
Vol.:(0123456789)1 3

Requirements Engineering (2018) 23:333–355
https://doi.org/10.1007/s00766-018-0292-3

RE 2017

Customer support ticket escalation prediction using feature
engineering

Lloyd Montgomery1 · Daniela Damian1 · Tyson Bulmer1 · Shaikh Quader2

Received: 20 October 2017 / Accepted: 23 March 2018 / Published online: 6 April 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Understanding and keeping the customer happy is a central tenet of requirements engineering. Strategies to gather, analyze,
and negotiate requirements are complemented by efforts to manage customer input after products have been deployed. For
the latter, support tickets are key in allowing customers to submit their issues, bug reports, and feature requests. If insuffi-
cient attention is given to support issues, however, their escalation to management becomes time-consuming and expensive,
especially for large organizations managing hundreds of customers and thousands of support tickets. Our work provides a
step toward simplifying the job of support analysts and managers, particularly in predicting the risk of escalating support
tickets. In a field study at our large industrial partner, IBM, we used a design science research methodology to characterize
the support process and data available to IBM analysts in managing escalations. In a design science methodology, we used
feature engineering to translate our understanding of support analysts’ expert knowledge of their customers into features of a
support ticket model. We then implemented these features into a machine learning model to predict support ticket escalations.
We trained and evaluated our machine learning model on over 2.5 million support tickets and 10,000 escalations, obtaining
a recall of 87.36% and an 88.23% reduction in the workload for support analysts looking to identify support tickets at risk of
escalation. Further on-site evaluations, through a prototype tool we developed to implement our machine learning techniques
in practice, showed more efficient weekly support ticket management meetings. Finally, in addition to these research evalu-
ation activities, we compared the performance of our support ticket model with that of a model developed with no feature
engineering; the support ticket model features outperformed the non-engineered model. The artifacts created in this research
are designed to serve as a starting place for organizations interested in predicting support ticket escalations, and for future
researchers to build on to advance research in escalation prediction.

Keywords Customer relationship management · Machine learning · Escalation prediction · Customer support ticket ·
Design science research

1 Introduction

Large software organizations handle many customer support
issues every day in the form of bug reports, feature requests,
and general misunderstandings as submitted by customers.
A significant portion of these issues create new, or relate
to existing, technical requirements for product developers,
thus allowing requirements management and release plan-
ning processes to be reactive to customer input.

These support issues are submitted through various chan-
nels such as support forums and product wikis; however, a
common default for organizations is to offer direct support
through phone and online systems in which support tickets
are created and managed by support analysts. The process
of addressing these support tickets varies across different

 * Lloyd Montgomery
 lloydrm@uvic.ca

 Daniela Damian
 danielad@uvic.ca

 Tyson Bulmer
 tysonbul@uvic.ca

 Shaikh Quader
 shaikhq@ca.ibm.com

1 University of Victoria, Victoria, Canada
2 Private Cloud Platform Digital Support, IBM, Toronto,

Canada

http://orcid.org/0000-0002-8249-1418
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-018-0292-3&domain=pdf

334 Requirements Engineering (2018) 23:333–355

1 3

organizations, but all of them share a common goal: to
resolve the issue brought forth by the customer and keep
the customer happy. If a customer is not happy with the sup-
port they are receiving, companies have escalation processes
whereby customers can state their concern for how their sup-
port ticket is being handled by escalating their problems to
management’s attention.

While the escalation process is needed to draw attention
to important and unresolved issues, handling the underlying
support ticket after an escalation occurs is very expensive
for organizations [22], amounting to millions of dollars each
year [37]. Additionally, gathering bottom-up requirements
from support tickets is an important requirements gathering
practice for companies looking to address customer feed-
back and suggestions; however, escalations (and the process
of managing them) take time away from support analysts,
making the discovery of bottom-up requirements much less
efficient. When escalations occur, immediate management
and senior software engineers’ involvement are necessary to
reduce the business and financial loss to the customer. Fur-
thermore, software defect escalations can—if not handled
properly—result in a loss of reputation, satisfaction, loyalty,
and customers [5].

Understanding the customer is a key factor in keeping
them happy and solving support issues. It is the customer
who, driven by a perceived ineffective resolution of their
issue, escalates tickets to management’s attention [6]. A
support analyst’s job is to assess the risk of support ticket
escalation given the information present—a largely manual
process. This information includes the customer, the issue,
and interrelated factors such as time of year. Keeping track
of customers and their issues becomes infeasible in large
organizations who service multiple products across multi-
ple product teams, amounting to large amounts of customer
data.

Past research proposed machine learning (ML) techniques
that model industrial data and predict escalations [6, 22, 25,
37], though none of these efforts attempted to equip ML
algorithms with the knowledge-gathering techniques that
support analysts use every day to understand their custom-
ers. The focus had instead been on improving escalation
prediction (EP) algorithms while utilizing largely all avail-
able support data in the studied organization, without much
regard to modeling analysts’ understanding of whether cus-
tomers might escalate. Defining which information analysts
use to identify issues at risk of escalation is the first step
in feature engineering (FE): a difficult, expensive, domain-
specific task of finding features that correlate with the target
class [12] (in this case, escalations). In our research, we con-
ducted FE to describe customer escalations, driven by the
following research question:

 RQ 1. What are the features of a support ticket model to
best describe a customer escalation?

The “support ticket model” is a set of features engineered
to capture elements of the support ticket and escalation pro-
cess so that, when data are mapped to those features and
fed into a ML model, the process of predicting escalations
is improved (when compared to an approach with no fea-
ture engineering). Since these features leverage the context
around the analysts’ work, we then explored the use of these
features within ML models in our efforts to automate some
parts of the analysts’ EP and management process:

 RQ 2. Can ML techniques that implement such a model
assist in escalation management?

Finally, acknowledging that FE is a task that requires both
time to conduct and knowledge of the underlying contextual
system that is trying to be modeled, we sought to evaluate
the performance of the ML models leveraging FE efforts
in our research against ML models that do not harness FE
efforts.

 RQ 3. Does FE improve ML results over using all avail-
able customer support ticket data?

In answering our research questions, the contributions
of our work have been iteratively developed and evaluated
through a design science research methodology [16, 36, 43]
in collaboration with our industrial partner, IBM. Our first
main contribution is the support ticket model features—
through FE—that support teams use to assess and manage
the risk of escalations. This contribution was developed
through observations of practice and interviews with man-
agement, developers, and support analysts at IBM, as well
as analysis of the IBM customer support data repository.
Our second contribution is the investigation of this model
when used with ML techniques to assist in the escalation
process. We complemented a statistical validation of our
techniques with an in-depth study of the use of these tech-
niques in daily management meetings assessing escalations
at one collaborating product team, IBM Victoria in Canada.
Finally, we show that FE added value to the ML results by
implementing a baseline in which no FE was conducted,
and comparing the performance of the models we developed
with and without FE.

The work reported here was originally published and pre-
sented at the 25th International Conference on Requirements
Engineering (RE’17) [28]. The conference paper reported on
the first two evaluation cycles in our design science meth-
odology. This article revises the RE’17 paper and extends
it in several ways:

335Requirements Engineering (2018) 23:333–355

1 3

• We engineered additional features in our support ticket
model to incorporate feedback from the first two evalu-
ation cycles in our methodology. This required further
processing of our data and resulted in a more complete
final set of features in our model.

• We added a third evaluation cycle to our design science
methodology to validate, through statistical methods,
the performance of the final model including all fea-
tures developed through this research study. This evalu-
ation cycle also involved switching to a new algorithm,
XGBoost, to improve the precision of our model results.

• We added a new research question to investigate the gain
in model performance from of our FE efforts. A fourth
evaluation cycle in our design science methodology was
added to develop a baseline model with no FE efforts
and to compare its performance to that of the models we
developed through FE.

2 Related work

The development and maintenance of software products are
highly coupled with many stakeholders, among which the
customer plays a key role. Software product management
(SPM) is a large area of research that covers many facets of
software products. As proposed by van de Weerd et al. [41],
within SPM is portfolio management, product roadmap-
ping, requirements management, and release planning. Our
research is concerned with providing support for a product,
which in the above categories comes out as a consequence of
release planning and then feeds back into requirements man-
agement through (bottom-up) requirements gathering. How-
ever, the broader category of which this research fits into is
customer relationship management (CRM), which involves
integrating artifacts, tools, and workflows to successfully ini-
tiate, maintain, and (if necessary) terminate customer rela-
tionships [34]. Although all of the above categories of SPM
involve some amount of CRM, CRM is a subset of SPM.
Examples of CRM practices include customer participation
requirements gathering sessions, customer feature sugges-
tions through majority voting, customer incident reports, and
support tickets [18, 27]. Other tactics of involving custom-
ers in the requirements gathering phase such as stakeholder
crowd sourcing (e.g., Lim et al. [20]) and direct customer
participation (e.g., Kabbedijk et al. [18]) are CRM processes
that aim to mitigate the potential cost of changing require-
ments after development has begun.

An outstanding aspect, however, is the effort and cost
associated with the management of a product’s ongoing sup-
port process: dealing with bugs, defects, and feature requests
through processes such as product wikis, support chat lines,
and support tickets. When support tickets are not handled
in a timely manner or a customer’s business is seriously

impacted, customers escalate their issues to management
[37]. Escalation is a process very costly for organizations
[6, 37] and yet fruitful for research in ML that can parse
large amounts of support ticket data and suggest escalation
trends [3, 6].

ML techniques have been proposed in various ways in
previous research to address EP. Marcu et al. [25] used a
three-stage correlation and filter process to match new sup-
port issues with existing issues in the system. Their goal
and contribution were to speed up the triage and resolution
process through finding similar issues previously resolved.
Ling et al. [22] and Sheng et al. [37] propose cost-sensitive
learning as a technique for improved ML results optimized
for EP. Their research, however, was primarily focused on
the cost-sensitive learning algorithms and the improvements
they offered, with no consideration to the individual features
being fed into the model. Similarly, Bruckhaus et al. [6]
conducted preliminary work investigating the use of neural
networks to conduct EP on data from Sun Microsystems.
Their work does not describe how they selected their final
features from an initial set of 200.

A similar field to EP is bug prediction, where research
reports significant efforts in ML techniques for bug predic-
tion. Although similar in prediction efforts, the target out-
comes differ significantly in the two fields of research. EP
is trying to predict escalations, which are outcomes driven
mostly by customers, whereas bug prediction is trying to
predict bugs and faults within software, which are outcomes
driven mostly by the structure of the software itself. There
is an argument to be made that perhaps the developers and
their environment contribute to the bugs and faults intro-
duced into the software, but that is outside the scope of both
this paper and the related work of bug prediction discussed
in this section. A notable similarity between EP and bug
prediction is the categories of artifacts used to perform the
predictions. Research into bug prediction is mostly split
between two artifact types: change log analysis approaches
and single-version analysis approaches [10].

Change log analysis approaches utilize historical data,
attempting to learn from how data have changed over time.
The type of data being used includes code repositories to
analyze code churn [14, 30, 31], and past bug and defect
reports [1, 15, 19, 30, 32]. Our research also utilizes histori-
cal data, but we neither utilize code repositories nor do we
utilize bug and defect reports directly. Due to the nature of
customer support tickets, it is common for a support ticket
to cause a bug report to be created in response to the cus-
tomer’s issue (if the issue involves a bug with the software);
however, these are different types of artifacts containing dif-
ferent types of information.

