
Vol.:(0123456789)1 3

Requirements Engineering (2020) 25:213–229
https://doi.org/10.1007/s00766-019-00317-w

ORIGINAL ARTICLE

Structural similarity measure between UML class diagrams based
on UCG​

Zhongchen Yuan1 · Li Yan2 · Zongmin Ma2

Received: 19 October 2018 / Accepted: 10 June 2019 / Published online: 18 June 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In software reuse, the reuse of UML class diagram produced in design phase has received more attention due to the impor-
tant influence on the following developing process. The reuse is based on similarity. The similarity between class diagrams
contains semantic and structural aspects. The existing works focus on semantic similarity, while the structural similarity is
little paid attention to. The structure of class diagram can be categorized into two aspects: intra-structure and inter-structure.
The intra-structure refers to the composition of each class, and the inter-structure is represented as the relationships between
classes. So, the structural similarity measure should be carried out from these two aspects. In this paper, we propose to use
a graph named UML class graph (UCG) to represent a class diagram for the structural similarity measure. An algorithm
based on UCG Maximum Common Subgraph Sequence is proposed for the inter-structure similarity measure, and UCG
edit distance is proposed and introduced to the intra-structure similarity measure. The experimental results show that our
proposed approach is effective within a domain or across domains.

Keywords  Software reuse · UML class diagram · Structural similarity · Inter-structure · Intra-structure · UCG​

1  Introduction

Software reuse can save development costs and time to
improve software development process [1]. With the increas-
ing complexity of software, software reuse has been involved
in each phase of software life cycle, including design, testing
or even maintenance, not just limited to code [2, 3]. Soft-
ware design has an enormous influence on the following
development process [4, 5], so the reuse of software design
is promising. Class diagrams produced in design phase can
clearly show the static structure of a system by modeling
objects and relationships between objects [6]. Currently, the
reuse of class diagrams has received more attention [7, 8].
The reuse architecture of class diagrams is shown as Fig. 1.

It is shown in Fig. 1 that the reuse architecture of class
diagrams contains four stages. The original class diagrams

are retrieved, adjusted and then applied for new projects. The
newly developed class diagrams are finally added into the
repository for future reuse. Among them, the retrieval that is
based on similarity measure is a key. The existing works on
similarity measure focus on semantics [9]. However, class
diagram contains not only semantics but also structure [10].
Class diagrams for modeling a software system are gener-
ally created by a team of developers who may have different
experiences and knowledge backgrounds. It is a common
case that the created class diagrams are not exactly consist-
ent even for the development of the same project.

Let us look at an example. Suppose that we have a query
class diagram shown in Fig. 2a as input. Then, with a seman-
tics-based retrieval, the class diagrams containing Fig. 2a, b
should be retrieved in the reuse repository. It can be seen that
the retrieved class diagrams may have different structures
due to their different developing concerns. Here, Fig. 2a is
a student-centered design and Fig. 2b is a lesson-centered
design. However, it is possible that only the class diagrams
containing Fig. 2a are required in an application, including
the related artifacts of these class diagrams. At this point,
the class diagrams containing Fig. 2b would not appear in
the retrieval list with respect to the structural information
of the query class diagram. Let us look at another example.

 *	 Zongmin Ma
	 zongmin_ma@yahoo.com

1	 School of Software, Northeastern University,
Shenyang 110819, China

2	 College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211106,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-019-00317-w&domain=pdf

214	 Requirements Engineering (2020) 25:213–229

1 3

For the query class diagram shown in Fig. 3, which is used
to model the composition of a computer, there may not be
any class diagrams that model the same project as the query
class diagram in the reuse repository. As a result, no class
diagrams would be retrieved if a semantics-based retrieval
is applied. However, there may be some structurally similar
class diagrams from different projects in the reuse reposi-
tory (e.g., the class diagram modeling a vehicle composition
in Fig. 4), which can be applied as a useful reference to
construct new related class diagrams. Therefore, in addi-
tion to the semantics of class diagrams, the retrieval of class
diagrams needs to consider the structures of class diagrams
also for structural reuse. The key of structural retrieval for
structural reuse is the structural similarity measure.

So far, while more attention has been paid to the seman-
tic similarity measure of class diagrams, little work has
been carried for the structural similarity measure of class
diagrams. In this paper, we concentrate on the structural
similarity measure of class diagrams. For this purpose, we

propose a graph model named UCG (UML class graph) to
represent class diagram. On the basis of the UCG model, we
propose the algorithms for the structural similarity measure
of class diagrams. The main contributions of this paper are
summarized as follows.

(1)	 We propose to consider the reuse of class diagrams
from a structural perspective.

(2)	 We propose the structural similarity measure method
for the structural reuse, where an UCG is proposed
to represent a class diagram, an algorithm based on
UMCSS is proposed for the inter-structure similarity
measure and UCG edit distance is proposed for the
intra-structure similarity measure.

(3)	 We carry out an experiment to show the effectiveness
of the proposed method.

The rest of this paper is organized as follows. The related
work is presented in Sect. 2. Section 3 presents the generic
procedure of model transformation, formally defining UML
class diagram and UML class graph and providing the trans-
formation rules. The structural similarity measure between
UML class graphs is proposed in Sect. 4. Section 5 presents
an experiment and analyzes the experimental results. Sec-
tion 6 concludes this paper.

2 � Related work

The advance is mainly reflected in semantic similarity since
the reuse of software artifacts (e.g., code, component and
design model) has been valued [11–20]. The most com-
monly used approach is that, a reusable artifact is described
as a few features, each feature is assigned, and then the sim-
ilarity between artifacts is calculated using the difference
between features [11, 13, 16–18, 20]. The definition and
assignment of features is generally a manual process that
requires more domain knowledge and searching artifacts for
reuse is based on keyword. In [21], a method called case-
based reasoning is proposed, in which previous experiences
are described as cases (problem and solutions) stored in a
case library. Given a query condition, the most similar cases
are received and then adapted for reuse in new project. With

AdjustmentRetrieval
system New project

Newly
developed

class diagram

Reuse repository

1

2 3

4

Fig. 1   The reuse architecture of class diagrams

Teacher

Lesson

Student

Teacher

Student Lesson

(a) (b)

Fig. 2   UML class diagram examples

Computer

Mainframe MouseKeyboardMonitor

Fig. 3   A class diagram modeling a computer composition

Vehicle

Engine Electrical
EquipmentBodyChassis

Fig. 4   A class diagram modeling a vehicle composition

215Requirements Engineering (2020) 25:213–229	

1 3

the development of Semantic Web, more ontologies (e.g.,
WordNet) [22] are developed and applied to some fields such
as knowledge engineering and information retrieval [23].
Ontology-based similarity measure is proposed [24, 25], in
which domain and application ontologies are combined to
improve the accuracy of semantic similarity measure [15].
A relationship is usually represented as a vector of end class
and type in [15, 19, 20], then the distance between vectors is
used to measure the similarity between relationships, which
can be essentially viewed as a kind of semantic measure
and only applied to the same projects. Certainly, still a few
methods have been proposed for the structural similarity
measure [19, 26–30]. In [19, 28], the neighborhood infor-
mation is used to measure the similarity between relation-
ships. A sequence diagram is represented as a conceptual
graph for the similarity measure in [29], in which object
name corresponds to vertex and message corresponds to
edge. Then the matching is based on the labels of vertices
and name of edges, which falls into a semantic similarity
category. In [30], the state machine diagram is represented
as a digraph for the similarity measure and the similarity
measure is based on an adjacency matrix representation of
different edges. In [27], a model query language is designed
to rewrite a class diagram for the structural matching, where
a depth-first algorithm is applied for searching the maximum
common parts. Note that, when the number of relationships
contained in the class diagrams is small, this approach can
work well because few common substructures exist among
them. As the size of class diagrams increases, the number
of common substructures may be more than one and it is
inaccurate to use this method for calculating the structural
similarity. In addition, the text-based representation is inap-
propriate to represent class diagram because the structure of
class diagram is not represented intuitively. So, a graphical
and accurate approach is desirable for the structural similar-
ity measure between class diagrams.

