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Abstract
In agile software development projects, software engineers prioritize implementation over documentation. Is the cost of 
missing documentation greater than the cost of producing unnecessary or unused documentation? Agile software engineers 
must still maintain other software artifacts, such as tickets in an issue tracking system or source code committed to a version 
control system (VCS). Do these artifacts contain useful knowledge? In this paper, we examine undocumented knowledge 
in a multi-case exploratory case study of industrial agile software development projects. The first is an internal project with 
159 source code commits and roughly 8000 lines of code. The second is an external project with 760 source code commits 
and roughly 50,000 lines of code. We introduce a ticket-commit network chart (TCC) that visually represents time-series 
commit activities along with filed issue tickets. We also implement a tool to generate the TCC using both commit log and 
ticket data. Our case study revealed that software engineers committed source code to the VCS without a corresponding issue 
ticket in a non-trivial minority of instances. If these commits were based on and linked to individual issue tickets, then these 
“unissued” tickets would have accounted for a non-trivial minority (5–21%) of the knowledge needed for future software 
modification and operations. End users and requirements engineers also evaluated the contents of these commits. They found 
that the omission of links to individual tickets had an important impact on future software modification or operation with 
between 22 and 49% of these instances resulting in undocumented knowledge.

Keywords Agile · Agile development · Agile requirements · Requirements management · Requirements knowledge

1 Introduction

Agile software development is now an established approach 
to building software systems [14, 19, 22, 27]. The basic con-
cept of agile development practices is that software engi-
neers prioritize implementation activity, customer interac-
tion, and tight iteration cycles over up-front requirements 
analysis and documentation. In contrast to other software 
methodologies, such as the traditional waterfall model, they 
generally put more emphasis on software implementation 
(i.e., working software) than its documents [4]. In this man-
ner, software developers can respond flexibly to stakeholder 
needs. Of course, the culture of the organization and team 
always influence the amount of documentation generated 
no matter the development approach. However, within this 
paper, we observe that even when there is a strong cul-
ture of using ITS and VCS, the relevance of this kind of 
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documentation is not always valued as essential or necessary 
as in more traditional software development approaches.

Agile software development is not typically a documen-
tation-driven process. During agile software development, 
software engineers prioritize implementation activity to 
address stakeholder requests. Implemented features may 
differ from any documentation requirements engineers ini-
tially created. To mitigate this, Scrum [22, 25] approaches 
hold sprint reviews and retrospective meetings wherein the 
project members (i.e., requirements engineers and soft-
ware engineers) ensure software documents are properly 
maintained.

Cockburn describes Agile software development as a 
cooperative game in which engineers should pay attention 
to both the current game (i.e., the current project) and the 
next game (i.e., future projects) [5]. Software projects must 
maintain knowledge required by “current” and “future” pro-
ject engineers. Current engineers might need to know the 
specifications and constraints of the software product. Future 
engineers might need to know software architecture details 
or features and the rationale behind development and modifi-
cation of the product. In agile software projects, we question 
whether agile software engineers sufficiently document the 
knowledge required for these stakeholder groups.

This paper details an explanatory multi-case study with 
two cases conducted to examine two agile software develop-
ment projects: an internal NTT R&D project [18, 26] and 
an external, commercial system development project for an 
NTT customer. NTT is a global service and network pro-
vider. NTT Laboratories have more than 3000 researchers 
both in Japan and abroad. Approximately 1000 research-
ers are engaged in R&D activities in services and solutions. 
About 100 software development projects are launched 
annually to create software products (i.e., prototypes, tools) 
for services and solutions. Most of these projects are com-
pleted within a year making them a seemingly ideal fit for 
the rapid iterative development style supported by stand-
ard agile methods. After the software products are devel-
oped and trial evaluations of the project are conducted in 
the Laboratories, the software products are provided to the 
NTT Group companies. Next, those companies use or, if 
necessary, modify the software products for their business 
activities.

End users and the engineers in the NTT Group companies 
are first exposed to software products after delivery by NTT 
Laboratories. When they need to operate or modify these 
products, they must rely on extant documentation. Knowl-
edge transfer from NTT Laboratories to other companies is 
a decisive factor for business success. Lack of documenta-
tion may cause users and engineers to struggle to use or 
modify the software. Documentation can take several forms, 
including software specifications, constraints, architecture, 

features, and rationales. Each type of documentation may 
affect future modification or use of the software

The first case of this study was originally reported 
in our prior work [26]. In this paper, we revise and aug-
ment the presentation of that work with extended discus-
sion, additional comparisons to related work, and several 
new figures and tables. Moreover, we extend and compare 
our prior research with an entirely new second case as we 
now discuss. The second case employs a large-scale soft-
ware system development project outside of NTT. This 
project is a commercial system development effort, so the 
nature of the project differs from the first case, which is an 
R&D project at NTT. Neither end users nor engineers (i.e., 
requirements engineers and software engineers) are NTT 
employees. (This was not true for the first case, which was 
an internal NTT project.) The target system for the second 
case is not developed from scratch. Because this project 
comprises a commercial system development effort, almost 
all engineers are contracted by the organization to which 
the end users belong. Some engineers were contracted out 
of the project during the development period. As a result, 
new engineers joined the project. As in other NTT’s projects 
[24, 25], knowledge transfer from existing members to new 
members is an important factor for ensuring continuity of 
development. Without documentation, new development 
team members will experience difficulty in modifying and/
or operating the software systems.

Issue tracking systems (ITSs) and version control systems 
(VCSs) are commonly used in agile software development 
projects [10, 20–22, 28, 29]. In this study, we examine the 
time-series activities of the project engineers (i.e., require-
ments engineers and software engineers) using both ticket 
data in an ITS and commit logs in a VCS. Requirements 
engineers create issue tickets using the ITS. Each ticket 
describes a task for software engineers. Software engineers 
implement the product features and commit source code to 
the VCS based on issue tickets. After the feature has been 
approved during a daily meeting, the corresponding ticket 
is closed.

Ideally, all changes to the source code committed in the 
VCS will correspond to a ticket filed in the ITS. In practice, 
requirements engineers sometimes describe tasks to software 
engineers without issuing tickets. This could happen through 
in-person conversation. Such a scenario often leads to com-
mitted source code that does not correspond to a ticket in the 
ITS. In this paper, we refer to a requirement implemented 
without a corresponding ticket as an “unissued ticket.”1 As 

1 A commit may be unlinked to an issue ticket at the time it is 
merged into the repository. This could happen for one of two reasons. 
First, the issue ticket may exist, and the software engineer simply 
failed to link the commit to it. Second, the issue ticket may not exist. 
We refer to both cases as “unlinked commits” and to the second cases 
as “unissued tickets.” Commits should, however, always be linked to 
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the number of unissued tickets increases, we expect that the 
knowledge required for future modification or operation may 
be undocumented. In this context, modification refers to the 
addition of new features or functions, and operation refers 
to use of the software system according to its existing goals 
and features.

In this paper, we describe a ticket-commit network chart 
(TCC) which links ticket data in the ITS with the commit 
log data in the VCS. The TCC was previously introduced in 
our prior work [26]. It provides a visual representation of 
time-series commit activities, whether they are linked or not 
linked to the corresponding tickets. The TCC is generated 
using a tool, which is based on software implementation.

