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Abstract
Understanding and keeping the customer happy is a central tenet of requirements engineering. Strategies to gather, analyze, 
and negotiate requirements are complemented by efforts to manage customer input after products have been deployed. For 
the latter, support tickets are key in allowing customers to submit their issues, bug reports, and feature requests. If insuffi-
cient attention is given to support issues, however, their escalation to management becomes time-consuming and expensive, 
especially for large organizations managing hundreds of customers and thousands of support tickets. Our work provides a 
step toward simplifying the job of support analysts and managers, particularly in predicting the risk of escalating support 
tickets. In a field study at our large industrial partner, IBM, we used a design science research methodology to characterize 
the support process and data available to IBM analysts in managing escalations. In a design science methodology, we used 
feature engineering to translate our understanding of support analysts’ expert knowledge of their customers into features of a 
support ticket model. We then implemented these features into a machine learning model to predict support ticket escalations. 
We trained and evaluated our machine learning model on over 2.5 million support tickets and 10,000 escalations, obtaining 
a recall of 87.36% and an 88.23% reduction in the workload for support analysts looking to identify support tickets at risk of 
escalation. Further on-site evaluations, through a prototype tool we developed to implement our machine learning techniques 
in practice, showed more efficient weekly support ticket management meetings. Finally, in addition to these research evalu-
ation activities, we compared the performance of our support ticket model with that of a model developed with no feature 
engineering; the support ticket model features outperformed the non-engineered model. The artifacts created in this research 
are designed to serve as a starting place for organizations interested in predicting support ticket escalations, and for future 
researchers to build on to advance research in escalation prediction.

Keywords Customer relationship management · Machine learning · Escalation prediction · Customer support ticket · 
Design science research

1 Introduction

Large software organizations handle many customer support 
issues every day in the form of bug reports, feature requests, 
and general misunderstandings as submitted by customers. 
A significant portion of these issues create new, or relate 
to existing, technical requirements for product developers, 
thus allowing requirements management and release plan-
ning processes to be reactive to customer input.

These support issues are submitted through various chan-
nels such as support forums and product wikis; however, a 
common default for organizations is to offer direct support 
through phone and online systems in which support tickets 
are created and managed by support analysts. The process 
of addressing these support tickets varies across different 
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organizations, but all of them share a common goal: to 
resolve the issue brought forth by the customer and keep 
the customer happy. If a customer is not happy with the sup-
port they are receiving, companies have escalation processes 
whereby customers can state their concern for how their sup-
port ticket is being handled by escalating their problems to 
management’s attention.

While the escalation process is needed to draw attention 
to important and unresolved issues, handling the underlying 
support ticket after an escalation occurs is very expensive 
for organizations [22], amounting to millions of dollars each 
year [37]. Additionally, gathering bottom-up requirements 
from support tickets is an important requirements gathering 
practice for companies looking to address customer feed-
back and suggestions; however, escalations (and the process 
of managing them) take time away from support analysts, 
making the discovery of bottom-up requirements much less 
efficient. When escalations occur, immediate management 
and senior software engineers’ involvement are necessary to 
reduce the business and financial loss to the customer. Fur-
thermore, software defect escalations can—if not handled 
properly—result in a loss of reputation, satisfaction, loyalty, 
and customers [5].

Understanding the customer is a key factor in keeping 
them happy and solving support issues. It is the customer 
who, driven by a perceived ineffective resolution of their 
issue, escalates tickets to management’s attention [6]. A 
support analyst’s job is to assess the risk of support ticket 
escalation given the information present—a largely manual 
process. This information includes the customer, the issue, 
and interrelated factors such as time of year. Keeping track 
of customers and their issues becomes infeasible in large 
organizations who service multiple products across multi-
ple product teams, amounting to large amounts of customer 
data.

Past research proposed machine learning (ML) techniques 
that model industrial data and predict escalations [6, 22, 25, 
37], though none of these efforts attempted to equip ML 
algorithms with the knowledge-gathering techniques that 
support analysts use every day to understand their custom-
ers. The focus had instead been on improving escalation 
prediction (EP) algorithms while utilizing largely all avail-
able support data in the studied organization, without much 
regard to modeling analysts’ understanding of whether cus-
tomers might escalate. Defining which information analysts 
use to identify issues at risk of escalation is the first step 
in feature engineering (FE): a difficult, expensive, domain-
specific task of finding features that correlate with the target 
class [12] (in this case, escalations). In our research, we con-
ducted FE to describe customer escalations, driven by the 
following research question:

 RQ 1. What are the features of a support ticket model to 
best describe a customer escalation?

The “support ticket model” is a set of features engineered 
to capture elements of the support ticket and escalation pro-
cess so that, when data are mapped to those features and 
fed into a ML model, the process of predicting escalations 
is improved (when compared to an approach with no fea-
ture engineering). Since these features leverage the context 
around the analysts’ work, we then explored the use of these 
features within ML models in our efforts to automate some 
parts of the analysts’ EP and management process:

 RQ 2. Can ML techniques that implement such a model 
assist in escalation management?

Finally, acknowledging that FE is a task that requires both 
time to conduct and knowledge of the underlying contextual 
system that is trying to be modeled, we sought to evaluate 
the performance of the ML models leveraging FE efforts 
in our research against ML models that do not harness FE 
efforts.

 RQ 3. Does FE improve ML results over using all avail-
able customer support ticket data?

In answering our research questions, the contributions 
of our work have been iteratively developed and evaluated 
through a design science research methodology [16, 36, 43] 
in collaboration with our industrial partner, IBM. Our first 
main contribution is the support ticket model features—
through FE—that support teams use to assess and manage 
the risk of escalations. This contribution was developed 
through observations of practice and interviews with man-
agement, developers, and support analysts at IBM, as well 
as analysis of the IBM customer support data repository. 
Our second contribution is the investigation of this model 
when used with ML techniques to assist in the escalation 
process. We complemented a statistical validation of our 
techniques with an in-depth study of the use of these tech-
niques in daily management meetings assessing escalations 
at one collaborating product team, IBM Victoria in Canada. 
Finally, we show that FE added value to the ML results by 
implementing a baseline in which no FE was conducted, 
and comparing the performance of the models we developed 
with and without FE.

The work reported here was originally published and pre-
sented at the 25th International Conference on Requirements 
Engineering (RE’17) [28]. The conference paper reported on 
the first two evaluation cycles in our design science meth-
odology. This article revises the RE’17 paper and extends 
it in several ways:
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• We engineered additional features in our support ticket 
model to incorporate feedback from the first two evalu-
ation cycles in our methodology. This required further 
processing of our data and resulted in a more complete 
final set of features in our model.

• We added a third evaluation cycle to our design science 
methodology to validate, through statistical methods, 
the performance of the final model including all fea-
tures developed through this research study. This evalu-
ation cycle also involved switching to a new algorithm, 
XGBoost, to improve the precision of our model results.

• We added a new research question to investigate the gain 
in model performance from of our FE efforts. A fourth 
evaluation cycle in our design science methodology was 
added to develop a baseline model with no FE efforts 
and to compare its performance to that of the models we 
developed through FE.

2  Related work

The development and maintenance of software products are 
highly coupled with many stakeholders, among which the 
customer plays a key role. Software product management 
(SPM) is a large area of research that covers many facets of 
software products. As proposed by van de Weerd et al. [41], 
within SPM is portfolio management, product roadmap-
ping, requirements management, and release planning. Our 
research is concerned with providing support for a product, 
which in the above categories comes out as a consequence of 
release planning and then feeds back into requirements man-
agement through (bottom-up) requirements gathering. How-
ever, the broader category of which this research fits into is 
customer relationship management (CRM), which involves 
integrating artifacts, tools, and workflows to successfully ini-
tiate, maintain, and (if necessary) terminate customer rela-
tionships [34]. Although all of the above categories of SPM 
involve some amount of CRM, CRM is a subset of SPM. 
Examples of CRM practices include customer participation 
requirements gathering sessions, customer feature sugges-
tions through majority voting, customer incident reports, and 
support tickets [18, 27]. Other tactics of involving custom-
ers in the requirements gathering phase such as stakeholder 
crowd sourcing (e.g., Lim et al. [20]) and direct customer 
participation (e.g., Kabbedijk et al. [18]) are CRM processes 
that aim to mitigate the potential cost of changing require-
ments after development has begun.

An outstanding aspect, however, is the effort and cost 
associated with the management of a product’s ongoing sup-
port process: dealing with bugs, defects, and feature requests 
through processes such as product wikis, support chat lines, 
and support tickets. When support tickets are not handled 
in a timely manner or a customer’s business is seriously 

impacted, customers escalate their issues to management 
[37]. Escalation is a process very costly for organizations 
[6, 37] and yet fruitful for research in ML that can parse 
large amounts of support ticket data and suggest escalation 
trends [3, 6].