The structure of class diagram can be categorized into
two aspects: intra-structure and inter-structure. The intra-
structure refers to the composition of each class, and the
inter-structure is represented as relationships between
classes. Both the intra-structure and inter-structure are all
within the scope of consideration in this paper. We apply a
graph [29, 30] to represent a class diagram for the structural
similarity measure. The vertices and edges of an UCG are
classified into different types, and the structural matching
is based on the edge tags rather than vertices. An UMCSS-
based algorithm is proposed for the inter-structure simi-
larity measure, and UCG edit distance is proposed for the

intra-structure similarity measure. The feature vector method
[11, 13, 16–18, 20, 24, 25] and the vertex label method [29,
30] pay their attention on the semantics rather than the actual
structure. Compared with the semantics-based method, the
method proposed in the paper does not care for the seman-
tics (end class) and the matching is just based on the tags
of edges. This can be viewed as a structural matching in
nature, and it can also be applied to the structural reuse of
the same domain and across domains. In [27], a model query
language method is proposed. Our method considers more
common substructures in addition to the maximum common
substructure, and this can improve the accuracy. It is espe-
cially true for the similarity measure between class diagrams
with a large size. Additionally, the graphical representation
of a class diagram’s structure is more intuitive than the text
representation.

3 � Model transformation

OMG (Object Modeling Group) defines standard DTD
(Document Type Definition) for UML model file. Then an
UML model is described in an XMI (Extended Mark-up
Language Interchange) document based on DTD standard
[31]. The structural similarity measure between class dia-
grams can be attributed to model matching. There are two
strategies to solve the issue of model matching. The first one
is to put forward algorithms on the model, and the second
one is to transform the model into another model and then
put forward algorithms on the new model. Here we chose the
latter. A graph called UCG is proposed to represent an UML
class diagram (denoted as UCD) for the structural similarity
measure in this paper. The procedure is described in Fig. 5.

Obviously, this process consists of three steps. Among
them, parsing XMI is to obtain all elements of class diagram.
Any XML parser based on SAX (Simple API for XML) can
be used to parse XMI model file and then obtain the ele-
ments (i.e., class, attribute, operation and relationship) [32].
All these elements obtained by parsing provide a preparation
for formalizing class diagram. To transform UCD to UCG,
the transformation rules need to be defined and the structural
information of UCD must be fully reflected in UCG. On the
basis, the structural similarity between UCD is converted to
the structural similarity between UCG. Finally, algorithms
are proposed for the structural similarity measure.

UCD and UCG are formally defined, and then, the trans-
formation rules from UCD to UCG are summarized in the
following subsections.

Fig. 5   Procedure of using UCG
to measure the structural simi-
larity between UCD

UCD
(XMI)

Formalized
UCD UCGParsing

Formal
transformation Structure

similarity

Propose
algorithms

1 2 3

216	 Requirements Engineering (2020) 25:213–229

1 3

3.1 � UML class diagram

An UML class diagram is used to model the static struc-
ture of a system, which consists of classes and relation-
ships between classes [6]. Being an abstract representa-
tion of a set of objects with the same properties, a class
shown in Fig. 6 is composed of attributes and operations.
A relationship existing between classes is mainly clas-
sified into six categories: association, generalization,
dependence, aggregation, composite and realization. An
example shown in Fig. 7 is a fragment of a class diagram
from an education domain. It contains two classes named
“Teacher” and “Professor,” and one relationship of gener-
alization, indicating class “Professor” inherits from class
“Teacher.”

Definition 1  We use a 5-tuple to formally define an UML
class diagram and have UCD = (C, A, O, P, R).

(1)	 C is a set of classes, where C = {c1, c2, c3,…,ck} and ci
is a class;

(2)	 A is a set of attribute sets, where A = {A1, A2, …, Ak},
Ai is a set of attributes contained in class ci, Ai ={ai1,
ai2, …, aim}, and aij is the jth attribute of class ci;

(3)	 O is a set of operation sets, where O = {O1, O2, …, Ok},
Oi is a set of operations contained in class ci, Oi = {oi1,
oi2, oi3, …, oin}, and oik is the kth operation of class ci;

(4)	 P is a set of all the parameters, where P ={P1, P2, …,
Pk}, Pi is a set of parameters contained in all the opera-
tions of class ci. Pi = {Pi1, Pi2,…, Pim}, Pij is a set of
parameters contained in the operation oij, Pij = {pij

1, pij
2,

pij
3, …, pij

t}, and pij
t is the tth parameter of operation oij;

(5)	 R is a set of relationships, where R = {rij|1 ≤ i, j ≤ |C|
and i ≠ j}, rij = (ci, tx, cj) is a relationship between class
ci and cj, tx ∊ T is the type of rij, and T = {t1, t2, t3, t4, t5,
t6} is a set of relationship types. Here t1, t2, t3, t4, t5 and
t6 corresponds to association, generalization, aggrega-
tion, composition, dependency and realization, respec-
tively.

For the class diagram in Fig. 7, two classes “Teacher” and
“Professor” are denoted as c1 and c2, respectively; for class
“Teacher,” attribute “ID” is denoted as a11, attribute “name”
is denoted as a12, operation “teach” is denoted as

o11, and parameter “class” is denoted as p1
11; similarly,

the attributes “degree” and “title” of class “Professor” are
denoted as a21 and a22, respectively; the generalization rela-
tionship between class “Teacher” and “Professor” is then
denoted as r21, r21 = (c2, t2, c1).

3.2 � UML class graph

A graph is an ordered pair (V, E), where V is a set of verti-
ces, E ⊆ V × V is a set of edges, and an edge exists between
two vertices [33]. As a powerful modeling tool, a graph is
applied to a series of fields, ranging from computer network
to biomedical science [34]. A core in graph applications is
the issue of model matching [35]. The structure of an UCD is
similar to a graph: Classes of an UCD correspond to vertices
of a graph and relationships of an UCD correspond to edges
of a graph. So, a graph is chosen to represent an UCD for the
structural similarity measure. In this section, we propose an
UCG to represent an UCD. Being different from a general
digraph, an UCG consists of various types of vertices and
edges to correspond to different elements in an UCD.

Definition 2  An UML class graph is defined as UCG = (V,
E, L).

(1)	 V denotes all ver tices of an UCG, where
V = CV ∪ AV ∪ OV ∪ PV.

•	 CV is a set of class vertices and CV = {cv1, cv2, …,
cvk}, where cvi is the ith class vertex.

•	 AV is a set of sets of attribute vertices and AV = {AV1,
AV2,…, AVk}, where AVi= {avi1, avi2, …, avim} is a
set of attribute vertices connecting to class vertex cvi
and avij is the jth attribute vertex.

•	 OV is a set of sets of operation vertices and
OV = {OV1,OV2,…, OVk}, where OVi = {ovi1, ovi2,
…, ovin} is a set of operation vertices connecting to
class vertex cvi and ovij is the jth operation vertex.

•	 PV is a set of all parameter vertices and
PV = {PV1,PV2,…,PVk}, where PVi = {PVi1, PVi2,…
,PVin} is a set of parameter vertices connecting to all
operation vertices that are connected to class vertex
cvi, PVij= {pvij

1,pvij
2,…, pvij

f} is a set of parameter ver-
tices connecting to the operation vertex ovij, and pvij

t
is the tth parameter vertex.

(2)	 E denotes al l edges of an UCG, where
E = AE U OE U PE U RE.

Fig. 6   A class composition
Class Name

Attribute

Operation

-degree : string
-title : string

Professor

+teach(in class : string)

-ID : string
-name : string

Teacher

Fig. 7   An example of UML class diagram

217Requirements Engineering (2020) 25:213–229	

1 3

•	 AE ⊆ CV × AV is a set of attribute edge sets and AE
= {AE1, AE2,…, AEk}, where AEi = {aei1, aei2, …,
aeim} denotes a set of attribute edges connecting
class vertex cvi and aeij= (cvi, avij) is an attribute
edge from cvi to avij.

