
Vol.:(0123456789)1 3

Requirements Engineering (2019) 24:315–340
https://doi.org/10.1007/s00766-019-00319-8

RE 2018

The impact of requirements on systems development speed:
a multiple‑case study in automotive

S. Magnus Ågren1 · Eric Knauss1 · Rogardt Heldal2 · Patrizio Pelliccione1,3 · Gösta Malmqvist4 · Jonas Bodén4

Received: 3 December 2018 / Accepted: 4 July 2019 / Published online: 16 July 2019
© The Author(s) 2019

Abstract
Automotive manufacturers have historically adopted rigid requirements engineering processes. This allowed them to meet
safety-critical requirements when producing a highly complex and differentiated product out of the integration of thousands
of physical and software components. Nowadays, few software-related domains are as rapidly changing as the automo-
tive industry. In particular, the needs of improving development speed are increasingly pushing companies in this domain
toward new ways of developing software. In this paper, we investigate how the goal to increase development speed impacts
how requirements are managed in the automotive domain. We start from a manager perspective, which we then comple-
ment with a more general perspective. We used a qualitative multiple-case study, organized in two steps. In the first step,
we had 20 semi-structured interviews, at two automotive manufacturers. Our sampling strategy focuses on manager roles,
complemented with technical specialists. In the second step, we validated our results with 12 more interviews, covering nine
additional respondents and three recurring from the first step. In addition to validating our qualitative model, the second
step of interviews broadens our perspective with technical experts and change managers. Our respondents indicate and rank
six aspects of the current requirements engineering approach that impact development speed. These aspects include the
negative impact of a requirements style dominated by safety concerns as well as decomposition of requirements over many
levels of abstraction. Furthermore, the use of requirements as part of legal contracts with suppliers is seen as hindering fast
collaboration. Six additional suggestions for potential improvements include domain-specific tooling, model-based require-
ments, test automation, and a combination of lightweight upfront requirements engineering preceding development with
precise specifications post-development. Out of these 12 aspects, seven can likely be addressed as part of an ongoing agile
transformation. We offer an empirical account of expectations and needs for new requirements engineering approaches in
the automotive domain, necessary to coordinate hundreds of collaborating organizations developing software-intensive and
potentially safety-critical systems.

Keywords Requirements engineering · Continuous software engineering · Automotive systems engineering

 * Eric Knauss
 eric.knauss@cse.gu.se

 S. Magnus Ågren
 magnus.agren@chalmers.se

 Rogardt Heldal
 Rogardt.Heldal@hvl.no

 Patrizio Pelliccione
 patrizio.pelliccione@gu.se

1 Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, 412 96 Gothenburg,
Sweden

2 Western Norway University of Applied Sciences, Bergen,
Norway

3 University of L’Aquila, L’Aquila, Italy
4 Knowit AB, Gothenburg, Sweden

http://orcid.org/0000-0002-6631-872X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-019-00319-8&domain=pdf

316 Requirements Engineering (2019) 24:315–340

1 3

1 Introduction

The automotive industry is currently going through rapid
change, driven by new technology (electric/hybrid cars,
autonomous driving, and connected cars) as well as new
competitors (e.g., through companies such as Google,1
Apple,2 but also Tesla and Uber). This change manifests
for example in Original Equipment Manufacturers (OEMs)
increasingly turning into software companies. Where previ-
ously, electronics and software were introduced in cars to
optimize the control of the engine, they now drive 80% to
90% of the innovation in the automotive industry3. In order
to keep a competitive edge in this context, many OEMs have
the need to increase development speed, (i.e., fast and early
feedback on the product level), thereby improving time to
market, flexibility (i.e., the ability to rapidly react to change),
and the overall product quality.

We use the words of a software manager working in one
of the OEMs we involved in this study to explain this need
for speed and its relation to quality:

“Perhaps we should start with why we should be faster.
Autonomous drive, for example, is an area where
there’s incredible research and development activity
going on simultaneously. So long lead times work
poorly for us, that’s one driving force. /.../ If you’re
gonna be fast, you need good quality. To get good qual-
ity, you need to ensure that with every change, every-
thing that worked yesterday still works today. That’s
another driving force.” – R11

There are various ways to improve (software) development
speed, including agile methods, but also practices of contin-
uous software engineering [30]. Continuous Integration (CI)
is extensively used in the software industry to develop and
release software more rapidly, as well as to reduce risk [32].
CI and its extension to continuous delivery and deployment
have been reported to accelerate time to market as well as to
improve product quality [45, 72]. It has been suggested that,
indeed, software-intensive companies must move toward
these practices to stay competitive in today’s increasingly
competitive markets [74].

Nowadays, OEMs are changing toward embracing CI
[55], continuous experimentation [27], and large-scale agile
methods [59, 60]. While initially focused on small teams
[6, 49, 68, 75], success stories have led to the application of
agile methods at large scale [23, 58, 82] and in system devel-
opment [7, 24, 58], an environment that is characterized by

long lead times [7] and stable, sequential engineering prac-
tices [77].

In these environments, new challenges arise, especially
with respect to managing requirements [51, 84] and com-
panies struggle to implement efficient requirements engi-
neering (RE) [16, 57, 95]. Existing works on agile RE (e.g.,
[10, 39, 79]), mostly focus on proposing new approaches,
practices, and artifacts [38]. While there is a trend toward
analyzing the phenomenon of RE in relation to methods
to improve (software) development speed, on the scope of
whole systems [52] or organizations [39], these studies usu-
ally take the view of stakeholders involved in requirements
engineering and development [38, 47].

In this paper, we investigate the management perspective,
in order to complement previous research. Knowing that
management in many automotive OEMs aims to increase
development speed through agile methods or practices of
continuous software engineering, we want to understand
how managers envision automotive companies organiz-
ing themselves, with respect to managing and engineering
requirements. We aim to provide a high-level visionary per-
spective, more concerned with creating long-term competi-
tive advantage than getting short-term tasks done. In this
context, we investigate the following research questions:

RQ1: Which aspects of the current way of working with
requirements impact development speed?

RQ2: Which new aspects should be considered when
defining a new way of working with requirements to
increase development speed?

RQ3: To what extent will either aspects be addressed
through the ongoing agile transformation?

This paper is an extension of a study published in the 26th
IEEE International Requirements Engineering Conference
(RE’18) [2]. In the initial study, we performed 20 qualita-
tive interviews with managers and technical leaders of two
automotive OEMs. From these interviews, we derived a first
model that relates aspects of requirements engineering to
development speed. In this paper, we extend the study by
adding 12 additional interviews that provide validation of
our qualitative model as well as add additional insights, e.g.,
with respect to the role of traceability, quality assurance of
requirements and handling risk, and a new mindset when
doing requirements that facilitates incremental work and
focuses on interactions. Moreover, we added an evaluation
of how the transition toward agility that is in place in the
contacted companies is solving or expected to solve identi-
fied challenges and limitations.

The rest of this paper is structured as follows. Section 2
describes the context in which the research has been per-
formed. Section 3 describes our research method. Section 4,
gives an overview of the themes that emerged and their 3 According to industry experts: https ://tinyu rl.com/y9jno upd.

1 https ://www.googl e.com/selfd rivin gcar/.
2 https ://en.wikip edia.org/wiki/Apple _elect ric_car_proje ct.

https://tinyurl.com/y9jnoupd
https://www.google.com/selfdrivingcar/
https://en.wikipedia.org/wiki/Apple_electric_car_project

317Requirements Engineering (2019) 24:315–340

1 3

effect on development speed. With respect to each research
question, Sections 5, 6, and 7 then present the themes in
detail and discusses them in relation to related work. Sec-
tion 8 concludes the paper with a discussion of our contribu-
tions and their potential to guide future research.

2 Context of cases

Both case companies are automotive OEMs: one car manu-
facturer and one heavy vehicles manufacturer. Both compa-
nies are large, with many organizations in several countries,
they produce several different models of vehicles, and they
have had a long history of many different owners. Embedded
systems play a key role, however, service-oriented systems
have become increasingly important.

The goal of both case companies is to increase develop-
ment speed as well as flexibility to react to changing mar-
ket needs—a response to increasingly fast and disruptive
changes in the automotive domain in recent years. As one
mechanism to achieve this, both companies have transforma-
tion initiatives ongoing, with the goal of adopting the Scaled
Agile Framework (SAFe, [60]) for their development organi-
zations. Consequently, both case companies are currently
concerned with discussing development speed in relation to
ways of working and it appears to be the hope that transition
to large-scale agile will provide an organization that can
support fast deployment of new functions, especially if they
are mainly software based.

At the outset of the transformation, development is done
in teams usually consisting of six to eleven persons. Teams in
different departments work according to different processes,
with most teams working according to a waterfall process,
while in some departments agile teams have emerged. Some
scaling of agile methods has begun. Most projects have a
budget spanning from four to nine digits in USD. Project
scopes vary, from minor adjustments of a product for a spe-
cific market to entire new vehicles. A project delivery typi-
cally consists of developments in mechanics, hardware, and
software technologies. The release processes are set up to
serve major market introductions every few years. The com-
pany cultures are finance- and commitment-oriented, with a
strong focus on a phase-gate process.

SAFe offers different configurations depending on scale
and our case companies range on the higher end with respect
to scale. Within the full configuration of SAFe, practices are
categorized in four abstraction levels: portfolio, large solu-
tions, program, and team level. Requirements engineering
practices can be seen across all these levels, and since we
are especially interested in the impact on software, we can-
not even ignore the team level, which in our case is covered
through technical experts among our respondents. The rea-
sons for transitioning toward a large-scale agile framework

include the realization that previous attempts to increase
speed and flexibility of individual software teams are limited
in their effectiveness without comprehensive support from
the complete organization.

While there are differences between both case companies
in certain aspects (e.g., scale of organization or number of
variants to be covered by development), the similarities out-
weigh them. Both companies need to manage inter-depend-
encies between hardware and software development cycles
as well as large and complex supplier networks. Tradition-
ally, OEMs are organized in a number of departments, relat-
ing to the key building blocks of vehicles (incl. for example
Powertrain, Body, Infotainment). The general aim is to map
each of these departments to an agile release train and both
companies were defining the practicalities of this setup with
respect to development cycles and suppliers at the time of
our interviews.

In order to understand the role of requirements engineer-
ing in this situation, the managers of each department were
our primary respondents. In a second step, we extended our
interviews to architects (responsible for the overall as well
as release train specific architecture) and to experts tasked
a) with driving the agile transformation, b) with ensuring
quality, and c) with managing cross-cutting concerns such
as base technologies. Technical experts are distinguished
engineers tasked with managing (and increasing) knowledge
in their specific domains, such as architecture, processes,
methods, or software engineering. They are the first contact
points for any question in those domains and either consult
or drive any improvement initiatives relating to their exper-
tise. Related and previous work has looked into these aspects
from a developer point of view which we complement in
this study.

3 Method

We used a multiple-case study design organized in two
steps, with two automotive OEMs as cases (as described
in Sect. 2). To acquire first-hand perspectives from our
respondents beyond individual projects, we collected quali-
tative data through interviews. These data in a multiple-case
study allow us to investigate our research questions in a real-
world context [81].

3.1 Respondent selection

In the first step, we have focused our selection of respondents
on high- and mid-level managers, complemented with tech-
nical experts with a high-level view on processes and archi-
tecture. Where previous work has focused on developers and
requirement engineers, we complement these works with the
perspective of managers, who rely heavily on requirements

318 Requirements Engineering (2019) 24:315–340

1 3

in their roles of dividing and leading work. Targeting com-
parable software development intensive system areas at both
case companies, we interviewed the managers of these areas
and the managers of all immediate subordinate departments.
The exact subdivision differs between the companies, yield-
ing more respondents from case company one. The sampling
strategy was thus to exhaustively cover corresponding parts
of both company management structures.

In the second step, we validated our results with addi-
tional respondents, which we partially recruited from the
initial respondents to validate our qualitative model, and

partially among technical experts and change managers to
broaden our perspective.

Table 1 gives an overview of our respondents, their
roles and years of experience. In the first step, a total of
20 respondents were interviewed, over the two case compa-
nies, with each interview lasting approximately one hour. In
the second step, we conducted 12 interviews, interviewing
nine additional respondents and three recurring, over the
two companies. For confidentiality, respondents are kept
anonymous and referred to with running ids R1–R29.

This research was not conducted under national regu-
lations that demand prior approval from an ethics board.

Table 1 Selection of
Respondents

Role Automotive
experience

Case company one—first round of interviews
R1 Technical expert, architecture > 30 years
R2 Manager SW dept. > 25 years
R3 Manager SW dept. 23 years
R4 Manager SW dept. N/A
R5 Manager mechanical dept. > 20 years
R6 Manager SW dept. 15 years
R7 Technical expert, architecture 18 years
R11 Manager SW dept. 1 year
R15 Manager mechanical dept. > 20 years
R16 Technical expert, process > 10 years
R17 Manager SW dept. > 5 years
R18 Manager SW dept. > 20 years
R19 Manager SW group N/A
Case company one—second round of interviews
R7 Technical expert, architecture 19 years
R15 Manager mechanical dept. > 20 years
R21 Technical expert, SW quality assurance 6 years
R22 Agile transformation leader 7 years
R23 Technical leader, SE and Mgmt. 18 years
R24 Change leader N/A
R25 Technical expert, architecture > 20 years
R26 Technical expert, architecture 12 years
R27 Technical leader, agile SW development > 10 years
Case company two—first round of interviews
R8 Technical expert, process 20 years
R9 Manager SW dept. 10 years
R10 Manager SW group > 5 years
R12 Manager SW dept. > 25 years
R13 Manager SW dept. 21 years
R14 Manager SW tool dept. 12 years
R20 Manager system dept. 19 years
Case company two—second round of interviews
R10 Manager SW group > 5 years
R28 Manager, technical solution 2 years
R29 Agile transformation coordinator > 18 years

319Requirements Engineering (2019) 24:315–340

1 3

Nevertheless, prior to each interview, we acquired consent
from the respondent to use their responses in anonymized
form.