ML techniques have been proposed in various ways in 
previous research to address EP. Marcu et al. [25] used a 
three-stage correlation and filter process to match new sup-
port issues with existing issues in the system. Their goal 
and contribution were to speed up the triage and resolution 
process through finding similar issues previously resolved. 
Ling et al. [22] and Sheng et al. [37] propose cost-sensitive 
learning as a technique for improved ML results optimized 
for EP. Their research, however, was primarily focused on 
the cost-sensitive learning algorithms and the improvements 
they offered, with no consideration to the individual features 
being fed into the model. Similarly, Bruckhaus et al. [6] 
conducted preliminary work investigating the use of neural 
networks to conduct EP on data from Sun Microsystems. 
Their work does not describe how they selected their final 
features from an initial set of 200.

A similar field to EP is bug prediction, where research 
reports significant efforts in ML techniques for bug predic-
tion. Although similar in prediction efforts, the target out-
comes differ significantly in the two fields of research. EP 
is trying to predict escalations, which are outcomes driven 
mostly by customers, whereas bug prediction is trying to 
predict bugs and faults within software, which are outcomes 
driven mostly by the structure of the software itself. There 
is an argument to be made that perhaps the developers and 
their environment contribute to the bugs and faults intro-
duced into the software, but that is outside the scope of both 
this paper and the related work of bug prediction discussed 
in this section. A notable similarity between EP and bug 
prediction is the categories of artifacts used to perform the 
predictions. Research into bug prediction is mostly split 
between two artifact types: change log analysis approaches 
and single-version analysis approaches [10].

Change log analysis approaches utilize historical data, 
attempting to learn from how data have changed over time. 
The type of data being used includes code repositories to 
analyze code churn [14, 30, 31], and past bug and defect 
reports [1, 15, 19, 30, 32]. Our research also utilizes histori-
cal data, but we neither utilize code repositories nor do we 
utilize bug and defect reports directly. Due to the nature of 
customer support tickets, it is common for a support ticket 
to cause a bug report to be created in response to the cus-
tomer’s issue (if the issue involves a bug with the software); 
however, these are different types of artifacts containing dif-
ferent types of information.

Single-version analysis approaches do not utilize histori-
cal data; rather, they focus on the latest version of artifacts. 
As stated by D’Ambros and Robbes [10], “single-version 
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approaches assume that the current design and behavior of 
the program influences the presence of future defects.” Our 
research also utilizes the most recent version of artifacts to 
build some of the features presented in this paper. Past his-
tory plays a role in whether support tickets will escalate or 
not, and so does the current state of their support ticket.

The end goal of EP through ML is to identify events gen-
erated by customers which might lead to escalations, yet 
none of the previous research attempts to solve the problem 
of EP by understanding how analysts identify escalations. 
Previous research does not focus on the customer through 
data selection or FE aimed at the knowledge that support 
analysts have about their customers. Our work addresses this 
by doing several iterative phases: extensive context-building 
work within a support organization; iterative cycles of FE 
focused on understanding the analysts’ knowledge of the 
customer during the support ticket and escalation manage-
ment process; and finally, real-world deployment of our ML 
techniques that implement this model to gain feedback on 
the support ticket model features.

Finally, to guide and implement the iterative phases of 
research and implementation described above, we employed 
a design science methodology. Inspired by the work of 
Simon [39], March and Smith [24] originally introduce 
design science as attempts to create things that serve human 
purposes. It later became a popular, accepted research 
methodology in information sciences, due to the highly 
cited guidelines developed by Hevner [16]. Design science 
methodology enables the design and validation of solution 
proposals to practical problems, and, as Wieringa puts it in 
the context of software engineering research [42], design 
science research is based on a very close connection between 
artifact design and research. In Hevner et al. [16] guidelines, 

(1) a organization’s business needs drive the development of 
validated artifacts that meet those needs, and (2) the knowl-
edge produced in the development of these artifacts can be 
added to the shared research knowledge base. In our work, 
we grounded our research in the application of FE and ML 
in the context of the escalation problem at IBM, and spe-
cifically the development and evaluation of solutions to this 
problem.

3  Design science research methodology

This research began when IBM approached our research 
team because of our previous empirical work [35, 44] in 
investigating development practice in IBM software teams 
and developing ML solutions to support developer coordina-
tion. A large organization offering a wide range of products 
to many customers worldwide, IBM described their current 
problem as: an increasing number of customer issue escala-
tions resulting in additional costly efforts, as well as dis-
satisfied customers. They sought some automated means to 
enhance their support process through leveraging the data 
available in their large customer support repository.

To investigate this problem and to develop techniques 
to support the analysts’ job in the escalation process, we 
employed a design science methodology [16, 36, 43]. As 
illustrated in Fig. 1, our methodology iteratively developed 
and evaluated techniques to enhance the IBM support pro-
cess from an understanding of the problem domain and close 
interaction with its stakeholders. Below, we describe the 
steps and the process of our design science methodology 
in more detail.

Fig. 1  Design science research methodology
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3.1  Problem characterization

We conducted an ethnographic exploratory study of the 
escalation process and data available to IBM customer sup-
port analysts. We interacted closely with the management 
and support team at the IBM Victoria site, which employs 
about 40 people working on two products called IBM Forms 
and Forms Experience Builder. Several other IBM employ-
ees in senior management, worldwide customer support, and 
Watson Analytics provided us with their input about the sup-
port process. Section 4 details our ethnographic exploratory 
study and the insights about the problem in the IBM’s esca-
lation process as we came to understand it.

3.2  Research artifact development and evaluation 
stages

We iterated through the development and evaluation of two 
artifacts in collaboration with our industrial partner: (1) the 
support ticket model features (RQ1) which represents the 
contextual knowledge held by support analysts about the 
support process, and (2) an EP ML model (RQ2) that rep-
resents the operationalization of the support ticket model 
features into a ML model to predict support ticket escala-
tions. Section 5 outlines the support ticket model features as 
we developed them through the iterative cycles of our design 
science methodology. A first set of model features were 
developed through an ethnographic study at IBM during the 
problem characterization phase, as described in Sect. 6.3. 
This was followed by a few rounds of evaluations of our 
model, by means of developing and testing the performance 
of a ML model that implemented the support ticket model 
features to predict escalations (RQ2).

Evaluation 1 (Sect. 7) involved the creation and statistical 
validation of a ML model that implemented this first set of 
features in our support ticket model, as well as an in-depth 
review of the ML model output with IBM. The creation of 
the ML model involved feeding our support ticket data into 
multiple ML algorithms including CHAID, SVM, logistic 
regression, and random forest. Once the results could be 
analyzed across all of the implementations, the algorithm 
that produced the highest recall was selected. The in-depth 
review of the ML model output (Sect. 7.3) was a 2-h review 
session in which IBM managers, developers, and support 
analysts discussed the output of ten important support ticket 
escalations and compared their experience of the support 
ticket to the output of the model. This evaluation resulted 
in new and modified features into our support ticket model.

Evaluation 2 (Sect. 8) used a web implementation to 
deliver the results of the ML model to IBM to support ana-
lysts and management so they could utilize the results by 
integrating them into their work flow. The tool was deployed 
for 4 weeks and used by support analysts and managers 

addressing support tickets. This evaluation resulted in new 
features into our support ticket model.

Evaluation 3 (Sect. 9) was another round of statistical 
validation, and this time the model included the new fea-
tures developed through Evaluations 1 and 2. This combined 
set of features (deemed the “final features”) was evaluated 
and compared to the first features through confusion matri-
ces. Additionally, a new ML model, XGBoost, was imple-
mented following feedback from our industrial partner, IBM. 
XGBoost produced much more diverse PR space graphs that 
gave us more options in selecting trade-offs in precision and 
recall that random forest did not.

The fourth and last evaluation (Sect. 10) involved feed-
ing the available support ticket data into the ML algorithm 
with as little manipulation as possible to validate that the 
FE efforts conducted were producing higher results than a 
model without any engineered features.

3.3  Escalation prediction research

Finally, to fulfill the rigor cycle in our methodology, we 
reviewed the existing work in CRM and EP through ML 
and reflected on how our research results are transferable to 
other settings.

In the remainder of the paper, we describe in detail the 
support ticket model features as developed incrementally 
and iteratively through the rounds of empirical evaluations. 
Before then, however, we start by describing in Sect. 4 the 
ethnographic exploratory study and its findings as part of 
our problem characterization phase.

4  Problem characterization

To ground the development of the two artifacts in a deeper 
understanding of the problem expressed by IBM, we first 
conducted an ethnographic exploratory study of the IBM 
support ticket process and escalation management practice. 
In this section, we discuss the details of our study and the 
insights we obtained toward a detailed characterization of 
the problem and its context.

4.1  Ethnographic exploratory study and the IBM 
escalation process

To learn about IBM processes, practices, and tools used 
by support analysts to collect and manage customer sup-
port tickets, one of the researchers worked on site at IBM 
Victoria for 2 months. He attended daily support stand-up 
meetings run jointly by development and support manage-
ment and conducted follow-up interviews with manage-
ment, developers, and support analysts. The IBM Victoria 
staff involved in these sessions included the Victoria Site 
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Manager, the Development Manager, the L3 support analyst, 
and two L2 support analysts. Additional information about 
the IBM support ticket process and escalation management 
practice was sought through interviews with four other sen-
ior analysts and managers at IBM support organizations in 
North Carolina and California. Additionally, extensive time 
was spent understanding the data available in the large IBM 
support ticket repository. We obtained customer support data 
consisting of 2.5 million support tickets and 10,000 escala-
tion artifacts from interactions with 127,000 customers in 
152 countries.