Single-version analysis approaches do not utilize histori-
cal data; rather, they focus on the latest version of artifacts.
As stated by D’Ambros and Robbes [10], “single-version

336 Requirements Engineering (2018) 23:333–355

1 3

approaches assume that the current design and behavior of
the program influences the presence of future defects.” Our
research also utilizes the most recent version of artifacts to
build some of the features presented in this paper. Past his-
tory plays a role in whether support tickets will escalate or
not, and so does the current state of their support ticket.

The end goal of EP through ML is to identify events gen-
erated by customers which might lead to escalations, yet
none of the previous research attempts to solve the problem
of EP by understanding how analysts identify escalations.
Previous research does not focus on the customer through
data selection or FE aimed at the knowledge that support
analysts have about their customers. Our work addresses this
by doing several iterative phases: extensive context-building
work within a support organization; iterative cycles of FE
focused on understanding the analysts’ knowledge of the
customer during the support ticket and escalation manage-
ment process; and finally, real-world deployment of our ML
techniques that implement this model to gain feedback on
the support ticket model features.

Finally, to guide and implement the iterative phases of
research and implementation described above, we employed
a design science methodology. Inspired by the work of
Simon [39], March and Smith [24] originally introduce
design science as attempts to create things that serve human
purposes. It later became a popular, accepted research
methodology in information sciences, due to the highly
cited guidelines developed by Hevner [16]. Design science
methodology enables the design and validation of solution
proposals to practical problems, and, as Wieringa puts it in
the context of software engineering research [42], design
science research is based on a very close connection between
artifact design and research. In Hevner et al. [16] guidelines,

(1) a organization’s business needs drive the development of
validated artifacts that meet those needs, and (2) the knowl-
edge produced in the development of these artifacts can be
added to the shared research knowledge base. In our work,
we grounded our research in the application of FE and ML
in the context of the escalation problem at IBM, and spe-
cifically the development and evaluation of solutions to this
problem.

3 Design science research methodology

This research began when IBM approached our research
team because of our previous empirical work [35, 44] in
investigating development practice in IBM software teams
and developing ML solutions to support developer coordina-
tion. A large organization offering a wide range of products
to many customers worldwide, IBM described their current
problem as: an increasing number of customer issue escala-
tions resulting in additional costly efforts, as well as dis-
satisfied customers. They sought some automated means to
enhance their support process through leveraging the data
available in their large customer support repository.

To investigate this problem and to develop techniques
to support the analysts’ job in the escalation process, we
employed a design science methodology [16, 36, 43]. As
illustrated in Fig. 1, our methodology iteratively developed
and evaluated techniques to enhance the IBM support pro-
cess from an understanding of the problem domain and close
interaction with its stakeholders. Below, we describe the
steps and the process of our design science methodology
in more detail.

Fig. 1 Design science research methodology

337Requirements Engineering (2018) 23:333–355

1 3

3.1 Problem characterization

We conducted an ethnographic exploratory study of the
escalation process and data available to IBM customer sup-
port analysts. We interacted closely with the management
and support team at the IBM Victoria site, which employs
about 40 people working on two products called IBM Forms
and Forms Experience Builder. Several other IBM employ-
ees in senior management, worldwide customer support, and
Watson Analytics provided us with their input about the sup-
port process. Section 4 details our ethnographic exploratory
study and the insights about the problem in the IBM’s esca-
lation process as we came to understand it.

3.2 Research artifact development and evaluation
stages

We iterated through the development and evaluation of two
artifacts in collaboration with our industrial partner: (1) the
support ticket model features (RQ1) which represents the
contextual knowledge held by support analysts about the
support process, and (2) an EP ML model (RQ2) that rep-
resents the operationalization of the support ticket model
features into a ML model to predict support ticket escala-
tions. Section 5 outlines the support ticket model features as
we developed them through the iterative cycles of our design
science methodology. A first set of model features were
developed through an ethnographic study at IBM during the
problem characterization phase, as described in Sect. 6.3.
This was followed by a few rounds of evaluations of our
model, by means of developing and testing the performance
of a ML model that implemented the support ticket model
features to predict escalations (RQ2).

Evaluation 1 (Sect. 7) involved the creation and statistical
validation of a ML model that implemented this first set of
features in our support ticket model, as well as an in-depth
review of the ML model output with IBM. The creation of
the ML model involved feeding our support ticket data into
multiple ML algorithms including CHAID, SVM, logistic
regression, and random forest. Once the results could be
analyzed across all of the implementations, the algorithm
that produced the highest recall was selected. The in-depth
review of the ML model output (Sect. 7.3) was a 2-h review
session in which IBM managers, developers, and support
analysts discussed the output of ten important support ticket
escalations and compared their experience of the support
ticket to the output of the model. This evaluation resulted
in new and modified features into our support ticket model.

Evaluation 2 (Sect. 8) used a web implementation to
deliver the results of the ML model to IBM to support ana-
lysts and management so they could utilize the results by
integrating them into their work flow. The tool was deployed
for 4 weeks and used by support analysts and managers

addressing support tickets. This evaluation resulted in new
features into our support ticket model.

Evaluation 3 (Sect. 9) was another round of statistical
validation, and this time the model included the new fea-
tures developed through Evaluations 1 and 2. This combined
set of features (deemed the “final features”) was evaluated
and compared to the first features through confusion matri-
ces. Additionally, a new ML model, XGBoost, was imple-
mented following feedback from our industrial partner, IBM.
XGBoost produced much more diverse PR space graphs that
gave us more options in selecting trade-offs in precision and
recall that random forest did not.

The fourth and last evaluation (Sect. 10) involved feed-
ing the available support ticket data into the ML algorithm
with as little manipulation as possible to validate that the
FE efforts conducted were producing higher results than a
model without any engineered features.

3.3 Escalation prediction research

Finally, to fulfill the rigor cycle in our methodology, we
reviewed the existing work in CRM and EP through ML
and reflected on how our research results are transferable to
other settings.

In the remainder of the paper, we describe in detail the
support ticket model features as developed incrementally
and iteratively through the rounds of empirical evaluations.
Before then, however, we start by describing in Sect. 4 the
ethnographic exploratory study and its findings as part of
our problem characterization phase.

4 Problem characterization

To ground the development of the two artifacts in a deeper
understanding of the problem expressed by IBM, we first
conducted an ethnographic exploratory study of the IBM
support ticket process and escalation management practice.
In this section, we discuss the details of our study and the
insights we obtained toward a detailed characterization of
the problem and its context.

4.1 Ethnographic exploratory study and the IBM
escalation process

To learn about IBM processes, practices, and tools used
by support analysts to collect and manage customer sup-
port tickets, one of the researchers worked on site at IBM
Victoria for 2 months. He attended daily support stand-up
meetings run jointly by development and support manage-
ment and conducted follow-up interviews with manage-
ment, developers, and support analysts. The IBM Victoria
staff involved in these sessions included the Victoria Site

338 Requirements Engineering (2018) 23:333–355

1 3

Manager, the Development Manager, the L3 support analyst,
and two L2 support analysts. Additional information about
the IBM support ticket process and escalation management
practice was sought through interviews with four other sen-
ior analysts and managers at IBM support organizations in
North Carolina and California. Additionally, extensive time
was spent understanding the data available in the large IBM
support ticket repository. We obtained customer support data
consisting of 2.5 million support tickets and 10,000 escala-
tion artifacts from interactions with 127,000 customers in
152 countries.

IBM has a standard process for recording and managing
customer support issues across all its products. The support
process involves multiple levels: L0, ownership verification;
L1, basic user-error assistance; L2, product usage assistance
from knowledge experts; and L3, development support of
bugs and defects.

4.1.1 Support level L0

When a new support issue is filed by a customer, a problem
management record (PMR) is created by L0 to document
the lifetime of the issue (for simplicity, we may use the term
PMR to refer to a support ticket henceforth in the paper).
The role of L0 is to verify that the customer owns the prod-
uct they are seeking support for. If verified, the customer is
then directed to L1 support.

4.1.2 Support level L1

L1 support is offered in the user’s native language, by people
who are qualified to help customers through basic support
of most products offered by IBM. Due to the broad range
of products that are supported by L1, they are not experts
in any one product; therefore, if L1 is unable to solve the
customer’s problem—or the problem is thought to be with
the product itself (bug, usability, etc)—the customer is then
transferred to L2 support.

4.1.3 Support level L2

L2 support is offered by direct employees of the product
the customer is seeking support on, so the customer is now
dealing with an expert in the product they are seeking help
for. Possible directions for L2 support analysts at this stage
include one-on-one help walking through an issue with the
customer, communicating with developers to get informa-
tion on how the system should be behaving, and guidance
from L3 support.

4.1.4 Support level L3

L3 support analysts are regarded as the most knowledgeable
product experts for the product they support, and it is com-
mon for the L3 role to be filled by developers of the product
they support, who rotate through the role. These support
analysts are in charge of the more severe, nuanced, and time-
consuming issues. Although PMRs can technically escalate
at L1 and above, they normally escalate while being handled
by L2 or L3 support analysts.

IBM handles escalations through a process, and artifact,
called a Critical Situation (CritSit) that is used when cus-
tomers are not happy with the progress of their PMR. A
PMR is said to “Crit” when a CritSit is opened and that PMR
is attached to the CritSit artifact. CritSits can be opened by
customers for any reason, although the most likely scenario
is to speed up the resolution of their PMR for business or
financial reasons. The process of opening and handling a
CritSit involves IBM resources in addition to the original
resources already being used to solve the issue. CritSits are
perceived as poor management of PMRs, regardless of the
underlying cause. Avoiding and reducing CritSits are top
priorities for IBM.

4.2 The problem

Currently, support analysts are tasked with handling PMRs
by responding to customer emails: answering questions and
offering advice on how to get passed their issue. Manually
tracking risk of escalation, however, requires detailed atten-
tion beyond the PMR itself and toward the customer behind
the PMR. The support analyst can track the business and
emotional state of the customer and ultimately make judg-
ment calls on whether they think a PMR is likely to escalate.
This becomes tedious as support analysts manage more and
more customers, as each customer within this ecosystem
might be related to multiple products and support teams.
Dissatisfaction with any of the other products might result in
escalations by the customer; furthermore, customers inevita-
bly have trends, repeat issues, and long-term historical rela-
tionships that might contribute to escalations. To manage the
tracking and predictive modeling of all PMRs in the IBM
ecosystem, an automated solution was required.

5 Support ticket model features (RQ1)

Table 1 outlines the support ticket model features created
during this research. This table reflects the final set of fea-
tures that was used in the final model, producing the final set
of results. For each feature, we provide a brief description,
as well as a marker identifying at which stage of the design
science methodology each feature was created or improved.

339Requirements Engineering (2018) 23:333–355

1 3

Table 1 Support ticket model features with stages of development

Category Feature Description Created or improved during

Problem
characteri-
zation

Evaluation 1 Evaluation 2

Basic attributes Number of entries Number of events/actions on the
PMR

✓

Days open Days from open to close (or
CritSit)

✓

PMR ownership level Level of support (L0–L3) that is
in charge of the PMR, calcu-
lated per entry

✓

Customer perception of process Number of support people in
contact with customer

Number of support people the
customer is communicating
with

✓

Number of increases in severity Number of times the severity
increase

✓

Number of decreases in severity Number of times the severity
decrease

✓

Number of sev4/sev3/sev2 to
sev1 transitions

Number of changes in severity
from 4, 3, or 2, straight to 1

✓

Customer perception of time Time until first contact Minutes before the customer
hears from IBM for the first
time on this PMR

✓

Current received response time Average number of minutes of
all the analyst response times
on this PMR

✓

Difference in current versus his-
torical received response time

(Historical received response
time) minus (current received
response time)

✓

Days since last contact Number of days since last con-
tact, calculated per entry

✓

Difference in historical sent
versus historical received
response time

(Historical received response
time) minus (Historical sent
response time)

✓

Decay of information*
Live indicators†

Customer profile Number of open PMRs*† Number of PMRs owned by
customer that are open

✓

Number of closed PMRs* Number of PMRs owned by
customer that are closed

✓ ✓

Number of open CritSits*† Number of CritSits owned by
customer that are open

✓

Number of closed CritSits * Number of CritSits owned by
customer that are closed

✓ ✓

Open CritSit-to-PMR ratio† (Number of open CritSits)/
(Number of open PMRs)

✓

Closed CritSit to PMR ratio (Number of closed CritSits)/
(Number of closed PMRs)

✓

Historical received response
time

Average of all received response
times on PMRs owned by this
customer

✓

340 Requirements Engineering (2018) 23:333–355

1 3

The “Created or Improved During” column has three sub-
options: “Problem characterization” features were created
immediately following the problem characterization phase,
“Eval 1” features were created or improved following the
Evaluation 1 phase, and “Eval 2” features were created or
improved following the Evaluation 2 phase.