3.2 First step of the study

For the first round of data collection, we employed a qualita-
tive approach, using semi-structured interviews. Semi-struc-
tured interviews employ an interview guide with questions,
but allow the order of questions to vary to fit the natural
flow of the conversation. Our interview questions took an
exploratory approach. We asked respondents about their cur-
rent situation and development speed, intended changes to
ways of working, hindrances to these changes, and how to
overcome these hindrances. The data have a broader scope
than requirements engineering; in this paper, we report
on requirement-related aspects within this broader scope.
Except for the fact that this paper is an extension of a previ-
ous publication [2], none of these data have been used in
prior publications.

All interviews4 in the first round were conducted by the
first author together with one or more of the coauthors and
were recorded and transcribed. The resulting transcripts span
340 pages (more than 165.000 words). We relied on the-
matic coding [34] in which we assigned one or more codes
to relevant statements in the transcripts. For this task, the
authors split into two teams that worked in parallel. One
team focused on a priori coding based on our research ques-
tions, while the second team performed complementary
emerging coding, starting from any mention of requirements
in the transcripts. We then merged the coding schemes from
both teams in a workshop to ensure that we do cover the
full data in our synthesis of findings. As an example of the
coding process, the following statements were first coded as
contracts and procurements, respectively. They were then
grouped with the theme requirements-based contracts hin-
der fast collaboration.

“As soon as a change occurs, it has to be stated in the
contract and re-negotiated. And then there will be new
requirements specifications and such.” – R7

“Another impact is how much [Case company 1] spe-
cifics you push out in your requirement specifications.
If there’s a lot of [Case company 1] specifics, yeah
then it’ll take a very long time and be very expensive
to do this stuff. And as soon as we’re to change some-
thing we need to go out to our suppliers and [negotiate]
these changes.” – R7

Quotes have been translated from the respondents’ native
language to English and edited for readability. Colloquial-
isms have been kept, in order to convey the tone of the con-
versation and to reflect the informal nature of the interview
setting.

3.3 Second step of the study

The second round of interviews was based on a slightly
adjusted process. Since this round was not as exploratory
in nature, we designed an interview instrument with both
closed and open questions.5 We focused on Likert scale
questions, based on the themes that emerged from the first
round of interviews. The interview format also allowed
respondents to ask for clarification of the questions, if neces-
sary. In addition, we asked respondents about the reasoning
behind their answers and whether any aspects were missing.

Interviews in the second round differed in length; inter-
views with initial respondents went rather quick, while inter-
views with new respondents took up to 90min and more. The
average is around 37min. We conducted the interviews in
parallel and recorded them (with the exception of one, where
we took extensive notes). The recording thus covered the
reasoning about the Likert scale answers and the discussion
of potentially missing aspects. Each author made themselves
familiar with the recordings and one author carefully went
through all recordings to extract the key issues with respect
to our research questions.

3.4 Threats to validity

To classify potential threats to validity, and reason about our
corresponding mitigation strategies, we follow the scheme
proposed by Runeson and Höst [81].

Internal In terms of threats to internal validity, we fol-
lowed a systematic approach in setting up the study and best
practice guidelines for both data collection and analysis [81].
Moreover, the interview questions might have influenced the
respondents to consider factors that would increase develop-
ment speed, at the expense of what currently provides speed.
To mitigate this risk, we spent time discussing how to phrase
the questions and types of questions to avoid. Still, despite
making an effort to ask questions in a neutral way, respond-
ents might have considered mainly negative aspects of the
current requirements engineering practices with respect to
development speed.

External Generalizability is inherently limited for case
studies. All interviews were done within one country with
automotive companies developing large-scale software for

4 The interview guide used for the first round of interviews is avail-
able online at https ://doi.org/10.5281/zenod o.12992 06.

5 The instrument used for the second round of interviews is available
online at https ://doi.org/10.5281/zenod o.18880 11.

https://doi.org/10.5281/zenodo.1299206
https://doi.org/10.5281/zenodo.1888011

320 Requirements Engineering (2019) 24:315–340

1 3

embedded systems, and this software is expected to have
a long lifetime. Therefore, our findings may not apply to
smaller companies, other countries, or for software with a
shorter life expectancy. Global presence of both case com-
panies may make our findings more general, but cultural
aspects may persist and could have an impact on how prac-
titioners reason about requirements engineering in relation
to development speed.

Moreover, we focused the study on one system area at
each company, selected for being the most software develop-
ment intensive ones at the respective companies. Although
we complemented with additional respondents from other
system areas, an in-depth study of another area could
uncover further detail, possibly contradicting our findings.

Construct All authors have prior experience with the
automotive domain, which we leverage to ensure construct
validity. The academic coauthors have longstanding collabo-
rations with both case companies, whereas the industrial
coauthors were, at the time the study data were collected,
working at case companies one and two, respectively. Thus,
the interview situation was informal and characterized by
mutual trust. Furthermore, the interview guide was refined
through multiple iterations, with input from senior industry
experts.

Reliability To ensure reliability, we used observer trian-
gulation during the interviews. In the first round of inter-
views, the first author conducted the interviews, joined by
one or more of the industrial coauthors, who observed and
asked follow-up questions for additional clarifications. Three
of the authors did the coding independently of each other
and discussed the results afterward. The translation of quotes
was done by the main author and checked by the coauthors
for correction of any translation error.

The second round of interviews was conducted by sev-
eral authors in parallel. The interviews were recorded (with
one exception, where we took extensive notes). One of the
authors listened through all recordings, others listened in
to particularly controversial or interesting passages. Thus,
we made sure that at least two authors were familiar with
each interview. We then discussed new aspects that should
be added to our findings with respect to a research question,
new aspects relating to any theme in our results, and – based
on the Likert scale questions—any findings about the rela-
tion to the agile transformation of each company.

Comparing the different approaches in both interview
rounds, it is noteworthy to discuss the cost and value of
creating interview transcriptions. Our first interviews were
much more exploratory in nature. Through several iterations,
we revisited the data and attempted to categorize our codes
in a meaningful way. This forced us to revisit the interview
data several times and would not have been feasible without
transcripts that allowed for full-text search as well as com-
prehensive tracing from themes to codes and to interviews.

In contrast, the second round aimed to collect additional
views on the themes we already had. In addition, we explic-
itly asked for any new aspects to add. Thus, it was straight
forward to extend our existing model with the new data and
the transcriptions did not appear to offer a positive return on
the time we would have to invest.

It is important to note that we did not aim for saturation
[83]. In the first round of interviews, we instead exhaus-
tively interviewed all potential respondents (all managers at
the targeted level). In the second round, we actively aimed
for broadening the diversity of our sampling, by including
key stakeholders of many different roles. Thus, we were not
surprised to learn new aspects and we cannot guarantee that
further interviews would not yield even more. Clearly, more
work is needed to establish a solid theory about the effects
of RE on development speed in scaled agile contexts. This
paper is a step in that direction.

4 Findings overview

Figure 1 gives an overview of our findings in relation to
our research questions. The figure connects key character-
istics of current and future automotive RE that emerged
from our interviews with the overall goal of our case com-
panies to increase development speed.

The left-hand side in Fig. 1 shows the themes related to
RQ1 (impact of current way of RE on Development speed).
For example, the figure shows that a rigid requirements
process forces early decisions, and by that, it impacts
developments speed negatively. Similarly, on the right-
hand side, we list themes that emerged in relation to RQ2
(aspects of future ways of RE and their relation to devel-
opment speed). As an example, post-development speci-
fication positively impacts development speed, because it
reduces the workload. For RQ3, we indicate with a dashed
border those themes which our respondents considered
addressed by the ongoing agile transformations.

We discuss the findings for each research question indi-
vidually in the following sections.

5 Which aspects of the current way
of working with requirements impact
development speed (RQ1)?

With respect to RQ1, we found the following themes; they
indicate that our respondents judge the current way of
working as not supporting the desired development speed.

321Requirements Engineering (2019) 24:315–340

1 3

Summary: Impact of current RE on dev. speed (RQ1)

(1) Requirements style dominated by safety and legal concerns
neglects development speed

(2) Requirements-centric culture constrains development speed
(3) Rigid requirements process forces early decisions
(4) Focus on decomposition and hierarchy introduces delays
(5) Requirements representation hinders change
(6) Requirements-based contracts hinder fast collaboration
(*) Additional aspects raised in second round of interviews: current

traceability practice and quality assurance of requirements
(imbalance between risk vs. lead-time)

Note that Themes 1–6 emerged from our first round of
interviews. Figure 2 shows the level of agreement from
respondents in the second round that those aspects indeed
impact development speed. We note a few disagreements,
concerned with requirements style and requirements-cen-
tric culture, which we will discuss below. In addition, two
more aspects emerged from our discussions with respond-
ents. Note also that the findings in the remainder of the
section come from both rounds of interviews.

Fig. 1 Causal relations between concepts. Dashed line indicates which aspects will likely be addressed through the agile transformation (RQ3),
gray box lists additional concepts from the second round of interviews

Fig. 2 Level of agreement with the impact of aspects of the current way of working on development speed

322 Requirements Engineering (2019) 24:315–340

1 3

For each theme, we give details based on a narrative
supported by representative quotes in the remainder of this
section.

5.1 RE style dominated by safety and legal concerns

Automotive systems are inherently safety-critical, not least
because of how they are perceived by customers and users:

“That’s something that can be perceived as very
frightening for the customers and also be danger-
ous if you just out of the blue suddenly brake the
car.” – R6

Consequently, safety-related and legal issues must be han-
dled systematically, e.g., by tracing development and verifi-
cation results to requirements.

“We have product liability, legal requirements, doc-
umentation obligations. If something happens—if
someone crashes and the airbag doesn’t deploy—in
accordance with which requirements have we devel-
oped, in accordance with which requirements have we
tested and verified and so on for our product liability.”
– R3

Our respondents confirm the fundamental impact this has
on requirements work.

“We have safety classed components. So it affects a
lot how we think about requirements decomposition,
traceability, test and so on. It sets the bar” – R19

Thus, safety and legal requirements are requirements in
the traditional sense of the word, quite different from agile
user stories that represent an often negotiable user goal.
Depending on standards and frameworks, this can imply cer-
tain ways of working, including certain approaches toward
decomposition or an implied bias toward upfront analysis.

“We’re very much driven by safety requirements,
ISO 26262, and that process is very waterfall. /.../
One wants to see the decomposition from high-level
requirements all the way down to component require-
ments.” – R8

Such decomposition is necessary to manage safety and legal
concerns, but the usual way to do it upfront before devel-
opment can generate unnecessary delays. In addition, the
implied reviews and certifications also challenge continuous
integration.

“So we still have a bottleneck with certifications and
government stamps [authority approvals]. CI is diffi-
cult for us at Powertrain because a lot of what we have
affects legal requirements and emissions, quite simply.
We surely have some areas where we could run CI, but

it’s perhaps not as obvious for us as it is for Infotain-
ment or Navigation.” – R15

Thus, in order to have a competitive edge, and to increase
development speed, the question is whether equally safe sys-
tems can be built with an approach that allows for more flex-
ibility (to the extent necessary for implementing, e.g., CI).

Summarizing, ten out of the second-round respond-
ents agreed or strongly agreed that a RE style dominated
by safety and legal concerns slows down the development
speed. However, we highlight that all respondents pointed
out that requirements related to safety and legal concerns
have to be treated seriously. It can then happen that some
requirements not related to safety and legal concerns get
treated with that same rigor. Finally, some respondents
thought that safety and legal issues were not the main reason
slowing down the development process, but that they could
be used as an excuse for being slow.

5.1.1 Safety and legal concerns in context of related work

Our findings are in line with an increasing body of work that
reports on efforts to balance safety and regulation with agil-
ity [31, 37] or continuous software engineering [30].

To our knowledge, such approaches have not been rolled
out on the scale of a complete OEM and its software-related
supply chain. However, experience on the level of individ-
ual teams exist [7, 53], but often describe struggling with
respect to conflicts between safety-dominated culture on
system level and agile-dominated culture on team level [52].

5.2 Requirements‑centric culture
constrains development speed

With OEMs focusing on integrating components from hun-
dreds of suppliers into highly differentiated products, they
have developed requirements engineering as a core compe-
tency and integral part of their culture. Although the impor-
tance of understanding requirements and constraints cannot
be discarded, there is an indication of systematic over-spec-
ification or even over-emphasis on requirements specifica-
tion. Contrariwise, new pressure for increased development
speed demands more focus on implementation.