IBM has a standard process for recording and managing 
customer support issues across all its products. The support 
process involves multiple levels: L0, ownership verification; 
L1, basic user-error assistance; L2, product usage assistance 
from knowledge experts; and L3, development support of 
bugs and defects.

4.1.1  Support level L0

When a new support issue is filed by a customer, a problem 
management record (PMR) is created by L0 to document 
the lifetime of the issue (for simplicity, we may use the term 
PMR to refer to a support ticket henceforth in the paper). 
The role of L0 is to verify that the customer owns the prod-
uct they are seeking support for. If verified, the customer is 
then directed to L1 support.

4.1.2  Support level L1

L1 support is offered in the user’s native language, by people 
who are qualified to help customers through basic support 
of most products offered by IBM. Due to the broad range 
of products that are supported by L1, they are not experts 
in any one product; therefore, if L1 is unable to solve the 
customer’s problem—or the problem is thought to be with 
the product itself (bug, usability, etc)—the customer is then 
transferred to L2 support.

4.1.3  Support level L2

L2 support is offered by direct employees of the product 
the customer is seeking support on, so the customer is now 
dealing with an expert in the product they are seeking help 
for. Possible directions for L2 support analysts at this stage 
include one-on-one help walking through an issue with the 
customer, communicating with developers to get informa-
tion on how the system should be behaving, and guidance 
from L3 support.

4.1.4  Support level L3

L3 support analysts are regarded as the most knowledgeable 
product experts for the product they support, and it is com-
mon for the L3 role to be filled by developers of the product 
they support, who rotate through the role. These support 
analysts are in charge of the more severe, nuanced, and time-
consuming issues. Although PMRs can technically escalate 
at L1 and above, they normally escalate while being handled 
by L2 or L3 support analysts.

IBM handles escalations through a process, and artifact, 
called a Critical Situation (CritSit) that is used when cus-
tomers are not happy with the progress of their PMR. A 
PMR is said to “Crit” when a CritSit is opened and that PMR 
is attached to the CritSit artifact. CritSits can be opened by 
customers for any reason, although the most likely scenario 
is to speed up the resolution of their PMR for business or 
financial reasons. The process of opening and handling a 
CritSit involves IBM resources in addition to the original 
resources already being used to solve the issue. CritSits are 
perceived as poor management of PMRs, regardless of the 
underlying cause. Avoiding and reducing CritSits are top 
priorities for IBM.

4.2  The problem

Currently, support analysts are tasked with handling PMRs 
by responding to customer emails: answering questions and 
offering advice on how to get passed their issue. Manually 
tracking risk of escalation, however, requires detailed atten-
tion beyond the PMR itself and toward the customer behind 
the PMR. The support analyst can track the business and 
emotional state of the customer and ultimately make judg-
ment calls on whether they think a PMR is likely to escalate. 
This becomes tedious as support analysts manage more and 
more customers, as each customer within this ecosystem 
might be related to multiple products and support teams. 
Dissatisfaction with any of the other products might result in 
escalations by the customer; furthermore, customers inevita-
bly have trends, repeat issues, and long-term historical rela-
tionships that might contribute to escalations. To manage the 
tracking and predictive modeling of all PMRs in the IBM 
ecosystem, an automated solution was required.

5  Support ticket model features (RQ1)

Table 1 outlines the support ticket model features created 
during this research. This table reflects the final set of fea-
tures that was used in the final model, producing the final set 
of results. For each feature, we provide a brief description, 
as well as a marker identifying at which stage of the design 
science methodology each feature was created or improved. 
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Table 1  Support ticket model features with stages of development

Category Feature Description Created or improved during

Problem 
characteri-
zation

Evaluation 1 Evaluation 2

Basic attributes Number of entries Number of events/actions on the 
PMR

✓

Days open Days from open to close (or 
CritSit)

✓

PMR ownership level Level of support (L0–L3) that is 
in charge of the PMR, calcu-
lated per entry

✓

Customer perception of process Number of support people in 
contact with customer

Number of support people the 
customer is communicating 
with

✓

Number of increases in severity Number of times the severity 
increase

✓

Number of decreases in severity Number of times the severity 
decrease

✓

Number of sev4/sev3/sev2 to 
sev1 transitions

Number of changes in severity 
from 4, 3, or 2, straight to 1

✓

Customer perception of time Time until first contact Minutes before the customer 
hears from IBM for the first 
time on this PMR

✓

Current received response time Average number of minutes of 
all the analyst response times 
on this PMR

✓

Difference in current versus his-
torical received response time

(Historical received response 
time) minus (current received 
response time)

✓

Days since last contact Number of days since last con-
tact, calculated per entry

✓

Difference in historical sent 
versus historical received 
response time

(Historical received response 
time) minus (Historical sent 
response time)

✓

Decay of information*
Live indicators†

Customer profile Number of open PMRs*† Number of PMRs owned by 
customer that are open

✓

Number of closed PMRs* Number of PMRs owned by 
customer that are closed

✓ ✓

Number of open CritSits*† Number of CritSits owned by 
customer that are open

✓

Number of closed CritSits * Number of CritSits owned by 
customer that are closed

✓ ✓

Open CritSit-to-PMR ratio† (Number of open CritSits)/
(Number of open PMRs)

✓

Closed CritSit to PMR ratio (Number of closed CritSits)/
(Number of closed PMRs)

✓

Historical received response 
time

Average of all received response 
times on PMRs owned by this 
customer

✓
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The “Created or Improved During” column has three sub-
options: “Problem characterization” features were created 
immediately following the problem characterization phase, 
“Eval 1” features were created or improved following the 
Evaluation 1 phase, and “Eval 2” features were created or 
improved following the Evaluation 2 phase.

5.1  Basic features

The features in this category are characterized by their 
immediate availability in offering value to the support ticket 
model features without any modification from the state in 
which IBM maintains them. When support analysts are 
addressing PMRs, the Number of entries represents how 
many actions or events have occurred on the PMR to date 
(e.g., an email is received, a phone call is recorded, the 
severity increased). Lastly, the number of Days open keeps 
track of days since the PMR was opened. Finally, PMR own-
ership level tracks the different levels of support that a PMR 
can be at, starting from L0 up to L3 (detailed in Sect. 4.1).

5.2  Customer perception of process

The features in this category are characterized by the per-
spective they offer in harnessing the customer’s perception 
of the support process as a separate experience from the way 
in which support analysts perceive the support process. The 
customer’s perspective of process can be engineered using 
data that is visible to them and ignoring data that is not. If a 
customer wants to convey the urgency or importance of their 
issue, the severity field on their PMR is the way to do that; 

customers are in charge of setting the severity of their PMRs. 
Severity is a value from 4 to 1, with 1 being the most severe; 
severity can be changed to any number at any time. Any 
Number of increases in severity is a sign that the customer 
believes their issue is becoming more urgent; conversely, 
any Number of decreases in severity can be interpreted as 
the issue improving. Support analysts watch for increases 
to severity, but the most severe situations are modeled by 
the Number of sev4/sev3/sev2 to sev1 transitions, as this 
represents the customer bringing maximum attention to their 
PMR. Finally, within the support process, there are many 
people involved with solving customer issues, but there are 
only a certain Number of support people in contact with the 
customer.

5.3  Customer perception of time

Similarly, the customer’s perception of time can be engi-
neered using timestamps and ignoring PMR activity that 
is not visible to the them. The first time when customers 
may become uneasy is the Time until first contact with a 
support analyst. At this stage, the customer is helpless to do 
anything except wait, which is a unique time in the support 
process. Once a customer is in contact with support, there 
is an ongoing back-and-forth conversation that takes place 
through emails and phone calls, the timestamps of which are 
used to build the Current received response time. Each cus-
tomer has their own expectation of response time from their 
historical experience with IBM support, which in turn can 
be compared to the current received response time. This Dif-
ference in current versus historical received response time 

*In the last N weeks, where N = ∞ , 12, 24, 36, and 48

Table 1  (continued)

Category Feature Description Created or improved during

Problem 
characteri-
zation

Evaluation 1 Evaluation 2

Support analyst profile Number of open PMRs*† Number of PMRs owned by 
customer that are closed

✓

Number of closed PMRs* Number of PMRs owned by the 
analyst that are closed

✓

Number of open CritSits*† Number of CritSits owned by 
the analyst that are open

✓

Number of closed CritSits* Number of CritSits owned by 
the analyst that are closed

✓

Open CritSit-to-PMR ratio† (Number of open CritSits)/
(Number of open PMRs)

✓

Closed CritSit to PMR ratio (Number of closed CritSits)/
(Number of closed PMRs)

✓

Historical sent response time Average of all sent response 
times on PMRs owned by an 
analyst

✓
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requires that the customer’s historical received response time 
is known, which is explained in the next feature category. 
Days since last contact was introduced as a feature because 
this is one of the most important factors to IBM in maintain-
ing constant communication with their customers. This fea-
ture represents how many days it has been since contact has 
been made between the customer and support. Finally, Dif-
ference in historical sent versus historical received response 
time is a feature that highlights the difference between what 
the customer expects from support given their historical 
experiences of receiving responses from support, against 
what the analyst is likely to send as a response time given 
their historical sent response times.