•	 OE ⊆ CV × OV is a set of operation edge sets and OE
= {OE1, OE2, …, OEk}, where OEi= {oei1, oei2, …,
oein} denotes a set of operation edges connecting
class vertex cvi and oeij = (cvi, ovij) is an operation
edge from cvi to ovij.

•	 PE ⊆ OV × PV is a set of parameter edges and
PE = {PE1, PE2, …, PEk}, where PEi= {PEi1, PEi2,
…, PEin}, PEij ={peij

1, peij
2
,…, peij

f}, and peij
t = (ovij, pvij

k)
is a parameter edge from ovij to pvij

k.
•	 RE ⊆ CV × CV is a set of relationship edges and

RE = {reij|1 ≤ i, j ≤ |CV|  and i ≠ j}, where reij = (cvi,
ex, cvj) is a relationship edge from cvi to cvj, ex ∊ ET
is a tag of reij and ET = {e1, e2, e3, e4, e5, e6} is a set
of relationship edge tags.

(3)	 L is a label function, which denotes the label of a ver-
tex, L = LC + LA + LO + LP. LC(cvi), LA(avij), LO(ovij) and
LP(pvij

k) denote the label of class vertex cvi, attribute
vertex avij, operation vertex ovij and parameter vertex
pvij

k, respectively.

In a general digraph, the differences among vertices
are based on labels and all edges are seen to be identical
except for different weights. The vertices and edges of an
UCG, however, are identified as different types (as men-
tioned above). Each type of elements plays a different role
in an object that is composed of several different types of
elements. These different types of vertices and edges are
denoted as different tags in Table 1 to distinguish each other.

In the real world, these elements that make up an object
are usually multiple types instead of single type, so the
modeling tools like UCG have a wide range of applica-
tions. Let us look at an application example of UCG in
network topology design. In Fig. 8, a higher bandwidth is
designed between two key nodes as the backbone, say e1,
and a relatively low bandwidth is assigned between a key
node and a general node, say ea and eo, shown. A class ver-
tex is a key node, and an attribute vertex and an operation
vertex are considered as general nodes, which are differ-
ent from each other and marked with different colors. In
addition, different bandwidths are denoted as edges with
different pounds. The same idea can be applied to highway
construction planning, where higher-quality roads should
be built between key cities and the standards among other
cities are less demanding.

3.3 � Transformation rules

Transformation rules from UCD to UCG are proposed in this
section. Here the UCG is applied for measuring the struc-
tural similarity instead of a complete matching. So, we do
not consider the multiplicity of relationship here. The related
permissions (e.g., public, private, and protected) of attribute
and operation are also ignored in this paper. In the following,
we present the detailed transformation rules.

•	 Rule 1: class → class vertex
	  Class ci in an UCD is transformed into a class vertex

cvi in an UCG and the name of class ci becomes the label
LC(cvi) of cvi.

•	 Rule 2: attribute → attribute vertex and attribute edge
	  Attribute aij of class ci in an UCD is transformed to

an attribute vertex avij in an UCG and the name of aij
becomes the label LA(avij) of avij. Then an attribute edge
aeij between cvi and avij is created and the direction is
from cvi to avij. The type of attribute aij is assigned to the
tag ea of attribute edge with a mark (e.g., ta1, ta2, …, tan).

Table 1   Element tags of UCG​

No. Element type Tag

1 Vertex Class vertex v0

2 Attribute vertex v1

3 Operation vertex v2

4 Parameter vertex v3

5 Edge Attribute edge ea

6 Operation edge eo

7 Parameter edge ep

8 Association edge e1

9 Generalization edge e2

10 Aggregation edge e3

11 Composition edge e4

12 Dependency edge e5

13 Realization edge e6

cv1 cv2e1

ea

ea

ea
eo

eo eo

ov11

av11

av21

ov21

ov22

av22

Fig. 8   An UCG application case

218	 Requirements Engineering (2020) 25:213–229

1 3

•	 Rule 3: operation (parameter) → operation vertex and
operation edge (parameter vertex and parameter edge)

	  Operation oij of class ci in an UCD is transformed to
an operation vertex ovij in an UCG. Then an operation
edge oeij between cvi and ovij is created and the direction
is from cvi to ovij. The name of oij becomes the label
LO(ovij) of the operation vertex ovij and the return type
of operation oij is assigned to the tag eo of operation edge
oeij with a mark (e.g., rt1, rt2, …, rtn). Being different
from an attribute, an operation may contain some param-
eters. A parameter is defined by both name and type. A
parameter can be handled in a similar way as an attribute,
but a parameter edge is created between operation ver-
tex and parameter vertex. So, parameter pij

t in an UCD is
transformed into a parameter vertex pvij

t in an UCG. Then
a parameter edge peij

t between pvij
t and ovij, is created and

the direction is from ovij to pvij
t. The name of parameter pij

t
becomes the label LP(pvij

t) of parameter vertex pvij
t and the

type of parameter pij
t is assigned to the tag ep of parameter

edge peij
t with a mark (e.g., tp1, tp2, …, tpn).

•	 Rule 4: relationship → relationship edge
	  Relationship rij between class ci and cj in an UCD is

transformed into a relationship edge reij between class
vertex cvi and cvj in an UCG. Regarding the direction
and tags of relationship edge, Fig. 9 presents the details.

With the transformation rules, the UCD in Fig. 7 is con-
verted into an UCG in Fig. 10. Here different types of verti-
ces are denoted with different colors for distinguishing each
other.

All the elements from an UCD can be transformed into
corresponding vertices and edges of an UCG based on the
above transformation rules. The structure of an UCD is rep-
resented as the structure of an UCG. The following is a sum-
mary of the model transformation.

for UCD = (C, A, O, P, R)

Then,

∀ci ∈ C(1 ≤ i ≤ n) ⇒ ∃cvi ∈ CV + LC
(
cvi

)
∀aij ∈ Ai(1 ≤ i ≤ n) ⇒ ∃avij ∈ AVi + LA

(
avij

)

+aeij
(
ea
)
∈ AEi

∀oij ∈ Oi(1 ≤ i ≤ n) ⇒ ∃ovij ∈ OVi + LO
(
ovij

)

+oeij
(
eo
)
∈ OEi

∀p
f

ij
∈ Pij

(
1 ≤ i ≤ n, 1 ≤ j ≤ |Oi|

)
⇒ ∃pv

f

ij
∈ PVij

+LP
(
pv

f

ij

)
+ pe

f

ij

(
ep
)
∈ PEij

∀rij
(
tm
)
∈ R(1 ≤ i, j ≤ n) ⇒ ∃reij

(
em
)
∈ RE

AV =
{
AV1,AV2,… ,AVn

}
OV =

{
OV1,OV2,… ,OVn

}
PV =

{
PV1,PV2,… ,PVn

}
and PVi =

{
PVi1,PVi2,… ,PVin

}

C1 C2

cv1 cv2

Association (t1)

e1

C1 C2

cv1 cv2

Generalization (t2)

e2

C1 C2

cv1 cv2

Aggregation (t3)

e3

C1 C2

cv1 cv2

Composition (t4)

e4

C1 C2

cv1 cv2

Dependency (t5)

e5

C1 C2

cv1 cv2

Realization (t6)

e6

(a) (b) (c)

(d) (e) (f)

Fig. 9   The direction setting of relationship edges

cv1 cv2

ID

name

teach

degree

title

ProfessorTeacher

class

ea(ta1)

eo (rt1)

ep(tp1)

e2

av11

av12

ov11

av21

av22

pv11
1

ea(ta1) ea(ta
1)

ea(ta1)

Fig. 10   UCG transformation sample

219Requirements Engineering (2020) 25:213–229	

1 3

and

So,

and

Let,

4 � Structural similarity measure

The inter-structure of an UCG can be thought of as the
structure after deleting attribute vertices (edges), operation
vertices (edges) and parameter vertices (edges), correspond-
ing to the mainframe of a class diagram. The inter-structure
of an UCG plays a decisive role in the structural similar-
ity measure. The intra-structure of an UCG is expressed by
these elements (i.e., attribute vertices, operation vertices and
parameter vertices) connecting to a class vertex, correspond-
ing to the composition of a class existing in an UCD.