“Requirement specifications, it’s in our spine, also we
in the electronics and software community, us oldies.
It doesn’t work, and we saw that quite clearly when we
built the [system] architecture we have today.” – R1

A requirements-centric culture puts much focus on making
requirement specification. There is a long history of writ-
ing large requirements specifications particular to suppliers.
This strong focus on documentation seems to not always pay
off. The value that requirements could have come in far too

323Requirements Engineering (2019) 24:315–340

1 3

late, so they are often disregarded, but still a lot of effort is
spent on them. However, we want to highlight that none of
our respondents indicated that requirements were unneces-
sary, which can be best illustrated by:

“There is an assumption that we can develop the same
thing without requirements, and that is not true.” – R22

The level of details creates expectations with the develop-
ers and they become requirements bound. The number of
requirement authors per developer is also regarded as too
high.

“We have a tradition of focusing a lot on specification.
We specify our way to the solution, which isn’t quite
what we want to do now. It means that we’re staffed
with highly skilled specification writers, but very few
developers. The developers are also used to someone
telling them exactly what to do.” – R10

There is also room for improving how requirements are
specified. The problem is not necessarily the strong focus on
requirements specification and the amount of requirements.
The problem is in a lack of common template or way of deal-
ing with them. This would have many benefits: (1) cut down
time, (2) increase the quality, and (3) facilitate understand-
ability of developers and testers.

Also, forecasting is the typical approach.

“I think we have created a structure where we have tried
to specify and plan our way out of a very complex real-
ity.” – R11

Transition to more agile, continuous, and product focused
development will affect the role of requirements in the overall
development process.

“[Requirements] can be a lot fewer; if you become prod-
uct oriented and look more at agile and such, then you
can scrap lots of requirements. But it’s an effect of a
faster and more efficient flow.” – R16

Thus, current requirements-centric culture constrains devel-
opment speed. Our respondents suggest that in order to
increase development speed, the role of requirements should
be adjusted. This is also shown in the next theme, related to
the requirements engineering processes.

Summarizing, eleven out of the second-round respondents
agreed or strongly agreed that requirements-centric culture
slows down development speed. There is a large focus on
thinking first and on getting things right from the beginning.
Indeed, some of the requirements need a lot of upfront mod-
eling and experimentation. However, the general feeling is
that sometimes this goes too far; better then to try out a bit
first, learn from it, change it if necessary, and then document
it more thoroughly afterward. One respondent also said that

there should be an effort toward creating a culture of failing
fast and learning from it.

The disagreement is based on the opinion that a require-
ments-centric culture is a consequence of managing complex
supplier networks. The disagreeing respondent is in their role
concerned with managing the quality of supplier contributions.
We interpret the otherwise strong agreement to this aspect as
the hope that new ways of defining contracts not based on con-
crete requirements will mitigate such quality problems more
efficiently.

5.2.1 Requirements‑centric culture versus speed in context
of related work

Recently, an increasing number of papers concern require-
ments engineering in relation to agile methods [4, 47, 52].
We believe that our findings support these previous works
in that the mindset about the role of requirements must
indeed change both in research and practice to enable faster
development of increasingly complex systems. Related work
warns that a push to faster development, e.g., based on agile
methods, can lead to neglecting quality requirements [4, 79]
and also demands for increasing the ability of being an agile
customer [79]. Related work also suggests that agility on an
organizational level introduces challenges with respect to
prioritization and growing technical debt [38].

5.3 Rigid requirements process forces early
decisions

In addition to the requirements style and requirements-cen-
tric culture, the current requirements process impacts also
the development speed.

“I don’t know really if I think it’s crazy wrong how
we view requirements, but how we’ve made a process
that throws them [around] is quite devastating. /.../ It’s
more how we choose to have the development process,
I think. I don’t have anything against requirements.”
– R16

A recurring theme from our respondents is the early freeze
of requirements that the processes prescribe.

“The whole project setup is built on planning really
the entire duration. You have plans you lock, freeze
and everything. Freeze of requirements and freeze of
everything, and you do that early.” – R8

This requirements freeze is a consequence of a cultural
assumption that an accurate, useful upfront specification is
indeed possible.

324 Requirements Engineering (2019) 24:315–340

1 3

“I’m sure requirements work is equally difficult at
other companies. It’s difficult and complicated here as
well, perhaps mainly because the forms of it today are
built around the idea that you are able to state exactly
what you want, very early.” – R12

Our respondents express doubts that this assumption holds
within all aspects of an increasingly complex product in a
rapidly changing market.

“Have a smarter way of working with content and
backlog, instead of saying that ‘2020 we’ll have this
itty-bitty function’ and we start specifying and discov-
ery it was super difficult. ‘But now we’ve said, now
we’ve promised.’ and so it goes.” – R2

Also, the time between specifying detailed requirements and
getting feedback through integration and acceptance testing,
which, in turn, often leads to requirement changes, is very
long.

“Some time passes and then there’s integration, and
then there’s system test at the supplier, and then some-
thing is sent back [to us] 6 or 8 or 12 weeks later, from
when you released a specification.” – R17

“In case we have a node where we send the specifica-
tion [off for development], and it then takes half a year.
Then people have moved on” – R18

Summarizing, out of the ten second-round respondents that
answered, all agreed or strongly agreed that rigid require-
ments processes forcing early decisions have a negative
impact on development speed (two respondents choose not
to express an opinion about this aspect). Despite such strong
agreement, it seems that becoming more agile than today
is not simple. One important aspect is to promote a culture
in which requirements are not put into stone too early, but
rather updated as one learns more. The respondents that
did not offer an opinion could relate to the problems that
our study brought up but proposed that strictly following
improved processes and improved training would be required
to avoid problems in supplier relationships.

5.3.1 Process and early decisions in context of related work

The difficulties of early decisions have been discussed for
a long time in software engineering, prominently for exam-
ple in relation to the cone of uncertainty [11]. While some
researchers highlight the merit of upfront requirements
analysis and specification to avoid unnecessary work and
identify problems early [68], others have reported difficulties
when forcing decisions in phases when not enough infor-
mation is available [25]. Our findings add to the empirical
evidence of the need for future research with respect to (1)
differentiating between different levels (e.g., team, product,

portfolio [60], and (2) supporting end-to-end responsibility
of (product) teams [38, 39], and (3) moderating local deci-
sion making [24, 28].

5.4 Focus on decomposition and hierarchy
introduces delays

Because of the complexity of automotive systems, devel-
opment is generally organized in a number of abstraction
levels. This also results in a corresponding hierarchy, many
roles, and a large number of handovers, all of which are
considered to negatively affect development speed.

“I think we have too many roles /.../ We’ve tried to
establish a logic for how we decompose require-
ments. It’s very V-model influenced. So we think that
for each new level we need a new role, and that’s
very many handovers. We start with some property
making requirements, and we have a function level
making requirements, we have a function realization
level distributing and formulating requirements, we
have a subsystem level, and then we land on compo-
nent level, and hardware and software components
and so on. Just the fact that we have so many steps
hampers us, I think.” – R6

This can be seen as a vicious circle: the process empha-
sizes decomposition of requirements and, in turn, this
leads to the creation of new roles. These roles can then
become a source of new requirements. Consequently, it
is difficult to make decisions on requirements, since too
many different roles throughout the development value-
chain must potentially be involved.

“The result is that very, very many [engineers] come
with requirements on things needing to be done,
without there existing a structure [wherein] to prior-
itize what’s most important. It’s a somewhat impos-
sible equation for the developer, who is to realize this
function. There can be 80, 100, or 150 requirements
from different sources without any real sorting.” –
R11

However, some hierarchy seems to be necessary and cannot
be avoided:

“Organizations are hierarchies by nature. If there’s an
organization where the parts that are building some-
thing, normally at the bottom of the hierarchy, if they
cannot talk directly to each other, if they need to follow
the hierarchy, then it becomes very slow and every-
thing is bad.” – R7

From an organizational point of view, it is thus good if
talk can happen across the hierarchy, not merely along
the hierarchy. Conversely, from a technical point of view,

325Requirements Engineering (2019) 24:315–340

1 3

if communication in a software system bypasses intended
structures, this can turn the system into the proverbial spa-
ghetti. It thus seems that organizational hierarchy need not
by itself be an impediment to development speed. However,
there seems to be a limit to how many layers that are useful
to have. In our cases, the companies use up to seven layers
to break down the requirements, which seems far too much.

“There are aspects that require being broken down, but
we overuse this too much.” – R25

“I think we can get rid of one or two layers” – R21

Also, all these layers create both dependencies and isolation:

“All these layers create a lot of dependencies.” –
R24

“All these layers and decomposition are super nega-
tive, create a lot of isolated groups that do not talk
together.” – R27

However, one respondent pointed out that legal require-
ments can make decomposition necessary in order to get
speed further downstream.

Prioritization between requirements is thus eventually
left to each developer.

“So, all the different requirements from the different
projects, and the different lead times, are anyway
going to the same, it’s the same developer sitting at
the bottom.” – R13

Not being able to decide about requirements as well as
a lack of ready access to business representatives delay
development within cross-functional teams.

“One needs contact with our business side /.../ and
have this difficult dialog about what’s most impor-
tant to do, and in which order. Instead of each devel-
oper meeting and discussing all conflicting require-
ments.” – R11

Summarizing, ten out of the second-round respondents
agreed or strongly agreed that focus on decomposition
and hierarchy introduce delays and slow down the devel-
opment process. However, some hierarchy seems to be
necessary and cannot be avoided, since it is part of the
nature of an organization. Legal requirements can make
decomposition necessary, in order to get speed further
downstream. However, having too many layers seems also
to create both dependencies and isolation.

5.4.1 Decomposition and hierarchy in context of related
work

Efficiently structuring organizations has been reported as
a key challenge for agility in mechatronic organizations

[7]. Even without the explicit goal to transition to agile,
strict vertical hierarchies and purely plan-driven ways of
working alone have been reported to fail for engineer-
ing complex automotive systems [25]. This is to a large
extent due to too many levels, including (1) the inability
to ensure that decisions are made on the most appropriate
abstraction [25], (2) the challenges with clearly commu-
nicating about the relationship between high-level, vague
requirements, and details added to lower abstraction lev-
els later on [62], and (3) the difficulties to coordinate
requirements (and their change) across these levels [8].

5.5 Requirements representation hinders change

The current way of specifying assumes upfront knowledge
about an optimal decomposition of distributed function-
ality. Teams then work on requirement specifications for
separate components. To increase development speed, our
respondents indicate that instead of focusing on detailed
specifications of individual components, one should instead
provide a high-level view on how a distributed functional-
ity will be provided through the interaction of those com-
ponents, including an early agreement of the interfaces.

“What we do is that we specify [component] con-
tent, we don’t specify the exact interfaces. Which
means that when a number of coders, each on their
own, develop and we put this together as distributed
functions, of course it doesn’t work. Then, we run a
couple of loops before we’ve found these interfaces
and stabilized them.” – R16

“There are no clear interfaces in the software struc-
ture or the function structure today, which is an
obstacle. You could say that there’s a brake system,
an infotainment system, a chassis system and so on.
But we haven’t built it like that, and it’s something
that hinders us because we can’t create isolated teams
who can easily work independently. Because they are
so dependent on other teams. The systems depend on
each other.” – R13

Requirements are typically expressed in prose, which is
an obstacle for testing and iterative development. Findings
on alternative ways of expressing requirement are given
in Sect. 6.2.

“Our software specification is currently text-based.
It’s very hard to iterate and test.” – R3

At the lowest level the textual specification is practically
pseudocode, consequently hard to understand, and of lim-
ited value to support speed in development.

“Some specifications are nothing other than pseudo-
C-code to describe a functional behavior. And those

326 Requirements Engineering (2019) 24:315–340

1 3

specifications become extremely difficult to under-
stand. ” – R13

“Or you write at a very very detailed level, with the
consequence that you write almost pseudocode, only
in prose.” – R11

Our respondents also point out that it is not necessarily
bad to have textual requirements. Instead, there is a need
for more training in writing good quality requirements.

“I think the text, natural language, is a universal tool
that should be used. It should be used brief, succinct,
and precise. There are methods for that.” – R21

It is very important to have requirements expressed at the
right level of abstraction.

“What’s difficult, I think, is to discuss the level of
requirements: how detailed do you need to make a
requirement before it becomes design?” – R19

This would also reduce the number of requirements in gen-
eral. Furthermore, using the framework AUTOSAR can
bring great benefit since one can refer to the standard, and
this leads to less requirement specification. In addition, a few
organizations have moved away from detailed requirements,
such as the infotainment organization, which describes the
requirements at a high level, using use cases. Permitting
more flexibility, however, requires suppliers understanding
the domain very well.

The textual specification is sometimes used also to com-
municate with suppliers. The situation is made even more
complex by possible further decomposition of the require-
ments and translation to another language.

“When they wrote their specification it was sent to
the supplier. But the supplier did not in all parts know
English, so then the specification was translated to
Japanese. Then it was decomposed to the different
sub-areas. After that, that company had different sup-
pliers, and they were outside of Japan. So then it was
translated to English again.” – R4

Summarizing, out of the eleven second-round respondents
that answered, ten agree or strongly agree that the current
way of specifying requirements hinders change. Having a
textual representation of requirements can be seen as prob-
lematic; however, the root of the problem seems to be in the
lack of expertise in writing good quality requirements.