5.1 Basic features

The features in this category are characterized by their
immediate availability in offering value to the support ticket
model features without any modification from the state in
which IBM maintains them. When support analysts are
addressing PMRs, the Number of entries represents how
many actions or events have occurred on the PMR to date
(e.g., an email is received, a phone call is recorded, the
severity increased). Lastly, the number of Days open keeps
track of days since the PMR was opened. Finally, PMR own-
ership level tracks the different levels of support that a PMR
can be at, starting from L0 up to L3 (detailed in Sect. 4.1).

5.2 Customer perception of process

The features in this category are characterized by the per-
spective they offer in harnessing the customer’s perception
of the support process as a separate experience from the way
in which support analysts perceive the support process. The
customer’s perspective of process can be engineered using
data that is visible to them and ignoring data that is not. If a
customer wants to convey the urgency or importance of their
issue, the severity field on their PMR is the way to do that;

customers are in charge of setting the severity of their PMRs.
Severity is a value from 4 to 1, with 1 being the most severe;
severity can be changed to any number at any time. Any
Number of increases in severity is a sign that the customer
believes their issue is becoming more urgent; conversely,
any Number of decreases in severity can be interpreted as
the issue improving. Support analysts watch for increases
to severity, but the most severe situations are modeled by
the Number of sev4/sev3/sev2 to sev1 transitions, as this
represents the customer bringing maximum attention to their
PMR. Finally, within the support process, there are many
people involved with solving customer issues, but there are
only a certain Number of support people in contact with the
customer.

5.3 Customer perception of time

Similarly, the customer’s perception of time can be engi-
neered using timestamps and ignoring PMR activity that
is not visible to the them. The first time when customers
may become uneasy is the Time until first contact with a
support analyst. At this stage, the customer is helpless to do
anything except wait, which is a unique time in the support
process. Once a customer is in contact with support, there
is an ongoing back-and-forth conversation that takes place
through emails and phone calls, the timestamps of which are
used to build the Current received response time. Each cus-
tomer has their own expectation of response time from their
historical experience with IBM support, which in turn can
be compared to the current received response time. This Dif-
ference in current versus historical received response time

*In the last N weeks, where N = ∞ , 12, 24, 36, and 48

Table 1 (continued)

Category Feature Description Created or improved during

Problem
characteri-
zation

Evaluation 1 Evaluation 2

Support analyst profile Number of open PMRs*† Number of PMRs owned by
customer that are closed

✓

Number of closed PMRs* Number of PMRs owned by the
analyst that are closed

✓

Number of open CritSits*† Number of CritSits owned by
the analyst that are open

✓

Number of closed CritSits* Number of CritSits owned by
the analyst that are closed

✓

Open CritSit-to-PMR ratio† (Number of open CritSits)/
(Number of open PMRs)

✓

Closed CritSit to PMR ratio (Number of closed CritSits)/
(Number of closed PMRs)

✓

Historical sent response time Average of all sent response
times on PMRs owned by an
analyst

✓

341Requirements Engineering (2018) 23:333–355

1 3

requires that the customer’s historical received response time
is known, which is explained in the next feature category.
Days since last contact was introduced as a feature because
this is one of the most important factors to IBM in maintain-
ing constant communication with their customers. This fea-
ture represents how many days it has been since contact has
been made between the customer and support. Finally, Dif-
ference in historical sent versus historical received response
time is a feature that highlights the difference between what
the customer expects from support given their historical
experiences of receiving responses from support, against
what the analyst is likely to send as a response time given
their historical sent response times.

5.4 Customer profile

The features in this category harness historical information
about customers as entities within the support organization,
spanning across all support tickets they have ever opened.
Tracking customer history allows for insights into customer-
specific behaviors that manifest as trends across their PMRs.
The customer is the gate keeper of information, the one who
sets the pace for the issue, and the sole stakeholder who
has anything to gain from escalating their PMR. As such, it
seems appropriate to model the customer over the course of
all their support tickets. Customers within the IBM ecosys-
tem have a Number of closed PMRs and a Number of closed
CritSits. Combined, these two numbers create a Closed Crit-
Sit to PMR ratio that represents the historical likelihood that
a customer will Crit their future PMRs. Customers also have
a Historical received response time from their past experi-
ences with IBM support. This is calculated by averaging
the “Current received response time” feature over all PMRs
owned by a customer. Finally, the customer has a Number
of open PMRs and a Number of open CritSits that together
reflect the current state of the customers support experience,
captured in the combined feature Open CritSit-to-PMR ratio.
As marked in Table 1, the features in this category have
two subgroups that define them: decay of information and
live indicators. “Decay of information” features only retain
information for a set period of time, as reflected in the names
of the features. An example of this is “Number of closed
PMRs,” which later becomes five separate features, one of
which is “Number of closed PMRs in the last 12 weeks.”
This feature reflects how many PMRs this customer have
closed in the last 12 weeks, which is different than the other
four features which all have a different number of weeks.
“Live indicators” features harness support tickets and escala-
tion artifacts that were open when the target PMR was open.
For example, “Number of open PMRs” reflects how many
PMRs (owned by the same customer) were open when the
target PMR Crit or closed, thereby creating an indicator of
a live (real-time) part of the data.

5.5 Support analyst profile

Similar to the customer profile category, features in this cat-
egory harness historical information about support analysts
as entities within the support organization, spanning across
all support tickets they have handled. During the lifetime of
a PMR, a number of support analysts may contribute to the
overall solution delivered to the customer; however, there
will be one support analyst who contacts the customer more
than any other support analyst, and they are tagged as the
lead support analyst for that PMR. Within IBM’s support
ecosystem, that support analyst has accumulated a Number
of closed PMRs and a Number of closed CritSits over time.
At any one time, they also have a Number of open PMRs
and a Number of open CritSits. Both the open and closed
states of the support analyst’s experience are summed up in
the features Closed CritSit to PMR ratio and Open CritSit-
to-PMR ratio. Finally, across all of those PMRs, the His-
torical sent response time of an analyst can be calculated
by averaging all of their response times to customers across
all PMRs. Similar to the customer profile category, features
in the support analyst profile have two subgroups: decay of
information and live indicators.

6 Engineering the features in the support
ticket model (RQ2)

Our approach to addressing the manual process of track-
ing PMRs and their escalations began by modeling PMR
information available to analysts in assessing the possibility
of a customer escalating their issue, followed by engineer-
ing the support ticket model features (RQ1). To begin the
FE process, we analyzed data from our on’-site observa-
tions and conducted further interviews aimed specifically
at understanding how analysts reason through the informa-
tion about their PMRs and customers. We first describe the
interview questions and data we gathered, followed by our
data analysis procedure.

6.1 Interviews

We conducted a series of semi-structured interviews with
support analysts at IBM, five at IBM Victoria and four in
worldwide customer support organizations, all of whom are
customer facing in their daily jobs. We sought to identify
information that is currently available in customer records
and support tickets, particularly information analysts use to
assess the risk of support ticket escalations. We asked ques-
tions such as “Why do customers escalate their issues?”,
“Can you identify certain attributes about the issue, cus-
tomer, or IBM that may trigger customers to escalate their
issue?”, as well as exploratory questions about support ticket

342 Requirements Engineering (2018) 23:333–355

1 3

data as we identified in the PMR repository. The full inter-
view script can be found online.1

6.2 Thematic analysis

Thematic analysis [9] was used to analyze the interview tran-
scripts. We labeled the responses with thematic codes that
represented possible directions for ML features that could
automate the process of CritSit prediction. From there, we
grouped the codes into thematic themes, which later became
the feature categories. The themes and underlying codes are
listed in Table 2. We validated and refined these themes and
codes through two focus groups consisting of: the Victoria
Site Manager, the L3 support analyst, and an L2 support
analyst.

6.3 A first set of features in the support ticket
model

To develop the support ticket model features, we mapped
PMR repository data to the codes from our analysis under
each of the themes we identified, creating the first 13 support
ticket model features (see Table 1, marked under “problem
characterization”). The number of features and the features
themselves emerged during the thematic analysis of our
problem characterization stage.

Throughout this process, certain types of PMR data were
usable as is, without modifying the data in IBM’s dataset
such as “Number of days open,” and other types of data had
to be restructured, counted, or averaged. An example of a
more complicated mapping is the “Number of open PMRs”
which, conceptually, is a feature that at any time should
reflect how many PMRs a customer has open. However, to
actually create this feature for a PMR involves identifying
the customer and picking a point in time, followed by imple-
menting an algorithm to go through all PMRs to figure out
which ones are owned by that customer and between the

open and close dates that match the chosen point in time.
The “point in time” chosen for PMRs is the moment before
the CritSit occurs, or the moment before it closes (if the
PMR does not Crit).

Once a code had data mapped to it, it was considered
a feature of the model. In developing the model features,
we sought to abstract as much as possible from the specif-
ics of IBM’s data and processes to increase transferability
to other organizations. Our approach to achieve transfer-
ability to other organizations was to generalize or remove
features that were not broad enough to the support process
in general that other organizations were likely to be able to
implement them. This approach requires knowledge of sup-
port processes in “other organizations,” of which two of the
involved researchers had, as well as a small number of the
interviewed senior managers at IBM who had spent time at
other organizations.

7 Evaluation 1: In‑depth review
of the support ticket model with IBM
analysts

Our first evaluation sought to validate the first set of features
in our support ticket model with IBM. In order to do that,
however, the features had to be used in a ML algorithm to
produce results that could be reviewed (RQ2). We evaluated
the output of the ML model through statistical validation as
well as with IBM support analysts at multiple sites.

7.1 Machine learning model

The creation of the ML model was straightforward once
PMR data had been mapped to the first set of features in the
support ticket model. We fed the 13 support ticket model
features into multiple supervised ML algorithms: CHAID
[26], SVM [33], logistic regression [17], and random forest
[33]. Although other algorithms produced higher precision,
we chose random forest because it produced the highest
recall. High recall was preferred for two reasons: as argued
by Berry [2] and exemplified in the recent work of Merten

Table 2 PMR-related
information from interviews,
relevant to predicting PMR
escalations

Themes Codes

Basic features How long has a PMR been open
Customer perception of the PMR process Fluctuations in severity

Support analyst involvement
Customer perception of time with respect to their PMR Initial response wait time

Average response wait time on respective PMRs
Traits of customers How many PMRs they have owned

How many CritSits they have owned
Expectation of response time

1 http://these galgr oup.org/wp-conte nt/uploa ds/2017/02/suppo rt-analy
st.pdf.

http://thesegalgroup.org/wp-content/uploads/2017/02/support-analyst.pdf
http://thesegalgroup.org/wp-content/uploads/2017/02/support-analyst.pdf

343Requirements Engineering (2018) 23:333–355

1 3

et al. [27]. Additionally, our industrial partner expressed a
business goal of identifying problematic PMRs while miss-
ing as few as possible. The input we received from the IBM
analysts was that they would prefer to give more attention
to PMRs that have potential to Crit, rather than potentially
missing CritSits. In other words, they were more comfort-
able with false positives than false negatives.