Using the TCC, we seek to answer the following research 
questions by means of empirical evaluation in agile software 
development projects in both inside and outside of NTT:

RQ1 How many unissued tickets are created in agile soft-
ware development projects?
RQ2 How much undocumented knowledge is created 
by unissued tickets that may be required later for future 
operation or modification?

We answer RQ1 by measuring how often software engi-
neers modify the source code without tracing the changes 
to a stakeholder request. Changes that are not traceable to 
stakeholder requests are often, but not always, problematic 
in practice. We answer RQ2 by examining how often those 
changes affect future development. Both questions address 
the extent to which documentation in standard agile projects 
is insufficient for future development.

Our first case establishes baseline answers to our two 
research questions [26]. Our second case provides an impor-
tant point of comparison. In addition to completely replicat-
ing the results of the first case, we are able to demonstrate 
that these results also hold in a large-scale external software 
project rather than a smaller, internal software project. The 
extent to which there are unissued tickets decreased, but 
the essential findings of the research question remained the 
same.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work with an emphasis on visualiza-
tion of development activities and knowledge management 
within agile software development. Section 3 provides an 
overview of the agile software development projects we 
examined and evaluated. Section 4 introduces our approach 

for visualizing agile software development activities. Sec-
tion 5 presents our empirical analysis procedure and results 
from the two cases of our study. Section 6 discusses the 
implications of our findings. Section 7 describes the limita-
tions of this work, and Section 8 summarizes the paper and 
presents future work.

2  Related research

Two areas of related research provide important background. 
First, we discuss research related to software development 
tool support and visualizing software development activities. 
Second, we introduce research on managing knowledge in 
agile software development environments.

2.1  Tool support and visualization of software 
development activities

Visualization of software development is a common chal-
lenge in software engineering. Wnuk et al. [33] proposed 
a feature transition chart (FTC) to visualize scope dynam-
ics within and across multiple projects. The scope of each 
project is maintained in a feature list. The FTC provides a 
comprehensive overview of the timing and magnitude of fea-
ture transitions among multiple projects. The feature list is 
similar in style and format to the list of tickets in an ITS we 
used. However, we focused on commits and corresponding 
ticket activities. Our TCC provides an overview of the tim-
ing of commits, whether they are linked to the corresponding 
tickets or not.

Lanza et al. [12] developed a real-time visualization tool, 
called Manhattan, for team activity within software develop-
ment. This tool, built as an Eclipse plug-in, visualizes pro-
jects in the Eclipse workspace using a 3D city metaphor. It 
depicts a living city where code changes from team members 
and potential conflicts are animated with different colors and 
shapes. The preliminary evaluation shows positive reactions 
in terms of team collaboration. However, their visualiza-
tion approach notifies engineers of programing activities, 
whereas our visualization approach notifies engineers of 
software documentation activities.

In our prior work [24], we proposed an approach to 
track requirements evolution using tickets in an ITS. We 
provided seven rules that describe the identification of 
requirements evolution events (e.g., refine, decompose, 
and replace) based on combinations of operations (e.g., 
add, change, and delete) in the tickets. We defined a 
requirements evolution chart (REC) to visualize require-
ments evolution history. We also examined whether the 
REC supports new requirements engineers conducting 
an impact analysis [25]. We found that new requirements 
engineers using the REC could identify artifacts affected 

an issue ticket because of the explicit methodological desire to con-
nect one commit with one issue ticket in both cases of our study. 
Even if a commit could have been linked to an already issued ticket, 
the fact that it was not remains problematic.

Footnote 1 (continued)
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by change requests more accurately and quickly than 
requirements engineers attempting the same task without 
the REC. Our approach in that work focused only on the 
tickets in an ITS for visualization of activities of require-
ments engineers. Our approach in this research involves 
both ticket data in ITS and commit data in a VCS. In addi-
tion, we visualize software development activities of both 
requirements engineers and software engineers.

Comparing other multi-case studies with our own can 
clarify and differentiate our exploratory research design 
from explanatory work, both of which are common 
approaches to case-study research. Exploratory research 
identifies and describes phenomena, whereas explanatory 
research discovers causal relationships [23, 34]. Dhungana 
et al. [7] and Thurimella et al. [30] both develop tools using 
explanatory multi-case studies. Thurimella et al. [30] build 
plug-ins for requirements tools using case-based research. 
Their multi-case study is built on the theory-building pro-
cess [9], and their results show how practitioners can mini-
mize implementation effort when extending an RE tool to 
manage variability within software product lines. Their work 
is explanatory. They seek to explain why their approach to 
variability management is successful using successive cases 
to enhance their explanation. Similarly, Dhungana et al. [7] 
also develop a meta-tool through an explanatory multi-case 
study to improve reuse of assets across multiple product 
lines. They examine the flexibility, extensibility, and adapt-
ability of their tool through four separate cases. Their work 
is also explanatory, and they use additional cases to mitigate 
bias and threats that would otherwise affect the validity of 
their results. In contrast to both Thurimella et al. and Dhun-
gana et al., our work is exploratory. We seek to describe, 
not to explain the causes of, undocumented knowledge in 
agile software development. For example, we are interested 
in the extent to which undocumented knowledge is present 
and whether engineers and users view it as potentially prob-
lematic. We are not seeking to explain why undocumented 
knowledge is present or why it is problematic. We use suc-
cessive cases, therefore, to broaden our exploration rather 
than to refine an explanation.

The TCC developed and employed in our study serves 
an entirely different purpose than the tools developed by 
Dhungana et al. [7] and Thurimella et al. [30]. Their multi-
case studies are designed to explain the effectiveness of their 
tools in addressing their respective problems. Our primary 
goal is not to establish the effectiveness of the TCC its or 
efficiency, but to explore undocumented knowledge as a 
part of the agile software process. Tools similar to the TCC 
already exist in industry [21]. As researchers, however, we 
describe the TCC in detail because the practitioners involved 
in this research study make use of it. In addition, we believe 
future studies evaluating the TCC would prove both fruitful 
and interesting.

2.2  Knowledge management for agile software 
development

Knowledge management in software engineering is crucial 
because software development is a knowledge-intensive 
activity. We discuss knowledge management in requirements 
engineering and in agile software development.

Moe et al. [16] presented their experience in developing 
and maintaining agile team knowledge, especially virtual 
teams in two countries. They focused on shared knowledge 
of tasks and how to carry them out, who knows what on the 
team, the development process, and team goals. They also 
discussed developing team knowledge in a global software 
development project. Herein, we focused exclusively on 
undocumented knowledge in software development.

Levy and Hazzen [13] discussed how an agile software 
development team extracts tacit knowledge without extra 
effort. They indicate that when an agile team tries to intro-
duce and apply knowledge management, overcoming cul-
tural and psychological barriers is important. To improve 
knowledge extraction and sharing, they discuss several 
practices (e.g., whole team, collaboration workspace, and 
stand-up meeting). Previously, we introduced a visualization 
approach for recovering undocumented knowledge that has 
similar coordination benefits [26]. This tool is used in both 
cases of our study.

Maalej and Thurimella [14] provide an introduction to 
knowledge management in RE, including extensive discus-
sions of identifying requirements knowledge and tool sup-
port for requirements knowledge management. In this work, 
we are primarily interested in whether or not a particular 
type of requirements knowledge is lost in agile software 
development teams. For example, are source code com-
mits no longer traceable to the issue tickets (and thus to 
the requirements) that motivated their own creation? Maalej 
and Thurimella present several alternative approaches that 
may be adapted within agile software projects to support this 
aspect of requirements knowledge management.