The structural similarity measure is to quantify the struc-
tural difference. The similarity value is limited to [0, 1],
where 0 means completely different and 1 means identical.
Due to the characteristics that an UCG consists of different
types of vertices and edges, the matching and comparing of
structure can only be carried out among the elements with
the same types. We have some correspondences: class vertex
is to class vertex, attribute vertex (edge) is to attribute ver-
tex, operation vertex (edge) is to operation vertex, parameter
vertex (edge) is to parameter vertex and relationship edge
is to relationship edge. The structural matching is based on
the tags of edges, instead of vertices: the same tag indicates
the same structure and vice versa. The structural similarity
measure between UCG is defined as bellows.

Here simInter and simIntra denote the similarity of inter-
structure and the intra-structure, respectively, and θ is the
weighting factor (θ is limited to [0, 1] and usually close to 0.9).

4.1 � Preliminary knowledge

Maximum Common Subgraph (denoted as MCS) and Edit
Distance (denoted as ED) are frequently used methods for

AE =
{
AE1,AE2,… ,AEn

}
OE =

{
OE1,OE2,… ,OEn

}
PE =

{
PE1,PE2,… ,PEn

}
and PEi =

{
PEi1,PEi2,… ,PEin

}

CV ∪ AV ∪ OV ∪ PV ⇒ V

AE ∪ OE ∪ PE ∪ RE ⇒ E

LC + LA + LO + LP ⇒ L

(V , E, L) ⇒ UCG

(1)
Sim

(
g1, g2

)
= � ∗ simInter

(
g1, g2

)
+ (1 − �) ∗ simIntra

(
g1, g2

)

graph isomorphism [36, 37]. UCG maximum common sub-
graph and UCG edit distance are first proposed in this sec-
tion and then applied to the inter-structure similarity meas-
ure and intra-structure similarity measure, respectively.

4.1.1 � UCG maximum common subgraph

Here UCG Maximum Common Subgraph is from the inter-
structure of UCG, which is only applied to the inter-structure
similarity measure. Obtaining UCG Maximum Common
Subgraph is based on the tags of relationship edges, instead
of class vertices. Firstly, UCG Maximum Common Sub-
graph is defined and then UCG Maximum Common Sub-
graph List and UCG Maximum Common Subgraph Tree are
proposed, respectively.

Definition 3 (UCG Maximum Common Subgraph)  Let ucg1
and ucg2 be two UCG. Suppose that there exists an UCG
g and there is not an UCG g′, where g ⊆ ucg1, g ⊆ ucg2,
g′ ⊆ ucg1, g′ ⊆ ucg2, and |g′| > |g| (|g| is used to denote the
number of relationship edges existing in g). Then g is called
UCG Maximum Common Subgraph (denoted as UMCS)
between ucg1 and ucg2.

Here, the size of an UMCS can be measured by the num-
ber of relationship edges existing in UMCS. The number of
UMCS may be more than one, especially for UCG with larger
size. It is assumed that g1, g2, …, gm are UMCS between ucg1
and ucg2. Then, these UMCS constitute a list called UMCS
List (denoted as UMCSL) and we have UMCSL1 = {UMCS1

1,
UMCS2

1, UMCS3
1, …, UMCSm

1}, where gi is denoted as
UMCSi

1. Based on each UMCSi
1 existing in UMCSL1, we can

obtain UMCSL2 between (ucg1–UMCSi
1) and (ucg2–UMCSi

1).
That is, UMCSL2 = {UMCS2

11, UMCS2
12, …, UMCSm1

2, UMCSm2
2,

…, UMCSmn
2}. This process is repeated until there is not any

UMCS between the remainders of ucg1 and ucg2. All these
UMCSL are inserted into an UMCS Tree shown in Fig. 11.
UMCS Tree is initialized as a root node and it is empty.

4.1.2 � UCG edit distance

The basic idea of graph edit distance comes from string edit
distance [38], which is used to find the minimum operation
distance while transforming one graph to another. The edit
distance between two graphs g1 and g2 is defined as follows.

Here, cost (ei) denotes the cost of edit operation ei and pj
(g1, g2) denotes an edit path for transforming g1 into g2. There
may be multiple edit paths for transforming g1 to g2 and the

(2)GED
(
g1, g2

)
= min

1≤j≤m

k∑
i=1

e1,…,ek∈pj(g1,g2)
cos t(ei)

220	 Requirements Engineering (2020) 25:213–229

1 3

edit distance is to find the path whose edit cost is the least.
A standard set of edit operations generally includes inser-
tion, deletion and substitution of both vertices and edges. In
this paper, UCG edit distance is proposed and applied to the
intra-structure similarity measure, in which only two opera-
tions are allowed: insertion and deletion. The label of vertex
is ignored when the edit distance is calculated. The reason is
that we are talking about structure, not semantics. The edit
operations of UCG are summarized in Table 2.

On the basis of Table 2, we define the UCG edit distance
as follows.

(3)UCGED
(
g1, g2

)
= x1 ∗ IC1 + x2 ∗ IC2 + x3 ∗ IC3 + y1 ∗ DC1 + y2 ∗ DC2 + y3 ∗ DC3

Here, x1, x2, x3, y1, y2 and y3 are some coefficients, which
are the times of the corresponding edit operation. Note
that the insertion and deletion operations that are applied
to the same object are assigned to the same edit cost, that
is, IC1 = DC1, IC2 = DC2 and IC3 = DC3. Then the formula
above can be further stated as follows.

Let us look at an example shown in Fig. 12, where
the UCG in Fig. 12a is matched to UCG in Fig. 12b. We

(4)
UCGED

(
g1, g2

)
=
(
x1+y1

)
∗ IC1 +

(
x2+y2

)
∗ IC2 +

(
x3+y3

)
∗ IC3

.

.

.

root

UMCSL1

UMCSL2

.UMCS1
1 UMCS1

2 UMCS1
m

UMCS2
11 UMCS2

12 UMCS2
1k UMCS2

21 UMCS2
22 UMCS2

23 UMCS2
2j UMCS2

m1 UMCS2
m2 UMCS2

mn

Fig. 11   UMCS tree

Table 2   UCG editing operations Edit operation Description Edit cost

Insertion Ive1 Insert an attribute vertex and the corresponding attribute edge IC1

Ive2 Insert an operation vertex and the corresponding operation edge IC2

Ive3 Insert a parameter vertex and the corresponding parameter edge IC3

Deletion Dve1 Delete an attribute vertex and the corresponding attribute edge DC1

Dve2 Delete an operation vertex and the corresponding operation edge DC2

Dve3 Delete a parameter vertex and the corresponding parameter edge DC3

Fig. 12   UCG edit distance case

cv1

ea(ta
1)

eo (rt3)

ov11

av11

cv2
ea(ta1)

ea(ta1)
av21

av22

e3

cv1

av11

av12

cv2

av22

ov21
e3

av21

ov22

eo(rt1)

e
o (rt2)

e
a (ta

1)

e a(t
a 2)

e a(t
a 1)

ea(ta
1)

(a) (b)

221Requirements Engineering (2020) 25:213–229	

1 3

calculate the edit distance from UCG in Fig. 12a to UCG in
Fig. 12b based on the formula (4).

Obviously, after deleting an operation vertex ov11 and its
corresponding operation edge oe11, inserting an attribute
vertex av12 and its attribute edge ae12 to cv1, and adding
two operation vertices ov21 and ov22 and their corresponding
operation edges oe21 and oe22 to cv2, the UCG in Fig. 12a
becomes the UCG in Fig. 12b in the structure. The edit path
is shown from Step (1) to Step (4) in Fig. 13, where UCG
edit distance is UCGED (a, b) = IC1 + 3IC2.

