
Vol.:(0123456789)1 3

Requirements Engineering (2018) 23:381–399
https://doi.org/10.1007/s00766-018-0291-4

RE 2017

Discovering undocumented knowledge through visualization of agile
software development activities

Case studies on industrial projects using issue tracking system and version control system

Shinobu Saito1 · Yukako Iimura1 · Aaron K. Massey2 · Annie I. Antón3

Received: 24 October 2017 / Accepted: 23 March 2018 / Published online: 4 April 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
In agile software development projects, software engineers prioritize implementation over documentation. Is the cost of
missing documentation greater than the cost of producing unnecessary or unused documentation? Agile software engineers
must still maintain other software artifacts, such as tickets in an issue tracking system or source code committed to a version
control system (VCS). Do these artifacts contain useful knowledge? In this paper, we examine undocumented knowledge
in a multi-case exploratory case study of industrial agile software development projects. The first is an internal project with
159 source code commits and roughly 8000 lines of code. The second is an external project with 760 source code commits
and roughly 50,000 lines of code. We introduce a ticket-commit network chart (TCC) that visually represents time-series
commit activities along with filed issue tickets. We also implement a tool to generate the TCC using both commit log and
ticket data. Our case study revealed that software engineers committed source code to the VCS without a corresponding issue
ticket in a non-trivial minority of instances. If these commits were based on and linked to individual issue tickets, then these
“unissued” tickets would have accounted for a non-trivial minority (5–21%) of the knowledge needed for future software
modification and operations. End users and requirements engineers also evaluated the contents of these commits. They found
that the omission of links to individual tickets had an important impact on future software modification or operation with
between 22 and 49% of these instances resulting in undocumented knowledge.

Keywords Agile · Agile development · Agile requirements · Requirements management · Requirements knowledge

1 Introduction

Agile software development is now an established approach
to building software systems [14, 19, 22, 27]. The basic con-
cept of agile development practices is that software engi-
neers prioritize implementation activity, customer interac-
tion, and tight iteration cycles over up-front requirements
analysis and documentation. In contrast to other software
methodologies, such as the traditional waterfall model, they
generally put more emphasis on software implementation
(i.e., working software) than its documents [4]. In this man-
ner, software developers can respond flexibly to stakeholder
needs. Of course, the culture of the organization and team
always influence the amount of documentation generated
no matter the development approach. However, within this
paper, we observe that even when there is a strong cul-
ture of using ITS and VCS, the relevance of this kind of

 * Aaron K. Massey
 akmassey@umbc.edu

 Shinobu Saito
 saito.shinobu@lab.ntt.co.jp

 Yukako Iimura
 iimura.yukako@lab.ntt.co.jp

 Annie I. Antón
 aianton@gatech.edu

1 Software Innovation Center, NTT Corporation, Tokyo, Japan
2 Department of Information Systems, University of Maryland,

Baltimore County, Baltimore, MD, USA
3 Georgia Institute of Technology School of Interactive

Computing, Atlanta, GA, USA

http://orcid.org/0000-0002-4698-6034
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-018-0291-4&domain=pdf

382 Requirements Engineering (2018) 23:381–399

1 3

documentation is not always valued as essential or necessary
as in more traditional software development approaches.

Agile software development is not typically a documen-
tation-driven process. During agile software development,
software engineers prioritize implementation activity to
address stakeholder requests. Implemented features may
differ from any documentation requirements engineers ini-
tially created. To mitigate this, Scrum [22, 25] approaches
hold sprint reviews and retrospective meetings wherein the
project members (i.e., requirements engineers and soft-
ware engineers) ensure software documents are properly
maintained.

Cockburn describes Agile software development as a
cooperative game in which engineers should pay attention
to both the current game (i.e., the current project) and the
next game (i.e., future projects) [5]. Software projects must
maintain knowledge required by “current” and “future” pro-
ject engineers. Current engineers might need to know the
specifications and constraints of the software product. Future
engineers might need to know software architecture details
or features and the rationale behind development and modifi-
cation of the product. In agile software projects, we question
whether agile software engineers sufficiently document the
knowledge required for these stakeholder groups.