Dorairaj et al. [8] investigated knowledge management 
in agile software development using grounded theory. They 
identified approximately 20 practices that promote effec-
tive knowledge management in agile software develop-
ment. These practices are categorized through the following 
knowledge-management processes: knowledge generation, 
knowledge extraction, knowledge transfer, and knowledge 
application. They also provide an overview of knowledge-
management practices for agile software development. Our 
approach focuses on a version of their knowledge transfer 
problem, but the TCC developed herein may provide benefits 
to other knowledge-management practices they identified.

Thurimella et  al. [31] provide guidelines managing 
knowledge of the reasoning behind software development 
decisions, expressed as rationales. Their list of rationales 
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questions (LoRQ) organizes questions according rationale 
concepts: issue, option, criterion, argument, consequences, 
and decision. For instance, questions of issue are designed 
to elicit information when specifying an issue. However, 
the guidelines and the list are not designed for development 
projects in which decisions are quick and rapidly changed. 
Our approach is designed for that environment, as found in 
agile software development.

Hoda et al. [11] examine documentation patterns in agile 
software development to identify some of the problems, their 
proximate causes, and some suggested solutions. For exam-
ple, some agile teams may follow the “Fake Documentation” 
pattern in an attempt to create “just enough” documentation 
to satisfy management. In this case, Hoda et al. suggest tim-
ing the minimal amount of time needed to produce enough 
traditional documentation that the team could coordinate 
with a non-agile team. This could then serve as a guideline 
to ensure the “Fake Documentation” pattern is avoided. Our 
approach does not consider failure patterns for documenta-
tion generally. However, we believe our examination of the 
reasons software engineers commit code to the source code 
control repository without an associated issue ticket may 
indicate a new pattern not identified in this prior work.

Stettina and Heijstek [28] examine perceptions of docu-
mentation among 79 agile software professionals. Over half 
of their participants rated documentation as “very impor-
tant” and said that too little documentation was available 
in their own projects. Moreover, they did not seem to agree 
with the agile principle that face-to-face communication 
is the most efficient method of conveying information. 
Although we did not survey developer perception of docu-
mentation, the results of our retrospective meetings for both 
cases suggest that a significant portion of the undocumented 
knowledge in our study would have been problematic. This 
finding aligns with the perceptions identified by Stettina and 
Heijstek.

Voigt et al. [32] conducted a follow-on study for the work 
by Stettina and Heijstek [28]. In that study, they examined 
documentation and information searches in agile software 
development through interviews, observation sessions, and 
online surveys. They also specifically look at issue tickets 
as a documentation problem. Their findings support those 
of Stettina and Heijstek. Moreover, they identified docu-
mentation gaps as particularly detrimental for agile projects. 
That is, the “worst case scenario” is when agile developers 
assume some documentation exists because their process 
suggests it should and they are unable to find that documen-
tation with a search. This is precisely the problem we are 
attempting to address herein by creating a tool-supported 
method to identify gaps in documentation during retrospec-
tive meetings.

Mendes et al. [15] examine documentation as a technical 
debt concern in agile software projects. Their retrospective 

case study suggests that the costs of undocumented knowl-
edge in this instance were a 47% increase in maintenance 
costs and an additional 48% of the initial cost of develop-
ment. Although we do not examine the costs of undocu-
mented knowledge in this study, we find these results par-
ticularly motivating. The increase in maintenance costs 
corresponds closely with our results examining the effect of 
undocumented knowledge on ongoing software operations.

3  Summary of case‑study projects 
and procedures

3.1  Project description and schedule

3.1.1  First case study

The software product for this study is a prototype of a 
graphical modeling tool used to draw an enterprise system 
model. The estimated budget of the complete project is about 
ten million dollars. The tool was developed to support the 
engineers as a part of a system development project in NTT 
Group. This tool is designed to provide functionality specific 
to NTT Group’s system development process.

The development schedule consists of three phases: 
planning, iteration one, and iteration two with retrospective 
meetings at the end of each iteration. Phase durations are 
3, 4, and 4 weeks, respectively. There are three roles: end 
user, requirements engineer, and software engineer. Person-
nel filling each role number four, two, and two, respectively.

3.1.2  Second case study

The project for this study is a large-scale commercial sys-
tem development. The system was developed for individual 
agriculture farmers to support their operational agricultural 
activities: sowing seeds, harvesting, and spraying pest. We 
selected a single application development project from this 
larger effort that is designed to provide analysis reports (e.g., 
weather forecast, satellite image, and pest prediction) to the 
farmers for planning their working schedules.

The development schedule consists of three phases: 
planning, iteration one, and iteration two with retrospec-
tive meetings at the end of each iteration. Phase durations 
are 2, 3, and 4 months, respectively. There are three roles: 
end user (data analyst), requirements engineer, and software 
engineer. Personnel filling each role number four, three, and 
five, respectively.

In the planning phase, requirements engineers and end 
users elicit the software requirements specification together. 
The specification includes features, user interface, business 
logic, and so on. Each feature is broken down into a set of 
implementation tasks for the next iteration phase.
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3.2  Daily and weekly meetings

3.2.1  First case study

In the iteration phases, as shown in Fig. 1, the project holds 
two types of meetings: daily and weekly. Requirements 
engineers and software engineers get together every even-
ing for the daily meeting. Before the meeting, requirements 
engineers create issue tickets in the ITS. Each ticket reflects 
one task to implement a natural language requirement. 
Some requirements directly address bugs identified during 
weekly meetings. Requirements engineers assign the tickets 
to the software engineers during the daily meeting. Follow-
ing the task descriptions of the assigned tickets, software 
engineers carry out implementation tasks and commit their 
source code to the VCS. The software engineers provide a 
progress report to the requirements engineers at the next 
daily meeting.

This project employs the on-site customer method [3] 
wherein requirements engineers hold a weekly meeting to 
share the product with the end users. The users examine and 
use the product. When they approve of the features devel-
oped, the requirements engineers close the corresponding 
tickets. However, end users often request new features or 
changes to existing features. In this case, requirements engi-
neers create new issue tickets reflecting these requirements 
after the meeting. The requirements engineers then assign 
these new tickets to the software engineers at the next daily 
meeting.

3.2.2  Second case study

As shown in Fig. 2, the project studied in our second case 
holds two types of meetings: daily and biweekly. As in the 
first case, requirements engineers and software engineers 

get together every evening for the daily meeting. However, 
requirements engineers and end users hold a biweekly 
meeting—rather than a weekly meeting—to communicate 
with each other. As in the first case, each ticket reflects 
one task to implement a natural language requirement, and 
some requirements directly address bugs identified during 
biweekly meetings. During iteration 1, requirements engi-
neers only inquire about features with end users in the meet-
ing. The application was not shared with end users until the 
end of iteration 1. At the end of iteration 1, the trial version 
of the application was released to end users. Then, end users 
operated the trial version and requested changes during the 
biweekly meeting for iteration 2. As in the first case, require-
ments engineers created new issue tickets reflecting changes 
to requirements after the meeting. They assigned these new 
tickets to the software engineers at the next daily meeting. 
The team also held retrospective meetings, which are com-
mon in agile software development methodologies, to ensure 
documents and tickets were maintained. An important goal 
of our work is to improve these meetings by supporting them 
with the TCC, but in both cases an initial retrospective was 
held without the TCC for comparison.