5.4  Customer profile

The features in this category harness historical information 
about customers as entities within the support organization, 
spanning across all support tickets they have ever opened. 
Tracking customer history allows for insights into customer-
specific behaviors that manifest as trends across their PMRs. 
The customer is the gate keeper of information, the one who 
sets the pace for the issue, and the sole stakeholder who 
has anything to gain from escalating their PMR. As such, it 
seems appropriate to model the customer over the course of 
all their support tickets. Customers within the IBM ecosys-
tem have a Number of closed PMRs and a Number of closed 
CritSits. Combined, these two numbers create a Closed Crit-
Sit to PMR ratio that represents the historical likelihood that 
a customer will Crit their future PMRs. Customers also have 
a Historical received response time from their past experi-
ences with IBM support. This is calculated by averaging 
the “Current received response time” feature over all PMRs 
owned by a customer. Finally, the customer has a Number 
of open PMRs and a Number of open CritSits that together 
reflect the current state of the customers support experience, 
captured in the combined feature Open CritSit-to-PMR ratio. 
As marked in Table 1, the features in this category have 
two subgroups that define them: decay of information and 
live indicators. “Decay of information” features only retain 
information for a set period of time, as reflected in the names 
of the features. An example of this is “Number of closed 
PMRs,” which later becomes five separate features, one of 
which is “Number of closed PMRs in the last 12 weeks.” 
This feature reflects how many PMRs this customer have 
closed in the last 12 weeks, which is different than the other 
four features which all have a different number of weeks. 
“Live indicators” features harness support tickets and escala-
tion artifacts that were open when the target PMR was open. 
For example, “Number of open PMRs” reflects how many 
PMRs (owned by the same customer) were open when the 
target PMR Crit or closed, thereby creating an indicator of 
a live (real-time) part of the data.

5.5  Support analyst profile

Similar to the customer profile category, features in this cat-
egory harness historical information about support analysts 
as entities within the support organization, spanning across 
all support tickets they have handled. During the lifetime of 
a PMR, a number of support analysts may contribute to the 
overall solution delivered to the customer; however, there 
will be one support analyst who contacts the customer more 
than any other support analyst, and they are tagged as the 
lead support analyst for that PMR. Within IBM’s support 
ecosystem, that support analyst has accumulated a Number 
of closed PMRs and a Number of closed CritSits over time. 
At any one time, they also have a Number of open PMRs 
and a Number of open CritSits. Both the open and closed 
states of the support analyst’s experience are summed up in 
the features Closed CritSit to PMR ratio and Open CritSit-
to-PMR ratio. Finally, across all of those PMRs, the His-
torical sent response time of an analyst can be calculated 
by averaging all of their response times to customers across 
all PMRs. Similar to the customer profile category, features 
in the support analyst profile have two subgroups: decay of 
information and live indicators.

6  Engineering the features in the support 
ticket model (RQ2)

Our approach to addressing the manual process of track-
ing PMRs and their escalations began by modeling PMR 
information available to analysts in assessing the possibility 
of a customer escalating their issue, followed by engineer-
ing the support ticket model features (RQ1). To begin the 
FE process, we analyzed data from our on’-site observa-
tions and conducted further interviews aimed specifically 
at understanding how analysts reason through the informa-
tion about their PMRs and customers. We first describe the 
interview questions and data we gathered, followed by our 
data analysis procedure.

6.1  Interviews

We conducted a series of semi-structured interviews with 
support analysts at IBM, five at IBM Victoria and four in 
worldwide customer support organizations, all of whom are 
customer facing in their daily jobs. We sought to identify 
information that is currently available in customer records 
and support tickets, particularly information analysts use to 
assess the risk of support ticket escalations. We asked ques-
tions such as “Why do customers escalate their issues?”, 
“Can you identify certain attributes about the issue, cus-
tomer, or IBM that may trigger customers to escalate their 
issue?”, as well as exploratory questions about support ticket 
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data as we identified in the PMR repository. The full inter-
view script can be found online.1

6.2  Thematic analysis

Thematic analysis [9] was used to analyze the interview tran-
scripts. We labeled the responses with thematic codes that 
represented possible directions for ML features that could 
automate the process of CritSit prediction. From there, we 
grouped the codes into thematic themes, which later became 
the feature categories. The themes and underlying codes are 
listed in Table 2. We validated and refined these themes and 
codes through two focus groups consisting of: the Victoria 
Site Manager, the L3 support analyst, and an L2 support 
analyst.

6.3  A first set of features in the support ticket 
model

To develop the support ticket model features, we mapped 
PMR repository data to the codes from our analysis under 
each of the themes we identified, creating the first 13 support 
ticket model features (see Table 1, marked under “problem 
characterization”). The number of features and the features 
themselves emerged during the thematic analysis of our 
problem characterization stage.

Throughout this process, certain types of PMR data were 
usable as is, without modifying the data in IBM’s dataset 
such as “Number of days open,” and other types of data had 
to be restructured, counted, or averaged. An example of a 
more complicated mapping is the “Number of open PMRs” 
which, conceptually, is a feature that at any time should 
reflect how many PMRs a customer has open. However, to 
actually create this feature for a PMR involves identifying 
the customer and picking a point in time, followed by imple-
menting an algorithm to go through all PMRs to figure out 
which ones are owned by that customer and between the 

open and close dates that match the chosen point in time. 
The “point in time” chosen for PMRs is the moment before 
the CritSit occurs, or the moment before it closes (if the 
PMR does not Crit).

Once a code had data mapped to it, it was considered 
a feature of the model. In developing the model features, 
we sought to abstract as much as possible from the specif-
ics of IBM’s data and processes to increase transferability 
to other organizations. Our approach to achieve transfer-
ability to other organizations was to generalize or remove 
features that were not broad enough to the support process 
in general that other organizations were likely to be able to 
implement them. This approach requires knowledge of sup-
port processes in “other organizations,” of which two of the 
involved researchers had, as well as a small number of the 
interviewed senior managers at IBM who had spent time at 
other organizations.

7  Evaluation 1: In‑depth review 
of the support ticket model with IBM 
analysts

Our first evaluation sought to validate the first set of features 
in our support ticket model with IBM. In order to do that, 
however, the features had to be used in a ML algorithm to 
produce results that could be reviewed (RQ2). We evaluated 
the output of the ML model through statistical validation as 
well as with IBM support analysts at multiple sites.

7.1  Machine learning model

The creation of the ML model was straightforward once 
PMR data had been mapped to the first set of features in the 
support ticket model. We fed the 13 support ticket model 
features into multiple supervised ML algorithms: CHAID 
[26], SVM [33], logistic regression [17], and random forest 
[33]. Although other algorithms produced higher precision, 
we chose random forest because it produced the highest 
recall. High recall was preferred for two reasons: as argued 
by Berry [2] and exemplified in the recent work of Merten 

Table 2  PMR-related 
information from interviews, 
relevant to predicting PMR 
escalations

Themes Codes

Basic features How long has a PMR been open
Customer perception of the PMR process Fluctuations in severity

Support analyst involvement
Customer perception of time with respect to their PMR Initial response wait time

Average response wait time on respective PMRs
Traits of customers How many PMRs they have owned

How many CritSits they have owned
Expectation of response time

1 http://these galgr oup.org/wp-conte nt/uploa ds/2017/02/suppo rt-analy 
st.pdf.

http://thesegalgroup.org/wp-content/uploads/2017/02/support-analyst.pdf
http://thesegalgroup.org/wp-content/uploads/2017/02/support-analyst.pdf
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et al. [27]. Additionally, our industrial partner expressed a 
business goal of identifying problematic PMRs while miss-
ing as few as possible. The input we received from the IBM 
analysts was that they would prefer to give more attention 
to PMRs that have potential to Crit, rather than potentially 
missing CritSits. In other words, they were more comfort-
able with false positives than false negatives.

The random forest model we built has a binary output, as 
the input of our target class is 0 or 1. Random forest outputs 
a confidence in each prediction, which we correlated with 
the PMR’s risk of escalation, or escalation risk (ER). For 
example, if the model outputs a prediction of 1, with con-
fidence 0.88, this PMR’s ER is 88%. Any ER over 50% is 
categorized as a Crit.