The random forest model we built has a binary output, as
the input of our target class is 0 or 1. Random forest outputs
a confidence in each prediction, which we correlated with
the PMR’s risk of escalation, or escalation risk (ER). For
example, if the model outputs a prediction of 1, with con-
fidence 0.88, this PMR’s ER is 88%. Any ER over 50% is
categorized as a Crit.

The ratio of CritSit to non-CritSit PMRs is extremely
unbalanced at 1:250; therefore, some kind of balancing
was required to perform the ML task. The random forest
classifier we used has the capability to handle imbalanced
data using oversampling of the minority class [40]. In other
words, the algorithm re-samples the minority class (CritSit)
roughly enough times to make the ratio 1:1, which ultimately
means that each of the minority class items are used 250
times during the training phase of the model. This method
allows all of the majority class items to be used in learning
about the majority class, at the cost of overusing the minor-
ity items during the learning phase.

7.2 Statistical results and validation: first features

All PMRs and CritSits were randomly distributed into ten-
fold, and then, tenfold leave-one-out cross-validation was
performed on the dataset using the random forest classifier.
The results of the validation can be seen in the confusion
matrix in Table 3. A confusion matrix is a useful method
of analyzing classification results [13] that graphs the true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). The diagonal cells from top left to bot-
tom right represent correct predictions (TN and TP).

The recall for “CritSit—Yes” is 79.94%, with a precision
of 1.65%. Recall and precision are calculated as TP

TP+FN
 and

TP

TP+FP
 , respectively. The recall of 79.94% means that the

model is retrieving 79.94% of the relevant PMRs (CritSits),
whereas the precision of 1.65% means that the algorithm is
retrieving a lot more non-CritSit PMRs than CritSit PMRs,
so much so that the ratio of CritSit PMRs to all PMRs
retrieved is 1.65%.

As previously mentioned, our business goal for building
the predictive model was to maximize the recall. Addition-
ally, Berry et al. [4] argue about tuning models to predict in
favor of recall when it is generally easier to correct FPs than
it is to correct TNs. Significant work has been completed
toward identifying which of the PMRs are CritSits, and this
work is measured through the metric “summarization,” cal-
culated as TN+FN

TN+FN+TP+FP
 . In short, summarization is the per-

centage of work done by classification algorithms toward
reducing the size of the original set, given that the new set
is the sum of FP + TP [2]. Summarization alone, however,
is not useful, and it must be balanced against recall. 100%
recall and any summarization value greater than 0% are pro-
gress toward solving identification and classification prob-
lems. Our model has 79.94% recall and 80.77% summariza-
tion. Simply put, if a support analyst wanted to spend time
identifying potential CritSits from PMRs, our model reduces
the number of candidate PMRs by 80.77%, with the statisti-
cal guarantee that 79.94% of CritSits remain.

7.3 Model output evaluation

Using our close relationship with IBM Victoria, we then
conducted an in-depth review of the model output in a 2-h
meeting with the support analysts and managers, to gain
deeper insights into the behavior of the model on an indi-
vidual PMR-level basis, to improve the model features.

7.3.1 Evaluation setting

We examined ten major (suggested by IBM) closed Crit-
Sit PMRs from IBM Victoria in our dataset and ran our
ML model to produce escalation-risk graphs for each of the
CritSit PMRs. The ten CritSit PMRs chosen by IBM were
memorable escalations, memorable enough to be discussed
with clarity. We show six of the ten graphs in Figs. 2, 3 and
4, and each graph is a single PMR. The graphs plot the ER as

Table 3 Confusion matrix for CritSit prediction using random forest
on first features

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,557,730 2,072,496 (TN)
 81.03%

485,234 (FP)
 18.97%

CritSit—Yes 10,199 2046 (FN)
 20.06%

8153 (TP)
 79.94%

Fig. 2 Two PMRs with little-to-no customer profile info built ER over
time

344 Requirements Engineering (2018) 23:333–355

1 3

produced by our ML model over time, from the first snapshot
to its last snapshot. By “snapshot,” we are referring to the
historical entries that exist per PMR. For example, a PMR
with 16 changes to its data will have 16 snapshots, each con-
secutive snapshot containing the data from the last snapshot
plus one more change. Our goal was to compare the output
of our model with what IBM remembered about these ten
PMRs when they were handled as escalating issues (i.e., at
the time of each snapshot).

The 2-h in-depth review involved four IBM support repre-
sentatives: the Site Manager, the Development Manager, the
L3 support analyst, and an L2 support analyst. We printed
the graphs of these ten CritSit PMRs, discussed them as
described below, and took notes during the meeting:

(a) Revealing to the members PMR numbers and customer
names of the PMRs in the analysis, allowing them to look
up these PMRs in their system and read through them.

(b) Discussed the PMRs in the order the members pre-
ferred.

(c) Displayed the graphs of the escalation risks.
(d) Inquired about how the model performed during each

PMR in comparison with what they experienced at the
time.

7.3.2 Evaluation results

Overall, our ML model performed well in predicting the
ER per PMR, per snapshot. However, the findings of this
in-depth review of the model are broader and pertain to (a)
improvements in our model with respect to the customer
profile information and (b) our increased understanding of
IBM’s support process. Both findings relate to refinements
in our model as well as recommendations to other organiza-
tions intending to apply our model to perform EP.

7.3.2.1 Role of historical customer profile information Two
of the ten PMRs in this evaluation showed a trend of build-
ing ER over time as events occurred, as shown in Fig. 2.
Manual inspection and discussion with the analysts indicate
that this behavior was correlated with a lack of customer
profile information for both PMRs. All customer profile
features (see Table 1) refer to data that are available when

the PMR is created and will not change during the lifetime
of the PMR; therefore, the initial ER is solely due to the
customer profile features, and the changes in ER during the
lifetime of the PMR must be due to the other categories.

In contrast, PMRs with too much customer profile infor-
mation were immediately flagged as CritSits. The model had
learned that excessive customer profile information corre-
lates with high ER. Five of the ten PMRs had this behavior,
two of which are shown in Fig. 3. Manual inspection of the
five PMRs revealed a lot of customer profile information for
each of the five PMRs, i.e., the “Number of closed PMRs”
field was 200+ for each of the five customers of these PMRs.

These findings show variance in model performance for
the two extremes of quantity of customer profile information
in the PMRs we studied. We saw expected behavior for lack
of customer profile information but unexpected behavior for
the opposite, PMRs with extensive customer profile informa-
tion. These variances point to the role of the customer profile
category in capturing aspects of the customer beyond the cur-
rent PMR, allowing traits of the customer to be considered
during the prediction of escalation risk. To properly capture
the features of the customer profile category, we made refine-
ments to our model by adding new features that add decay of
customer information over time, such that the history does
not exist forever. These features are discussed in Sect. 7.3.3.

7.3.2.2 Recording true reason for CritSit PMRs is impor-
tant The second insight from this study was about IBM’s
support process and feedback into revised features in our
model. We ran into a situation where on some of the PMRs
our model showed low ERs, although they appeared offi-
cially as CritSits in the IBM system. Through manual
inspection of PMR historical information, our study partici-
pants identified that these PMRs were not the cause of the
CritSit, and in fact there were other PMRs with the same
CritSit ID that were responsible for them being recorded as
CritSits in the IBM system. We discovered that it is com-
mon practice to Crit every PMR owned by a customer
when any one of their PMRs Crit. Therefore, there was a
distinction between the “cause” CritSit—the CritSit PMR
that caused the Crit to happen, and “cascade” CritSits—the
CritSit PMR(s) that subsequently Crit due to the process of
applying a Crit to every PMR owned by the same Customer
in response to some “cause” CritSit. Figure 4 shows two of

Fig. 3 Two PMRs with too much customer profile info defaulted to
high ER early

Fig. 4 Two “cascade” CritSits showed low ER

345Requirements Engineering (2018) 23:333–355

1 3

the three PMRs that had this behavior (“cascade” CritSits)
in which our model behaved correctly.

Evaluation 1 led to the customer profile feature category
receiving new and modified features. The new features,
denoted as “decay of information,” forget information over
time to give current information more influence. The modi-
fied features, listed in Table 1 and marked under the column
“Eval 1,” are Number of PMRs Closed in the last N weeks
and Number of CritSits closed in the last N weeks, where
“N” is infinity, 12, 24, 36, and 48. Prior to this phase of the
research, they did not have the “in the last N weeks” ending.
In addition to the above changes, the suggestion to track the
decay of information leads to the observation that we were
not tracking “now” in the sense of what else is open, while
a PMR is active. In other words, if a customer has a PMR
that escalates into a CritSit, did this customer have other
open PMRs that may affect their decision to escalate? Did
they have other open CritSits? These inquires lead to the
new features Number of PMRs opened in the last N weeks
and Number of CritSits opened in the last N weeks, which
incorporates the new feature category “live indicators” as
well as the previous “decay of information.” This new per-
spective on the archival data provides the ML algorithm with
the option to utilize smaller and more recent subsets of the
entire history so that recent events are not overshadowed by
past events.

7.3.3 Feeding back into the model

Evaluation 1 leads to the creation of new features (and modi-
fying existing features) under the existing feature category,
customer profile, and two new feature categories, decay of
information and live indicators.

Decay of information features have a quantier attached
that dictates how many weeks they retain information: infi-
nite, 12, 24, 36, and 48. These features are marked with a “*”
in Table 1. The other new feature category created is “live
indicators,” denoted with a “ † ” in Table 1. These features
capture the number of PMRs and CritSits that a customer
had open when dealing with their PMR.

8 Evaluation 2: In situ evaluation
with support analysts

The second evaluation investigated the assistance provided
by our model running in real time during the management
meetings at the Victoria site when analysts together with
management discussed open PMRs. To do this, we devel-
oped a prototype tool [29] that displays all open PMRs and
their current predicted ER, as well as the 13 first features—
per PMR—that go into the prediction.

8.1 Our prototype

Our prototype tool displayed all active PMRs at the Victoria
site with two main displays: the overview and the in-depth
view. The overview displays all open PMRs in a summarized
fashion for quick review (Fig. 5). The in-depth view comes
up when a PMR is selected and shows the details of the
PMR (Fig. 6). Included in this view is: the history of email
correspondence between support and customer, description
of the issue, and the ML model features that were used to
produce the ER.

8.2 Evaluation setting

We evaluated the use of our prototype over a period of
4 weeks during daily stand-up support meetings with man-
agers and support analysts. Prior to this tool, these stand-up
meetings were managed day to day by an excel sheet stored
locally on the Site Manager’s computer. The effectiveness
of the meetings relied on support analysts to bring up and
discuss PMRs they were working on.

Our prototype was first evaluated in a pilot study, to gain
feedback on shortfalls and bugs. After the short (1 week)
pilot, a week was spent improving the tool based on recom-
mendations before the full 4-week deployment. The par-
ticipants of this study were the Victoria Site Manager, the
Development Manager, the L3 support analyst, and two L2
support analysts. One of the researchers participated in all
these meetings, while the tool was in use for the first 2 weeks
of the study, as well as 2 days near the end of the study.