3.3  Issue tracking system and version control 
system

For our two cases, we examined development activities dur-
ing the two iteration phases using data from our ITS and 
VCS. Backlog [2] is a web-based application on public cloud 
services, and it was selected as the ITS for this project. Fig-
ure 3 shows a screenshot of the ITS. Each ticket includes 
nine data items: ticket ID, subject, task description, priority, 
iteration no., issue date, due date, assignee, and status. Soft-
ware engineers used Subversion [1] as the VCS. A server 

Fig. 1  Actors, their communications, and tools in two iteration phases 
(Case 1) Fig. 2  Actors, their communications, and tools in two iteration phases 

(Case 2)
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for the VCS was deployed over a private LAN. During the 
iteration phases, the software engineers were responsible for 
committing updated source code to the VCS. Both projects, 
and thus both cases, employ the same tools.

In these projects, only requirements engineers could cre-
ate new issue tickets or close existing tickets. Software engi-
neers can refer to or add comments to the task description 
in the tickets. They may do this to ask questions or make 
suggestions about the specifications to requirements engi-
neers. When a ticket is newly issued, requirements engineers 
enter the initial subject, task description, iteration number, 
and due date. They also select one of three priority levels: 
“normal,” “high,” or “low.” The ticket ID is automatically 
set by the ITS, and the status is set to “issued.” At the daily 
meeting, requirements engineers receive a progress report 
from the software engineers and then decide to whom to 
assign the new tickets. After assignment, requirements engi-
neers set the name of the assigned software engineer as the 
assignee in the ticket. The status of the ticket is changed 
from “issued” to “assigned.” Later, when software users 
approve of the feature as implemented by the software engi-
neer following the task description in the ticket, the require-
ments engineers set the status to “closed.”

4  Visualization of agile development 
activities

4.1  Linking ticket to commit

During the iteration phases, software engineers implement 
the software product following the task descriptions of the 
tickets assigned by the requirements engineers per the fol-
lowing three guidelines for software engineers:

1. When software engineers commit source code to the 
VCS, they must enter the corresponding ticket ID in the 
first line of the commit message.

2. Only one ticket ID is permitted per commit message.

3. If no ticket has been issued, the software engineers had 
no choice but to enter “None” in the first line of the com-
mit message.

Figure 4 shows the dialog box of the commit message. 
Based on the guidelines, a software engineer might enter 
ticket ID “T-001” in the first line of the commit message. 
This ticket ID would link the commit to the corresponding 
ticket in the ITS. Occasionally, we expect a requirements 
engineer may assign a task to a software engineer without 
issuing a ticket because they may be pressed for time. In 
this case, the software engineer had no choice but to enter 
“None” in the commit message.

Figure 5 shows a commit log file exported from the 
VCS. As described above, there are two types of commits: 
linked and not linked, shown on the upper and lower parts 

Fig. 3  Recording items in ticket

Fig. 4  Entering corresponding ticket ID in commit message

Fig. 5  Commit log (linked commit and unlinked commit)
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of Fig. 4, respectively. Each commit includes a commit 
message, a user ID, a commit date, and the path and file 
names of files affected by the changes in the commit. In 
the linked commit, the corresponding ticket ID “T-001” 
is recorded in the first line of the commit message, and 
“None” is recorded in the unlinked commit.

Figure 6 illustrates a meta-model that represents the 
relationship between information on ticket and commit 
log data. As mentioned in the guidelines, ticket ID, which 
is set as a value in the corresponding commit message, 
links the ticket and commit.

4.2  Ticket‑commit network chart

We previously introduced our TCC which provides a visual 
representation of time-series commit activities as described 
in the VCS and the ITS in our prior work [26]. The TCC 
represents both commits that are linked to tickets in the ITS 
and commits that are not linked to tickets in the ITS. We 
answer the following questions using our TCC:

• What source code was committed but not linked?
• When did unlinked commits occur?
• How many times did unlinked commits occur?

As shown in Fig. 7, the TCC visualizes both life spans of 
tickets and occurrences of commit activities by displaying 
colored cells on the spreadsheet. In this figure, the blue cells 
represent linked commits, and red cells represent commits 
not linked to issue tickets. The red cells in the second col-
umn represent files affected by unlinked commits. We con-
sider blue cells acceptable and red cells unacceptable. The 
gray cells represent the life span of an issue ticket, which 
is the period from the issue date to close date on the ticket.

This figure visualizes the time-series commit activi-
ties of three source code files (aaa.java, bbb.java, and 
ccc.java) for ten successive days (from 9/1 to 9/10). The 
time length of one column corresponds to one day. The 
path and file names of the files appear in the left two col-
umns. The ticket ID and user ID are the third and fourth 

Fig. 6  Meta-model of information on ticket and commit

Fig. 7  Ticket commit network chart (TCC)
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columns, respectively. The ticket ID is derived from the 
commit message. The time-series activities of commits 
are in the sixth and successive columns, as identified by 
date labels (e.g., 9/1, 9/2).

Consider the fourth line of the figure. Ticket “T_003” 
was issued on 9/2 and then closed on 9/7. The life span 
of the ticket was six days. As shown in the bottom part 
of Fig. 7, the issue date and close date of each ticket of 
the ITS refer to the life span. In the same (fourth) line, 
there are two blue cells, which means file “aaa.java” was 
committed on two days (9/3 and 9/5) by user “SE02.” The 
numbers in the two blue cells also show that SE02 com-
mitted the file “aaa.java” one time on both days. If SE02 
engineer committed multiple files simultaneously, then 
multiple blue cells will correspond to the committed files.

In the next line (i.e., the fifth line), the two red cells 
indicate the occurrences of the commits not linked to the 
corresponding tickets. “None” and “SE02” appear in the 
ticket no. and user ID columns, respectively, which means 
that user SE02 committed the “aaa.java” file on the two 
days (9/8 and 9/10) without entering the corresponding 
ticket IDs. Like the blue cells, the numbers in the two 
red cells show the number of commit times. The two red 
cells in the fifth line mean that SE02 committed aaa.java 
without the corresponding ticket ID two times on 9/8 and 
one time on 9/10. The two red cells in the second column, 
which correspond to aaa.java and ccc.java, represent the 
two files are committed without a corresponding ticket 
ID. In other words, two commits affecting these files (i.e., 
the fifth and ninth lines) include red cells.

As shown on the right side of Fig. 7, the commit logs 
in the VCS are denoted as red cells. From the VCS, as 
shown in Fig. 5, we use four data items: correspond-
ing ticket ID, user ID, commit date, and path and file 
name(s). Unlike a linked commit, one unlinked commit 
might color more than one line in the TCC. On the lower 
right side of Fig. 6, one unlinked commit log includes two 
files, aaa.java and ccc.java. In addition to the cell on 9/10 
in the fifth line that corresponds to aaa.java, the cell on 
the same day in the ninth line is also red. This line cor-
responds to ccc.java.

The TCC supports a complete analysis of the commit 
history for a project. All source code files and all commits 
are represented. By linking this information with tickets 
from the ITS, we are also able to completely examine the 
history of implementing issue tickets as filed. For exam-
ple, a complex issue ticket may remain open for several 
days and comprise several commits.