4.2 � Similarity measure

The Similarity is based on the common parts of objects that
are matching one another. Let us see an example. Two UCG
g1 and g2 are transformed from UML class diagrams in an

education domain, shown as Fig. 14, they have similar struc-
tures. We only show the inter-structure of g1 and g2 and the
labels of the vertices are removed for saving space. Note
that the same tags of class vertices from g1 and g2 (e.g., cv1,
cv2, …, cv6) do not mean that these vertices are identical.
Again, to save space, we do not show the intra-structures and
the distributions of attribute vertices (edges) and operation
(parameter) vertices (edges) connecting to each class vertex
existing in g1 and g2 are shown in Tables 3 and 4, respec-
tively. In this section, the inter-structure similarity and the
intra-structure similarity are discussed, respectively.

4.2.1 � Inter‑structure similarity

UMCS Tree provides a solution for using common parts to
measure the inter-structure similarity. Each path from the root

cv1

ea(ta
1)

eo (rt3)

ov11

av11

cv2
ea(ta1)

ea(ta1)
av21

av22

e3
cv1

ea(ta
1)

av11

cv2
ea(ta1)

ea(ta1)
av21

av22

e3
cv1

ea(ta
1)

ea (ta
2)

av12

av11

cv2
ea(ta1)

ea(ta1)
av21

av22

e3

(1) (2)

cv1

av11

av12

cv2

av22

ov21

e3

av21

eo(rt1)

e
a (ta

1)

e a(t
a 2)

e a(t
a 1)

ea(ta
1)

cv1

av11

av12

cv2

av22

ov21
e3

av21

ov22

eo(rt1)

e
o (rt2)

e
a (ta

1)

e a(t
a 1)

e a(t
a 1)

ea(ta
1)

(3) (4)

Fig. 13   Editing path from UCG in Fig. 12a to UCG in Fig. 12b

cv1

cv3

cv2
e3

e3

cv6

cv5 cv4
e2 e2

e1

cv1 cv2
e3

cv6

cv5 cv4
e3

cv10

cv8 cv9
e2

cv7
e3

e2

e2

cv3

e2

e1

e5

g1 g2

Fig. 14   UCG examples for the structural similarity measure

222	 Requirements Engineering (2020) 25:213–229

1 3

to a leaf node constitutes an UMCS Sequence (denoted as
UMCSS). A preorder traversal of UMCS Tree can obtain all
UMCSS. We have UMCSSi = {UMCSj

1, UMCSjp
2, …, UMC-

Sjp
w

….k}, where |UMCSj
1| ≥ |UMCSjp

2| ≥ … ≥ |UMCSjp
w

….k|. Then
UMCSSi with the largest number of elements is chosen to
measure the inter-structure similarity between two matched
UCG, which is defined as follows. Of course, there may be
more than one like UMCSSi.

Now, an important task is to create the UMCS Tree. The
algorithm of creating UMCS tree is described in Algorithm 1.

Algorithm 1. CreateUMCSTree(UMCSNode t, UCG g1, UCG g2)
Input: UCG g1, g2
Output: UMCS tree t
1. mcsl =getMCSL(t, g1, g2);
2. if(mcsl!=Null) {
3. insertUMCSTree(mcsl, t);
4. for each umcs mcsl do {
5. g1=g1- umcs;
6. g2=g2- umcs;
7. CreateUMCSTree(umcs, g1, g2);
8. }
9. else
10. return t;

UMCS Tree t is initialized as a root node and it is NULL.
The mcsl is used to store UMCSS between g1 and g2 in Step
1. The construction of UMCS tree is a process of repeatedly
obtaining UMCSL and inserting it into UMCS tree from Step
1 to Step 7 until there is not any UMCSL in Step 10. This
process is a recursion. It can be seen from Algorithm 1 that, to
create UMCS tree, we need to achieve UMCSL first and we
propose Algorithm 2 to deal with the issue.

(5)

SimInter(ucg1, ucg2) =
max

(||UMCSS1
||, ||UMCSS2

||,… , ||UMCSSn
||
)

min
(||ucg1|, |ucg2||

)

(6)||UMCSSi
|| =

∑
UMCS∈UMCSSi

|UMCS|

Algorithm 2. Search UMCSL between g1 and g2
Input: UCG g1, g2
Output: UMCSL mcsl
1. mcsl=Null;
2. S=Null;
3. while (nextRE(g1, S, reij)) do {
4. if(IsFeasibleRE(g1, g2, S, reij)) {
5. S=S+ reij;
6. if(size(S)>currentSize){
7. saveCurrentMCS(S);
8. currentSize=size(S);
9. clearMCSL(mcsl);
10. insertMCSL(S, mcsl);
11. }
12. else if ((size(S) = currentSize) and (S not in mcsl)) {
13. appendMCSL(S, mscl);
14. }
15. }
16. else
17. backState(S);
18. }
19. return mcsl;

Algorithm 2 performs a depth-first searching. Here S
is a state space that stores common subgraph between g1
and g2 under construction and is a fragment of UMCS to
be formed. We may have more than one UMCS and so
mcsl is used to store all UMCS. S and mcsl are initialized
as empty (Step 1 and Step 2). Then a relationship edge reij
from g1 is added to S. It is necessary to check if it is pos-
sible to extend the common subgraph represented by an
actual state S by the means of adding the relationship edge
reij to S. If this extension is successful, a new state space S
replaces the old one. If the current partial solution is larger
than the stored solution, it becomes the new stored solu-
tion and is inserted into mcsl (Step 4 to Step 11). saveCur-
rentMCS, clearMCSL and insertMCSL are three functions,
which save UMCS to mcsl, clear mcsl and insert UMCS
to mcsl, respectively. If the size of current partial solution

Table 3   Distribution of
attribute vertices and operation
(parameter) vertices in g1

Number cv1 cv2 cv3 cv4 cv5 cv6

Attribute vertices 4 4 5 6 4 4
Operation vertices 2 2 2 2 2 2
Parameter Vertices 2 3 4 2 4 2

Table 4   Distribution of
attribute vertices and operation
(parameter) vertices in g2

Number cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10

Attribute vertices 4 6 2 4 5 5 6 6 4 5
Operation vertices 2 3 1 2 2 2 3 2 2 3
Parameter Vertices 2 4 2 3 2 2 5 4 3 4

223Requirements Engineering (2020) 25:213–229	

1 3

is equal to the stored solution and the current partial solu-
tion is not contained in mcsl, it is appended to mcsl as
another UMCS (Step 12 to Step 13) and then next UMCS
is continuously searched. backState(S) is used to restore
the previous state of S in Step 17.

It is well known that obtaining MCS between two graphs
is a NP problem, but the actual computation time is still
acceptable in many applications. The reason is based on the
fact that the graphs encountered in practice are usually dif-
ferent from the worst cases existing in general graphs. For
an UCG, the characteristics of nodes and edges can be used
very often to reduce the searching time dramatically [39].
Figure 15 gives the best and worst cases that may occur in
the inter-structure similarity measure.

In a best case, each relationship edge of G1 is perfectly
matched only to the relationship edge of G2, which is
shown in Fig. 15a, and UMCS is easily obtained. A worst
case shown as Fig. 15b is that all relationship edges exist-
ing both in G1 and G2 have the same tags. At this point,
an UCG is evolved into a general digraph and obtaining
UMCS becomes a NP problem. It should be noted that it
is almost impossible that such a worst case could occur.

This is because that UCG is transformed from UCD,
and it is impossible that all relationships of UCD are the
same. Generally, the average number of class vertices of
an UCG is not more than 30 [40]. So, an UCG is not a
large graph and the time complexity of the worst case is
not too bad. The basic idea of obtaining UMCS in this
paper mainly comes from McGregor [36]. The difference
of our approach is that our searching UMCS starts from
edge instead of vertex.