5.5.1 Requirements representation in context of related
work

Automotive requirements engineering has been reported
to suffer from scale and complexity [62, 93]. In order to
manage requirements at this scale, textual natural language

requirements specifications are the norm in the embedded
industry [35, 73, 87, 94]. Textual requirements encourage
requirements reuse [41], enable formal exchange formats
(such as ReqIF [48]), and support a systematic and often
heavy-weight approach to baselining and change manage-
ment. Braun et al. [13] report three fundamental challenges
they observed in the automotive industry. The reported
challenges are increasing size and complexity of software-
intensive embedded systems, increasing economic relevance
of software in the automotive domain, and inappropriate
requirements engineering. Yet, in line with our findings,
practitioners have been reported to be increasingly dissatis-
fied with using natural language for requirements specifi-
cation [87] and the appropriateness of requirements engi-
neering approaches in automotive [13]. We believe that our
findings in relation to related work encourage more work on
modeling behavioral requirements in local teams [63] with a
focus on identifying cross-cutting concerns. This should be
complemented with an effort to define and evolve interfaces
between such teams [76]. At the moment, however, specifi-
cation is too often solution based, less often scenario based,
and rarely goal based in the automotive domain [44]. In line
with our findings, this focus on specifying solutions has been
reported to scale poorly for complex systems, especially with
respect to managing change.

5.6 Requirements‑based contracts hinder fast
collaboration

OEMs rely on requirements to define contracts with suppli-
ers and specify what should be delivered by sub-contractors.
Giving requirements such legal quality does, however, hin-
der fast collaboration:

“But to work as we do now, where we specify in detail
what [the suppliers] should do, and then wait for them
to implement it, and send it back, it’s not a fast way to
solve problems.” – R10

This is especially true when inevitable changes become nec-
essary. In particular, the current way of working does not
encourage early feedback from suppliers and can introduce
unnecessary costs.

“There’s no economic incentive to be part early. Then
it drops to change management. We change the specifi-
cation, it should say ‘and’ instead of ‘or’ or something.
But change management costs a lot, a lot more than the
software change itself.” – R3

The payment model of the current change management setup
does not foster collaboration.

327Requirements Engineering (2019) 24:315–340

1 3

“Then we lock ourselves in and bring requirements not
possible to realize, and of course [the supplier] wants
to be paid for doing this change.” – R8

In addition to change management, payment is typically
linked to component cost.

Another important part is finding contracts and agree-
ments making it a win–win to have a good dialog
[throughout the development process]. It’s not that
today. Today, we put a specification on the table and
then we negotiate about what the component cost will
be.” – R3

However, the current way of optimizing for low component
cost does mean that closer collaboration with suppliers can
be more expensive.

“Today we specify in detail to our suppliers and then
we use them as an implementation resource. I think
we can tie them [in] closer and develop more together.
Though we have contracts that hinder us today, a deliv-
ery can for example have a price, meaning that we
keep the number of deliveries low. /.../ It also depends
on which component they supply. With some suppliers
we have a closer collaboration, but that has cost a lot
more.” – R13

In the typical setup, however, suppliers are implicitly
encouraged to develop software as late as possible, and
thus avoid additional cost through changes. This can sig-
nificantly reduce development speed since feedback and
problems surface very late. A key function of contracts is
to clarify the distribution of responsibility. Basing contracts
on strict requirements mean that any deviation can be seen
as a breach of responsibility, with associated consequences.
This hinders open-ended collaboration.

“Trying to stretch reality and reach further by make
requirements more incisive, and then trying to hand-
shake those with a supplier, you’ve got an arduous
journey. Because the supplier will regard it as a con-
tract and say ‘If I can’t meet this requirement I’ll be
held accountable. What if I know I can’t detect this
little thingy in that long distance all 24 hours in all
weathers.’ because it’s easy to write such a require-
ment. You get a discussion about deviation manage-
ment and spend plenty of time on that, instead of start-
ing developing and see how far you get.” – R6

Also, with regard to contracts, the current practice has a
built-in slowness.

“[For] the contracts toward the suppliers, it’s obvious
you need solid requirements to reason around. But it
also steers, if you take agile vs. waterfall, where water-
fall says to add requirements, and then someone works

on them and cascades them further. /.../ But I person-
ally think it’s quite devastating because it builds this
loop-time.” – R16

Summarizing, all of the second-round respondents agree or
strongly agree that requirements-based contracts hinder fast
collaboration between OEMs and suppliers. This is particu-
larly true when changes become necessary. To counteract
potential problems, in the typical setup, suppliers are implic-
itly encouraged to postpone the actual development of code
as much as possible. That this aspect receives such broad
agreement highlights its importance. Many problems with
requirements engineering, such as rigid processes, decom-
position, and requirements-centric culture, would be easier
to solve if a better way of designing contracts was found.

5.6.1 Contracts and collaboration in context of related
work

Few works discuss contracts in the context of continu-
ous software engineering. In line with our findings, legal
contracts have been reported as an impediment for inter-
organizational continuous integration and delivery, but also
to facilitate negotiations between organizations [92]. More
works have been published on agile contracts [42, 100], sug-
gesting, for example, to keep in mind the agile capabilities
of customers, when negotiating a contract that allows agile
development [42]. Systematic frameworks for defining agile
contracts are currently emerging [100], but to our knowl-
edge, there is not much guidance for defining contracts for
agility or continuous software engineering in complex sup-
ply chains. Our findings indicate that the role of require-
ments in such guidelines must be different from today.

5.7 Additional aspects: quality assurance
and traceability

From our question about additional aspects to add, two
things emerged: Requirements Quality assurance and Trace-
ability. With respect to quality assurance of requirements,
respondents mentioned a lack of balance between the risk
of requirements-related problems with increased lead-time
through extensive reviews.

“Formal peer reviews etc. of requirement specifica-
tions today. /.../ If we have long and too comprehensive
requirements we are spending enormous amounts of
time doing these kinds of activities.” – R23

It is necessary to ensure that requirements are testable and
that they conform to shared basic technology requirements,
otherwise, ordering components from suppliers will be
overly expensive. However, if a supplier’s contribution does

328 Requirements Engineering (2019) 24:315–340

1 3

not achieve the desired effect, the resulting change requests
will be similarly expensive. The hope for the future seems
to be flexible contracts. Thus, currently, quality assurance is
negatively impacting development speed, especially because
changes happen often and this leads to a lot of rework with
suppliers. It is important to highlight that this does not mean
that quality is secondary. Instead, this is to highlight the
importance of finding a balance.

Traceability is identified as an important instrument to
keep the quality of requirements and at the same time to
align them with other artifacts. Its implementation is not
perceived as benefiting speed, however.

“Some of the traceability requirements are actually
slowing us down because it’s not stated clearly what
should be traceable.” – R27

Respondents also point out that current traceability man-
agement solutions are not satisfactory and they slow down
development. In general terms, effort and benefit of tracing
are not distributed in a balanced way, thus leading to bad
quality traces and unnecessary overhead, e.g., maintaining
useless trace links.

5.7.1 Quality assurance and traceability management
solutions in the context of related works

The industry need for quality assurance of requirements
is testified in the investigation made by Sikora et al. [86,
88] In a case study of six companies, Bjarnason et al. [8]
describe challenges and practices in aligning requirements
with verification and validation. Unterkalmsteiner et al.
[91] present an assessment tool called REST-bench, which
illustrates the coordination in software development pro-
jects and identify concrete improvement opportunities.
The tool has been defined and validated together with five
companies.

For what concerns traceability, the majority of empiri-
cal studies on traceability, focuses on validating specific
technical approaches [3, 20, 85], or specific aspects of
traceability such as assessment [80] and benefits of trace-
ability [66]. Demuth et al. [22] conducted a study on how
to use traceability for systems engineering to facilitate
change notification and consistency checking of artifacts.
Figueiredo and De Souza [29] and Helming et al. [40]
describe tools for facilitating collaboration in a distributed
environment or notifying users about changes.

Wohlrab et al. [96] conducted a multiple exploratory
case study with 24 individuals from 15 industrial projects,
with the aim of understanding collaborative aspects of
traceability management and how it is situated in exist-
ing development contexts. They provide empirical evi-
dence of how culture, processes, and organization impact

traceability management and collaboration, and principles
to support practitioners with collaborative traceability
management.

Cleland-Huang [17] highlights that traceability in projects
following agile methodologies is just as important as in non-
agile ones. Espinoza and Garbajosa [26] argue that the lack
of formal documentation and formal requirements in agile
contexts calls for traceability practices that go beyond those
of non-agile projects. Gayer et al. [33] give a concrete exam-
ple of integrating traceability in an agile context.

6 Which new aspects should be considered
when defining a new way of working
with requirements to increase
development speed (RQ2)?

As our summary of the themes in relation to RQ2 below
shows, our respondents’ suggestions aim to define a way
of working that emphasizes requirements to (1) support
high-speed development and (2) ensure that the necessary
technical documentation and traceability are established
without overhead.

Summary: Desired way of working with RE (RQ2)

(1) Aim for domain- or context-specific requirements tooling
(2) Leverage model-based RE for fast feedback
(3) Align requirements and automated testing
(4) Emergent teams to improve collaboration
(5) Facilitate learning through exploration
(6) Complement lightweight pre-development RE with con-

sistent/accurate post-development specification

In our second round of interviews, we asked respond-
ents whether these new aspects may have a positive effect
on development speed. Since many of these aspects have
not yet been rolled out and only limited concrete experi-
ence existed, we aimed to make things a bit more specific
by also asking whether they think it would be a good idea
to spend effort on these aspects. Note that Theme 1–6
emerged from our first round of interviews and got con-
firmation in the second round of interviews. In the second
round of interviews, we also found recommendations for
focusing on interactions instead of on artifacts, the need
for iterative requirements engineering, and for separating
legal and safety-critical requirements from other require-
ments. These aspects are complementary to our results but
do fit into a broader view of the six themes above. Figure 3
gives an overview of their answers. Sometimes, respond-
ents disagree that an aspect should be addressed locally.
But generally, if an aspect is deemed important, our
respondents also suggest to address it with high priority.

329Requirements Engineering (2019) 24:315–340

1 3

We present details about each of these themes as narra-
tives, supported by example quotes from interviews in the
remainder of this section.

6.1 Aim for domain‑ or context‑specific
requirements tooling

Our respondents clearly express that tooling is an impor-
tant aspect. With respect to requirement tools, however,
there was quite some frustration expressed.

“I’ve never encountered a requirements manage-
ment tool where someone said: ‘This is so [swear-
ing omitted] good, it makes my life worth living.’
Rather everyone is swearing over it, and I think that
unfortunately, it’s difficult to make a requirements
management tool good.” – R17

This frustration comes partly from the fact that require-
ments on different levels are related to different parts
of the system. One example of this is the signal data-
base, which defines data to be shared between the dif-
ferent components in a car. Requirements often relate to
specific signals; without tool support, it is very hard to

avoid inconsistencies and unnecessary rework. Domain-
specific system engineering tools can offer such support
and should, according to our respondents, be more widely
used:

“[Tool name withheld] is a tool, on system level, which
gives an extract to our signal database, where you can
configure your control units. That chain is much more
exact than a bunch of requirement specifications. /.../
It has plenty of shortcomings, but it’s still a sign that
a bunch of text-based requirement documents is old
fashioned, it doesn’t work in the modern world.” – R1

One major driver for changing tooling is the trend to develop
more software in-house instead of ordering it from suppliers.

“Historically, [company 1] has sourced all software
externally, meaning that in [tool name withheld] you
work until you have a specification at a certain level.
Then you pass it to a supplier who continues decom-
posing it. When we started developing our own soft-
ware we got [tool name withheld] even though our
needs are the same as for an external supplier, in terms
of managing the requirements, decomposing them,

Fig. 3 Agreement of respondents to the themes in relation to RQ2

330 Requirements Engineering (2019) 24:315–340

1 3

linking test cases to requirements. There [tool name
withheld] hasn’t worked good enough.” – R19

Reasons relate to the drivers of moving software develop-
ment in-house, most prominently the goal to increase flex-
ibility and ability to quickly relate to change. Thus, existing
tools and their implied workflows introduce undesirable
delay and do not, to the desired extent, facilitate communi-
cation across levels.

Summarizing, eight out of the second-round respondents
that answered agree that tooling is important. However, cur-
rent solutions are not completely satisfactory, e.g., for what
concerns support for avoiding inconsistencies, support for
flexibility, and communication. Since substantial work has
done on these aspects, not all agree that further effort should
be spent. But definitely, tooling can enable development
speed if it clearly supports incremental work.

6.1.1 Domain and context‑specific tooling in context
of related work

Insufficiencies of requirements tooling with respect to spe-
cific industry needs are known in the literature [15]. Specifi-
cally, it is essential to find a trade-off between diversity and
alignment of requirements engineering practices in organiza-
tions [56]. This must also be reflected in tools, which must
be carefully selected to support the specific needs of a given
context [15, 19]. Even though this has proven to be difficult
at the scale of automotive system engineering [98], our find-
ings suggest that an investment in this aspect is important
and further research is dearly needed.

6.2 Leverage model‑based RE for fast feedback

Independent from tooling, our respondents also emphasized
the potential of model-based requirements engineering. They
expect that models will scale better than textual require-
ments, thus helping to better manage complexity.