After the pilot study, two additional features were added
to the tool: (1) displaying a manual escalation risk (MER),
a number field from 0 to 100 (to be input by anyone on
the team) to eliminate the need to remember the analysts’
assessments of each PMR during past meetings and (2) dis-
playing a change in escalation risk (CER), a number field
from − 100 to 100 that represents the change in ER since the
last update, to eliminate the need for anyone to memorize
ERs by tracking changes manually. With the MER and CER
being tracked and displayed, the team could expedite the
daily PMR review process and focus on PMRs that either
had a high MER or CER.

8.3 Evaluation findings

The use of our prototype during the PMR management meet-
ings allowed them to focus on the PMRs that had greater
potential to escalate. In the absence of our tool, the analysts
would review PMRs brought up by support analysts and dis-
cuss them based on the memory of the participants, often
relying on management to bring up additional items they had
forgotten. With our tool, they were able to parse through a
list of PMRs ranked by ER. The MER capability allowed

346 Requirements Engineering (2018) 23:333–355

1 3

Fig. 5 Prototype tool overview page

Fig. 6 Prototype tool in-depth page

347Requirements Engineering (2018) 23:333–355

1 3

them to record their own assessment of the ER and com-
pare it with the ER output by our ML model. It allowed for
subsequent meetings to be quicker because the team could
see their past evaluations of PMRs and focus on ones they
had assigned a high MER. The CER field provided a quick
reference to which PMRs had increased in ER since the last
update.

During the evaluation period, the team identified that
there were two important aspects of PMRs that mattered
to them as well as the customer: PMR ownership level, and
days since last contact. PMRs are always being directly man-
aged by some level of support, and the difference between
L2 and L3 support means a lot to IBM as well as the cus-
tomer. L2 is product usage support, where customers are
generally at fault, and L3 is development-level support,
where bugs are triaged and the product is at fault. Similarly,
the number of days since last customer contact was brought
up as an important factor for deciding when a customer may
Crit. As a result of these discussions, two new features were
added to our final set of model features in Table 1: PMR
ownership level and Days since last contact.

Another finding that arose during this evaluation was that
our model had no information regarding support analysts. A
PMR largely involves two stakeholders: the customer and the
support analyst. Therefore, capturing some archived charac-
teristics of the support analyst working on the PMR became
a new category of features called “support analyst profile”
as shown in Table 1. The features in this category closely
mirror those of the customer profile category, except from
the perspective of a particular support analyst, instead of a
particular customer.

8.3.1 Feeding back into the model

This evaluation cycle produced new features in our sup-
port ticket model under the existing feature categories basic
attributes and customer perception of time, as well as under
new feature category “support analyst profile.”

The basic attributes feature category received the new
feature “PMR Ownership Level” which reflects which level
of support is currently handling the PMR (L0, L1, L2, or
L3). Customer perception of time received “Days since last
contact,” which reflects how long it has been since support
contacted the customer, and “Difference in historical sent
versus historical received response time,” which reflects
the difference between what the customer has historically
received as a response time and what the analyst has histori-
cally sent as a response time. The new feature category sup-
port analyst profile was created to mimic the features under
the customer profile category, except from the perspective
of the support analyst. The support analyst profile has four
features that incorporate decay of information qualifiers, and
three features that fall under live indicators.

9 Evaluation 3: Additional feature
engineering and statistical validation
of final Model

For this evaluation, changes were made to algorithms being
used, additional FE was conducted, and all model features,
including those developed through the two rounds of evalu-
ations, were validated using statistical methods.

9.1 Switching from random forest to XGBoost

Based on a suggestion during the previous evaluation cycles,
XGBoost was tried in place of random forest as the ML
algorithm for this research. The results for each algorithm
are comparable at the previously mentioned confidence
threshold of 50%; however, further investigation showed
promising evidence toward switching to XGBoost.

XGBoost is a ML algorithm that, similar to random
forest, uses tree structures to store the internal state of the
model [7]. However, XGBoost produced a more diverse
precision–recall Space (PR space) than random forest.
The standard way to compare ML implementations is the
receiver operating characteristic (ROC) graph which plots
the true-positive rate against the false-positive rate. How-
ever, we found in working closely with IBM that PR space
graphs were easier to explain and still allowed for decisions
to be made about the models and their confidence thresholds.
PR space shows the trade-off in precision and recall that
happens as confidence thresholds are changed and is noted
“as an alternative to ROC curves for tasks with a large skew
in the class distribution” [11].

Figure 7 shows a PR space graph showing the difference
between random forest and XGBoost in precision and recall
across all confidence thresholds. The axes are labeled with
“precision” and “recall,” and the lines are labeled at vari-
ous points with the confidence threshold at that point. To

Fig. 7 Random forest versus XGBoost in PR space (marked with
confidence thresholds)

348 Requirements Engineering (2018) 23:333–355

1 3

show how comparable the XGBoost results are to the ran-
dom forest confusion matrix in Table 3, the results of using
XGBoost with the first features are detailed in Table 4. The
same first features are being used in both implementations,
but the number of PMRs is reduced because during the eval-
uation cycles we identified PMRs with an issue that disquali-
fied them from the analysis. The reduced dataset lost less
than 1% of the original data, and has an imbalance of 1:265.

With random forest, there was little precision to be gained
by changing the confidence threshold, and the recall had
a drastic reduction at higher confidences. With XGBoost,
there was the potential to get near 100% precision if the
confidence was tuned high enough, but still at the cost of
a drastic reduction in recall. Although recall is still a high
priority for this project and so tuning for high precision was
not the objective, an algorithm that produces similar results
for recall and also gives the option for much higher precision
at higher confidences is preferred.

The ratio of CritSit to non-CritSit PMRs is unbalanced
at 1:265; therefore, some kind of balancing was required to
perform the ML task. The XGBoost classifier can handle
imbalanced data through cost-sensitive learning, a technique
that “assigns the training examples of different classes with
different weights, where the weights are in proportion to
their corresponding misclassification costs” [23]. The core
concept is to mathematically force the model to care about
CritSits by increasing the loss to the internal cost function if
it fails to correctly predict them. In other words, false nega-
tives were assigned a high penalty to discourage XGBoost
from producing them, therefore encouraging more “Crit-
Sit—Yes” predictions which raises the TP rate as well as
the FP rate. As previously mentioned, FPs were preferred
over FN by our industry collaborator.

The overall impact to precision and recall is displayed
in Fig. 7, but to provide comparable results to the random
forest implementation, Table 4 shows the confusion matrix
of the results when the confidence threshold is set to 50%.

9.2 Engineering the additional features

This section details the engineering of the new features
under two conceptual groups, decay of information and live

indicators, and one new feature category, support analyst
profile.

9.2.1 Decay of information

One of the findings from Evaluation 1 is that customer pro-
file information plays a strong role in assessing whether or
not a PMR will Crit and that “PMRs with too much customer
profile information were immediately flagged as CritSits”
(Sect. 7.3.2). To address this issue, we integrated variables
into the model that represented a decay of information over
time so the ML model could better utilize this new perspec-
tive of the data.

Features such as “Customer number of closed PMRs”
would accumulate data indefinitely as the FE algorithms
traversed the data. Incorporating variables that decay over
time means to delete data as it becomes too far in the past.

Instead of deleting that information completely, however,
a number of variables are used to keep track of different
time windows, so that the ML algorithm can decide what
time window best correlates with the target class. For exam-
ple, the feature “Customer number of closed PMRs” reflects
all PMRs ever closed by a particular customer, which may
not be useful in understanding the recent history of the cus-
tomer. To mitigate this ever-increasing history, new features
including “Number of closed PMRs in the last 12 weeks”
were created to provide different perspectives into the cus-
tomer’s history. The “in the last 12 weeks” suffix reflects
that this feature only contains historical information from
the last 12 weeks. The full list of decayed features includes
each of the features in Table 1 with a “*,” with 12, 24, 36,
and 48 weeks each, adding up to a total of 32 new features
(infinity was already a feature).

9.2.2 Live indicators

Past history plays a role in how customers and support ana-
lysts approach new PMRs and is shown in Sect. 7.3.2 to
play an important role in predicting CritSits, so the next
step in engineering features was to leverage the live artifacts
that exist in IBM’s ecosystem to create a number of live
indicators.

Two new features were engineered, detailed in Table 1
marked under column “Eval 1.” These new features are Cus-
tomer number of open PMRs, Customer number of open
CritSit PMRs, and Open CritSit-to-PMR ratio.

9.2.3 Support analyst profile

The second evaluation phase revealed the underlying impor-
tance of the customer profile features, which lead to the deci-
sion to incorporate another profile-like category: support
analyst profile. As such, the features in Table 1 marked in

Table 4 Confusion matrix for CritSit prediction using XGBoost on
first features, with confidence threshold of 50%

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,532,745 2,164,262 (TN)
 85.45%

368,483 (FP)
 14.55%

CritSit—Yes 9536 1417 (FN)
 14.86%

8119 (TP)
 85.14%

349Requirements Engineering (2018) 23:333–355

1 3

column “Eval 2” were created to reflect the support analyst
working on the support ticket. All of the support analyst pro-
file features mimic the features under the customer profile,
except that they focus on a single support analyst instead of
a single customer.

9.3 Statistical results and validation: complete
and final set of features

Having engineered all additional features that we identified
through the evaluation cycles in our design science meth-
odology, we conducted another statistical validation of the
performance of our ML model including all these features.
All PMRs and CritSits were randomly distributed into ten-
fold, and then, tenfold leave-one-out cross-validation was
performed on the dataset using the XGBoost classifier. The
results of the validation can be seen in the confusion matrix
in Table 5. The recall for “CritSit—Yes” is 87.36%, with a
precision of 2.79 and 88.23% summarization. These results
are an improvement from the first support ticket model fea-
ture results computed with random forest which had 79.94
recall, 1.65 precision, and 80.77% summarization. The final
results were also an improvement over the first support ticket
model feature results computed with XGBoost which had

85.14 recall, 2.16 precision, and 85.19% summarization.
Figure 8 shows PR space comparing the performance of the
model with the first set versus final set of features using
XGBoost.

For each of the 57 features used in the XGBoost model,
a feature importance is reported in Table 6 (“Days since last
contact” was not engineered, therefore 57 and not 58). An
interesting observation is that one fifth (11) of the features
account for four-fifths of the total feature importance to the
model. These top one fifth of the feature importances, listed
in bold in Table 6, account for 80.41% of the total feature
importance. Additionally, there are 19 “0.00”s listed in the
table (one third of the features), which indicates that the
model was able to gain no benefit from using those features;
those features can be removed and the model will produce
the same results.

Five of the top 11 features are from the new features cre-
ated during the evaluation cycles, pointing to the overall
benefit gained from continuing to improve the model in
collaboration with IBM. In particular, “Open CritSit-to-
PMR ratio” is the 3rd most important feature in the model
at 9.01% importance.

10 Evaluation 4: Comparison
with predictions without FE (RQ3)

To answer RQ3, which is aimed at verifying enhanced per-
formance through FE, we implemented a baseline approach
that implements the XGBoost algorithm in a model that uses
all available customer support ticket data without the use
of FE, and report on the comparative results to the model
versions (“first” as well as “final” set of features) in our FE
approach.