The ratio of CritSit to non-CritSit PMRs is extremely 
unbalanced at 1:250; therefore, some kind of balancing 
was required to perform the ML task. The random forest 
classifier we used has the capability to handle imbalanced 
data using oversampling of the minority class [40]. In other 
words, the algorithm re-samples the minority class (CritSit) 
roughly enough times to make the ratio 1:1, which ultimately 
means that each of the minority class items are used 250 
times during the training phase of the model. This method 
allows all of the majority class items to be used in learning 
about the majority class, at the cost of overusing the minor-
ity items during the learning phase.

7.2  Statistical results and validation: first features

All PMRs and CritSits were randomly distributed into ten-
fold, and then, tenfold leave-one-out cross-validation was 
performed on the dataset using the random forest classifier. 
The results of the validation can be seen in the confusion 
matrix in Table 3. A confusion matrix is a useful method 
of analyzing classification results [13] that graphs the true 
positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN). The diagonal cells from top left to bot-
tom right represent correct predictions (TN and TP).

The recall for “CritSit—Yes” is 79.94%, with a precision 
of 1.65%. Recall and precision are calculated as TP

TP+FN
 and 

TP

TP+FP
 , respectively. The recall of 79.94% means that the 

model is retrieving 79.94% of the relevant PMRs (CritSits), 
whereas the precision of 1.65% means that the algorithm is 
retrieving a lot more non-CritSit PMRs than CritSit PMRs, 
so much so that the ratio of CritSit PMRs to all PMRs 
retrieved is 1.65%.

As previously mentioned, our business goal for building 
the predictive model was to maximize the recall. Addition-
ally, Berry et al. [4] argue about tuning models to predict in 
favor of recall when it is generally easier to correct FPs than 
it is to correct TNs. Significant work has been completed 
toward identifying which of the PMRs are CritSits, and this 
work is measured through the metric “summarization,” cal-
culated as TN+FN

TN+FN+TP+FP
 . In short, summarization is the per-

centage of work done by classification algorithms toward 
reducing the size of the original set, given that the new set 
is the sum of FP + TP [2]. Summarization alone, however, 
is not useful, and it must be balanced against recall. 100% 
recall and any summarization value greater than 0% are pro-
gress toward solving identification and classification prob-
lems. Our model has 79.94% recall and 80.77% summariza-
tion. Simply put, if a support analyst wanted to spend time 
identifying potential CritSits from PMRs, our model reduces 
the number of candidate PMRs by 80.77%, with the statisti-
cal guarantee that 79.94% of CritSits remain.

7.3  Model output evaluation

Using our close relationship with IBM Victoria, we then 
conducted an in-depth review of the model output in a 2-h 
meeting with the support analysts and managers, to gain 
deeper insights into the behavior of the model on an indi-
vidual PMR-level basis, to improve the model features.

7.3.1  Evaluation setting

We examined ten major (suggested by IBM) closed Crit-
Sit PMRs from IBM Victoria in our dataset and ran our 
ML model to produce escalation-risk graphs for each of the 
CritSit PMRs. The ten CritSit PMRs chosen by IBM were 
memorable escalations, memorable enough to be discussed 
with clarity. We show six of the ten graphs in Figs. 2, 3 and 
4, and each graph is a single PMR. The graphs plot the ER as 

Table 3  Confusion matrix for CritSit prediction using random forest 
on first features

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,557,730 2,072,496 (TN)
 81.03%

485,234 (FP)
 18.97%

CritSit—Yes 10,199 2046 (FN)
 20.06%

8153 (TP)
 79.94%

Fig. 2  Two PMRs with little-to-no customer profile info built ER over 
time
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produced by our ML model over time, from the first snapshot 
to its last snapshot. By “snapshot,” we are referring to the 
historical entries that exist per PMR. For example, a PMR 
with 16 changes to its data will have 16 snapshots, each con-
secutive snapshot containing the data from the last snapshot 
plus one more change. Our goal was to compare the output 
of our model with what IBM remembered about these ten 
PMRs when they were handled as escalating issues (i.e., at 
the time of each snapshot).

The 2-h in-depth review involved four IBM support repre-
sentatives: the Site Manager, the Development Manager, the 
L3 support analyst, and an L2 support analyst. We printed 
the graphs of these ten CritSit PMRs, discussed them as 
described below, and took notes during the meeting:

(a) Revealing to the members PMR numbers and customer 
names of the PMRs in the analysis, allowing them to look 
up these PMRs in their system and read through them.

(b) Discussed the PMRs in the order the members pre-
ferred.

(c) Displayed the graphs of the escalation risks.
(d) Inquired about how the model performed during each 

PMR in comparison with what they experienced at the 
time.

7.3.2  Evaluation results

Overall, our ML model performed well in predicting the 
ER per PMR, per snapshot. However, the findings of this 
in-depth review of the model are broader and pertain to (a) 
improvements in our model with respect to the customer 
profile information and (b) our increased understanding of 
IBM’s support process. Both findings relate to refinements 
in our model as well as recommendations to other organiza-
tions intending to apply our model to perform EP.

7.3.2.1 Role of historical customer profile information Two 
of the ten PMRs in this evaluation showed a trend of build-
ing ER over time as events occurred, as shown in Fig.  2. 
Manual inspection and discussion with the analysts indicate 
that this behavior was correlated with a lack of customer 
profile information for both PMRs. All customer profile 
features (see Table 1) refer to data that are available when 

the PMR is created and will not change during the lifetime 
of the PMR; therefore, the initial ER is solely due to the 
customer profile features, and the changes in ER during the 
lifetime of the PMR must be due to the other categories.

In contrast, PMRs with too much customer profile infor-
mation were immediately flagged as CritSits. The model had 
learned that excessive customer profile information corre-
lates with high ER. Five of the ten PMRs had this behavior, 
two of which are shown in Fig. 3. Manual inspection of the 
five PMRs revealed a lot of customer profile information for 
each of the five PMRs, i.e., the “Number of closed PMRs” 
field was 200+ for each of the five customers of these PMRs.

These findings show variance in model performance for 
the two extremes of quantity of customer profile information 
in the PMRs we studied. We saw expected behavior for lack 
of customer profile information but unexpected behavior for 
the opposite, PMRs with extensive customer profile informa-
tion. These variances point to the role of the customer profile 
category in capturing aspects of the customer beyond the cur-
rent PMR, allowing traits of the customer to be considered 
during the prediction of escalation risk. To properly capture 
the features of the customer profile category, we made refine-
ments to our model by adding new features that add decay of 
customer information over time, such that the history does 
not exist forever. These features are discussed in Sect. 7.3.3.

7.3.2.2 Recording true reason for  CritSit PMRs is  impor-
tant The second insight from this study was about IBM’s 
support process and feedback into revised features in our 
model. We ran into a situation where on some of the PMRs 
our model showed low ERs, although they appeared offi-
cially as CritSits in the IBM system. Through manual 
inspection of PMR historical information, our study partici-
pants identified that these PMRs were not the cause of the 
CritSit, and in fact there were other PMRs with the same 
CritSit ID that were responsible for them being recorded as 
CritSits in the IBM system. We discovered that it is com-
mon practice to Crit every PMR owned by a customer 
when any one of their PMRs Crit. Therefore, there was a 
distinction between the “cause” CritSit—the CritSit PMR 
that caused the Crit to happen, and “cascade” CritSits—the 
CritSit PMR(s) that subsequently Crit due to the process of 
applying a Crit to every PMR owned by the same Customer 
in response to some “cause” CritSit. Figure 4 shows two of 

Fig. 3  Two PMRs with too much customer profile info defaulted to 
high ER early

Fig. 4  Two “cascade” CritSits showed low ER
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the three PMRs that had this behavior (“cascade” CritSits) 
in which our model behaved correctly.

Evaluation 1 led to the customer profile feature category 
receiving new and modified features. The new features, 
denoted as “decay of information,” forget information over 
time to give current information more influence. The modi-
fied features, listed in Table 1 and marked under the column 
“Eval 1,” are Number of PMRs Closed in the last N weeks 
and Number of CritSits closed in the last N weeks, where 
“N” is infinity, 12, 24, 36, and 48. Prior to this phase of the 
research, they did not have the “in the last N weeks” ending. 
In addition to the above changes, the suggestion to track the 
decay of information leads to the observation that we were 
not tracking “now” in the sense of what else is open, while 
a PMR is active. In other words, if a customer has a PMR 
that escalates into a CritSit, did this customer have other 
open PMRs that may affect their decision to escalate? Did 
they have other open CritSits? These inquires lead to the 
new features Number of PMRs opened in the last N weeks 
and Number of CritSits opened in the last N weeks, which 
incorporates the new feature category “live indicators” as 
well as the previous “decay of information.” This new per-
spective on the archival data provides the ML algorithm with 
the option to utilize smaller and more recent subsets of the 
entire history so that recent events are not overshadowed by 
past events.

7.3.3  Feeding back into the model

Evaluation 1 leads to the creation of new features (and modi-
fying existing features) under the existing feature category, 
customer profile, and two new feature categories, decay of 
information and live indicators.

Decay of information features have a quantier attached 
that dictates how many weeks they retain information: infi-
nite, 12, 24, 36, and 48. These features are marked with a “*” 
in Table 1. The other new feature category created is “live 
indicators,” denoted with a “ † ” in Table 1. These features 
capture the number of PMRs and CritSits that a customer 
had open when dealing with their PMR.