4.3  Software implementation

We implemented a tool to automatically generate the TCC. 
Figure 8 provides an overview of the TCC generator. From 

two inputs, ticket data (CSV file) exported from Backlog 
[2], and commit log (XML file) exported from Subversion 
[1], the tool automatically generates the TCC as a spread-
sheet in Microsoft Excel. Figure 10 shows a screenshot of 
the TCC generated using the TCC generator in our study.

5  Case study

To answer the research questions given in Sect. 1, we con-
ducted an exploratory case study with two cases on agile 
software development projects both inside and outside of 
NTT Laboratories. Table 1 details relevant artifacts from 
each project.

Case studies must include each of the following ele-
ments: objective, cases, theory, research questions, meth-
ods, and selection strategy [23, 34]. The objective of this 
work is to evaluate the amount and utility of missing docu-
mentation in agile software development projects. The two 
cases are a small, internal project and a larger, external 
project, both of which use an agile software development 
methodology. Our theory is that agile software develop-
ment projects focus more on implementation than docu-
mentation and that some of this focus results in undocu-
mented knowledge that would be useful in both future 
modification of the software and future operation of the 
software product by end users. Our two research questions 
can be found in the introduction. Our methodology and 
case selection strategy are detailed in the following two 
subsections.

The second case was conducted after the first case. We 
sought to address two concerns from our first case: (1) The 
first case was an internal project where the software users 
were also engineers working for NTT, and (2) the first 
case was a relatively small project and may not have been 
representative of a “typical” software project.

Fig. 8  TCC generator
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5.1  Data collection and participants

To select appropriate cases for this study, we sought to 
work with two agile software development projects. Both 
projects must be conducted primarily because the result-
ing product would be used (i.e., not simply so that we 
could study them). In addition, both projects needed to 
be comprised primarily of experienced engineers so as to 
limit the effects of inexperience on our study. Although we 
have attempted to use the exact same data collection pro-
cedures in both cases to mitigate threats to the reliability 
of comparisons between them, there are several differences 
as we now discuss.

5.1.1  First case study

Our first case is detailed in our prior work [26]. During 
the 11-week development period, two requirements engi-
neers created the user stories and design documents (e.g., 
algorithms and user interface sketches) in the first phase. 
In the later phases (i.e., two iterations), the requirements 
engineers issued 102 tickets. They issued 32 tickets at the 
beginning of iteration 1. They also held weekly meetings 
seven times with four end users. The remaining 70 tick-
ets resulted from the weekly meetings with users over the 
course of the two iterations.

Two software engineers implemented the software prod-
uct in Java following the tasks described in the tickets. The 
size of the software was approximately 8000 lines of code 
(LOC), about 6000 LOC main program and 2000 LOC test 
program. During the two iterations, the total number of 
commits by the software engineers was 159. The require-
ments engineers created a user manual in the later part 
of iteration 2. All project members had over 10 years of 
experience in software development. Two requirements 
engineers have previous experience in agile development 
(6 years for 1 and 8 years for the other). Both software 
engineers have 2 years of experience in agile development.

5.1.2  Second case study

The total duration of one software application is 9 months, 
and for this case, all project personnel had previous experi-
ence using agile software development. Three requirements 
engineers created the user stories and design documents. For 
the design documents, they spent a significant amount of 
time creating the system screen images of analysis reports. 
Based on the screen of the existing system, the requirements 
engineers investigated both needs and problems from end 
users. Later in the planning phase, the requirements engi-
neers and end users verified and validated the screens cre-
ated. Then, the requirements engineers issued total 296 tick-
ets during two iterations. The requirements engineers also 
created a user manual in the later part of iteration 2.

Five software engineers implemented the software appli-
cation in Java. The size of the software was about 51,000 
LOC, which is composed of about 22,000 LOC main pro-
gram and 29,000 LOC test program. The software engineers 
committed in total 760 commits during the two iterations.

Table 1  Artifacts of projects Phase Type Artifacts Volume

Case 1 Case 2

Planning/inception Documents User stories 30 pages 34 pages
Algorithms and user 

interface sketches
15 pages 576 pages

Iterations 1–2 Source code (Java) Main programs 5931 LOC 21,899 LOC
Test programs 2093 LOC 28,861 LOC

Documents Tickets 102 tickets 296 tickets
Source commits 159 760
User manual 54 pages 78 pages

Fig. 9  Analysis procedure (four steps) in case study
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5.2  Analysis procedure

To ensure reliability for our second case, we used exactly 
the same analysis procedure used in the first case, as we 
now describe. Figure 9 illustrates the analysis procedure, 
which contains four steps. In Step 1, we collect commit log 
and ticket data from the VCS and ITS, respectively. In Step 
2, we generate the TCC by using the TCC generator. In Step 
3, requirements engineers and software engineers identify 
and collect the unlinked commits found in the TCC (i.e., 
red cells).

In Step 4, we conducted a brief interview with the 
requirements engineers and end users2 on the project shortly 
after their final retrospective meetings. First, the require-
ments engineers collectively determine whether the unlinked 
commits should be linked to a currently issued ticket or if 
the ticket remains unissued. Using their response, we answer 
the first research question (RQ1: How many unissued tickets 
are created in agile software development projects?). The 
requirements engineers then collectively evaluate and cat-
egorize these unissued tickets in terms of future software 
modification. Specifically, we asked the requirements engi-
neers to answer the following two interview questions3 for 
each unlinked commit:

RE-1 Should this unlinked commit be linked to a cur-
rently unissued ticket?
RE-2 Would the recovered ticket be impactful in support-
ing changes to the source code?

Then, we asked the end users collectively evaluate and 
categorize the unissued tickets in terms of future software 

operation using the following interview question for each 
unissued ticket:

EU-1 Would the recovered tickets be impactful in sup-
porting user interface and usability changes?

The requirements engineers and end users could refer 
to the contents of the issued tickets and the corresponding 
source code files as highlighted by the TCC to determine 
whether these tickets contain the required knowledge. Based 
on their evaluation results, we answer the second research 
question (RQ2: How much undocumented knowledge is cre-
ated by unissued tickets and later required for future opera-
tion or modification?).

5.3  Results

5.3.1  First case results

In Step 1, we collected the 102 tickets from the ITS and 
158 commit logs from the VCS. During the two iterations, 
the numbers of linked and unlinked commits were 124 and 
35, respectively, as shown in first and second columns in 
Table 2.

Figure 10 shows the time-series data on the number of 
commits per day. As shown on the right side of the figure, 
the number of unlinked commits increased in the later part 
of the development period. Figure 11 shows the image of the 
TCC generated for this case in analysis Step 2.

In Step 3, requirements engineers and software engi-
neers examined the activities of the 35 unlinked commits 
for approximately 4 h. This took place about 3 weeks after 
the completion of the project.

As shown in the third column of Table 2 (labeled “Step 
3”), they identified 26 “unissued” tickets from the contents 
of 35 unlinked commits. We found that in 16% (26/159) of 
all commits, software engineers committed source code to 
the VCS when no corresponding tickets were issued in the 
ITS.