“A wall of text of 1200 pages. No supplier in the world
cares about it. And even if they do, they will interpret
it entirely different than what the writers intended. So
you need a much more exact way of describing what
you want. Model basis, with complementary simple
text, that’s number one.” – R1

This partly relates to the requirements representation, as one
respondent points out:

“In principle, I’d like to get away from as much text-
based requirements as possible, for two reasons. First:
it’s damn difficult to understand. Second: there are
always errors when there’s much text mass, and there’s
interpretation.” – R2

Our respondents, as highlighted in Sect. 5.5, agree that the
way requirements are done today, mostly text-based, slows
down the development process. At the same time, replacing
textual requirements with models is not always an option.

“If you look at system security, you cannot simply
hand in a model, saying ‘This is my thinking’. It must
be combined with some kind of argumentation as
well.” – R2

One respondent makes also an example of problems that
might arise when using executable models that suppliers get.
These models were supposed to give a high-level overview
and suggestion on how the code can be implemented, instead
of telling them precisely how to do the job. The suppliers
were not too happy to hack bad software code generated
from the models; basically, the software code gets imple-
mented twice.

Models have, however, proven to allow for early feedback.

“You can do a model beforehand, so you debug as soon
as possible. /.../ We’ve tried to work quite model-based
to get through problems with our specification writ-
ing.” – R18

Thus, relying on model-based requirements to a larger scale
is one of the top wishes for future ways of working with
requirements.

Summarizing, eight out of second-round respondents that
answered agree that model-based requirements engineering
would bring opportunity toward development speed. The
expectation is that models will scale better and will enable
early feedback. However, models cannot completely substi-
tute textual requirements and are not the only way to manage
complexity.

6.2.1 Model‑based RE in context of related work

Generally, Model-Based Engineering (MBE) promises
reduction in defects as well as productivity improvements
[5, 70], but suffers from insufficient tool support [5, 69, 70]
and is difficult to use in combination with legacy software
[46, 70]. While such challenges are certainly relevant for
model-driven RE, benefits such as cost savings [54], pro-
ductivity increases [1], or increases in reusability [61] would
be very valuable for managing requirements in automotive
system development as well. However, few model-driven
approaches explicitly include RE [65]. Several proposed
modeling frameworks prescribe or encourage the use of
models for RE [13, 78], fewer have been evaluated with
practitioners, e.g., [12, 14]. However, the industrial uptake
seems to be limited, also because important practitioners’
needs are not addressed [36]. Yet, in line with our findings,
OEMs are considering adopting model-based RE [36].

331Requirements Engineering (2019) 24:315–340

1 3

6.3 Align requirements and automated testing

Respondents suggest that one way of aligning requirements
among them is to establish a forum in which all authors of
requirements for an area can meet.

“You also need transparency, because when so many
nodes, or subsystems, are to function together, you
need a meeting place where all these specifications
or models come together and can be checked against
each other.” – R1

Another way of aligning multiple and contradicting
requirements is letting an end-user-oriented product owner
prioritize.

“The product owner needs to have an understanding
of the business and the customers’ needs, but also to
have an arena where these requirements are prioritized.
Then one need contact with our business side and the
vehicle project leader who should receive all deliver-
ies. And then one needs to have this difficult dialog
about what is most important to do in which order,
instead of having every single developer meet and dis-
cuss all contradicting requirements.” – R11

Approaches such as continuous integration promise to
increase development speed but rely heavily on automated
testing. Acquiring the ability to quickly derive automated
tests for new requirements will require a change in mindset:

“If you want to build a CI-machine that keeps the prod-
uct in very high quality over time you need to focus
more on provoking errors [rather than testing against
a requirements specification]. Finding corner cases.”
– R11

However, our respondents do not agree with the sentiment
that tests could replace requirements. Instead, they empha-
size how automation highlights the need for quality of test
cases:

“Test automation in itself is of no value, no, it’s devis-
ing a good test case that’s important. You have to start
by conceiving a test case that catches problems and
reveals many things. /.../ It’s still about having the
ingenuity to see through what can go wrong.” – R18

A shift toward continuous deployment, i.e., the continuous
delivery of software changes to customers, will require fur-
ther changes in the mindset, introducing strict requirements
not only on the product but also toward the deployment
infrastructure and specifically for the quality of automated
acceptance tests.

“Continuous deployment is a difficult area for us
because we have legal requirements there, we need to

certify the cars. But to at all get to continuous deploy-
ment you need to have trust that the automatic test
covers everything, and there we need to replace much
of the manual tests.” – R19

There is a need for establishing trust in the automated envi-
ronment. A way of working with requirements will be most
beneficial to speed in development if it is well aligned with
these efforts toward automated testing.

Summarizing, all of the second-round respondents high-
light the need for aligning requirements with automated
testing. Suggested ways to achieve that are (1) establishing
a forum to discuss, (2) enabling prioritization of require-
ments based on end-users, and (3) reliable and effective
automatic derivation of test cases from requirements. This
aspect stands out through its very strong agreement, both
with respect to that this can enable development speed,
and that effort should be spent improving the alignment of
requirements and tests.

6.3.1 Align requirements and automated testing in context
of related work

The relationship between agile methods in testing [18] and
RE [8, 47], as well as their alignment [8, 90] has recently
received increased attention in research. Both challenges [8]
and practices [47] of aligning RE and software testing have
been found to be applicable to large-scale system develop-
ment and system testing [21]. The need for such alignment
is also emphasized in large-scale agile frameworks, such
as SAFe [60] and LESS [59], e.g., through the practice of
specification by example [59]. Our findings suggest that this
area of research needs further work to balance quality con-
cerns with the wish to increase development speed.

6.4 Emergent teams to improve collaboration

The complexity of automotive systems has led to many ways
of dividing work. This is with good intention since it is well
known that it can be efficient to divide complex tasks into
smaller parts and then combine them. However, in some
cases this seems to do more harm than good:

“It’s so much more efficient than half the bunch sitting
and thinking each on their side, writing a spec, send-
ing it, someone implements and you send it out and
people try it, and they reply ‘it doesn’t work, it doesn’t
work” – R17

“According to [the old process] each silo is respon-
sible for time, technology, and cost, which leads you
to sub-optimize for what’s [within your responsibil-
ity]. No-one is tasked with checking that the entirety

332 Requirements Engineering (2019) 24:315–340

1 3

is optimal. Such sub-optimizations inevitably lead to
these shortcuts we touched on, which in turn slows
down overall speed.” – R7

The problems of working in silos are amplified when work-
ing with suppliers, but there are ways forward here as well,
and new ideas are tried for improving collaborations.

“Even if we haven’t been sitting together [with the sup-
plier] it’s been a very tight collaboration. Although we
have had requirements specifications at the bottom, in
the end it’s been plenty of common team activities to
find the solutions.” – R6

Overcoming silos will thus increase both the development
speed and the ability to respond to change. It is also impor-
tant to leverage the existing capabilities throughout the auto-
motive value-chain.

“I think we sometimes underestimate that you can
work with suppliers in a more efficient way. For the
next generation of procurements, we’re looking at
requiring continuous deliveries from the suppliers
during the development projects. That would help our
CI a lot.” – R11

In the second round of interviews, respondents brought up
a new aspect that fits into this theme, related to new ways of
working with requirements that focus on interaction instead
of on artifacts and handovers. In such an approach, high-
level requirements would be given to teams, including clear
guidelines on what to do with them as well as forms that
could be used to provide data. In particular, those step-by-
step guidelines and a clear plan to follow-up show an ambi-
tion to create a dialog.

Summarizing, all of the second-round respondents that
answered highlight the need for emergent teams to improve
collaboration. Two respondents did not express an opinion,
stating that this theme appears rather unclear. Emergent col-
laboration is deemed important, in order to bridge silos and
to solve dependencies. But those respondents did not agree
that teams need to be formed. Instead, emerging, cross-cut-
ting collaboration should be facilitated through supportive
roles. The complexity of autonomous systems is naturally
requiring division of work in smaller tasks, however, this is
often creating silos.

6.4.1 Improve collaboration in context of related work

Geographical distance, but also organizational, cognitive,
and psychological distance in software development, have
a significant impact on efficiency [9]. Agile methods have
some potential to help overcome such distances [64], espe-
cially with respect to knowledge sharing and coordination
[58], but scaling them beyond team level is challenging [64].

Especially at scale, social network analysis of requirements-
centric collaboration is a promising facilitator for collabora-
tion [67] and has been successfully applied within an OEM
to coordinate requirements-related work [71]. Since trans-
parency and improved collaboration beyond the scope of
an individual organization becomes increasingly important
[92], we encourage future research of similar facilitation in
software value-chains.

6.5 Facilitate learning through exploration

Our respondents express a desire to work more
exploration-driven.

“If you’re starting with a new idea, that you hardly
know what to call, and start by specifying require-
ments on it, you will never really get going. It’s better
to describe what it’s supposed to do. There, we some-
times end up in catch-22.6 ‘I can’t do this construction
if I don’t have the requirements ready.’ ‘OK, what do
you want it to do then’?” – R5

“A large part of what we develop we don’t quite know
how it’ll look when finished. More accurately, no-one
can write down a complete set of requirements.” – R12

“We landed in a notion we called blue bucket. We tried
to sort the requirements. Some were green, they were
met, no discussion. Some were red, they will never be
met. But then we put some in the blue bucket as well.
‘OK, we agree that we’ll try to get as far as possible,
but we don’t know if we will reach all the way right
now.’ So instead, I think, we spent an entire year dis-
cussing these requirements. In hindsight, we should
perhaps have spent that time developing and then
reached the solution a bit earlier. So I think you need
to lose this requirements hysteria, and we are doing
that.” – R6

From interviews in the second round emerges also the need
to complement a static view on current requirements with
support deltas through baselining. The ability to focus on
the trajectory of development, history of changes, and gener-
ally a dynamic view on requirements might allow suppliers
to provide tests or even target values, to co-evolve tracing
from requirements to test and design, to visualize (growing)
supplier commitment and compliance, and to allow control
for cost.

Exploration-driven work does differ fundamentally from
rigid requirements processes.

6 https ://en.wikip edia.org/wiki/Catch -22_(logic).

https://en.wikipedia.org/wiki/Catch-22_%28logic)

333Requirements Engineering (2019) 24:315–340

1 3

“[The software] has to be ready two years before it
goes to production, which is quite silly because we
miss out on two years of development time. But here
we haven’t managed to agree with the rest of the organ-
ization that this is a silly requirement.” – R13

Summarizing, all of the second-round respondents that
answered agree or strongly agree that facilitation of explo-
ration-driven work can increase development speed. Their
arguments include the need for shifting from rigid require-
ments processes toward exploration-driven processes.

6.5.1 Exploration‑driven work in context of related work

The need to facilitate learning through exploration is one big
driver to look into the applicability of agile methods in auto-
motive system engineering [89]. Typical large-scale agile
frameworks, such as SAFe [60] and LESS [59], promise to
support such exploration through practices such as enabler
stories, specification by example, communities of practice,
variable solution intents, and set-based design. Yet, adop-
tion of agile frameworks in automotive system engineering
is an ongoing effort [43], and our findings suggest the RE
can play a critical role in this process if an appropriate role
of requirements can be defined.

6.6 Complement lightweight pre‑development
RE with precise post‑development specification

Especially with respect to safety and legal requirements,
there is a certain level of documentation that must be pro-
vided. This is an important aspect of requirements engineer-
ing that our respondents regarded as orthogonal to other
aspects, e.g., related to collaboration above. While require-
ments for supporting collaboration should be specified with
development speed and ability to support change in mind,
legally required documentation must be comprehensive as
well as an accurate depiction of what is implemented. Our
respondents aligned on a specific strategy to navigate this
trade-off, as visible in the following quote:

“In the end you have to document what you came up
with, but you don’t need to do it in advance, no rather
afterward in some sense. So you still have documen-
tation describing the construction. /.../ Of course that
must be in place when we run into field problems and
so on. We have to be able to troubleshoot our systems.
/.../ So it can’t be set free entirely, but, I think we have
to start constructing more and specifying less in any
case.” – R6

When asking about additional aspects in the second round
of interviews, one respondent related to the difficulties of
separating safety and legal requirements from the rest:

“One identifies the places where safety and legal con-
cerns shall be taken care of but it spills over to the
treatment of other types of requirements as well.” –
R26

There is some hope that this difficulty can be mitigated by
finding a constructive approach, i.e., where teams start from
high-level requirements and develop a specification of legal
and safety-related requirements together with the system under
construction. The confinement and separation of concerns,
however, must then be provided by a suitable architecture. By
pushing the creation of comprehensive requirements documen-
tation into later phases, documenting the requirements that
have been (most recently) implemented, OEMs may gain the
flexibility to apply more lightweight approaches earlier on.

“In the agile world we’re actually saying that we want
non-functional requirements because you always have
to have that /.../ we who drive for agility want to remove
functional requirements and replace them with our epics,
capabilities, features, and stories /.../ we can agree to
having requirements in at the top level, and those we
trace in design and out to test cases, that we want to
do. But we actually want to put very little emphasis on
functional requirements, that’s our starting point.” – R8

The hope is to find a new way of working that combines the
best of two worlds: (1) a lightweight and flexible way to man-
age requirements in order to support high-speed develop-
ment, and (2) a thorough and accurate documentation of the
finished implementation, as required to satisfy safety and legal
concerns.