Now, we begin to calculate the inter-structure similarity
between g1 and g2 in Fig. 14 based on the proposed algo-
rithm. We need to create an UMCS tree. An UMCS tree is
initialized as a root node, and it does not contain any vertices
and edges. The specific process is as follows:

(1)	 Obtaining UMCSL1 between g1 and g2

Two UMCS between g1 and g2 can be obtained, which
are shown in Fig. 16 as (a) UMCS1

1 and (b) UMCS2
1 cir-

cled with a dotted rectangle and ellipse, respectively. We
have UMCSL1 = {UMCS1

1, UMCS2
1}. All these elements in

UMCSL1 are inserted into UMCS tree.

cv1

cv3

cv2
ex

ey

cv4

cv5

ew

cv2

ez

cv1
ex

cv3

ey
cv1

cv2

cv4

cv5

em

cv2

em

cv1
em

cv3

em

em

cv3 em

G2G1 G1’ G2’

(a) The best case (b) the worst case

Fig. 15   The inter-structure similarity cases

cv1

cv3

cv2
e3

e3

cv6

cv5 cv4
e2 e2

e1

cv1 cv2
e3

cv6

cv5 cv4
e3

cv10

cv8 cv9
e2

cv7
e3

e2

e2

cv3

e2

e1

e5

cv1

cv3

cv2
e3

e3

cv6

cv5 cv4
e2 e2

e1

cv1 cv2
e3

cv6

cv5 cv4
e3

cv10

cv8 cv9
e2

cv7
e3

e2

e2

cv3

e2

e1

e5

(a) UMCS1
1 (b) UMCS1

2

Fig. 16   UMCSL1

224	 Requirements Engineering (2020) 25:213–229

1 3

(2)	 Searching UMCSL2 between the remainders of g1 and
g2

Then g1—UMCS1
1 and g2—UMCS1

1 as well as g1—
UMCS2

1 and g2—UMCS2
1 are shown in Fig. 17, respectively.

The vertices marked by dotted lines become the part of the
exited UMCS, such as cv1 and cv5 in Fig. 17a. The existence
of a relationship edge depends on two class vertices at each
end. Obviously, there is not a complete relationship edge in
g1—UMCS1

1, but there are still a few relationship edges to be
not matched, which emerge in g2—UMCS1

1 and are shown in
Fig. 17b. So, UMCS between g1—UMCS1

1 and g2—UMCS1
1

does not exist. UMCS between g1—UMCS2
1 and g2—UMCS2

1
can be easily found, it is circled with a dotted rectangle and
denoted as UMCS2

21 in Fig. 18. That is, UMCSL2 = {UMCS2
21}.

Then, the searching process can finally stop because there is
not a relationship edge in the remainders of g1—UMCS2

1—
UMCS2

21. As shown in Fig. 19, the element in UMCSL2 is also
inserted into UMCS tree.

Obviously, two paths exist in the UMCS tree:
UMCSS1 = {MCS1

1} and UMCSS2 = {UMCS2
1, UMCS2

21},
where |UMCSS2| > |UMCSS1|. That is, the inter-structure
similarity between g1 and g2 can be measured by UMCSS2.
We use the formulas (5) and (6) to calculate the inter-structure
similarity as follows.

The corresponding class vertices matching pairs in the
inter-structure similarity are described in Table 5.

Here the same tag emerges in the relationship edges re21
and re31 of g1. So, the matching pair 2 and 3 can be adjusted
from g1.cv2 to g2.cv7 and from g1.cv3 to g2.cv4.

SimInter
(
g1, g2

)
=

|||UMCS
1

2
|+|UMCS

2

21

|||
min

(||g1|, |g2||
) = (3 + 1)∕5 = 0.80

cv6

cv5

e1

cv1

cv3

e3

cv6

cv5 cv4
e3

cv10

cv8 cv9
e2

cv7
e3

e2

e1

e5
cv6

cv5 cv4
e2

e1

cv1 cv2
e3

cv6

cv4

cv10

cv8 cv9
e2

e2

cv3

e2

e1

e5

(a) g1 – UMCS1
1 (b) g2 – UMCS1

1 1– UMCS1
2(c) g (d) g2 – UMCS1

2

Fig. 17   The remainders of g1 and g2

cv6

cv5 cv4
e2

e1
cv1 cv2

e3

cv6

cv4

cv10

cv8 cv9
e2

e2

cv3

e2

e1

e5

Fig. 18   UMCS2
21

Root

UMCS1
1 UMCS1

2

UMCS2
21

Fig. 19   UMCS tree

225Requirements Engineering (2020) 25:213–229	

1 3

4.2.2 � Intra‑structure similarity

Frequently, there are more than one UMCSS that satisfies
the same inter-structure similarity values. For example,
there are umcss1 and umcss2 between ucg1 and ucg2 and the
same values can be obtained by using umcss1 and umcss2
to calculate the inter-structure similarity, shown as Fig. 20,
where |umcss1| = |umcss2|. At this point, choosing which one
of umcss1 or umcss2 as the final answer of the inter-structure
similarity is decided by the intra-structure similarity.

In this paper, we introduce UCG edit distance discussed in
Sect. 4.1.2 to the intra-structure similarity measure. The intra-
structure similarity is based on the inter-structure similarity.
The intra-structure similarity is captured from three aspects:
attribute vertex (edge), operation vertex (edge) and parameter
vertex (edge). To limit the intra-structure similarity value to
[0, 1], the intra-structure similarity is defined as follows.

(7)

SimIntra
�
g1, g

�
1

�
= � ∗

⎛
⎜⎜⎜⎝
1 −

�
x1 + y1

�
∗ IC1

∑
mcsgi∈g1,mcsgj∈g

�
1

∑
AVi∈mcsgi,AVj∈mcsgj

max

���AVi
��, ���AVj

���
�
⎞
⎟⎟⎟⎠

+ � ∗

⎛⎜⎜⎜⎝
1 −

�
x2 + y2

�
∗ IC2

∑
mcsgi∈g1,mcsgj∈g

�
1

∑
OVi∈mcsgi,OVj∈mcsgj

max

���OVi
��, ���OVj

���
�
⎞⎟⎟⎟⎠

+ � ∗

�
1 −

�
x1 + y1

�
∗ IC1∑

mcsgi∈g1,mcsgj∈g
�
1

∑
OVi∈mcsgi,OVj∈mcsgj

∑
PVik∈OVi,PVjw∈OVjmax(�PVik�,�PVjw�)

�

Here, g1 and g1
′ are a matching pair in UMCSSi and

they are from ucg1 and ucg2, respectively. Parameters α,
β and γ are the weighting factor (α + β+γ = 1), identifying
the weight of each part in the intra-structure similarity.
Generally, α is close to β and they are all above γ. They
are determined by the importance of attributes, operations
and parameters contained in a class. The edit cost of all
these operations is set to 1, IC1 = 1, IC2 = 1 and IC3 = 1.
That is, the edit distance is measured only by the times of
the specified edit operation.

In the following, we use the formula 7 to calculate the
intra-structure similarity of UMCSS2 of Fig. 19, we have
the following results.

Here, α, β and γ are set to 0.4, 0.5 and 0.1, respectively.
When the matching pair 2 and 3 is adjusted according
to the above statements, another intra-structure similarity
value can be calculated, and it is 0.7895. Obviously, the
matching pair that is combined with a larger similarity
value 0.8362 is accepted. The final structural similarity
value between g1 and g2 is:

Here, the weighting factor θ is set to be 0.9.