Table 2  Evaluation results (first 
case)

Step 3 Step 4

Corresponding tickets 
were issued or not (unis-
sued)

Unissued tickets are needed or 
not

Type of Commits No. of commits For software 
modification 
(from REs)

For software 
operation 
(from Users)

Linked to tickets 124 – – –
Not linked to tickets 35 Issued tickets 9 – –

Unissued tickets 26 Needed 6 Needed 11
Not 20 Not 15

2 Note that we did not interview the software engineers because we 
felt that they would have been biased in commenting on their own 
source code commit data.
3 The original interview was conducted in Japanese. Questions RE-1, 
RE-2, and EU-1 are English translations.
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We interviewed both the requirements engineers and the 
software engineers regarding the 26 unissued tickets. We 
found that the requirements engineers verbally assigned 
the tasks to the software engineers without issuing tickets 
because requirements engineers were too busy. Moreover, 
when the tasks were assigned to the software engineers, 
they supposed that requirements engineers would issue the 
corresponding ticket afterward. Therefore, the software 
engineers had no choice but to enter “None” in the commit 
message when they committed updated source code to the 
VCS. However, the tickets were still unissued at the end of 
the project period.

We also asked both the requirements engineers and 
the software engineers about the nine commits out of 35 
unlinked commits that had issued tickets but remained 
unlinked. The software engineers responded that the cause 
of unlinked commits was due to their own error. They failed 
to enter the corresponding ticket ID in the each “issued” 
ticket, although the requirements engineers had issued and 
assigned the tickets to them.

As described above, the requirements engineers created 
102 tickets and did not issue 26 tickets during the two itera-
tions. To answer RQ1 from Sect. 1, we show that 20% [26 
unissued tickets/(102 issued tickets + 26 unissued tickets)] of 
all tickets were not issued during the project period.

In Step 4, the requirements engineers recovered 26 unis-
sued tickets, which they identified in the previous step. After 
the recovery of the unissued tickets, we separately conducted 
interviews with both the requirements engineers and the end 
users. In the interviews, they evaluated whether the recov-
ered tickets would have contained knowledge necessary for 
future development. We must note, however, the degree to 

which the knowledge would be necessary is subjective. The 
criteria for “necessary,” both in these two projects, but also 
generally across all software projects are inherently sub-
jective when estimating future development. Traditional 
methods err on the side of over documenting, whereas agile 
methods err on the side of under documenting. By asking the 
requirements engineers on the team, we are able to get the 
perspective of the engineers designing the system, which we 
believe to be the most “fair” approach in this circumstance.

Both the requirements engineers and the end users evalu-
ated the contents of the recovered tickets for approximately 
one hour. The requirements engineers evaluated them from 
the viewpoint of the need for future software modifications, 
and the end users evaluated them from the viewpoint of the 
need for future software operations. The evaluation results 
are in the two sub-columns of Column 4 in Table 2 (labeled 
“For software modification (from REs)” and “For software 
operation (from Users)”). The requirements engineers 
responded that 23% of the recovered tickets (6/26) were 
required. The end users responded that 42% of those tickets 
(11/26) were required. Both groups agreed that four of the 26 
unissued tickets contained knowledge that would be required 
in the future, and 13 of the 26 commits were identified by 
at least one of the two groups as containing knowledge that 
would be required in the future.

We also categorized the types of task descriptions on 
activities carried out by software engineers. As shown in 
the second column of Table 3, the requirements engineers 
and end users in this case study defined seven categories 
of changes: external function changes, business logic 
changes, user interface (system screen) changes, system 
property changes, bug fixing, source code refactoring, and 

Fig. 10  First case: number of 
commits per day



393Requirements Engineering (2018) 23:381–399 

1 3

Fig. 11  First case generated 
TCC 
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development environment management. The first three are 
originally derived from meetings with end users, and the last 
four are derived from daily developer meetings.

The fifth and sixth columns in the table detail the evalu-
ations conducted by requirements engineers and end users, 
respectively. The right-most column gives examples of the 
subjects described in the recovered tickets.

From their detailed evaluations, the end users deter-
mined that the knowledge on both external function change 
(Type 1) and user interface change (Type 3) was necessary, 
although the requirements engineers did not. However, the 
requirements engineers evaluated the knowledge on system 
property change (Type 4) as necessary for forthcoming soft-
ware modification, although the end users did not think this 
as necessary. Both actors agreed that knowledge on source 
code refactoring (Type 6) and development environment 

change is not necessary for software modification and opera-
tion. To answer RQ2 from Sect. 1, our study revealed that 
41% of unissued tickets contain knowledge necessary for 
continued software operation and 22% of unissued tickets 
contain knowledge necessary for future software modifica-
tions. Half of all unissued tickets (13/27) contain knowl-
edge necessary for either continued operation or future 
modification.

5.3.2  Second case results

We collected the 296 tickets from the ITS, and 159 com-
mit logs from the VCS in Step 1. As shown in two left side 
columns in Table 4, the numbers of linked and unlinked 
commits during two iterations were 712 and 48, respectively.

Table 3  Detailed evaluations of unissued tickets (first case)

Type No. Types of task descrip-
tions

Num-
ber of 
unlinked 
commits

Number of 
unissued 
tickets

Number of tickets 
necessary for software 
modification

Number of tickets 
necessary for software 
operation

Examples of subjects 
described in recovered 
tickets

(1) External function 
changes

6 4 1 [25% (= 1/4)] 4 [80% (= 4/4)] Add function for display-
ing calculation result

(2) Business logic changes 2 2 2 [100% (= 2/2)] 2 [100% (= 2/2)] Modify calculation algo-
rithms

(3) User interface (system 
screen) changes

9 5 1 [20% (= 1/5)] 5 [100% (= 5/5)] Change layout of input 
forms in system screens

(4) System property changes 4 3 2 [66% (= 2/3)] 0 [0% (= 0/3)] Add/remove parameters in 
initial file

(5) Bug fixing 2 0 – – –
(6) Source code refactoring 3 3 0 [0% (= 0/3)] 0 [0% (= 0/3)] Create utility class for 

aggregating common 
methods

(7) Development environ-
ment change

9 9 0 [0% (= 0/9)] 0 [0% (= 0/9)] Rename brunch and tag
Eliminate unreachable 

code (dead code)
Total 35 

unlinked 
of 159 
total

26 [20% 
(= 26/
(102 + 25)]

6 [23% (= 6/26)] 11 [42% (= 11/26)]

Table 4  Evaluation results 
(second case)

Step 3 Step 4

Corresponding tickets 
were issued or not (unis-
sued)

Unissued tickets are needed or 
not

Type of commits No. of commits For software 
modification 
(from REs)

For software 
operation 
(from Users)

Linked to tickets 712 – – –
Not linked to tickets 48 Issued tickets 7 – –

Unissued tickets 41 Needed 20 Needed 9
Not 21 Not 32
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Figure 12 shows the time-series data on the number of 
commits per day. As shown in the figure, unlinked commits 
start to appear in the later part of the iteration 1. Moreover, 
unlinked commits continue to appear during iteration 2, 
increasing slightly near the end of that iteration. This is not 
surprising given that when software deadlines loom, docu-
mentation is often not viewed as a mission-critical task but 
rather as a task that slows engineers down from delivering 
operational software in a timely manner. Regardless, the 
increase in unlinked commits suggests that by this time the 
engineers were perhaps spending resources on source code 
that were, earlier in the iteration, spent on documentation.