8  Evaluation 2: In situ evaluation 
with support analysts

The second evaluation investigated the assistance provided 
by our model running in real time during the management 
meetings at the Victoria site when analysts together with 
management discussed open PMRs. To do this, we devel-
oped a prototype tool [29] that displays all open PMRs and 
their current predicted ER, as well as the 13 first features—
per PMR—that go into the prediction.

8.1  Our prototype

Our prototype tool displayed all active PMRs at the Victoria 
site with two main displays: the overview and the in-depth 
view. The overview displays all open PMRs in a summarized 
fashion for quick review (Fig. 5). The in-depth view comes 
up when a PMR is selected and shows the details of the 
PMR (Fig. 6). Included in this view is: the history of email 
correspondence between support and customer, description 
of the issue, and the ML model features that were used to 
produce the ER.

8.2  Evaluation setting

We evaluated the use of our prototype over a period of 
4 weeks during daily stand-up support meetings with man-
agers and support analysts. Prior to this tool, these stand-up 
meetings were managed day to day by an excel sheet stored 
locally on the Site Manager’s computer. The effectiveness 
of the meetings relied on support analysts to bring up and 
discuss PMRs they were working on.

Our prototype was first evaluated in a pilot study, to gain 
feedback on shortfalls and bugs. After the short (1 week) 
pilot, a week was spent improving the tool based on recom-
mendations before the full 4-week deployment. The par-
ticipants of this study were the Victoria Site Manager, the 
Development Manager, the L3 support analyst, and two L2 
support analysts. One of the researchers participated in all 
these meetings, while the tool was in use for the first 2 weeks 
of the study, as well as 2 days near the end of the study.

After the pilot study, two additional features were added 
to the tool: (1) displaying a manual escalation risk (MER), 
a number field from 0 to 100 (to be input by anyone on 
the team) to eliminate the need to remember the analysts’ 
assessments of each PMR during past meetings and (2) dis-
playing a change in escalation risk (CER), a number field 
from − 100 to 100 that represents the change in ER since the 
last update, to eliminate the need for anyone to memorize 
ERs by tracking changes manually. With the MER and CER 
being tracked and displayed, the team could expedite the 
daily PMR review process and focus on PMRs that either 
had a high MER or CER.

8.3  Evaluation findings

The use of our prototype during the PMR management meet-
ings allowed them to focus on the PMRs that had greater 
potential to escalate. In the absence of our tool, the analysts 
would review PMRs brought up by support analysts and dis-
cuss them based on the memory of the participants, often 
relying on management to bring up additional items they had 
forgotten. With our tool, they were able to parse through a 
list of PMRs ranked by ER. The MER capability allowed 
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Fig. 5  Prototype tool overview page

Fig. 6  Prototype tool in-depth page
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them to record their own assessment of the ER and com-
pare it with the ER output by our ML model. It allowed for 
subsequent meetings to be quicker because the team could 
see their past evaluations of PMRs and focus on ones they 
had assigned a high MER. The CER field provided a quick 
reference to which PMRs had increased in ER since the last 
update.

During the evaluation period, the team identified that 
there were two important aspects of PMRs that mattered 
to them as well as the customer: PMR ownership level, and 
days since last contact. PMRs are always being directly man-
aged by some level of support, and the difference between 
L2 and L3 support means a lot to IBM as well as the cus-
tomer. L2 is product usage support, where customers are 
generally at fault, and L3 is development-level support, 
where bugs are triaged and the product is at fault. Similarly, 
the number of days since last customer contact was brought 
up as an important factor for deciding when a customer may 
Crit. As a result of these discussions, two new features were 
added to our final set of model features in Table 1: PMR 
ownership level and Days since last contact.

Another finding that arose during this evaluation was that 
our model had no information regarding support analysts. A 
PMR largely involves two stakeholders: the customer and the 
support analyst. Therefore, capturing some archived charac-
teristics of the support analyst working on the PMR became 
a new category of features called “support analyst profile” 
as shown in Table 1. The features in this category closely 
mirror those of the customer profile category, except from 
the perspective of a particular support analyst, instead of a 
particular customer.

8.3.1  Feeding back into the model

This evaluation cycle produced new features in our sup-
port ticket model under the existing feature categories basic 
attributes and customer perception of time, as well as under 
new feature category “support analyst profile.”

The basic attributes feature category received the new 
feature “PMR Ownership Level” which reflects which level 
of support is currently handling the PMR (L0, L1, L2, or 
L3). Customer perception of time received “Days since last 
contact,” which reflects how long it has been since support 
contacted the customer, and “Difference in historical sent 
versus historical received response time,” which reflects 
the difference between what the customer has historically 
received as a response time and what the analyst has histori-
cally sent as a response time. The new feature category sup-
port analyst profile was created to mimic the features under 
the customer profile category, except from the perspective 
of the support analyst. The support analyst profile has four 
features that incorporate decay of information qualifiers, and 
three features that fall under live indicators.

9  Evaluation 3: Additional feature 
engineering and statistical validation 
of final Model

For this evaluation, changes were made to algorithms being 
used, additional FE was conducted, and all model features, 
including those developed through the two rounds of evalu-
ations, were validated using statistical methods.

9.1  Switching from random forest to XGBoost

Based on a suggestion during the previous evaluation cycles, 
XGBoost was tried in place of random forest as the ML 
algorithm for this research. The results for each algorithm 
are comparable at the previously mentioned confidence 
threshold of 50%; however, further investigation showed 
promising evidence toward switching to XGBoost.

XGBoost is a ML algorithm that, similar to random 
forest, uses tree structures to store the internal state of the 
model [7]. However, XGBoost produced a more diverse 
precision–recall Space (PR space) than random forest. 
The standard way to compare ML implementations is the 
receiver operating characteristic (ROC) graph which plots 
the true-positive rate against the false-positive rate. How-
ever, we found in working closely with IBM that PR space 
graphs were easier to explain and still allowed for decisions 
to be made about the models and their confidence thresholds. 
PR space shows the trade-off in precision and recall that 
happens as confidence thresholds are changed and is noted 
“as an alternative to ROC curves for tasks with a large skew 
in the class distribution” [11].

Figure 7 shows a PR space graph showing the difference 
between random forest and XGBoost in precision and recall 
across all confidence thresholds. The axes are labeled with 
“precision” and “recall,” and the lines are labeled at vari-
ous points with the confidence threshold at that point. To 

Fig. 7  Random forest versus XGBoost in PR space (marked with 
confidence thresholds)
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show how comparable the XGBoost results are to the ran-
dom forest confusion matrix in Table 3, the results of using 
XGBoost with the first features are detailed in Table 4. The 
same first features are being used in both implementations, 
but the number of PMRs is reduced because during the eval-
uation cycles we identified PMRs with an issue that disquali-
fied them from the analysis. The reduced dataset lost less 
than 1% of the original data, and has an imbalance of 1:265.

With random forest, there was little precision to be gained 
by changing the confidence threshold, and the recall had 
a drastic reduction at higher confidences. With XGBoost, 
there was the potential to get near 100% precision if the 
confidence was tuned high enough, but still at the cost of 
a drastic reduction in recall. Although recall is still a high 
priority for this project and so tuning for high precision was 
not the objective, an algorithm that produces similar results 
for recall and also gives the option for much higher precision 
at higher confidences is preferred.

The ratio of CritSit to non-CritSit PMRs is unbalanced 
at 1:265; therefore, some kind of balancing was required to 
perform the ML task. The XGBoost classifier can handle 
imbalanced data through cost-sensitive learning, a technique 
that “assigns the training examples of different classes with 
different weights, where the weights are in proportion to 
their corresponding misclassification costs” [23]. The core 
concept is to mathematically force the model to care about 
CritSits by increasing the loss to the internal cost function if 
it fails to correctly predict them. In other words, false nega-
tives were assigned a high penalty to discourage XGBoost 
from producing them, therefore encouraging more “Crit-
Sit—Yes” predictions which raises the TP rate as well as 
the FP rate. As previously mentioned, FPs were preferred 
over FN by our industry collaborator.

The overall impact to precision and recall is displayed 
in Fig. 7, but to provide comparable results to the random 
forest implementation, Table 4 shows the confusion matrix 
of the results when the confidence threshold is set to 50%.

9.2  Engineering the additional features

This section details the engineering of the new features 
under two conceptual groups, decay of information and live 

indicators, and one new feature category, support analyst 
profile.

9.2.1  Decay of information

One of the findings from Evaluation 1 is that customer pro-
file information plays a strong role in assessing whether or 
not a PMR will Crit and that “PMRs with too much customer 
profile information were immediately flagged as CritSits” 
(Sect. 7.3.2). To address this issue, we integrated variables 
into the model that represented a decay of information over 
time so the ML model could better utilize this new perspec-
tive of the data.

