific location in the current file
20 Edit-8 Find Search for a Text in the current Document
21 Edit-9 Replace Search and Replace a Text
22 Edit-10 Select All Select All From Current File
23 View-1 Default Switch to Default View
24 View-2 Print Layout Print Layout View of Current File
25 View-3 Web layout Web Page Layout View of Current File
26 View-4 Zoom Zoom In/Out
27 View-5 Header/Footer Show Healer/Footer of Current File
28 Insert-1 Page Numbers Insert Page Numbers in Footer
29 Insert-2 Date/Time Insert Date/Time in the File Footer
30 Insert-3 Symbol Insert Symbol to the Cursor Location
31 Insert-4 Bookmark Set/Update File Bookmark
32 Insert-5 Hyperlink Insert a Hyperlinked Text
33 Format-1 Font Change Font Setting of Selected Text
34 Format-2 Paragraph Set the Paragraph Formatting
35 Format-3 Bullets/Numbers Insert Bullets/Numbering to Selected Text
36 Format-4 Change Case Change to Upper/Lower/Mixed Case selected Text
37 Format-5 Background Change Background of the Document
38 Tools-1 (*) Ch-Spell Spelling Check Tool
39 Tools-2 Ch-Grammar Grammar Check Tool
40 Tools-3 Speech Read the Text of The Document
41 Tools-4 Mail Merge Mail Merge with Existing Customer Database
42 Tools-5 Macro Create/Use Automated Document Processing Function
43 Tools-6 (*) Set Options Configure Documents Options
44 Data-1 Insert Table Insert a Table
45 Data-2 Delete Table Delete an Existing Table
46 Data-3 Table Format Format an Existing Table
47 Data-4 Sort Sort Selected Data
48 Data-5 Import Data Import Data from External Database
49 Help-1 Help Loads Applicant Help File
50 Help-2 Search Searches a Text in the Document Help File
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The requirements core set agreed by developers is 
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viable product by adding the requirements set 
{r6, r7, r8, r10, r11, r19, r24, r29, r43} , since the dependencies 
of the problem have to be fulfilled. Requirements with a ’1’ 
in the bottom of Fig. 10 are those included in the core set, 
whereas those added due to dependencies are marked with 
a ’2’. The core set has a value of 190 ( 41.13% of total effort) 
and a satisfaction of 3654 ( 56.41% of total satisfaction). 
After dependencies have been taken into account to obtain 
a viable product, the effort and satisfaction values change 
to 285 ( 61.69% of total effort) and 4626 ( 71.41% of total 
satisfaction), respectively. The relative percentage change 
with respect to the requirements core set is 50% for effort 
and 26.6% for satisfaction. It can be observed that developers 
include fewer requirements than clustering. An explanation 
for this could be that their prioritization is made based on 
natural language descriptions instead of effort and satisfac-
tion values. Although in both approaches dependencies are 
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Fig. 8   Determining the optimal number of cluster for the 100-Prob-
lem

Table 9   Evaluation of clustering methods for the 100-Problem

Algorithm K Connectivity Dunn Silhouette CH

K-means 3 17.7056 0.0548 0.4283 89.5132
PAM 3 13.4373 0.0831 0.4308 89.3966
Hierarchical 3 7.2357 0.1096 0.4278 88.0933
K-means 4 18.9746 0.0783 0.3993 90.9959
PAM 4 26.2714 0.0696 0.3993 88.7641
Hierarchical 4 14.8242 0.1096 0.3964 82.5902
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needed to get the viable product from the core set of require-
ments, that got by developers has lower effort and satisfac-
tion values than in the case of clustering. This fact suggests 
that clustering (Must have cluster, see Table 2) could be a 
good starting point for requirements negotiation (see Fig. 1).

Experimental results obtained on the three data sets 
reinforce the idea that requirements effort and satisfaction 
can be used as measures for clustering requirements and to 
define the group of requirements that must be included into 
a successful next software release. That is to say, automatic 
selection of requirements can be approached applying clus-
tering techniques (RQ1). The decision making processes 
related to software negotiation and conflict resolution can be 
successfully assisted by clustering the scored requirements 
attributes, see Fig. 1. However, there is no single applicable 
clustering algorithm, which is the one to be applied depends 
on the problem (RQ2). Although the optimal number of 
clusters k̂ differs between the case studies, this discrepancy 
can be interpreted, from the requirements’ selection point of 
view, as the union of the two higher priority requirements 
groups (Table 2 (RQ3), which is also advocated by other 
models as Kano. What is worth to highlight here is that, 
independently of the case at hand, clustering methods can 
identify a core set of requirements. However, requirements 
dependencies have to be managed at the time of getting a 

viable product, when additional requirements have to be 
incorporated to the core to fulfil dependencies. The compari-
son with manual prioritization suggests that the subjective 
nature of the problem makes difficult to reach an agreement, 
making interesting the use or any automatic approach, such 
as clustering.