5 � Experiment

In this section, we design an experiment to evaluate our
proposed approach. A prototype system was developed,
which was implemented using Java and run on a com-
puter (CPU I5 2.5G, RAM 8G) using Windows 7. We use
Microsoft SQL Server 2008 to store UML class diagrams
for our experiment. We use the experiment to prove that:

simIntra
(
g1, g2

)
= 0.4 ∗ 0.8065 + 0.5 ∗ 0.8571

+ 0.1 ∗ 0.8500 = 0.8362

Sim
(
g1, g2

)
= 0.90 ∗ 0.8000 + 0.10 ∗ 0.8362 = 0.8036

Table 5   Class vertices matching
pairs in the inter-structure
similarity

Matching pair g1 g2

1 cv1 cv5

2 cv2 cv4

3 cv3 cv7

4 cv4 cv6

5 cv5 cv8

6 cv6 cv10

g1

g2

g1'

g2'

ucg1 ucg2

mcss1

mcss2

Fig. 20   MCSS cases

226	 Requirements Engineering (2020) 25:213–229

1 3

(1)	 our proposed approach is suitable for UML class dia-
grams with various sizes,

(2)	 our proposed approach is not limited by the modeling
field, and

(3)	 our proposed approach is more accurate than other
methods.

5.1 � Experimental Data

The class diagrams used in the experiment are from projects
developed by software companies, which are divided into
two parts: query class diagrams and target class diagrams.
We calculate the structural similarity values between query
class diagrams and target class diagrams. The description
of the class diagrams used in the experiment is shown in
Table 6.

All query class diagrams are from the same domain “Edu-
cation,” and they are classified into two categories based on
the size. The sizes of the query class diagrams existing in the
first category denoted as QC1 vary from 10 to 15, and the size
of each query class diagram in the second category denoted
as QC2 is limited to 20–25. The number of query class dia-
grams in both categories is 5. The target class diagrams are
partitioned from two different perspectives. Viewed from the
modeling field, the target class diagrams are divided into two
categories and the number of the class diagrams is 15 in each
category. In the first category denoted as TFC1, all target
class diagrams are from “Education” and describe the same
or similar projects as query class diagrams. In the second
category denoted as TFC2, the modeling field of target class
diagrams is from “Company,” which is completely different
from the first category but still similar in structure. Viewed
from the size of the target class diagrams, they can be divided
into two categories and the number of class diagrams in each
category is 15. The size of each target class diagram from
the first category denoted as TSC1 is limited to 10–15, and
the sizes of target class diagrams from the second category
denoted as TSC2 vary from 20 to 25.

5.2 � Results analysis

In the experiment, we applied three structure (relationship)
similarity measure methods, which are semantics-based

relationship matching (Semantics for short), model query
language-based pattern matching (Query Language for
short) and our proposed approach (MCSS for short), respec-
tively. The first two methods have been mentioned in [15,
27]. Each query class diagram is matched to all target class
diagrams, and all the structural similarities are calculated
by these three methods. In our proposed MCSS, the weight-
ing factors θ, α, β and γ are set to 0.9, 0.4, 0.5 and 0.1,
respectively. In the semantics-based method, the weights of
relationship type and end class are set to 0.5 and 0.5 when
the relationship is matched.

To assess these three methods, we also invited five experts
who are software engineers with rich experience in software
design. The experts were requested to compare the query
class diagrams and target class diagrams and then answer the
same problem for each comparison between a query class
diagram and a target class diagram: “how structurally simi-
lar are these two class diagrams?”. Each expert provided
a certain value in [0, 1] for a comparison to identify the
structural similarity degree of two compared class diagrams.
Here 0 means that two compared models are completely
different and 1 means the completely identical. Given that
there are two categories of query class diagrams with total
10 query models and 30 target models, each expert made 300
comparisons. Finally, we compared the results obtained by
the three methods with the results given by the experts. To
avoid listing large amounts of data, the similarity values that
a set of query class diagrams are matched to a target class
diagram are averaged.

Table 6   The description of class
diagrams used in the experiment

UCD Modeling field Number Average size Category

Query class diagrams Education 5 12 QC1

Education 5 23 QC2

Target class diagrams 1 Education 15 18 TFC1

Company 15 17 TFC2

2 Education and Company 15 13 TSC1

Education and Company 15 23 TSC2

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Query language Seman�cs MCSS

Fig. 21   Structural similarity between QC1 and TFC1

227Requirements Engineering (2020) 25:213–229	

1 3

For the query class diagrams and the target class diagrams
from the same modeling field, shown in Figs. 21 and 22,
the results obtained by these methods are close, except for
individual values, which is easy to be understood because
query class diagrams and target class diagrams describe the
same or similar projects, the most structural similarity values
are high (≥ 0.5), and only few structural similarity values
are low (≤ 0.3). In particular, it is shown in Fig. 21 that the
structural similarity values are almost same, which can be
explained by the small size of query class diagrams resulting
in no common substructures in addition to maximum com-
mon substructure in the same modeling field.

It is shown in Figs. 23 and 24 that, however, the results
obtained by these three methods have significant differ-
ences for different modeling fields. The results obtained
by the semantics method are significantly smaller than the
results obtained by other two methods. The reason is that
the semantics method considers both relationship type and
end class when a relationship is matched, the low semantic
similarity between two class names from different modeling
domains results in low similarity values and most structural
similarity values obtained by the semantics method are low
(≤ 0.5). Therefore, the semantics method is severely affected
by the modeling field, but the semantics method gives the
almost same results as query language method when query
class diagrams and target class diagrams are from the same
domain, regardless of the size of the class diagram being
matched.

However, the query language method is affected by the
size of the class diagrams being matched. When the size of
the matched class diagrams is small and close, it is shown
in Fig. 25 that the results obtained with query language and
MCSS method almost has the same results. It is shown in
Fig. 26 that, however, the results obtained with these two
methods have significant differences for the matched class
diagrams in large size, and the values obtained with MCSS
are higher than the results obtained with the query language
method in some matching class diagrams pairs. The reason
is that the more common substructures existing between the

0.2000

0.4000

0.6000

0.8000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Query Language Seman�cs MCSS

Fig. 22   Structural similarity between QC2 and TFC1

0.2000

0.4000

0.6000

0.8000

1.0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query language Seman�cs MCSS

Fig. 23   Structural similarity between QC1 and TFC2

0.2000

0.4000

0.6000

0.8000

1.0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query language Seman�cs MCSS

Fig. 24   Structural similarity between QC2 and TFC2

0.2000

0.4000

0.6000

0.8000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Query language MCSS

Fig. 25   Structural similarity between QC1 and TSC1

0.2000

0.4000

0.6000

0.8000

1.0000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query language MCSS

Fig. 26   Structural similarity between QC2 and TSC2

228	 Requirements Engineering (2020) 25:213–229

1 3

matched class diagrams are considered in MCSS, in addi-
tion to the maximum common substructure which is con-
sidered in the query language method. Here the results by
the semantics-based method are not shown and the reason is
that the semantics-based method is affected by the modeling
domain rather than the size of class diagrams.

It is shown from the above experimental results that our
proposed algorithm is applicable for UML class diagrams
with any size and modeling field. As shown in Figs. 27 and
28, no matter which way you look at it, the results obtained
by our proposed MCSS are closer to the results given by
the experts.

6 � Conclusions

In software reuse, the reuse of UML class diagram pro-
duced in design phase becomes a major concern. The exist-
ing works on the reuse of class diagram mainly focus on
its semantic reuse, and its structural reuse is rarely noticed.

This paper proposes reusing class diagrams in another light,
namely, structure. The core of the structural reuse is the
structural similarity measure. In this paper, we propose to
use UML class graph to represent UML class diagram for
the purpose of structural similarity measure. The structure
is considered from two aspects: inter-structure and intra-
structure. An algorithm-based UMCSS is proposed for
the inter-structure similarity, and the UCG edit distance is
proposed and applied to the intra-structure similarity. The
experimental results show that our proposed method is effec-
tive and closer to the results given by experts. Note that here
we do not mean that this can become a paradigm in concep-
tual modeling, which is only a way available for conceptual
modeling.