Features such as “Customer number of closed PMRs” 
would accumulate data indefinitely as the FE algorithms 
traversed the data. Incorporating variables that decay over 
time means to delete data as it becomes too far in the past.

Instead of deleting that information completely, however, 
a number of variables are used to keep track of different 
time windows, so that the ML algorithm can decide what 
time window best correlates with the target class. For exam-
ple, the feature “Customer number of closed PMRs” reflects 
all PMRs ever closed by a particular customer, which may 
not be useful in understanding the recent history of the cus-
tomer. To mitigate this ever-increasing history, new features 
including “Number of closed PMRs in the last 12 weeks” 
were created to provide different perspectives into the cus-
tomer’s history. The “in the last 12 weeks” suffix reflects 
that this feature only contains historical information from 
the last 12 weeks. The full list of decayed features includes 
each of the features in Table 1 with a “*,” with 12, 24, 36, 
and 48 weeks each, adding up to a total of 32 new features 
(infinity was already a feature).

9.2.2  Live indicators

Past history plays a role in how customers and support ana-
lysts approach new PMRs and is shown in Sect. 7.3.2 to 
play an important role in predicting CritSits, so the next 
step in engineering features was to leverage the live artifacts 
that exist in IBM’s ecosystem to create a number of live 
indicators.

Two new features were engineered, detailed in Table 1 
marked under column “Eval 1.” These new features are Cus-
tomer number of open PMRs, Customer number of open 
CritSit PMRs, and Open CritSit-to-PMR ratio.

9.2.3  Support analyst profile

The second evaluation phase revealed the underlying impor-
tance of the customer profile features, which lead to the deci-
sion to incorporate another profile-like category: support 
analyst profile. As such, the features in Table 1 marked in 

Table 4  Confusion matrix for CritSit prediction using XGBoost on 
first features, with confidence threshold of 50%

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,532,745 2,164,262 (TN)
 85.45%

368,483 (FP)
 14.55%

CritSit—Yes 9536 1417 (FN)
 14.86%

8119 (TP)
 85.14%
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column “Eval 2” were created to reflect the support analyst 
working on the support ticket. All of the support analyst pro-
file features mimic the features under the customer profile, 
except that they focus on a single support analyst instead of 
a single customer.

9.3  Statistical results and validation: complete 
and final set of features

Having engineered all additional features that we identified 
through the evaluation cycles in our design science meth-
odology, we conducted another statistical validation of the 
performance of our ML model including all these features. 
All PMRs and CritSits were randomly distributed into ten-
fold, and then, tenfold leave-one-out cross-validation was 
performed on the dataset using the XGBoost classifier. The 
results of the validation can be seen in the confusion matrix 
in Table 5. The recall for “CritSit—Yes” is 87.36%, with a 
precision of 2.79 and 88.23% summarization. These results 
are an improvement from the first support ticket model fea-
ture results computed with random forest which had 79.94 
recall, 1.65 precision, and 80.77% summarization. The final 
results were also an improvement over the first support ticket 
model feature results computed with XGBoost which had 

85.14 recall, 2.16 precision, and 85.19% summarization. 
Figure 8 shows PR space comparing the performance of the 
model with the first set versus final set of features using 
XGBoost.

For each of the 57 features used in the XGBoost model, 
a feature importance is reported in Table 6 (“Days since last 
contact” was not engineered, therefore 57 and not 58). An 
interesting observation is that one fifth (11) of the features 
account for four-fifths of the total feature importance to the 
model. These top one fifth of the feature importances, listed 
in bold in Table 6, account for 80.41% of the total feature 
importance. Additionally, there are 19 “0.00”s listed in the 
table (one third of the features), which indicates that the 
model was able to gain no benefit from using those features; 
those features can be removed and the model will produce 
the same results.

Five of the top 11 features are from the new features cre-
ated during the evaluation cycles, pointing to the overall 
benefit gained from continuing to improve the model in 
collaboration with IBM. In particular, “Open CritSit-to-
PMR ratio” is the 3rd most important feature in the model 
at 9.01% importance.

10  Evaluation 4: Comparison 
with predictions without FE (RQ3)

To answer RQ3, which is aimed at verifying enhanced per-
formance through FE, we implemented a baseline approach 
that implements the XGBoost algorithm in a model that uses 
all available customer support ticket data without the use 
of FE, and report on the comparative results to the model 
versions (“first” as well as “final” set of features) in our FE 
approach.

10.1  Baseline implementation

To implement the baseline, we had to feed the model one 
row of data. This was a required design decision with our 
dataset because PMRs are composed of multiple entries per 
PMR (detailed in Sect. 4.1). Therefore, the last entry before 
the PMR CritSit date (for CritSits) or closed date (for non-
CritSits) was chosen as the representative data row for each 
PMR. With this design decision in place, the features of 
the baseline model are no longer the engineered features in 
Table 6, but rather the features from the raw customer sup-
port ticket (PMR) data. There are 95 features available in 
the raw data, but a majority of those features are identifica-
tion features or strings that are not categorical, which means 
they cannot be used in ML algorithms without some form of 
natural language processing. The number of usable features 
is 34, and similar to Sect. 9 not all features were important 
to the model and therefore produced a feature importance 

Fig. 8  First versus final model results in PR space (marked with con-
fidence thresholds)

Table 5  Confusion matrix for CritSit prediction using XGBoost on 
ML model with complete set of features

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,532,745 2,242,064 (TN)
88.52%

290,681 (FP)
 11.48%

CritSit—Yes 9536 1205 (FN)
12.64%

8331 (TP)
 87.36%
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of 0, leaving the final set of features utilized from the raw 
data at 25.

Finally, with the data prepared for ML purposes, it was 
fed through the exact same process of splitting, training, and 
testing as the process applied to the first and final features.

10.2  Baseline results

The results of the validation can be seen in the confusion 
matrix in Table 7. The recall for “CritSit—Yes” is 79.04%, 
with a precision of 1.54%, and 80.86% summarization. 
These results are only slightly lower than the first features, 
but are considerably lower than the results obtained when 
the model included the complete, final set of features. Fur-
thermore, these results are for the chosen threshold of 50% 
confidence, and a more detailed account of the results are 
displayed in Fig. 9 where we show the performance of all 
three implementations (first set, final set, and baseline) of the 
models, graphed in PR space. The baseline implementation 
has the lowest overall performance, followed by that of the 
model implementing the first of features, and outperformed 
by the model implementing the final set of features.

11  Discussion

Prompted by the problem of inefficiency in managing cus-
tomer support ticket escalations at our industrial partner 
IBM, our approach had been to study and model the infor-
mation available to support analysts in assessing whether 
customers would escalate on a particular problem they 
reported, and to investigate ML techniques to apply this 
model to support the escalation management process. We 
employed a design science methodology, and here we dis-
cuss, as outlined by Sedlmair et al. [36], our contributions 
through three main design science aspects: problem charac-
terization and abstraction, validated design, and reflection.

11.1  Problem characterization and abstraction

The investigation of IBM support practices in our ethno-
graphic exploratory study was the first step in our design 
science iterative process, providing a more detailed under-
standing of the support ticket escalation problem at IBM. We 
elaborate here on two lessons learned during the problem 
characterization phase.

The first lesson we learned is about the importance of this 
step and iterating through it in the design study. From our 
initial interviews with the support analysts, we were able 
to draw an understanding of how they work as well as the 
first set of our PMR model features. However, it was only 
after the first evaluation step (the in-depth investigation of 
the ten CritSit PMRs at the Victoria site) that we reflected 
and refined our understanding of the problem context in the 
analysts’ job. We were able to uncover details of the cascad-
ing CritSits process and its effect on how data were being 
presented to the analysts. This turned out to be crucial to 
understanding the PMR life cycle and to refinements in our 
PMR model features.

The second lesson relates to abstracting from the specif-
ics of IBM relative to data that can be modeled for EP in 
other organizations. We learned that some elements of the 
support process may be intentionally hidden from customers 
to simplify the support process for them, but also to protect 
the organization’s information and processes. An example 
of this is the offline conversations that occur between peo-
ple working to solve support tickets: a necessary process of 
information sharing and problem solving, but these conver-
sations are never revealed to customers. Other organizations 
might have similar practices, and being aware of the dis-
tinction between customer facing and hidden information is 
important. We recommend that companies experiment with 
both including and not including information hidden from 
customers in their ML models. Information not known to 
their customers may be introduced noise to their models.Fig. 9  Comparing the performance of the three models using 

XGBoost: baseline, first, and final model features (marked with confi-
dence thresholds)

Table 7  Confusion matrix for CritSit prediction using XGBoost with-
out FE

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,557,730 2,073,953 (TN)
 81.09%

483,777 (FP)
 18.91%

CritSit—Yes 9577 2007 (FN)
 20.96%

7570 (TP)
 79.04%
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11.2  Validated support ticket model features

The two artifacts we iteratively developed in our design sci-
ence methodology are the support ticket model features, and 
their implementation into an EP ML model to assist support 
analysts in managing support ticket escalations. We believe 
that the major, unique contribution of this research is the 
support ticket model features. The features were not only 
derived from an understanding of support analysts at our 
industrial partner, but were iteratively refined through sev-
eral validations of the EP ML techniques that implemented 
these features.