10.1 Baseline implementation

To implement the baseline, we had to feed the model one
row of data. This was a required design decision with our
dataset because PMRs are composed of multiple entries per
PMR (detailed in Sect. 4.1). Therefore, the last entry before
the PMR CritSit date (for CritSits) or closed date (for non-
CritSits) was chosen as the representative data row for each
PMR. With this design decision in place, the features of
the baseline model are no longer the engineered features in
Table 6, but rather the features from the raw customer sup-
port ticket (PMR) data. There are 95 features available in
the raw data, but a majority of those features are identifica-
tion features or strings that are not categorical, which means
they cannot be used in ML algorithms without some form of
natural language processing. The number of usable features
is 34, and similar to Sect. 9 not all features were important
to the model and therefore produced a feature importance

Fig. 8 First versus final model results in PR space (marked with con-
fidence thresholds)

Table 5 Confusion matrix for CritSit prediction using XGBoost on
ML model with complete set of features

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,532,745 2,242,064 (TN)
88.52%

290,681 (FP)
 11.48%

CritSit—Yes 9536 1205 (FN)
12.64%

8331 (TP)
 87.36%

350 Requirements Engineering (2018) 23:333–355

1 3

Ta
bl

e
6

 S
up

po
rt

tic
ke

t m
od

el
 fe

at
ur

es
 w

ith
 im

po
rta

nc
e

m
et

ric
 (t

op
 o

ne
 fi

fth
 im

po
rta

nt
 fe

at
ur

es
 in

 b
ol

d)

C
at

eg
or

y
Fe

at
ur

e
Im

po
rta

nc
e

(%
)

D
es

cr
ip

tio
n

B
as

ic
 a

ttr
ib

ut
es

N
um

be
r o

f e
nt

rie
s

21
.4
0

N
um

be
r o

f e
ve

nt
s/

ac
tio

ns
 o

n
th

e
PM

R
D

ay
s o

pe
n

22
.7
0

D
ay

s f
ro

m
 o

pe
n

to
 c

lo
se

 (o
r C

rit
Si

t)
PM

R
 o

w
ne

rs
hi

p
le

ve
l

4.
16

Le
ve

l o
f S

up
po

rt
(L

0–
L3

) t
ha

t i
s i

n
ch

ar
ge

 o
f t

he
 P

M
R

, c
al

cu
la

te
d

pe
r e

nt
ry

C
us

to
m

er
 p

er
ce

pt
io

n
of

 p
ro

ce
ss

N
um

be
r o

f s
up

po
rt

pe
op

le
 in

 c
on

ta
ct

 w
ith

 c
us

to
m

er
1.

83
N

um
be

r o
f s

up
po

rt
pe

op
le

 th
e

cu
sto

m
er

 is
 c

om
m

un
ic

at
in

g
w

ith
N

um
be

r o
f i

nc
re

as
es

 in
 se

ve
rit

y
4.
56

N
um

be
r o

f t
im

es
 th

e
se

ve
rit

y
in

cr
ea

se
N

um
be

r o
f d

ec
re

as
es

 in
 se

ve
rit

y
2.
39

N
um

be
r o

f t
im

es
 th

e
se

ve
rit

y
de

cr
ea

se
N

um
be

r o
f s

ev
4/

se
v3

/s
ev

2
to

 se
v1

 tr
an

si
tio

ns
0.

00
N

um
be

r o
f c

ha
ng

es
 in

 se
ve

rit
y

fro
m

 4
, 3

, o
r 2

, s
tra

ig
ht

 to
 1

C
us

to
m

er
 p

er
ce

pt
io

n
of

 ti
m

e
Ti

m
e

un
til

 fi
rs

t c
on

ta
ct

1.
37

M
in

ut
es

 b
ef

or
e

th
e

cu
sto

m
er

 h
ea

rs
 fr

om
 IB

M
 fo

r t
he

 fi
rs

t t
im

e
on

 th
is

 P
M

R
C

ur
re

nt
 re

ce
iv

ed
 re

sp
on

se
 ti

m
e

1.
79

A
ve

ra
ge

 n
um

be
r o

f m
in

ut
es

 o
f a

ll
th

e
an

al
ys

t r
es

po
ns

e
tim

es
 o

n
th

is
 P

M
R

D
iff

er
en

ce
 in

 c
ur

re
nt

 v
er

su
s h

ist
or

ic
al

 re
ce

iv
ed

re

sp
on

se
 ti

m
e

1.
77

(H
ist

or
ic

al
 re

ce
iv

ed
 re

sp
on

se
 ti

m
e)

 m
in

us
 (C

ur
re

nt
 re

ce
iv

ed
 re

sp
on

se
 ti

m
e)

D
ay

s s
in

ce
 la

st
co

nt
ac

t
–

N
um

be
r o

f d
ay

s s
in

ce
 la

st
co

nt
ac

t,
ca

lc
ul

at
ed

 p
er

 e
nt

ry
D

iff
er

en
ce

 in
 h

ist
or

ic
al

 se
nt

 v
er

su
s h

ist
or

ic
al

 re
ce

iv
ed

re

sp
on

se
 ti

m
e

0.
31

(H
ist

or
ic

al
 re

ce
iv

ed
 re

sp
on

se
 ti

m
e)

 m
in

us
 (H

ist
or

ic
al

 se
nt

 re
sp

on
se

 ti
m

e)

Im
po

rta
nc

e
(%

) w
ith

 D
ec

ay
 a

fte
r N

 w
ee

ks
*

∞
12

24
36

48

C
us

to
m

er
 p

ro
fil

e
N

um
be

r o
f o

pe
n

PM
R

s
0.

23
0.

10
0.

16
0.

11
0.

21
N

um
be

r o
f P

M
R

s o
w

ne
d

by
 c

us
to

m
er

 th
at

 a
re

 o
pe

n
N

um
be

r o
f c

lo
se

d
PM

R
s

2.
12

1.
53

2.
99

0.
41

0.
41

N
um

be
r o

f P
M

R
s o

w
ne

d
by

 c
us

to
m

er
 th

at
 a

re
 c

lo
se

d
N

um
be

r o
f o

pe
n

C
rit

Si
ts

0.
20

0.
00

0.
07

0.
13

0.
01

N
um

be
r o

f C
rit

Si
ts

 o
w

ne
d

by
 c

us
to

m
er

 th
at

 a
re

 o
pe

n
N

um
be

r o
f c

lo
se

d
C

rit
Si

ts
0.

04
3.
95

1.
72

0.
69

0.
60

N
um

be
r o

f C
rit

Si
ts

 o
w

ne
d

by
 c

us
to

m
er

 th
at

 a
re

 c
lo

se
d

O
pe

n
C

rit
Si

t-t
o-

PM
R

 ra
tio

9.
01

–
–

–
–

(N
um

be
r o

f o
pe

n
C

rit
Si

ts
)/(

N
um

be
r o

f o
pe

n
PM

R
s)

C
lo

se
d

C
rit

Si
t t

o
PM

R
 ra

tio
4.
19

–
–

–
–

(N
um

be
r o

f c
lo

se
d

C
rit

Si
ts

)/(
N

um
be

r o
f c

lo
se

d
PM

R
s)

H
ist

or
ic

al
 re

ce
iv

ed
 re

sp
on

se
 ti

m
e

1.
39

–
–

–
–

A
ve

ra
ge

 o
f a

ll
re

ce
iv

ed
 re

sp
on

se
 ti

m
es

 o
n

PM
R

s o
w

ne
d

by
 th

is
 c

us
to

m
er

Su
pp

or
t a

na
ly

st
pr

ofi
le

N
um

be
r o

f o
pe

n
PM

R
s

0.
39

0.
00

0.
00

0.
00

0.
00

N
um

be
r o

f P
M

R
s o

w
ne

d
by

 c
us

to
m

er
 th

at
 a

re
 c

lo
se

d
N

um
be

r o
f c

lo
se

d
PM

R
s

1.
24

0.
00

0.
00

0.
00

0.
00

N
um

be
r o

f P
M

R
s o

w
ne

d
by

 th
e

an
al

ys
t t

ha
t a

re
 c

lo
se

d
N

um
be

r o
f o

pe
n

C
rit

Si
ts

0.
00

0.
00

0.
00

0.
00

0.
00

N
um

be
r o

f C
rit

Si
ts

 o
w

ne
d

by
 th

e
an

al
ys

t t
ha

t a
re

 o
pe

n
N

um
be

r o
f c

lo
se

d
C

rit
Si

ts
0.

03
0.

00
0.

00
0.

00
0.

00
N

um
be

r o
f C

rit
Si

ts
 o

w
ne

d
by

 th
e

an
al

ys
t t

ha
t a

re
 c

lo
se

d
O

pe
n

C
rit

Si
t-t

o-
PM

R
 ra

tio
1.

02
–

–
–

–
(N

um
be

r o
f o

pe
n

C
rit

Si
ts

)/(
N

um
be

r o
f o

pe
n

PM
R

s)
C

lo
se

d
C

rit
Si

t t
o

PM
R

 ra
tio

2.
95

–
–

–
–

(N
um

be
r o

f c
lo

se
d

C
rit

Si
ts

)/(
N

um
be

r o
f c

lo
se

d
PM

R
s)

H
ist

or
ic

al
 se

nt
 re

sp
on

se
 ti

m
e

1.
82

–
–

–
–

A
ve

ra
ge

 o
f a

ll
se

nt
 re

sp
on

se
 ti

m
es

 o
n

PM
R

s o
w

ne
d

by
 a

n
an

al
ys

t

*E
ac

h
fe

at
ur

e
im

po
rta

nc
e

nu
m

be
r r

ep
re

se
nt

s a
 u

ni
qu

e
fe

at
ur

e,
 to

ta
lin

g
58

 fe
at

ur
es

 in
 th

e
w

ho
le

 ta
bl

e

351Requirements Engineering (2018) 23:333–355

1 3

of 0, leaving the final set of features utilized from the raw
data at 25.

Finally, with the data prepared for ML purposes, it was
fed through the exact same process of splitting, training, and
testing as the process applied to the first and final features.

10.2 Baseline results

The results of the validation can be seen in the confusion
matrix in Table 7. The recall for “CritSit—Yes” is 79.04%,
with a precision of 1.54%, and 80.86% summarization.
These results are only slightly lower than the first features,
but are considerably lower than the results obtained when
the model included the complete, final set of features. Fur-
thermore, these results are for the chosen threshold of 50%
confidence, and a more detailed account of the results are
displayed in Fig. 9 where we show the performance of all
three implementations (first set, final set, and baseline) of the
models, graphed in PR space. The baseline implementation
has the lowest overall performance, followed by that of the
model implementing the first of features, and outperformed
by the model implementing the final set of features.

11 Discussion

Prompted by the problem of inefficiency in managing cus-
tomer support ticket escalations at our industrial partner
IBM, our approach had been to study and model the infor-
mation available to support analysts in assessing whether
customers would escalate on a particular problem they
reported, and to investigate ML techniques to apply this
model to support the escalation management process. We
employed a design science methodology, and here we dis-
cuss, as outlined by Sedlmair et al. [36], our contributions
through three main design science aspects: problem charac-
terization and abstraction, validated design, and reflection.

11.1 Problem characterization and abstraction

The investigation of IBM support practices in our ethno-
graphic exploratory study was the first step in our design
science iterative process, providing a more detailed under-
standing of the support ticket escalation problem at IBM. We
elaborate here on two lessons learned during the problem
characterization phase.

The first lesson we learned is about the importance of this
step and iterating through it in the design study. From our
initial interviews with the support analysts, we were able
to draw an understanding of how they work as well as the
first set of our PMR model features. However, it was only
after the first evaluation step (the in-depth investigation of
the ten CritSit PMRs at the Victoria site) that we reflected
and refined our understanding of the problem context in the
analysts’ job. We were able to uncover details of the cascad-
ing CritSits process and its effect on how data were being
presented to the analysts. This turned out to be crucial to
understanding the PMR life cycle and to refinements in our
PMR model features.