In our future work, we will investigate several issues.
First, how to improve the efficiency of measuring similarity
is one important concern. In this direction, filtering some
feature values may help us to do less comparison because of
the characteristics of UML class diagram consisting of vari-
ous relationships. Second, trying other methods (e.g., unit

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query language Seman�cs MCSS Experts

Fig. 27   Structural similarity between QC1 and (TFC1 + TFC2)

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Query language Seman�cs MCSS Experts

Fig. 28   Structural similarity between QC2 and (TFC1 + TFC2)

229Requirements Engineering (2020) 25:213–229	

1 3

structural matching) is a problem we will consider. UML
class graph can be split into pieces of unit structures. On
the basis of unit structures, we can obtain the final structural
similarity through merging unit structure similarity. Third,
transforming UML class diagram into other data models
(e.g., XML model) may be a possible way for the structural
similarity measure. Finally, in order to improve the matching
accuracy, we will consider combining the structural similar-
ity and the semantic similarity together for the reuse.

Acknowledgements  This work was supported in part by National
Natural Science Foundation of China (61772269 and 61370075).

References

	 1.	 Krueger CW (1992) Software reuse. ACM Comput Surv
24(2):131–183

	 2.	 Prieto-Diaz R (1993) Status report: software reusability. IEEE
Softw 10(3):61–66

	 3.	 Prieto-Diaz R (1993) Software reuse: issues and experiences. Am
Progr 6(8):10–18

	 4.	 Mili H, Mili F, Mili A (1995) Reusing software: issues and
research directions. IEEE Trans Softw Eng 22(6):528–562

	 5.	 Kim Yongbeom, Stohr Edward A (1998) Software reuse: survey
and research directions. J Manag Inf Syst 14(4):113–147

	 6.	 Medvidovic N et al (2002) Modeling software architectures in
the unified modeling language. ACM Trans Softw Eng Methodol
11(1):2–57

	 7.	 Arango G, Schoen E, Pettengill R (1993) Design as evolution and
reuse. In: Proceedings of the second international workshop on
advances in software reuse, pp 9–18

	 8.	 Ali FM, Du W (2004) Toward reuse of object-oriented software
design models. Inf Softw Technol 46(15):499–517

	 9.	 Adamu A, Zainon WMNW (2016) A review of UML model
retrieval approaches. Indian J Sci Technol 9(46):384–390

	10.	 Object Management Group, Unified Modeling Language: Super-
structure V2.0, 2005

	11.	 Reiss SP (2009) Semantics-based code search. In: Proceedings of
the 31st international conference on software engineering, IEEE
Computer Society, IEEE, 2009, pp 243–253

	12.	 Kim J et al (2010) Towards an intelligent code search engine. In:
Proceedings of the twenty-fourth AAAI conference on artificial
intelligence, pp 1358–1363

	13.	 Alnusair A, Zhao T (2010) Component search and reuse: an ontol-
ogy-based approach. In: Proceedings of 2010 IEEE international
conference on information reuse and integration, pp 258–261

	14.	 McMillan C et al (2012) Exemplar: a source code search engine
for finding highly relevant applications. IEEE Trans Softw Eng
38(5):1069–1087

	15.	 Robles K et al (2012) Towards an ontology-based retrieval of
UML Class Diagrams. Inf Softw Technol 54(1):72–86

	16.	 Salami HO, Ahmed M (2013) Class diagram retrieval using
genetic algorithm. In: Proceedings of 12th international confer-
ence on machine learning and application, vol 2, pp 96–101

	17.	 Al-Khiaty MAR, Ahmed M (2014) Similarity assessment of
UML class diagrams using a greedy algorithm. In: Proceedings
of 2014 international computer science and engineering confer-
ence (ICSEC2014), IEEE, 2014, pp 228–233

	18.	 Al-Khiaty MAR, Ahmed M (2014) Similarity assessment of UML
class diagrams using simulated annealing, In: Proceedings of 2014
5th international conference on software engineering and service
science, IEEE, 2014, pp 19–23

	19.	 Al-Khiaty MAR, Ahmed M (2016) UML class diagrams: similar-
ity aspects and matching. Lect Notes Softw Eng 4(1):41–47

	20.	 Oksana N et al (2015) An approach to compare UML class dia-
grams based on semantical features of their elements. In: Proceed-
ings of the tenth international conference on software engineering
advances, pp 147–153

	21.	 Gomes P et al (2004) Using WordNet for case-based retrieval of
UML models. AI Commun 17(1):13–23

	22.	 Miller G (1998) WordNet: an electronic lexical database. MIT
press, Cambridge

	23.	 Kara S et al (2012) An ontology-based retrieval system using
semantic indexing. Inf Syst 37(4):294–305

	24.	 Cordi V, Lombardi P, Martelli M, Mascardi V (2005) An ontol-
ogy-based similarity between sets of concepts. In: Proceedings of
WOA, pp 6–21

	25.	 Meng L, Huang R, Junzhong G (2013) A review of semantic simi-
larity measures in wordnet. Int J Hybrid Inf Technol 6(1):1–12

	26.	 Lucrédio D, Fortes RPM, Whittle J (2012) MOOGLE: a
metamodel-based model search engine. Softw Syst Model
11(2):183–208

	27.	 Zhang X, Chen H, Zhang T (2012) An UML model query
method based on structure pattern matching. In: Proceedings of
international conference on trustworthy computing and services.
Springer, Berlin, Heidelberg, vol 320, pp 506–513

	28.	 Qiu DH, Li H, Sun JL (2013) Measuring software similarity based
on structure and property of class diagram. In: Proceedings of
2013 sixth international conference on advanced computational
intelligence, IEEE, pp 75–80

	29.	 Salami HO, Ahmed M (2014) Retrieving sequence diagrams using
genetic algorithm. In: Proceedings of 2014 11th international joint
conference on computer science and software engineering, IEEE,
pp 324–330

	30.	 Ahmed M, Salami HO (2015) Behavior-based retrieval of soft-
ware. Afr J Comput ICT 8(1):95–102

	31.	 Routledge N, Bird L, Goodchild A (2002) UML and XML
schema. In: Proceedings of 2002 thirteenth Australasian database
conference DBLP on database technologies, pp 157–166

	32.	 Grose TJ, Doney GC, Brodsky SA (2002) Mastering XMI Java
Programming with XMI, XML and UML, vol 20. Wiley, Hoboken

	33.	 Bondy JA, Murty USR (1976) Graph theory with applications, vol
290. Macmillan, London

	34.	 Bunke Horst (2000) Graph matching: theoretical foundations,
algorithms, and applications. Proc. Vision Interface 2000:82–88

	35.	 Conte D et al (2004) Thirty years of graph matching in pattern
recognition. Int J Pattern Recognit Artif Intell 18(3):265–298

	36.	 Derek G, Gotlieb CC (1970) An efficient algorithm for graph iso-
morphism. J ACM 17(1):51–64

	37.	 McKay BD (1981) Practical graph isomorphism. J Symb Comput
60(1):94–112

	38.	 Gao X et al (2010) A survey of graph edit distance. Pattern Anal
Appl 13(1):113–129

	39.	 Bunke Horst, Shearer Kim (1998) A graph distance metric
based on the maximal common subgraph. Pattern Recognit Lett
19(3–4):255–259

	40.	 Bunke H, Messmer BT (1995) Efficient attributed graph matching
and its application to image analysis. In: Proceedings of interna-
tional conference on image analysis and processing, Springer-
Verlag, vol 974, pp 45–55

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Structural similarity measure between UML class diagrams based on UCG​
	Abstract
	1 Introduction
	2 Related work
	3 Model transformation
	3.1 UML class diagram
	3.2 UML class graph
	3.3 Transformation rules

	4 Structural similarity measure
	4.1 Preliminary knowledge
	4.1.1 UCG maximum common subgraph
	4.1.2 UCG edit distance

	4.2 Similarity measure
	4.2.1 Inter-structure similarity
	4.2.2 Intra-structure similarity

	5 Experiment
	5.1 Experimental Data
	5.2 Results analysis

	6 Conclusions
	Acknowledgements
	References