In Step 2, the TCC was generated from the two data by 
our TCC generator. However, because the TCC generated in 
the second case is much larger and more detailed than that 
of the first case study, it has been omitted.

In Step 3, both the requirements engineers and the soft-
ware engineers examined the activities of the 48 unlinked 
commits for approximately half day. This took place about 
one month after the completion of the development of the 
application.

From the contents of 48 unlinked commits, 41 “unis-
sued” tickets were identified as shown in the third column 
of Table 4. As a result, we found that in 5% (41/760) of all 
commits, five software engineers committed source code 

to the VCS without entering corresponding ticket IDs. The 
requirements engineers created 296 tickets and did not issue 
41 tickets during the two iterations. To answer RQ1 from 
Sect. 1, our study revealed that 12% [41 unissued tickets/
(296 issued tickets + 41 unissued tickets)] of all tickets were 
not issued during the project period of the second case.

In Step 4, the requirements engineers recovered 41 unis-
sued tickets identified in Step 3. After the recovery of the 
unissued tickets, as in the first case, those “recovered” tickets 
were evaluated from the viewpoints of the needs for future 
development, namely future software modification and oper-
ation. The evaluation results are shown in the fourth and fifth 
columns in Table 4. To answer RQ2 from Sect. 1, our results 
indicate that 49% of the recovered tickets (20/41) were 
required for future software modification and 22% of those 
tickets (9/41) were required for future software operation.

As in the first case, we detailed the evaluations as 
shown in Table 5. We also used the same seven types of 
task descriptions used in the first case. As shown in the 
fourth column, the implementation tasks of unissued tickets 
mapped to four categories: Types 3, 4, 6, and 7.

The knowledge on user interface change (Type 3) was 
needed for both software modification and operation. From 
the viewpoint of software operation, the task descriptions of 
source code refactoring (Type 6) were not needed. On the 

Fig. 12  Second case: number of commits per day
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other hand, the engineers valued the knowledge as necessary 
for future software modification. The engineers determined 
the knowledge on system property changes (Type 4) was 
not required. The tasks on development environment change 
(Type 7) were not necessary for software modification and 
operation.

6  Discussion

In this section, we discuss the implications of our findings 
and its possible applications for practitioners.

6.1  Identifying undocumented knowledge

Based on the results of the case studies, we found two rea-
sons software engineers committed source code to the VCS 
without linking the commit to a ticket ID. The first is that the 
software engineers simply failed to enter the corresponding 
ticket ID in the commit message. The second reason is that 
requirements engineers did not issue a corresponding ticket 
for the requested feature. We argue that unissued tickets 
(i.e., the second reason) may cause serious problems. As we 
mentioned before, in both cases, requirements engineers and 
software engineers hold a retrospective meeting to maintain 
the software document just before delivering the software 
product at the end of the second iteration. In that meeting, 
the engineers using the TCC found about 22% of the unis-
sued tickets in the first case and 49% of the unissued tickets 
in the second case to be critical for future software modifi-
cation (i.e., adding new features). Similarly, approximately 
41% of the unissued tickets in the first case and 22% of the 
unissued tickets in the second case were found to be crucial 
documentation for future software operation (i.e., maintain-
ing current features). We believe use of our TCC contributes 
to detecting this type of undocumented knowledge.

We do not claim that requirements engineers should 
always issue tickets that record all software engineer’s tasks 
in a project. If so, documentation (i.e., describing and man-
aging tickets) will become a heavy burden on requirements 
engineers and software engineers in an agile environment. 
The project might not benefit from the advantages of agile 
software development approaches (e.g., flexibility, quick 
feedback). We suggest that it is better that project members 
examine their activities using our TCC or any similar visu-
alization tool during their retrospective meetings. In these 
meetings, they could examine the unissued tickets required 
for future software modifications or operations and docu-
ment any relevant undocumented knowledge.

6.2  Understanding unrecorded activities

In agile software development projects, the number of 
tickets issued in past projects has been used as reference 
information of cost estimation for new projects [6]. In the 
first case, we found 34 unissued tickets and recovered 27 of 
them. Before that, the requirements engineers had already 
issued 102 tickets. As a result, 129 tickets (102 + 27) were 
finally documented. To answer the first research question, 
we found that about 21% of all tickets (27/129) had not been 
recorded in the ITS. Similarly, in the second case, we found 
that about 12% [41/(296 + 41)] of all tickets had not been 
issued in the ITS.

If the original numbers of tickets (i.e., 102 tickets for the 
first case and 296 tickets for the second) were used as refer-
ence information for estimating future software modification 
costs, then there might be differences in actual and estimated 
costs of more than 20 and 12% for the first case and the sec-
ond case, respectively.

To accurately estimate software development costs and 
avoid costs identified by Mendes et al. [14], we should 
understand the actual activities of past projects, which we 
aim to use as reference information. Our approach supports 

Table 5  Detailed evaluations of unissued tickets (Second Case)

Type no. Types of task descriptions Number of 
unlinked 
commits

Number of 
unissued 
tickets

Number of tickets necessary 
for software modification

Number of tickets 
necessary for software 
operation

(1) External function changes 0 – – –
(2) Business logic changes 0 – – –
(3) User interface (system screen) changes 10 9 9 [20% (= 9/9)] 9 [100% (= 9/9)]
(4) System property changes 22 16 0[0% (= 0/16)] 0 [0% (= 0/16)]
(5) Bug fixing 0 – – –
(6) Source code refactoring 11 11 11 [100% (= 11/11)] 0 [0% (= 0/3)]
(7) Development environment change 5 5 0 [0% (= 0/5)] 0 [0% (= 0/5)]

Total 48 unlinked 
of 760 
total

41 [12% (= 41/
(296 + 41)]

20 [49% (= 20/41)] 9 [22% (= 9/41)]
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understanding actual work activities to estimate software 
development cost for forthcoming projects.

6.3  Timing of visualizations and evaluations

Timing might be a decisive factor for enhancing the effec-
tiveness of our visualization approach. In our case studies, 
actors in both projects evaluated and responded regarding 
the unissued tickets within 1 month (i.e., 3 weeks for the first 
case and 1 month for the second case) after completion of 
the development. During the evaluations, their memory of 
the project remained fresh in their minds. If the evaluation 
had been much later, it would have been more difficult for 
them to identify and recover the unissued tickets.

Once the project is completed, most project members 
(i.e., requirements engineers and software engineers) will 
be assigned to a new project. If there are no “original” pro-
ject members, detecting unissued tickets and documenting 
previously undocumented knowledge may be impossible, 
even if a TCC is generated.

6.4  The effect of undocumented knowledge

Although we cannot completely characterize the effect of 
undocumented knowledge based on these two cases in our 
case study, our results suggest that undocumented knowl-
edge in agile software projects is an important long-term 
challenge. We believe this is particularly important for 
undocumented knowledge from the second case, which 
involved nearly six times the number of commits as the first 
case. In both of our cases, the unissued tickets had an out-
sized impact in terms of their effect on future software modi-
fication and operations. Between roughly one-fifth and two-
fifths of the unissued tickets resulted in a situation where 
future development could have been stalled unnecessarily.