The second lesson relates to abstracting from the specif-
ics of IBM relative to data that can be modeled for EP in
other organizations. We learned that some elements of the
support process may be intentionally hidden from customers
to simplify the support process for them, but also to protect
the organization’s information and processes. An example
of this is the offline conversations that occur between peo-
ple working to solve support tickets: a necessary process of
information sharing and problem solving, but these conver-
sations are never revealed to customers. Other organizations
might have similar practices, and being aware of the dis-
tinction between customer facing and hidden information is
important. We recommend that companies experiment with
both including and not including information hidden from
customers in their ML models. Information not known to
their customers may be introduced noise to their models.Fig. 9 Comparing the performance of the three models using

XGBoost: baseline, first, and final model features (marked with confi-
dence thresholds)

Table 7 Confusion matrix for CritSit prediction using XGBoost with-
out FE

Actual Total Predicted as

CritSit—No CritSit—Yes

CritSit—No 2,557,730 2,073,953 (TN)
 81.09%

483,777 (FP)
 18.91%

CritSit—Yes 9577 2007 (FN)
 20.96%

7570 (TP)
 79.04%

352 Requirements Engineering (2018) 23:333–355

1 3

11.2 Validated support ticket model features

The two artifacts we iteratively developed in our design sci-
ence methodology are the support ticket model features, and
their implementation into an EP ML model to assist support
analysts in managing support ticket escalations. We believe
that the major, unique contribution of this research is the
support ticket model features. The features were not only
derived from an understanding of support analysts at our
industrial partner, but were iteratively refined through sev-
eral validations of the EP ML techniques that implemented
these features.

The task of predicting support ticket escalations is fun-
damentally about understanding the customers’ experience
within the support ticket management process. The features
we created in our model were designed to represent the
knowledge that support analysts typically have about their
customers. Through the process of FE, our work identified
the subset of features relevant to EP from an understand-
ing of practice around escalation management. Finally, we
sought to abstract from IBM practice toward a general model
of the escalation management process and therefore have our
results be applicable to support teams in other organizations.

Once the support ticket model features had been created,
they were used in an EP ML model to investigate the benefit
provided to the support analysts’ job at IBM. Over the course
of this research, multiple stages of ML models were created
and tested. Among them, the baseline implementation showed
the lowest performance results, evident in the PR space graph.
This was expected as the effort that went into this implementa-
tion was the lowest, with no FE. The model with the first set of
features, created largely from the observations and interviews
conducted with IBM, showed improved results over the base-
line. Lastly, the model implementing the final and complete
set of features produced the best results.

The iterative phases of this research proved important to pro-
ducing the final results which otherwise may have never been
achieved with other methodologies that do not emphasize the
feedback cycles present in a design science methodology. The
results of the final 10-fold cross-validation (shown in Table 5)
were the highest of the three implementations, with a recall of
87.36% and summarization of 88.23%. Our collaborating IBM
support team was very pleased with this result, as an 88.23%
reduction in the workload to identify high-risk PMRs is a prom-
ising start to addressing the reduction in CritSits.

Finally, a prototype tool was built to integrate the real-
time results of feeding live PMRs data through our model to
produce escalation risks. Use of our prototype tool granted
shorter meetings addressing more issues focused on support
tickets deemed important by IBM and the ML model, while
still allowing for longer meetings to review more PMRs if
they needed to. The main benefit was the summarization and
visualization of the support tickets based on a combination

of our model output as well as their own assessment through
the MER field.

11.3 Reflection

Our work adds to the scarce research into automating the
prediction of support ticket escalations in software organiza-
tions. We reflect below on the relationship between our work
and these existing techniques and discuss implications for
practitioners who wish to use this work.

11.3.1 Limitations in comparison with previous research

The work done by both Ling et al. [22] and Sheng et al. [37]
involved improvements to existing cost-sensitive ML algo-
rithms, with no consideration to the features being fed into
the model. Our search of the literature makes us classify this
work as a non-FE approach. The option of using their work
as a baseline to compare precision and recall required our
data to be in such a format that it could be run through their
algorithms. Our data, however, were not fit for classification-
based ML algorithms because it is archival, with multiple
historical entries per each support ticket. Basic classification
ML algorithms require there to be one entry per support
ticket, so any archival data such as ours would have to go
through a process to convert that data into a summarized
format. The final summarized data depend on the conversion
process chosen; therefore, we could not simply convert our
data and then hope it conformed to the constraints of the pre-
vious studies due to the lack of information regarding their
data structures. We could have used the one-line approach
applied to the baseline; however, the data would have been
severely limited in represented the PMR escalation process
at IBM. Therefore, comparing with the work of Ling et al.
[22] and Sheng et al. [37]—as representatives of non-FE
approaches—was not justified given these characteristics of
our data. However, in our attempt to compare the perfor-
mance of our feature-engineered models with that of non-
FE approaches, we did implement a baseline that limited
the PMR data to a one-row representation as described in
Sect. 10. Analyzing the performance using this representa-
tion and our XGBoost algorithm was more rightly justified
in light of the PMR escalation process at IBM.

The work done by Bruckhaus et al. [6] has a similar data
processing issue, except their work involved some FE to
convert their data into a usable form. They neither describe
how they conducted their FE nor the final set of engineered
features; therefore, we could not compare FE results. Fur-
thermore, the details about their neural network approach,
including the parameters chosen for their proposed algo-
rithm, are not provided, making its replication difficult.

Given the lack of ability to replicate the process and
results of previous work with our data, we were not able

353Requirements Engineering (2018) 23:333–355

1 3

to contrast our work against this related work; instead, our
research focused on FE and iteratively developing our pre-
dictive model with support analysts through our design sci-
ence methodology.

11.3.2 New directions for further validating the features
and model

Our work represents a first step toward a model of support
ticket information through FE relevant to predicting the risk of
support ticket escalations; however, further validation of our
features and model is needed. In particular, a full evaluation
with IBM is needed to address the question of usability and
effectiveness inside their organization. This technology trans-
fer project is already underway and will seek to answer the
question of effectiveness inside the organization it was built
to help. Additionally, once fully deployed, the support ticket
model features will be further evaluated for both importance
to the model and importance to IBM in assessing PMRs as
potential escalations. The research performed will help shape
the final set of features that are used within IBM as a tool for
understanding their customers and the escalations that occur.

11.3.3 Implications for practitioners

The model we developed has the potential for deployment
in other organizations given that they have enough available
data and the ability to map it to the features provided by our
model. To implement the ML-based EP model we developed,
organizations must track and map their data to the support
ticket model features. If the high recall and summarization
we obtained at IBM is obtained at other organizations, there
is potential to reduce their escalation identification workload
by ∼ 88%, with the potential for ∼ 88% of the escalations to
remain in the reduced set. If this frees up time for support
analysts, then they can put additional effort into more impor-
tant aspects of the support process like solving difficult issues
and identifying bottom-up requirements from support tickets.

Prior to implementing our model, organizations should do
a cost–benefit analysis to see whether the potential benefits
are worth the implementation effort. Included in this analysis
should be the cost of a support ticket—with and without an
escalation, as well as time required to manually investigate
tickets, customers, and products for escalation patterns. If
the overall cost of escalating tickets and the investigative
efforts to avoid escalations outweigh the overall time spent
implementing the model described above, then there is a
strong case for implementation.

12 Threats to validity

The first threat, to external validity [38], is the potential lack
of generalizability of the results due to our research being
conducted in close collaboration with only one organiza-
tion. To mitigate this threat, the categories and features
in our support ticket model were created with an effort
of abstracting away from any specifics to IBM processes,
toward data available and customer support processes in
other organizations.

The second threat, to construct validity [38], applies to the
mapping of the information and data we collected through
interviews with support analysts to the thematic themes and
codes. To mitigate that threat, multiple techniques were used:
member checking, triangulation, and prolonged contact with
participants [38]. The design science process of iteratively
working with industry through design cycles puts a strong
emphasis on member checking, which Lincoln and Guba [21]
describe as “the most crucial technique for establishing cred-
ibility” in a study with industry. We described our themes and
codes to the IBM analysts and managers through focus groups
and general discussions about our results to validate that our
data mappings resonated with their practice. Triangulation,
through contacting multiple IBM support analysts at different
sites as well as observations of their practice during support
meetings, was used to search for convergence from different
sources to further validate the features and mappings created
[8]. Finally, our contact with IBM during this research lasted
over a year, facilitating prolonged contact with participants
which allowed validation of information and results in differ-
ent temporal contexts.

The third threat, to internal validity [38], relates to the
noise in the data discovered during the iterative cycles of
our design science methodology. As discussed in Sect. 7.3.2,
the CritSits in our dataset could be “cause” or “cascade.”
Due to limitations of our data, we are unable to reliably tell
the two types of CritSits apart; however, there is a small
subset of CritSits we know for sure are “cause” CritSits. At
the cost of discarding many “cause” and uncertain CritSits,
we removed all “cascade” CritSit PMRs by discarding the
CritSits that had more than one associated PMR. The newer,
“real” CritSit PMRs (CritSits with only one PMR attached)
in our data then totaled ∼ 3500 (35% of our original target
set). The recall on the new target set was 85.38%, with a
summarization of 89.36%, meaning that the threat to internal
validity due to this noise in our data was negligible.

354 Requirements Engineering (2018) 23:333–355

1 3

13 Conclusion

Effectively managing customer relationships through han-
dling support issues in ongoing software projects is key to an
organization’s success, and one practice that informs activi-
ties of requirements management. Support analysts are a key
stakeholder in gathering bottom-up requirements, and proper
management of support ticket escalations can allow them to
do their job with less attention to escalations.

The data used in this research are confidential and unfor-
tunately cannot be shared with the research community; fur-
thermore, the algorithms used to transform the data into the
engineered features are also confidential, since knowledge
of the transformation would give insights into the structure
of the data, which is also confidential.

The two artifacts we developed in this work, the support
ticket model features and its implementation in a ML clas-
sifier to predict the risk of support ticket escalation, rep-
resent a first step toward simplifying support analysts’ job
and helping organizations manage their customer relation-
ships effectively. We hope that this research leads to future
implementations in additional industry settings, and further
improvements to EP through ML in future research.

Acknowledgements We thank IBM for their data, advice, and time
spent as a collaborator; special thanks to Keith Mackenzie at IBM
Victoria for his contribution to this research. We thank Emma Reading
for her contribution to the prototype tool. We thank the anonymous
referees of both RE17 and the REJ special issue. This research was
funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and IBM Center for Advanced Studies (IBM CAS).