The task of predicting support ticket escalations is fun-
damentally about understanding the customers’ experience 
within the support ticket management process. The features 
we created in our model were designed to represent the 
knowledge that support analysts typically have about their 
customers. Through the process of FE, our work identified 
the subset of features relevant to EP from an understand-
ing of practice around escalation management. Finally, we 
sought to abstract from IBM practice toward a general model 
of the escalation management process and therefore have our 
results be applicable to support teams in other organizations.

Once the support ticket model features had been created, 
they were used in an EP ML model to investigate the benefit 
provided to the support analysts’ job at IBM. Over the course 
of this research, multiple stages of ML models were created 
and tested. Among them, the baseline implementation showed 
the lowest performance results, evident in the PR space graph. 
This was expected as the effort that went into this implementa-
tion was the lowest, with no FE. The model with the first set of 
features, created largely from the observations and interviews 
conducted with IBM, showed improved results over the base-
line. Lastly, the model implementing the final and complete 
set of features produced the best results.

The iterative phases of this research proved important to pro-
ducing the final results which otherwise may have never been 
achieved with other methodologies that do not emphasize the 
feedback cycles present in a design science methodology. The 
results of the final 10-fold cross-validation (shown in Table 5) 
were the highest of the three implementations, with a recall of 
87.36% and summarization of 88.23%. Our collaborating IBM 
support team was very pleased with this result, as an 88.23% 
reduction in the workload to identify high-risk PMRs is a prom-
ising start to addressing the reduction in CritSits.

Finally, a prototype tool was built to integrate the real-
time results of feeding live PMRs data through our model to 
produce escalation risks. Use of our prototype tool granted 
shorter meetings addressing more issues focused on support 
tickets deemed important by IBM and the ML model, while 
still allowing for longer meetings to review more PMRs if 
they needed to. The main benefit was the summarization and 
visualization of the support tickets based on a combination 

of our model output as well as their own assessment through 
the MER field.

11.3  Reflection

Our work adds to the scarce research into automating the 
prediction of support ticket escalations in software organiza-
tions. We reflect below on the relationship between our work 
and these existing techniques and discuss implications for 
practitioners who wish to use this work.

11.3.1  Limitations in comparison with previous research

The work done by both Ling et al. [22] and Sheng et al. [37] 
involved improvements to existing cost-sensitive ML algo-
rithms, with no consideration to the features being fed into 
the model. Our search of the literature makes us classify this 
work as a non-FE approach. The option of using their work 
as a baseline to compare precision and recall required our 
data to be in such a format that it could be run through their 
algorithms. Our data, however, were not fit for classification-
based ML algorithms because it is archival, with multiple 
historical entries per each support ticket. Basic classification 
ML algorithms require there to be one entry per support 
ticket, so any archival data such as ours would have to go 
through a process to convert that data into a summarized 
format. The final summarized data depend on the conversion 
process chosen; therefore, we could not simply convert our 
data and then hope it conformed to the constraints of the pre-
vious studies due to the lack of information regarding their 
data structures. We could have used the one-line approach 
applied to the baseline; however, the data would have been 
severely limited in represented the PMR escalation process 
at IBM. Therefore, comparing with the work of Ling et al. 
[22] and Sheng et al. [37]—as representatives of non-FE 
approaches—was not justified given these characteristics of 
our data. However, in our attempt to compare the perfor-
mance of our feature-engineered models with that of non-
FE approaches, we did implement a baseline that limited 
the PMR data to a one-row representation as described in 
Sect. 10. Analyzing the performance using this representa-
tion and our XGBoost algorithm was more rightly justified 
in light of the PMR escalation process at IBM.

The work done by Bruckhaus et al. [6] has a similar data 
processing issue, except their work involved some FE to 
convert their data into a usable form. They neither describe 
how they conducted their FE nor the final set of engineered 
features; therefore, we could not compare FE results. Fur-
thermore, the details about their neural network approach, 
including the parameters chosen for their proposed algo-
rithm, are not provided, making its replication difficult.

Given the lack of ability to replicate the process and 
results of previous work with our data, we were not able 
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to contrast our work against this related work; instead, our 
research focused on FE and iteratively developing our pre-
dictive model with support analysts through our design sci-
ence methodology.

11.3.2  New directions for further validating the features 
and model

Our work represents a first step toward a model of support 
ticket information through FE relevant to predicting the risk of 
support ticket escalations; however, further validation of our 
features and model is needed. In particular, a full evaluation 
with IBM is needed to address the question of usability and 
effectiveness inside their organization. This technology trans-
fer project is already underway and will seek to answer the 
question of effectiveness inside the organization it was built 
to help. Additionally, once fully deployed, the support ticket 
model features will be further evaluated for both importance 
to the model and importance to IBM in assessing PMRs as 
potential escalations. The research performed will help shape 
the final set of features that are used within IBM as a tool for 
understanding their customers and the escalations that occur.

11.3.3  Implications for practitioners

The model we developed has the potential for deployment 
in other organizations given that they have enough available 
data and the ability to map it to the features provided by our 
model. To implement the ML-based EP model we developed, 
organizations must track and map their data to the support 
ticket model features. If the high recall and summarization 
we obtained at IBM is obtained at other organizations, there 
is potential to reduce their escalation identification workload 
by ∼ 88%, with the potential for ∼ 88% of the escalations to 
remain in the reduced set. If this frees up time for support 
analysts, then they can put additional effort into more impor-
tant aspects of the support process like solving difficult issues 
and identifying bottom-up requirements from support tickets.

Prior to implementing our model, organizations should do 
a cost–benefit analysis to see whether the potential benefits 
are worth the implementation effort. Included in this analysis 
should be the cost of a support ticket—with and without an 
escalation, as well as time required to manually investigate 
tickets, customers, and products for escalation patterns. If 
the overall cost of escalating tickets and the investigative 
efforts to avoid escalations outweigh the overall time spent 
implementing the model described above, then there is a 
strong case for implementation.

12  Threats to validity

The first threat, to external validity [38], is the potential lack 
of generalizability of the results due to our research being 
conducted in close collaboration with only one organiza-
tion. To mitigate this threat, the categories and features 
in our support ticket model were created with an effort 
of abstracting away from any specifics to IBM processes, 
toward data available and customer support processes in 
other organizations.

The second threat, to construct validity [38], applies to the 
mapping of the information and data we collected through 
interviews with support analysts to the thematic themes and 
codes. To mitigate that threat, multiple techniques were used: 
member checking, triangulation, and prolonged contact with 
participants [38]. The design science process of iteratively 
working with industry through design cycles puts a strong 
emphasis on member checking, which Lincoln and Guba [21] 
describe as “the most crucial technique for establishing cred-
ibility” in a study with industry. We described our themes and 
codes to the IBM analysts and managers through focus groups 
and general discussions about our results to validate that our 
data mappings resonated with their practice. Triangulation, 
through contacting multiple IBM support analysts at different 
sites as well as observations of their practice during support 
meetings, was used to search for convergence from different 
sources to further validate the features and mappings created 
[8]. Finally, our contact with IBM during this research lasted 
over a year, facilitating prolonged contact with participants 
which allowed validation of information and results in differ-
ent temporal contexts.

The third threat, to internal validity [38], relates to the 
noise in the data discovered during the iterative cycles of 
our design science methodology. As discussed in Sect. 7.3.2, 
the CritSits in our dataset could be “cause” or “cascade.” 
Due to limitations of our data, we are unable to reliably tell 
the two types of CritSits apart; however, there is a small 
subset of CritSits we know for sure are “cause” CritSits. At 
the cost of discarding many “cause” and uncertain CritSits, 
we removed all “cascade” CritSit PMRs by discarding the 
CritSits that had more than one associated PMR. The newer, 
“real” CritSit PMRs (CritSits with only one PMR attached) 
in our data then totaled ∼ 3500 (35% of our original target 
set). The recall on the new target set was 85.38%, with a 
summarization of 89.36%, meaning that the threat to internal 
validity due to this noise in our data was negligible.
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13  Conclusion

Effectively managing customer relationships through han-
dling support issues in ongoing software projects is key to an 
organization’s success, and one practice that informs activi-
ties of requirements management. Support analysts are a key 
stakeholder in gathering bottom-up requirements, and proper 
management of support ticket escalations can allow them to 
do their job with less attention to escalations.

The data used in this research are confidential and unfor-
tunately cannot be shared with the research community; fur-
thermore, the algorithms used to transform the data into the 
engineered features are also confidential, since knowledge 
of the transformation would give insights into the structure 
of the data, which is also confidential.

The two artifacts we developed in this work, the support 
ticket model features and its implementation in a ML clas-
sifier to predict the risk of support ticket escalation, rep-
resent a first step toward simplifying support analysts’ job 
and helping organizations manage their customer relation-
ships effectively. We hope that this research leads to future 
implementations in additional industry settings, and further 
improvements to EP through ML in future research.
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