If our findings could be generalized as a result of addi-
tional case studies, then perhaps the most important result 
would be that we can better understand the actual trade-
off being made when switching from traditional methods 
to agile methods. Agile software development proponents 
believe that documentation is too heavily prioritized in tra-
ditional approaches [4]. Advocates of traditional approaches 
favor documentation as a means of preventing possible con-
fusion [15, 22]. In a perfect software development methodol-
ogy, engineers would only create documentation that would 
definitely be referenced in the future, an impossibility in 
the real world which requires trade-offs made on imperfect 
information.

Exploratory research is needed for traditional software 
methodologies to understand how much unused documenta-
tion is created. This needlessly created documentation is the 
other side of the trade-off. Such a study would produce the 
most direct comparison to our finding that between roughly 

20 and 40% of unissued tickets result in a need for additional 
documentation. If both aspects can be better quantified, then 
both agile and traditional methods could be improved. In 
addition, we may be able to provide better guidance to soft-
ware engineers about what must be documented and where 
documentation may not be as useful.

The second case had a lower percentage of unissued tick-
ets despite having a far larger number of commits. Perhaps 
this is a result of all team members having prior experience 
with agile software methods. It may also be a result of this 
project being developed for external stakeholders rather than 
internal stakeholders as in the first case. Unfortunately, we 
were unable to justify a deeper examination of this. How-
ever, we believe it suggests that experience and context play 
significant roles in the impact of adopting agile methods on 
documentation.

7  Case‑study limitations

When designing any case study, including exploratory case 
studies, care should be taken to mitigate threats to validity. 
This paper describes an exploratory case study seeking to 
determine: (1) the extent to which undocumented knowledge 
exists in agile software development projects and (2) the 
extent to which this may cause problems for future develop-
ment. We evaluate this case study using both quantitative 
data (e.g., unlinked tickets) and qualitative data (e.g., deter-
minations regarding the future utility of an unlinked ticket). 
These data represent our units of observation, which should 
not be confused with our unit of analysis: documented 
knowledge.

Some may question whether this work is explanatory 
rather than exploratory in nature. Runeson and Höst describe 
exploratory work as “finding out what is happening, seeking 
new insights and generating ideas and hypotheses for new 
research” [23]. In contrast, our goal in this work is to deter-
mine whether undocumented knowledge exists in agile soft-
ware development and whether it may affect future develop-
ment. Runeson and Höst describe explanatory research as 
“seeking an explanation of a situation or a problem, mostly 
but not necessary in the form of a causal relationship” [23]. 
Because we are not investigating why undocumented knowl-
edge occurs or attempting to establish and define any related 
causal relationships, this work remains exploratory in nature. 
Runeson and Höst also characterize case studies, rather than 
experiments, as typically exploratory in nature, as com-
monly using both quantitative and qualitative data, and as 
using explicit research questions from the outset [23]. The 
presence of research questions, quantitative data, or quali-
tative data is fully consistent with exploratory research and 
does not indicate, either on their own or collectively, that 
this is explanatory work.
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Construct validity addresses the degree to which a case 
study aligns with the theoretical concepts used. Three ways 
to reinforce construct validity are using multiple sources 
of reliable evidence, establishing a chain of evidence, and 
having key informants review draft case-study reports [34]. 
We used two projects in the case study. We collected 158 
and 760 commit logs, and 102 and 296 tickets from two 
iterations from projects of the first case and the second case, 
respectively. The length of iterations of the first case is 2 
months. For the second case, this is 7 months. Three differ-
ent types of actors (i.e., requirements engineers, software 
engineers, and end users) were engaged in both projects. To 
establish a chain of evidence, we used the supporting tools 
(i.e., ITS and VCS) to maintain a record of all data of our 
studies. Finally, other engineers of NTT Group’s Agile Pro-
fessional Center [17] reviewed our draft case-study report.

Our interview at the end of each case produced another 
important limitation for construct validity. We asked require-
ments engineers to identify whether unlinked commits 
would be needed for future modification of the software 
and end users to identify whether those same unlinked com-
mits would be needed to maintain future operation of the 
software. Essentially, we filled out a “yes” or “no” for each 
unlinked commit with each group to their respective ques-
tions. We did not provide heuristics, checklists, or guidelines 
to either group to help them make this determination. There-
fore, the participants in this interview may have had differing 
subjective expectations related to answering their questions.

In this exploratory case study, we make no causal infer-
ences. That is, we do not attempt to definitively determine 
why the tickets were unlinked; we simply seek to discover 
how many were unlinked and qualitatively characterize them 
as impactful for future development or use. Therefore, inter-
nal validity is not a concern.

External validity is the ability of a case study’s findings 
to generalize to broader populations [34]. A possible threat 
to external validity is the fact that we analyzed only two 
projects. In addition, we do not examine the consequences 
of these gaps. It is possible that, although our interview 
subjects felt the unlinked commits were problematic, other 
groups would not find similar unlinked commits to be prob-
lematic for future modification or operation of the software. 
That said, our visualization approach (i.e., TCC) is not 
domain specific and would work for any project using the 
commit log procedure described herein and used widely in 
industry. We used an ITS and VCS in the approach, both of 
which are commonly used in agile software development 
projects. We also used the standard data formats of both 
ITS and VCS. Our TCC generator does not require changes 
to these data formats. We believe these facts reinforce the 
external validity of our case.

Reliability is the ability to repeat a study and observe 
similar results [34]. In this work, we use data collection and 

analysis procedures that are as similar as possible in both 
cases to mitigate the threat of reliability and ensure com-
parisons between the two cases remain valid. A complete 
discussion of the differences can be found in Sects. 5.1 and 
5.2. This decision does limit our ability to explain new phe-
nomena. For example, we could have altered our procedures 
in the second case based on things we learned in the first 
case to better explain our results. To do so, we would need 
to have examined another smaller project more similar to the 
first case. This would also have changed the nature of our 
study from exploratory to explanatory. However, we chose 
instead to extend our exploratory goals from an internally 
used, smaller project (i.e., the first case) to an externally 
used, larger project (i.e., the second case). To further rein-
force our study’s reliability, the ITS and VCS used for the 
case studies have no specific features. Both are open-source 
software. We also developed a tool that generates the TCC. 
This tool enabled the automatic carrying out of Step 2 of 
the cases. By using open-source software and the tool, other 
researchers and study participants will be able to follow the 
steps of the case study rigorously.

8  Summary and future work

Agile software development is popular and widely used, but 
the effects of an agile approach to documentation are not 
well understood. In this paper, we examine undocumented 
knowledge—information that could have been documented, 
but was not—in two industrial cases using agile software 
methods.

Our study revealed that software engineers committed 
source code to the VCS without entering the corresponding 
ticket IDs in 17 and 5% of all commits in the first case and 
the second case, respectively. The unissued tickets accounted 
for 21% of all tickets in the first case and 12% of those in 
the second case. The end users and requirements engineers 
evaluated the contents of the unissued tickets, and we found 
that 42% of these tickets in the first case and 22% of those 
in the second case were required for end users in future soft-
ware operation. Moreover, 22% of the unissued tickets in the 
first case and 49% of those in the second case were required 
for engineers in future software modification. These results 
suggest that undocumented knowledge in agile software 
development is a non-trivial problem that will compound 
over time.

We plan to design and develop a tool to predict the occur-
rence of unissued tickets through real-time monitoring and 
visualization of the activities of the ITS and VCS. The goal 
of this tool is to prevent undocumented knowledge due to 
human error and mitigate the effort expended during retro-
spective meetings to uncover these errors.
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