6 � Limitations and threats to validity

The validity of any research work indicates how trustworthy 
and generalizable their results are [48]. The potential threats 
are discussed next, describing also what has been done to 
mitigate them.

In this paper, since the objects studied are requirements 
and their associated quantitative data (satisfaction and effort) 
are estimated and provided by software engineers and cus-
tomers, a construct validity threat could appear because of 
the subjectivity and accuracy of the estimations. Although 
development teams use estimations in everyday work, to 
assure that experiments are performed under a common 
unified framework, we prepare data as the first step before 
clustering, as it has been described in Sect. 4, so as to unify 
value ranges.

Table 10   Clusters summary 
( k = 4 ) for the 100-Problem

Size Cluster 1 Cluster 2 Cluster 3 Cluster 4

20 23 20 37

Eff. Sat. Eff. Sat. Eff. Sat. Eff. Sat.

Min. 11.00 27.00 15.00 15.00 1.00 15.00 1.000 25.00
1st. Qu. 14.00 29.00 16.00 21.00 2.75 21.00 4.000 27.00
Median 15.00 31.50 17.00 23.00 5.50 21.50 6.000 28.00
Mean 15.25 31.45 17.52 22.04 5.55 21.55 5.892 29.43
3rd. Qu. 16.00 33.00 19.00 24.00 8.00 23.25 8.000 31.00
Max. 20.00 39.00 20.00 26.00 11.00 25.00 10.000 39.00
Centroids 15.25 31.45 17.52 22.04 5.55 21.55 5.89 29.43

Table 11   Clusters summary 
( k = 3 ) for the 100-Problem

Size Cluster 1 Cluster 2 Cluster 3

20 23 57

Eff. Sat. Eff. Sat. Eff. Sat.

Min. 11.00 27.00 15.00 15.00 1.000 15.00
1st. Qu. 14.00 29.00 16.00 21.00 3.000 23.00
Median 15.00 31.50 17.00 23.00 6.000 27.00
Mean 15.25 31.45 17.52 22.04 5.772 26.67
3rd. Qu. 16.00 33.00 19.00 24.00 8.000 30.00
Max. 20.00 39.00 20.00 26.00 11.000 39.00
Centroids 15.250 31.450 17.521 22.043 5.771 26.666
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A potential threat to internal validity is related to the 
experimental methodology that has been applied. Since there 
are different clustering approaches, a threat that arises is 
which one to use. The methodology applied mitigates this 
by considering several representative clustering approaches 
and choosing the best based on cluster validation measures, 
as they reflect the compactness, connectivity and separa-
bility of the clusters found. Related to validation measures 
several issues come up such as what measures to use and, 
based on those, how to choose the algorithm and the optimal 
number of groups. To deal with these issues, we resort to 
the majority rule on validation measures selected in a way 
that they cover the three characteristics to be studied in the 
clusters found.

Results (i.e. conclusion validity threat) have been inter-
preted by taking into consideration, besides the aspects 
related to clustering, requirements dependencies as the 
primary goal is to select requirements to get a core set of 
requirements for the software product. This is also related 
to including more important functionalities and can affect 
to the number of requirements groups identified. Finally, 
regarding external validity, we use different data sets to ana-
lyse the generalization of the observed results.

7 � Conclusions

The core set of requirements is a software increment with 
just enough features to satisfy customers. The definition 
of which requirements should be included in it is a critical 
decision process in software product development that most 
times entails striking a balance between the value added to 
the project outcome and their cost. Requirements selection 
and negotiation has to be conducted according to these val-
ues and requirements dependencies. Clustering methods can 
provide a valuable aid by finding a requirements group that 
will make up the core of the next software product.

We have proposed a methodology for requirements selec-
tion based on clustering techniques. Through its use, we 
can define the requirements core set that has to be incor-
porated into a next software release. From this set, we have 
obtained a viable product by taking into account require-
ments dependencies and incorporating to the core set those 
requirements needed to fulfil them. This will be the starting 
requirements pack used in the contractual negotiations with 
stakeholders at the time of defining the project scope. The 
feasibility of our methodology has been tested on several 
case studies, following the established guidelines that define 
an experimentation protocol in other cases when the suit-
ability of clustering strategies needs to be studied.

We have learned several lessons. No single clustering 
algorithm applies, as it can be seen in the cases studied when 
a specific clustering method has to be selected. In each case, 
a different clustering algorithm was selected. The number 
of categories proposed by MoSCoW can serve as a good 
starting point for requirements selection. In the cases stud-
ied, the effect of the optimal number of clusters has been 
to enlarge both the requirements core set and the viable 
product, increasing satisfaction and effort. Dependencies 
have to be taken into account always when identifying a 
viable product blurring clusters boundaries. When compar-
ing manual and automatic prioritization, results suggest that 
developers include fewer requirements which translates into 
a viable product that needs less development effort but with 
less satisfaction.
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