Summarizing, all of the second-round respondents that
answered agree that combining lightweight pre-development
RE and precise post-development specification can increase
development speed. This enables using lightweight develop-
ment processes earlier, without caring too much about the
documentation that might be required, for instance, for safety-
critical and legal requirements. Then, the needed documenta-
tion can be produced post-development, when it is clear how
the system has been implemented. This will improve develop-
ment speed since no comprehensive documentation needs to
be maintained through times of frequent change.

6.6.1 Post‑development specification in the context
of related work

Agile methods as well as large-scale agile frameworks, such
as SAFe [60] and LESS [59], tend to focus on customer value
and user requirements, but neglect system requirements [52].
While they agree with reports on the importance of this system
perspective, specifically to support long-term maintenance,
evolution, and change impact analysis [52], our respondents
indicate that it can be beneficial to create such specifications

334 Requirements Engineering (2019) 24:315–340

1 3

after development. This suggestion relates to safe and regu-
lated scrum variants [31, 37] that also ask teams to update
requirements late, as part of a sprint.

7 To what extent will either aspects be
addressed through the ongoing agile
transformation (RQ3)?

We find different views on this research question based
on the different perspectives of our respondents. While a
requirements style dominated by safety and legal concerns
can be problematic for development speed, respondents do
not strongly consider this an aspect addressed by the agile
transformations.

“Not today, no. I have not seen that this problem has
been dealt with.” – R26

Furthermore, this aspect was thought to be connected to
requirements-centric culture. For example, when discuss-
ing with a technical expert for software development, we
struggled to get to a clear answer about the latter. The
respondent was referring to “some strongholds” related
to safety and legal aspects that will have to keep a rather

requirements-centric culture, while at large, he did agree
that agile transformation will have a positive influence on
how this requirements-centric culture impacts develop-
ment speed. In Fig. 4, we interpret this as a strong agree
to our question, but we note that this will not hold for
all parts of an organization at the scale of an automotive
OEM.

Figure 4 shows the agreement of second-round respond-
ents to RQ3, i.e., that the current agile transformation will
address the aspects uncovered by the previous research
questions and their impact on development speed.

Regarding whether the agile transformations address
the aspects rigid requirements process, focus on decom-
position and hierarchy, and requirements representation,
our respondents’ opinions are quite varied. In part, this is
explained by differing views on the initiatives that are part
of the transformations (e.g., requirements representation
can be seen as independent of the agile transformation, but
also closely related, e.g., with respect to the requirements
information model suggested in SAFe). Beyond that, a
contributing reason can also be the difficulty of getting an
overview during any ongoing transformation effort.

Fig. 4 Respondents’ opinion about whether these aspects will be addressed through the agile transformation

335Requirements Engineering (2019) 24:315–340

1 3

The challenge of requirements-based contracts, how-
ever, clearly emerges as an impediment the case companies
seek to address through their agile transformations.

“During the whole [agile transformation] there’s
been a tough discussion with procurements that we
need to get to a more agile situation. It’s challenging
work but I strongly agree that we aim to get there.”
– R7

In contrast, domain-specific tooling and model-driven
requirements engineering receive the highest level of disa-
greement. The distribution between agreement and disagree-
ment is fairly even, however. In the case of model-driven
requirements, our respondents foresee specific use cases,
while the general way of documenting requirements will
continue to rest on natural language. Models can be very
useful to increase the feedback speed in some use cases.
With more precise notation, there is less room for interpreta-
tion, and thus disagreements can surface earlier. Aligning on
specific interfaces between components, features, and teams
can be very valuable if modeled. Models also enable reason-
ing on a higher level of abstraction, and by this managing
complexity.

Where our respondents disagree, it is for one of the fol-
lowing reasons: models are not useful in all scopes, e.g.,
when discussing basic technology requirements. Also, mod-
els are not the only way of raising the level of abstraction,
thus agile transformations can be driven forward without
introducing model-driven requirements. In fact, parallel
evolution of requirements in different teams will be even
harder to merge when relying on models-based representa-
tions. Thus, model-driven requirements have only a weak
link to the agile transformation in our data.

With respect domain-specific tooling, both companies
have ongoing activities to update the tool-landscape for RE
and related processes. This has been an enabler for the cur-
rent agile transformation, thus respondents disagree that it
will be solved through the transformation. Also, there is
disagreement with respect to whether tooling support should
differ between different release trains or even teams.

With respect to the forward-looking requirements engi-
neering aspects found in the first round of interviews; align-
ing requirements with automated testing, and emergent
teams stand out. These two are the ones that respondents
mainly link to the agile transformation.

“Aligning requirements with automated testing, yes I
strongly agree that we are trying to do this. /.../ We put
a lot of effort on it and it’s one of the key drivers in the
agile transformation.” – R23

Also, without automated tests, continuous integration
becomes impossible, and that can be considered a prerequi-
site of working agile at scale, according to one respondent.

The strong disagreement in Fig. 4 for this aspect relates
mainly to the fact that this is not positively impacted by the
transformation by itself. The strongly disagreeing respond-
ent recognizes a strong focus in the organization on align-
ing requirements with automated tests, however. In sum-
mary, respondents agree that this alignment is important
and largely agree that the agile transformation will have a
positive impact on this aspect.

Regarding emergent teams, one respondent exempli-
fied how such a way of working is introduced with the
transformation.

“To help with solutions cutting across release trains.
/.../ Architecturally, the idea is to form small teams to
solve certain issues there and then. When it’s solved
[the team] dissolves.” – R7

In addition, facilitating exploration-driven work, and com-
plementing lightweight pre-development requirements with
precise post-development specifications, are perceived as
initiatives within the scope of the transformations. We note,
however, that agreement is not as strong for these aspects as
for the preceding two.

8 Discussion, conclusions, and outlook

In this paper, we investigate the impact of requirements engi-
neering on the goal of automotive companies to increase
development speed. We deliberately obtain the perspective
of managers and technical leaders to understand their vision
about the current and future role of requirements engineer-
ing in automotive system engineering. By this, we comple-
ment previous works that focus more on operational aspects
from a development point of view [4, 25, 47, 52].

Our findings clearly indicate that because of safety and
legal concerns, requirements are not optional for automotive
systems. However, it is also evident that traditional ways of
working are no longer sufficient.

More specifically, for what concerns RQ1 (Which aspects
of the current way of working with requirements impact
development speed?), we discovered that culture and the
historical way of working play a crucial role. The require-
ments engineering style is excessively dominated by safety
and legal constraints and development speed is neglected.
Rigid engineering processes, decomposition of require-
ments, and too many levels of abstraction force early design
decisions and add unnecessary delays. Also, the current
ways of specifying requirements hinder change and the use
of requirements as part of legal contracts in the collaboration
with suppliers in the value-chain hinders fast collaboration.

For what concerns RQ2 (Which new aspects should
be considered when defining a new way of working
with requirements to increase development speed?),

336 Requirements Engineering (2019) 24:315–340

1 3

domain- and context-specific requirements tooling could
positively change the way of working in the direction of
increasing the development speed. Tools can, however,
also become an obstacle if not properly designed and
maintained. Moreover, model-based requirements to a
larger scale is also one of the top wishes for future ways of
working with requirements. Another promising improve-
ment comes from increasing the degree of test automation
in the requirements verification. However, relying only on
automated tests is insufficient; our respondents emphasize
the need for expertly crafted test cases that thoroughly
stress the system. One of the larger improvement propos-
als would be to remove the many organizational silos that
exist. These silos are often created for good reasons; to
achieve team autonomy and clear divisions of responsi-
bilities, but the separation often leads to a slow work-
flow, which is excessively based on handovers. If instead
a lightweight pre-development requirements engineering
approach is combined with precise specifications created
post-development, development speed can be increased
and collaboration improved throughout the automotive
value-chain.

For what concerns RQ3 (To what extent will either
aspects be addressed through the ongoing agile transfor-
mation?), we found different points of view among our
respondents. In general, we can say that our respondents
are unsure about whether the agile transformation will
lead to better balancing of the requirement style. One of
the main motivations is that these aspects are already get-
ting attention independently of the agile transformation,
which can thus not claim all the credit. The aspects that
see the least agreement are domain-specific tooling and
model-based requirements engineering. For what con-
cerns domain-specific tooling, we had a wide spectrum of
opinions. For what concerns model-based requirements
engineering, except in some cases, natural language is
the means used for documenting requirements. Models
have been identified as mainly useful for providing early
feedback (i.e., executable models), and as a way to reduce
ambiguity and deal with complexity.

Relevance for practitioners: Our work can be considered
a roadmap that can be used by companies in their trans-
formation toward increasing development speed. From
our interpretations of the findings, we derive the following
advice to practitioners:

• Focus requirement efforts where crucial, e.g., on safety-
critical functionality.

• Anticipate and accept that requirements will need to be
updated throughout product development. A complete
upfront specification is often impossible to have. Better
postpone and delegate some decisions to developers.

• Combine lightweight pre-development RE with precise
post-development specification.

• Aim for exploration and collaboration based on mutual
trust, rather than requirements as contracts to be satisfied,
especially in OEM-supplier relationships.

• Consider using model-based RE and especially execut-
able models for having early feedback.

Figure 1 can be considered as a guide in trade-off analysis
of where to expend effort when applying improvements.

Relevance for academics: During the study, we found a
number of areas that would benefit from further research:

• Developing flexible tools, that are easy to use and
maintain, and that can be integrated into the develop-
ment process, is still a major challenge.

• Traceability is important and current solutions are not
satisfactory. There is room for new solutions that are
really addressing industry needs.

• Increasing the use of models could be a way forward.
However, models cannot completely replace textual
descriptions. Balancing models against text as well as
how to properly integrate them remain an open chal-
lenge.

• Test automation is essential for CI. Our results indicate
that in addition to technical aspects, such as test cover-
age, test execution efficiency, and test case selection,
research attention is also needed on how to achieve
trust in automated testing.

We particularly encourage multidisciplinary work, since
most aspects of the desired future way of working with
requirements have been reported to work well in isolation.
Yet, their adoption in industry is low, since their interplay
is not sufficiently clear (as for example safety concerns
and continuous integration or deployment at system level).

Future work: A natural continuation of this work, and of
previous research, is to unify the manager and developer
perspectives on requirements engineering into a holis-
tic view, thus creating a unified theory of requirements
engineering in scaled agile. For this, a replication of this
research in other domains within and beyond embedded
systems development will be important. Throughout our
interviews, it was also clear that when discussing strate-
gic aspects of the current setup of automotive companies,
requirements engineering is not the only aspect affecting
development speed. We found that especially the relation
to architecture [99], the approach to collaboratively con-
structing and managing system engineering artifacts [97],
and the ability to manage safety aspects in continuous
software engineering [50] are important topics for further
investigation.

337Requirements Engineering (2019) 24:315–340

1 3

Acknowledgements Open access funding provided by University of
Gothenburg. We thank all respondents in the study for their valuable
input during both rounds of interviews, and for clarifications where
needed. We also thank Andreas Karlsson and Caroline Svensson at
Knowit AB, for their help with setting up and performing the inter-
views. This study was performed in collaboration with the Vinnova
project Next Generation Electrical Architecture (NGEA), and partially
supported by Software Center Proj. 27 RE for Large-Scale Agile System
Development.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Agner LTW, Soares IW, Stadzisz PC, Simão JM (2013) A bra-
zilian survey on UML and model-driven practices for embed-
ded software development. J Syst Softw 86(4):997–1005

 2. Ågren SM, Knauss E, Heldal R, Pelliccione P, Malmqvist G,
Bodén J (2018) The manager perspective on requirements
impact on automotive systems development speed. In: 2018
IEEE 26th international requirements engineering conference
(RE), pp 17–28. https ://doi.org/10.1109/RE.2018.00-55

 3. Ali N, Sharafl Z, Gueheneuc Y, Antoniol G (2012) An empiri-
cal study on requirements traceability using eye-tracking. In:
Proceedings of the 28th IEEE international conference on soft-
ware maintenance (ICSM’12). IEEE, pp 191–200. https ://doi.
org/10.1109/ICSM.2012.64052 71

 4. Alsaqaf W, Daneva M, Wieringa R (2017) Quality require-
ments in large scale distributed agile projects—a systematic
literature review. In: Proceedings of 23rd international work-
ing conference on requirements engineering. Foundation for
Software Quality (REFSQ), Essen, pp 219–234

 5. Baker P, Loh S, Weil F (2005) Model-driven engineering in a
large industrial context—motorola case study. In: Briand LC,
Williams C (eds) Model driven engineering languages and sys-
tems. Lecture notes in computer science, vol 3713, pp 476–491

 6. Beck K (2000) Extreme programming explained: embrace
change. Addison-Wesley Professional, Boston

 7. Berger C, Eklund U (2015) Expectations and challenges from
scaling agile in mechatronics-driven companies—a compara-
tive case study. In: Proceedings of 16th internaional confer-
ence on agile processes in software engineering and extreme
programming (XP ’15), pp 15–26

 8. Bjarnason E, Runeson P, Borg M, Unterkalmsteiner M, Eng-
ström E, Regnell B, Sabaliauskaite G, Loconsole A, Gor-
schek T, Feldt R (2014) Challenges and practices in aligning
requirements with verification and validation: a case study of
six companies. Empir Softw Eng 19(6):1809–1855. https ://doi.
org/10.1007/s1066 4-013-9263-y

 9. Bjarnason E, Smolander K, Engström E, Runeson P (2016) A
theory of distances in software engineering. Inf Softw Technol
70:204–219