References

 1. Bernstein A, Ekanayake J, Pinzger M (2007) Improving defect
prediction using temporal features and non linear models. In:
Ninth international work. Princ. Softw. Evol. conjunction with
6th ESEC/FSE Jt. Meet.—IWPSE ’07, p 11. ACM Press, New
York, New York, USA. https ://doi.org/10.1145/12949 48.12949 53

 2. Berry D (2017) Requirements for tools for hairy requirements or
software engineering tasks. Technical report, University of Water-
loo, Department of Computer Science

 3. Berry MJ, Linoff G (1997) Data mining techniques: for marketing,
sales, and customer support. Wiley, London

 4. Berry D, Gacitua R, Sawyer P, Tjong SF (2012) The case for dumb
requirements engineering tools. In: The case for dumb require-
ments engineering tools. Springer, pp 211–217

 5. Boehm B (1984) Software engineering economics. IEEE Trans
Softw Eng 10(1):4–21

 6. Bruckhaus T, Ling CX, Madhavji NH, Sheng S (2004) Software
escalation prediction with data mining. In: Software escalation
prediction with data mining

 7. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting
system. KDD. https ://doi.org/10.1145/29396 72.29397 85

 8. Creswell JW, Miller DL (2000) Determining validity in qualitative
inquiry. Theory into Pract 39:124–130

 9. Cruzes DS, Dyba T, Cruzes Daniela S, Dyba T (2011) Recom-
mended steps for thematic synthesis in software engineering. In:

2011 5th international symposium on empirical software engi-
neering and measurement (ESEM 2011). IEEE, pp 275–284

 10. D’Ambros M, Lanza M, Robbes R (2010) An extensive compari-
son of bug prediction approaches. In: 2010 7th IEEE working
conference on mining software repositories (MSR 2010). IEEE,
pp 31–41. https ://doi.org/10.1109/MSR.2010.54632 79

 11. Davis J, Goadrich M (2006) The relationship between Precision-
Recall and ROC curves. In: Proceedings of the 23rd international
conference on machine learning—ICML ’06, pp 233–240. https
://doi.org/10.1145/11438 44.11438 74

 12. Domingos P (2012) A few useful things to know about machine
learning. Commun ACM 55(10):78. https ://doi.org/10.1145/23477
36.23477 55

 13. Fawcett T (2004) ROC graphs: notes and practical considerations
for researchers. Mach Learn 31(1):1–38

 14. Hassan AE (2009) Predicting faults using the complexity of
code changes. In: 2009 IEEE 31st international conference on
software engineering. IEEE, pp 78–88. https ://doi.org/10.1109/
ICSE.2009.50705 10

 15. Hassan A, Holt R (2005) The top ten list: dynamic fault predic-
tion. In: 21st IEEE international conference on software mainte-
nance. IEEE, pp 263–272. https ://doi.org/10.1109/ICSM.2005.91

 16. Hevner A, Park J, Sudha R, March ST (2004) Design science in
information systems research. MIS Q 28(1):75–105

 17. Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied
logistic regression, vol 398. Wiley, London

 18. Kabbedijk J, Brinkkemper S, Jansen S, van der Veldt B (2009)
Customer involvement in requirements management: lessons from
mass market software development. In: 2009 17th IEEE inter-
national requirements engineering conference (RE). IEEE, pp
281–286. https ://doi.org/10.1109/RE.2009.28

 19. Kim S, Zimmermann T, Whitehead Jr EJ, Zeller A (2007) Predict-
ing faults from cached history. In: 29th international conference
on software engineering, pp 489–498. https ://doi.org/10.1109/
ICSE.2007.66

 20. Lim SL, Damian D, Finkelstein A (2011) Stakesource 2. 0: using
social networks of stakeholders to identify and prioritise require-
ments. In: 33rd international conference on software engineering
(ICSE), pp 1022–1024. IEEE

 21. Lincoln YS, Guba EG (1985) Naturalistic inquiry. Newbury Park,
London

 22. Ling CX, Sheng L, Bruckhaus T, Madhavji NH (2005) Predicting
software escalations with maximum ROI. In: Proceedings of IEEE
international conference on data mining, ICDM, pp 717–720.
https ://doi.org/10.1109/ICDM.2005.120

 23. Liu XY, Zhou ZH (2006) The influence of class imbalance on
cost-sensitive learning: an empirical study. In: Proceedings—
IEEE international conference on data mining, ICDM. IEEE, pp
970–974. https ://doi.org/10.1109/ICDM.2006.158

 24. March ST, Smith GF (1995) Design and natural science research
on information technology. Decis Support Syst 15(4):251–266.
https ://doi.org/10.1016/0167-9236(94)00041 -2

 25. Marcu P, Grabarnik G, Luan L, Rosu D, Shwartz L, Ward C
(2009) Towards an optimized model of incident ticket correlation.
In: Towards an optimized model of incident ticket correlation, pp
569–576. https ://doi.org/10.1109/INM.2009.51888 63

 26. McCarty JA, Hastak M (2007) Segmentation approaches in
data-mining: a comparison of RFM, CHAID, and logistic regres-
sion. J Bus Res 60(6):656–662. https ://doi.org/10.1016/j.jbusr
es.2006.06.015

 27. Merten T, Falis M, Hubner P, Quirchmayr T, Bursner S, Paech B
(2016) Software feature request detection in issue tracking sys-
tems. In: 2016 IEEE 24th international requirements engineer-
ing conference (RE). IEEE, pp 166–175. https ://doi.org/10.1109/
RE.2016.8

https://doi.org/10.1145/1294948.1294953
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/ICSM.2005.91
https://doi.org/10.1109/RE.2009.28
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/ICDM.2005.120
https://doi.org/10.1109/ICDM.2006.158
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.1109/INM.2009.5188863
https://doi.org/10.1016/j.jbusres.2006.06.015
https://doi.org/10.1016/j.jbusres.2006.06.015
https://doi.org/10.1109/RE.2016.8
https://doi.org/10.1109/RE.2016.8

355Requirements Engineering (2018) 23:333–355

1 3

 28. Montgomery L, Damian D (2017) What do support analysts know
about their customers? On the study and prediction of support
ticket escalations in large software organizations. In: 2017 IEEE
25th international requirements engineering conference (RE), pp
362–371. https ://doi.org/10.1109/RE.2017.61

 29. Montgomery L, Reading E, Damian D (2017) Ecrits—visualizing
support ticket escalation risk. In: 2017 IEEE 25th international
requirements engineering conference (RE), pp 452–455. https ://
doi.org/10.1109/RE.2017.62

 30. Moser R, Pedrycz W, Succi G (2008) A comparative analysis
of the efficiency of change metrics and static code attributes for
defect prediction. In: Proceedings of 13th international conference
on software engineering—ICSE ’08. ACM Press, New York, NY,
USA, p 181. https ://doi.org/10.1145/13680 88.13681 14

 31. Nagappan N, Ball T (2005) Use of relative code churn measures
to predict system defect density. In: Proceedings of 27th inter-
national conference on software engineering 2005. ICSE 2005.
IEEE, pp 284–292. https ://doi.org/10.1109/ICSE.2005.15535 71

 32. Ostrand T, Weyuker E, Bell R (2005) Predicting the location and
number of faults in large software systems. IEEE Trans Softw Eng
31(4):340–355. https ://doi.org/10.1109/TSE.2005.49

 33. Pang-Ning T, Steinbach M, Kumar V (2006) Introduction to data
mining. Library of congress, p 796. https ://doi.org/10.1016/0022-
4405(81)90007 -8

 34. Reinartz W, Krafft M, Hoyer WD (2013) The customer relation-
ship management process: its measurement and impact on perfor-
mance. J Mark Res 41(3):293–305

 35. Schröter A, Aranda J, Damian D, Kwan I (2012) To talk or not to
talk: factors that influence communication around changesets. In:
Proceedings of the ACM 2012 conference on computer supported
cooperative work—CSCW ’12. ACM, pp 1317–1326. https ://doi.
org/10.1145/21452 04.21454 01

 36. Sedlmair M, Meyer M, Munzner T (2012) Design study method-
ology: reflections from the trenches and the stacks. IEEE Trans
Visual Comput Graph 18(12):2431–2440

 37. Sheng VS, Gu B, Fang W, Wu J (2014) Cost-sensitive learning
for defect escalation. Knowl-Based Syst 66:146–155. https ://doi.
org/10.1016/j.knosy s.2014.04.033

 38. Shull F, Singer J, Sjøberg DI (2008) Guide to advanced
empirical software engineering. Springer, London. https ://doi.
org/10.1007/978-1-84800 -044-5

 39. Simon HA (1981) The sciences of the artificial. MIT Press,
Cambridge

 40. Tan PN, Steinbach M, Kumar V (2006) Classification: alternative
techniques. In: Tan PN (ed) Introduction to data mining. Pearson,
London, pp 256–312

 41. van de Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J,
Bijlsma L (2006) Towards a reference framework for software
product management. In: 14th IEEE international require-
ments engineering conference. IEEE, pp 319–322. https ://doi.
org/10.1109/RE.2006.66

 42. Wieringa R (2009) Design science as nested problem solv-
ing. In: Proceedings of 4th international conference on design
science research in information systems and technology—
DESRIST ’09. ACM Press, New York, NY, USA, p 1. https ://doi.
org/10.1145/15556 19.15556 30

 43. Wieringa R (2014) What is design science? In: Design sci-
ence methodology for information systems and software engi-
neering. Springer, Berlin, Heidelberg, pp 3–11. https ://doi.
org/10.1007/978-3-662-43839 -8_1

 44. Wolf T, Schroter A, Damian D, Nguyen T (2009) Predicting build
failures using social network analysis on developer communica-
tion. In: Proceedings of the 31st international conference on soft-
ware engineering. IEEE Computer Society, pp 1–11

https://doi.org/10.1109/RE.2017.61
https://doi.org/10.1109/RE.2017.62
https://doi.org/10.1109/RE.2017.62
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1016/0022-4405(81)90007-8
https://doi.org/10.1016/0022-4405(81)90007-8
https://doi.org/10.1145/2145204.2145401
https://doi.org/10.1145/2145204.2145401
https://doi.org/10.1016/j.knosys.2014.04.033
https://doi.org/10.1016/j.knosys.2014.04.033
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1109/RE.2006.66
https://doi.org/10.1109/RE.2006.66
https://doi.org/10.1145/1555619.1555630
https://doi.org/10.1145/1555619.1555630
https://doi.org/10.1007/978-3-662-43839-8_1
https://doi.org/10.1007/978-3-662-43839-8_1

	Customer support ticket escalation prediction using feature engineering
	Abstract
	1 Introduction
	2 Related work
	3 Design science research methodology
	3.1 Problem characterization
	3.2 Research artifact development and evaluation stages
	3.3 Escalation prediction research

	4 Problem characterization
	4.1 Ethnographic exploratory study and the IBM escalation process
	4.1.1 Support level L0
	4.1.2 Support level L1
	4.1.3 Support level L2
	4.1.4 Support level L3

	4.2 The problem

	5 Support ticket model features (RQ1)
	5.1 Basic features
	5.2 Customer perception of process
	5.3 Customer perception of time
	5.4 Customer profile
	5.5 Support analyst profile

	6 Engineering the features in the support ticket model (RQ2)
	6.1 Interviews
	6.2 Thematic analysis
	6.3 A first set of features in the support ticket model

	7 Evaluation 1: In-depth review of the support ticket model with IBM analysts
	7.1 Machine learning model
	7.2 Statistical results and validation: first features
	7.3 Model output evaluation
	7.3.1 Evaluation setting
	7.3.2 Evaluation results
	7.3.2.1 Role of historical customer profile information
	7.3.2.2 Recording true reason for CritSit PMRs is important

	7.3.3 Feeding back into the model

	8 Evaluation 2: In situ evaluation with support analysts
	8.1 Our prototype
	8.2 Evaluation setting
	8.3 Evaluation findings
	8.3.1 Feeding back into the model

	9 Evaluation 3: Additional feature engineering and statistical validation of final Model
	9.1 Switching from random forest to XGBoost
	9.2 Engineering the additional features
	9.2.1 Decay of information
	9.2.2 Live indicators
	9.2.3 Support analyst profile

	9.3 Statistical results and validation: complete and final set of features

	10 Evaluation 4: Comparison with predictions without FE (RQ3)
	10.1 Baseline implementation
	10.2 Baseline results

	11 Discussion
	11.1 Problem characterization and abstraction
	11.2 Validated support ticket model features
	11.3 Reflection
	11.3.1 Limitations in comparison with previous research
	11.3.2 New directions for further validating the features and model
	11.3.3 Implications for practitioners

	12 Threats to validity
	13 Conclusion
	Acknowledgements
	References