 10. Bjarnason E, Wnuk K, Regnell B (2011) A case study on ben-
efits and side-effects of agile practices in large-scale require-
ments engineering. In: Proceedings of 1st WS on agile require-
ments engineering

 11. Boehm B (1981) Software engineering economics. Prentice-
Hall, Upper Saddle River

 12. Böhm W, Junker M, Vogelsang A, Teufl S, Pinger R, Rahn K
(2014) A formal systems engineering approach in practice:
An experience report. In: Proceedings of the 1st international
workshop on software engineering research and industrial
practices. ACM, pp 34–41

 13. Braun P, Broy M, Houdek F, Kirchmayr M, Müller M, Pen-
zenstadler B, Pohl K, Weyer T (2014) Guiding requirements
engineering for software-intensive embedded systems in the
automotive industry. Comput Sci Res Dev 29(1):21–43. https
://doi.org/10.1007/s0045 0-010-0136-y

 14. Broy M, Damm W, Henkler S, Pohl K, Vogelsang A, Weyer T
(2012) Introduction to the SPES modeling framework. In: Pohl
K et al (eds) Model-based engineering of embedded systems.
Springer Berlin, pp 31–49

 15. Carrillo de Gea JM, Nicolás J, Fernández Alemán JL, Toval
A, Ebert C, Vizcaíno A (2012) Requirements engineer-
ing tools: capabilities, survey and assessment. Inf Softw
Technol 54(10):1142–1157. https ://doi.org/10.1016/j.infso
f.2012.04.005

 16. Chow T, Cao DB (2008) A survey study of critical success
factors in agile software projects. J Syst Softw 81(6):961–971

 17. Cleland-Huang J (2012) Traceability in agile projects. In: Soft-
ware and systems traceability. Springer London, pp 265–275.
https ://doi.org/10.1007/978-1-4471-2239-5

 18. Crispin L, Gregory J (2009) Agile testing: a practical guide for
testers and agile teams, 1st edn. Addison-Wesley Professional,
Boston

 19. de Gea JMC, Nicolas J, Aleman JLF, Toval A, Ebert C, Viz-
caino A (2011) Requirements engineering tools. IEEE Softw
28:86–91

 20. de Lucia A, Oliveto R, Tortora G (2008) IR-based traceability
recovery processes: an empirical comparison of one-shot and
incremental processes. In: Proceedings of the 23rd IEEE/ACM
international conference on automated software engineering.
IEEE Computer Society, pp 39–48. https ://doi.org/10.1109/
ICPC.2011.34

 21. de Oliveira Neto FG, Horkoff J, Knauss E, Kasauli R, Liebel
G (2017) Challenges of aligning requirements engineering and
system testing in large-scale agile: a multiple case study. In:
Proceedings of 4th international workshop on requirements
engineering and testing (RET@RE), Lisbon, Portugal

 22. Demuth A, Kretschmer R, Egyed A, Maes D (2016) Introduc-
ing traceability and consistency checking for change impact
analysis across engineering tools in an automation solution
company: an experience report. In: IEEE international confer-
ence on software maintenance and evolution (ICSME’16), pp
529–538. https ://doi.org/10.1109/ICSME .2016.50

 23. Dikert K, Paasivaara M, Lassenius C (2016) Challenges and
success factors for large-scale agile transformations: a system-
atic literature review. J Syst Softw 119:87–108

 24. Eklund U, Holmström Olsson H, Strøm NJ (2014) Indus-
trial challenges of scaling agile in mass-produced embedded
systems. In: Proceedings of international workshop on agile
methods. Large-scale development, refactoring, testing, and
estimation, pp 30–42

 25. Eliasson U, Heldal R, Knauss E, Pelliccione P (2015) The need
of complementing plan-driven requirements engineering with
emerging communication: experiences from volvo car group.
In: IEEE 23rd international conference requirements engineer-
ing. IEEE, pp 372–381

 26. Espinoza A, Garbajosa J (2011) A study to support agile meth-
ods more effectively through traceability. Innov Syst Softw Eng
7(1):53–69. https ://doi.org/10.1007/s1133 4-011-0144-5

 27. Fagerholm F, Guinea AS, Mäenpää H, Münch J (2017) The
right model for continuous experimentation. J Syst Softw
123:292–305

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/RE.2018.00-55
https://doi.org/10.1109/ICSM.2012.6405271
https://doi.org/10.1109/ICSM.2012.6405271
https://doi.org/10.1007/s10664-013-9263-y
https://doi.org/10.1007/s10664-013-9263-y
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1016/j.infsof.2012.04.005
https://doi.org/10.1016/j.infsof.2012.04.005
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1109/ICPC.2011.34
https://doi.org/10.1109/ICPC.2011.34
https://doi.org/10.1109/ICSME.2016.50
https://doi.org/10.1007/s11334-011-0144-5

338 Requirements Engineering (2019) 24:315–340

1 3

 28. Feiler P, Gabriel RP, Goodenough J, Linger R, Longstaff T,
Kazman R, Klein M, Northrop L, Schmidt D, Sullivan K, Wall-
nau K (2006) Ultra-large-scale systems: the software challenge
of the future. Software Engineering Institute, Pittsburgh

 29. Figueiredo MC, De Souza CR (2012) Wolf: Supporting impact
analysis activities in distributed software development. In: Pro-
ceedings of the 5th international workshop on cooperative and
human aspects of software engineering (CHASE), pp 40–46.
https ://doi.org/10.1109/CHASE .2012.62230 19

 30. Fitzgerald B, Stol KJ (2017) Continuous software engineering:
a roadmap and agenda. J Syst Softw 123:176–189. https ://doi.
org/10.1016/j.jss.2015.06.063

 31. Fitzgerald B, Stol KJ, O’Sullivan R, O’Brien D (2013) Scaling
agile methods to regulated environments: an industry case study.
In: Proceedings of 35th international conference on software
engineering, pp 863–872

 32. Fowler M (2006) Continuous integration. http://marti nfowl
er.com/artic les/conti nuous Integ ratio n.html, http://marti nfowl
er.com/artic les/conti nuous Integ ratio n.html last visit: 2016-01-12

 33. Gayer S, Herrmann A, Keuler T, Riebisch M, Antonino PO
(2016) Lightweight traceability for the agile architect. Computer
49(5):64–71. https ://doi.org/10.1109/MC.2016.150

 34. Gibbs GR (2008) Analysing qualitative data. Sage, Thousand
Oaks

 35. Graaf B, Lormans M, Toetenel H (2003) Embedded software
engineering: the state of the practice. IEEE Softw 20(6):61–69.
https ://doi.org/10.1109/MS.2003.12413 68

 36. Haasis S (2016) Systems engineering for future mobility. In: RE
conference. https ://www.hood-group .com/filea dmin/proje cts/
hood-group /uploa d/Image s/RECon f/2016/vortr aege/mittw och/
audit orium /Keyno te-Syste ms_Engin eerin g_for_futur e_mobil ity.
pdf

 37. Hanssen GK, Haugset B, Stålhane T, Myklebust T, Kulbrandstad
I (2016) Quality assurance in scrum applied to safety critical
software. In: International conference on agile software develop-
ment. Springer, pp 92–103

 38. Heikkila VT, Damian D, Lassenius C, Paasivaara M (2015) A
mapping study on requirements engineering in agile software
development. In: 41st Euromicro conference on software engi-
neering and advanced applications (SEAA ’15), pp 199–207

 39. Heikkilä VT, Paasivaara M, Lasssenius C, Damian D, Engblom C
(2017) Managing the requirements flow from strategy to release
in large-scale agile development: a case study at Ericsson. Empir
Softw Eng 22(6):2892–2936

 40. Helming J, Koegel M, et al (2009) Traceability-based change
awareness. In: Proceedings of the 12th international conference
on model driven engineering languages and systems (MOD-
ELS’09), pp 372–376. https ://doi.org/10.1007/978-3-642-04425
-0_28

 41. Heumesser N, Houdek F (2003) Towards systematic recycling of
systems requirements. In: Proceedings of 25th international con-
ference on software engineering (ICSE), Portland, pp 512–519

 42. Hoda R, Noble J, Marshall S (2009) Negotiating contracts for
agile projects: a practical perspective. In: Proceedings of inter-
national conference on agile processes and extreme programming
in software engineering (XP), pp 186–191

 43. Hohl P, Münch J, Schneider K, Stupperich M (2017) Real-life
challenges on agile software product lines in automotive. In: Pro-
ceedings of international conference on product-focused software
process improvement (PROFES), pp 28–36

 44. Houdek F (2017) Automotive future and its impact on empiri-
cal requirements engineering. In: Keynote at 6th international
workshop on empirical requirements engineering at RE 2017

 45. Humble J, Farley D (2010) Continuous delivery: reliable software
releases through build, test, and deployment automation. Pearson
Education, London

 46. Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S (2011)
Empirical assessment of MDE in industry. In: 33rd International
conference on software engineering (ICSE ’11), pp 471–480

 47. Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S
(2015) A systematic literature review on agile requirements
engineering practices and challenges. Comput Hum Behav
51:915–929

 48. Jastram M (2014) How the REQIF standard for requirements
exchange disrupts the tool market. Requir Eng Mag. https ://re-
magaz ine.ireb.org/artic les/open-up. Accessed 13 July 2019

 49. Kahkonen T (2004) Agile methods for large organizations-build-
ing communities of practice. Agile Dev Conf 2004:2–10

 50. Kasauli R, Knauss E, Kanagwa B, Nilsson A, Calikli G (2018)
Safety-critical systems and agile development: a mapping study.
In: Proceedings of Euromicro SEAA

 51. Kasauli R, Knauss E, Nilsson A, Klug S (2017) Adding value
every sprint: a case study on large-scale continuous requirements
engineering. In: Proceedings of 3rd workshop on control require-
ments engineering, Essen, Germany

 52. Kasauli R, Liebel G, Knauss E, Gopakumar S, Kanagwa B
(2017) Requirements engineering challenges in large-scale agile
system development. In: IEEE 25th international on requirements
engineering conference (RE). IEEE, pp 352–361

 53. Katumba B, Knauss E (2014) Agile development in automo-
tive software development: challenges and opportunities. In:
Jedlitschka A, Kuvaja P, Kuhrmann M, Männistö T, Münch J,
Raatikainen M (eds) Proceedings of 15th international confer-
ence on product-focused software process improvement (Profes
’14), Springer, Helsinki, LNCS, vol 8892, pp 33–47. https ://doi.
org/10.1007/978-3-319-13835 -0_3, http://link.sprin ger.com/
chapt er/10.1007/978-3-319-13835 -0_3

 54. Kirstan S, Zimmermann J (2010) Evaluating costs and benefits
of model-based development of embedded software systems in
the car industry–results of a qualitative case study. In: Workshop
C2M: EEMDD “From code centric to model centric: evaluating
the effectiveness of MDD”

 55. Knauss E, Pelliccione P, Heldal R, Ågren M, Hellman S, Mani-
ette D (2016) Continuous integration beyond the team: a tooling
perspective on challenges in the automotive industry. In: Pro-
ceedings of ESEM ’16. ACM, pp 43:1–43:6

 56. Knauss E, Yussuf A, Blincoe K, Damian D, Knauss A (2016)
Continuous clarification and emergent requirements flows
in open-commercial software ecosystems. Requir Eng J
23(1):97–117

 57. Laanti M, Salo O, Abrahamsson P (2011) Agile methods rapidly
replacing traditional methods at nokia: a survey of opinions on
agile transformation. Inf Softw Technol 53(3):276–290

 58. Lagerberg L, Skude T, Emanuelsson P, Sandahl K, Ståhl D
(2013) The impact of agile principles and practices on large-
scale software development projects: a multiple-case study of
two projects at ericsson. In: ACM/IEEE international symposium
on empirical software engineering and measurement, pp 348–356

 59. Larman C, Vodde B (2017) Large-scale scrum: more with less.
Addison-Wesley, Boston

 60. Leffingwell D (2016) SAFe® 4.0 reference guide: scaled agile
framework® for lean software and systems engineering. Addi-
son-Wesley Professional, Boston

 61. Liebel G, Marko N, Tichy M, Leitner A, Hansson J (2016)
Model-based engineering in the embedded systems domain: an
industrial survey on the state-of-practice. Softw Syst Model.
https ://doi.org/10.1007/s1027 0-016-0523-3

 62. Liebel G, Tichy M, Knauss E, Ljungkrantz O, Stieglbauer G
(2018) Organisation and communication problems in automotive
requirements engineering. Requir Eng J 23(1):145–167. https ://
doi.org/10.1007/s0076 6-016-0261-7 online first: 2016

https://doi.org/10.1109/CHASE.2012.6223019
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2015.06.063
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/MC.2016.150
https://doi.org/10.1109/MS.2003.1241368
https://www.hood-group.com/fileadmin/projects/hood-group/upload/Images/REConf/2016/vortraege/mittwoch/auditorium/Keynote-Systems_Engineering_for_future_mobility.pdf
https://www.hood-group.com/fileadmin/projects/hood-group/upload/Images/REConf/2016/vortraege/mittwoch/auditorium/Keynote-Systems_Engineering_for_future_mobility.pdf
https://www.hood-group.com/fileadmin/projects/hood-group/upload/Images/REConf/2016/vortraege/mittwoch/auditorium/Keynote-Systems_Engineering_for_future_mobility.pdf
https://www.hood-group.com/fileadmin/projects/hood-group/upload/Images/REConf/2016/vortraege/mittwoch/auditorium/Keynote-Systems_Engineering_for_future_mobility.pdf
https://doi.org/10.1007/978-3-642-04425-0_28
https://doi.org/10.1007/978-3-642-04425-0_28
https://re-magazine.ireb.org/articles/open-up
https://re-magazine.ireb.org/articles/open-up
https://doi.org/10.1007/978-3-319-13835-0_3
https://doi.org/10.1007/978-3-319-13835-0_3
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-13835-0_3
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-13835-0_3
https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1007/s00766-016-0261-7
https://doi.org/10.1007/s00766-016-0261-7

339Requirements Engineering (2019) 24:315–340

1 3

 63. Liebel G, Tichy M, Anjorin A, Lorber F, Knauss E (2017) Mod-
elling behavioural requirements and alignment with verification
in the embedded industry. In: Proceedings of 5th international
conference on model-driven engineering and software devel-
opment (MODELSWARD ’17), Porto, Portugal, pp 427–434.
http://www.scite press .org/Digit alLib rary/Publi catio nsDet ail.
aspx?ID=0rSON MuAFk A=&t=1

 64. Lindvall M, Muthig D, Dagnino A, Wallin C, Stupperich M,
Kiefer D, May J, Kahkonen T (2004) Agile software development
in large organizations. Computer 37(12):26–34

 65. Loniewski G, Insfran E, Abrahão S (2010) A systematic review
of the use of requirements engineering techniques in model-
driven development. In: Petriu D, Rouquette N, Haugen O (eds)
Model driven engineering languages and systems. Lecture
notes in computer science, vol 6395, pp 213–227. https ://doi.
org/10.1007/978-3-642-16129 -2_16

 66. Mäder P, Egyed A (2015) Do developers benefit from require-
ments traceability when evolving and maintaining a software sys-
tem? Empir Softw Eng 20(2):413–441. https ://doi.org/10.1007/
s1066 4-014-9314-z

 67. Marczak S, Damian D, Stege U, Schröter A (2008) Informa-
tion brokers in requirement-dependency social networks. In:
Proceedings of 16th international requirements engineering
conference (RE), pp 53–62

 68. Meyer B (2014) Agile! The good, the hype and the ugly.
Springer, New York

 69. Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA, Nor-
dmoen B, Fritzsche M (2013) Where does model-driven engi-
neering help? Experiences from three industrial cases. Softw
Syst Model 12(3):619–639

 70. Mohagheghi P, Dehlen V (2008) Where is the proof? - a review
of experiences from applying mde in industry. In: Schiefer-
decker I, Hartman A (eds) Model driven architecture—founda-
tions and applications. Lecture notes in computer science, vol
5095, pp 432–443

 71. Mohamad M, Liebel G, Knauss E (2017) Loco coco: automati-
cally constructing coordination and communication networks
from model-based systems engineering data. Inf Softw Technol
000:1–15. https ://doi.org/10.1016/j.infso f.2017.08.002

 72. Neely S, Stolt S (2013) Continuous delivery? Easy! Just change
everything (well, maybe it is not that easy). In: Proceedings of
agile conference (AGILE), pp 121–128

 73. Neill CJ, Laplante PA (2003) Requirements engineering: the
state of the practice. IEEE Softw 20(6):40–45. https ://doi.
org/10.1109/MS.2003.12413 65

 74. Olsson HH, Alahyari H, Bosch J (2012) Climbing the“ stair-
way to heave”—a mulitiple-case study exploring barriers in
the transition from agile development towards continuous
deployment of software. In: 2012 38th Euromicro conference
on software engineering and advanced applications, IEEE, pp
392–399

 75. Paasivaara M, Lassenius C (2016) Challenges and success fac-
tors for large-scale agile transformations: a research proposal
and a pilot study. In: Proceedings of the scientific workshop
proceedings of XP2016. ACM, p 9

 76. Pelliccione P, Knauss E, Heldal R, Ågren SM, Mallozzi P,
Alminger A, Borgentun D (2017) Automotive architecture
framework: the experience of volvo cars. J Syst Archit 77:83–
100. https ://doi.org/10.1016/j.sysar c.2017.02.005

 77. Pernstål J, Magazinius A, Gorschek T (2012) A study inves-
tigating challenges in the interface between product devel-
opment and manufacturing in the development of software-
intensive automotive systems. Int J Softw Eng Knowl Eng
22(07):965–1004

 78. Pohl K, Hönninger H, Achatz R, Broy M (2012) Model-based
engineering of embedded systems: the SPES 2020 methodol-
ogy. Springer, New York

 79. Ramesh B, Cao L, Baskerville R (2010) Agile requirements
engineering practices and challenges: an empirical study. Inf
Syst J 20(5):449–480

 80. Rempel P, Mäder P (2015) A quality model for the systematic
assessment of requirements traceability. In: Proceedings of the
23rd ieee international requirements engineering conference
(RE’15), pp 176–185. https ://doi.org/10.1109/RE.2015.73204
20

 81. Runeson P, Höst M (2009) Guidelines for conducting and
reporting case study research in software engineering. Empir
Softw Eng 14(2):131

 82. Salo O, Abrahamsson P (2008) Agile methods in european
embedded software development organisations: a survey on the
actual use and usefulness of extreme programming and scrum.
IET Softw 2(1):58–64

 83. Saunders B, Sim J, Kingstone T, Baker S, Waterfield J, Bart-
lam B, Burroughs H, Jinks C (2018) Saturation in qualitative
research: exploring its conceptualization and operationaliza-
tion. Qual Quant 52(4):1893–1907. https ://doi.org/10.1007/
s1113 5-017-0574-8

 84. Savolainen J, Kuusela J, Vilavaara A (2010) Transition to agile
development-rediscovery of important requirements engineer-
ing practices. In: 18th International requirements on engineer-
ing conference. IEEE, pp 289–294

 85. Sengupta S, Kanjilal A, Bhattacharya S (2008) Requirement
traceability in software development process: an empirical
approach. In: Proceedings of the 19th IEEE/IFIP international
symposium on rapid system prototyping (RSP’08). IEEE, pp
105–111. https ://doi.org/10.1109/RSP.2008.14

 86. Sikora E, Tenbergen B, Pohl K (2012) Industry needs and
research directions in requirements engineering for embedded
systems. Requir Eng 17(1):57–78. https ://doi.org/10.1007/
s0076 6-011-0144-x

 87. Sikora E, Tenbergen B, Pohl K (2011) Requirements engineer-
ing for embedded systems: an investigation of industry needs.
In: Berry D, Franch X (eds) Requirements engineering: foun-
dation for software quality. Lecture notes in computer science,
vol 6606, pp 151–165

 88. Sikora E, Tenbergen B, Pohl K (2011) Requirements engineer-
ing for embedded systems: an investigation of industry needs.
In: Proceedings of the 17th international working conference
on requirements engineering: foundation for software quality,
REFSQ’11. Springer, Berlin, pp 151–165. http://dl.acm.org/
citat ion.cfm?id=19873 60.19873 83

 89. Stupperich M, Schneider S (2011) Process-focused lessons
learned from a multi-site development project at daimler
trucks. In: Proceedings of 6th international conference on
global software engineering (ICGSE), Helsinki, Finland, pp
141–145

 90. Unterkalmsteiner M, Feldt R, Gorschek T (2014) A taxonomy
for requirements engineering and software test alignment.
ACM Trans Softw Eng Methodol 23(2):16:1–16:38. https ://
doi.org/10.1145/25230 88

 91. Unterkalmsteiner M, Gorschek T, Feldt R, Klotins E (2015)
Assessing requirements engineering and software test align-
ment, Äîfive case studies. J Syst Softw 109:62–77. https ://doi.
org/10.1016/j.jss.2015.07.018

 92. van der Valk R, Pelliccione P, Lago P, Heldal R, Knauss E,
Juul J (2018) Transparency and contracts: continuous inte-
gration and delivery in the automotive ecosystem. In: 40th
International conference on software engineering: software
engineering in practice track (ICSE-SEIP 2018). IEEE/ACM,
Gothenburg

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=0rSONMuAFkA=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=0rSONMuAFkA=&t=1
https://doi.org/10.1007/978-3-642-16129-2_16
https://doi.org/10.1007/978-3-642-16129-2_16
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1007/s10664-014-9314-z
https://doi.org/10.1016/j.infsof.2017.08.002
https://doi.org/10.1109/MS.2003.1241365
https://doi.org/10.1109/MS.2003.1241365
https://doi.org/10.1016/j.sysarc.2017.02.005
https://doi.org/10.1109/RE.2015.7320420
https://doi.org/10.1109/RE.2015.7320420
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1109/RSP.2008.14
https://doi.org/10.1007/s00766-011-0144-x
https://doi.org/10.1007/s00766-011-0144-x
http://dl.acm.org/citation.cfm?id=1987360.1987383
http://dl.acm.org/citation.cfm?id=1987360.1987383
https://doi.org/10.1145/2523088
https://doi.org/10.1145/2523088
https://doi.org/10.1016/j.jss.2015.07.018
https://doi.org/10.1016/j.jss.2015.07.018

340 Requirements Engineering (2019) 24:315–340

1 3

 93. Weber M, Weisbrod J (2003) Requirements engineering in
automotive development: experiences and challenges. IEEE
Softw 20(1):16–24. https ://doi.org/10.1109/MS.2003.11590 25

 94. Weber M, Weisbrod J (2002) Requirements engineering in
automotive development-experiences and challenges. In: Pro-
ceedings of IEEE joint international conference on require-
ments engineering (RE ’02), pp 331–340

 95. Wiklund K, Sundmark D, Eldh S, Lundqvist K (2013) Impedi-
ments in agile software development: an empirical investiga-
tion. In: Proceedings of product-focused software process
improvement, pp 35–49

 96. Wohlrab R, Knauss E, Steghöfer JP, Maro S, Anjorin A, Pel-
liccione P (2018) Collaborative traceability management: a
multiple case study from the perspectives of organization, pro-
cess, and culture. Requir Eng. https ://doi.org/10.1007/s0076
6-018-0306-1

 97. Wohlrab R, Pelliccione P, Knauss E, Larsson M (2019) Bound-
ary objects and their use in agile systems engineering organiza-
tions. J Softw Evol Process. https ://doi.org/10.1002/smr.2166

 98. Wohlrab R, Pellicione P, Knauss E, Gregory S (2018) The
problem of consolidating re practices at scale: an ethnographic
study. In: Proceedings of 24th international working confer-
ence on requirements engineering: foundation for requirements
engineering (REFSQ), Utrecht, The Netherlands

 99. Wohlrab R, Pellicione P, Knauss E, Heldal R (2019) On inter-
faces to support agile architecting in automotive: an explora-
tory case study. In: Proceedings of IEEE international confer-
ence on software architecture (ICSA), Hamburg, Germany

 100. Zijdemans SH, Stettina CJ (2014) Contracting in agile software
projects: state of art and how to understand it. In: Proceedings
of international conference on agile processes and extreme pro-
gramming in software engineering (XP), pp 78–93

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/MS.2003.1159025
https://doi.org/10.1007/s00766-018-0306-1
https://doi.org/10.1007/s00766-018-0306-1
https://doi.org/10.1002/smr.2166

	The impact of requirements on systems development speed: a multiple-case study in automotive
	Abstract
	1 Introduction
	2 Context of cases
	3 Method
	3.1 Respondent selection
	3.2 First step of the study
	3.3 Second step of the study
	3.4 Threats to validity

	4 Findings overview
	5 Which aspects of the current way of working with requirements impact development speed (RQ1)?
	5.1 RE style dominated by safety and legal concerns
	5.1.1 Safety and legal concerns in context of related work

	5.2 Requirements-centric culture constrains development speed
	5.2.1 Requirements-centric culture versus speed in context of related work

	5.3 Rigid requirements process forces early decisions
	5.3.1 Process and early decisions in context of related work

	5.4 Focus on decomposition and hierarchy introduces delays
	5.4.1 Decomposition and hierarchy in context of related work

	5.5 Requirements representation hinders change
	5.5.1 Requirements representation in context of related work

	5.6 Requirements-based contracts hinder fast collaboration
	5.6.1 Contracts and collaboration in context of related work

	5.7 Additional aspects: quality assurance and traceability
	5.7.1 Quality assurance and traceability management solutions in the context of related works

	6 Which new aspects should be considered when defining a new way of working with requirements to increase development speed (RQ2)?
	6.1 Aim for domain- or context-specific requirements tooling
	6.1.1 Domain and context-specific tooling in context of related work

	6.2 Leverage model-based RE for fast feedback
	6.2.1 Model-based RE in context of related work

	6.3 Align requirements and automated testing
	6.3.1 Align requirements and automated testing in context of related work

	6.4 Emergent teams to improve collaboration
	6.4.1 Improve collaboration in context of related work

	6.5 Facilitate learning through exploration
	6.5.1 Exploration-driven work in context of related work

	6.6 Complement lightweight pre-development RE with precise post-development specification
	6.6.1 Post-development specification in the context of related work

	7 To what extent will either aspects be addressed through the ongoing agile transformation (RQ3)?
	8 Discussion, conclusions, and outlook
	Acknowledgements
	References