This paper details an explanatory multi-case study with
two cases conducted to examine two agile software develop-
ment projects: an internal NTT R&D project [18, 26] and
an external, commercial system development project for an
NTT customer. NTT is a global service and network pro-
vider. NTT Laboratories have more than 3000 researchers
both in Japan and abroad. Approximately 1000 research-
ers are engaged in R&D activities in services and solutions.
About 100 software development projects are launched
annually to create software products (i.e., prototypes, tools)
for services and solutions. Most of these projects are com-
pleted within a year making them a seemingly ideal fit for
the rapid iterative development style supported by stand-
ard agile methods. After the software products are devel-
oped and trial evaluations of the project are conducted in
the Laboratories, the software products are provided to the
NTT Group companies. Next, those companies use or, if
necessary, modify the software products for their business
activities.

End users and the engineers in the NTT Group companies
are first exposed to software products after delivery by NTT
Laboratories. When they need to operate or modify these
products, they must rely on extant documentation. Knowl-
edge transfer from NTT Laboratories to other companies is
a decisive factor for business success. Lack of documenta-
tion may cause users and engineers to struggle to use or
modify the software. Documentation can take several forms,
including software specifications, constraints, architecture,

features, and rationales. Each type of documentation may
affect future modification or use of the software

The first case of this study was originally reported
in our prior work [26]. In this paper, we revise and aug-
ment the presentation of that work with extended discus-
sion, additional comparisons to related work, and several
new figures and tables. Moreover, we extend and compare
our prior research with an entirely new second case as we
now discuss. The second case employs a large-scale soft-
ware system development project outside of NTT. This
project is a commercial system development effort, so the
nature of the project differs from the first case, which is an
R&D project at NTT. Neither end users nor engineers (i.e.,
requirements engineers and software engineers) are NTT
employees. (This was not true for the first case, which was
an internal NTT project.) The target system for the second
case is not developed from scratch. Because this project
comprises a commercial system development effort, almost
all engineers are contracted by the organization to which
the end users belong. Some engineers were contracted out
of the project during the development period. As a result,
new engineers joined the project. As in other NTT’s projects
[24, 25], knowledge transfer from existing members to new
members is an important factor for ensuring continuity of
development. Without documentation, new development
team members will experience difficulty in modifying and/
or operating the software systems.

Issue tracking systems (ITSs) and version control systems
(VCSs) are commonly used in agile software development
projects [10, 20–22, 28, 29]. In this study, we examine the
time-series activities of the project engineers (i.e., require-
ments engineers and software engineers) using both ticket
data in an ITS and commit logs in a VCS. Requirements
engineers create issue tickets using the ITS. Each ticket
describes a task for software engineers. Software engineers
implement the product features and commit source code to
the VCS based on issue tickets. After the feature has been
approved during a daily meeting, the corresponding ticket
is closed.

Ideally, all changes to the source code committed in the
VCS will correspond to a ticket filed in the ITS. In practice,
requirements engineers sometimes describe tasks to software
engineers without issuing tickets. This could happen through
in-person conversation. Such a scenario often leads to com-
mitted source code that does not correspond to a ticket in the
ITS. In this paper, we refer to a requirement implemented
without a corresponding ticket as an “unissued ticket.”1 As

1 A commit may be unlinked to an issue ticket at the time it is
merged into the repository. This could happen for one of two reasons.
First, the issue ticket may exist, and the software engineer simply
failed to link the commit to it. Second, the issue ticket may not exist.
We refer to both cases as “unlinked commits” and to the second cases
as “unissued tickets.” Commits should, however, always be linked to

383Requirements Engineering (2018) 23:381–399

1 3

the number of unissued tickets increases, we expect that the
knowledge required for future modification or operation may
be undocumented. In this context, modification refers to the
addition of new features or functions, and operation refers
to use of the software system according to its existing goals
and features.

In this paper, we describe a ticket-commit network chart
(TCC) which links ticket data in the ITS with the commit
log data in the VCS. The TCC was previously introduced in
our prior work [26]. It provides a visual representation of
time-series commit activities, whether they are linked or not
linked to the corresponding tickets. The TCC is generated
using a tool, which is based on software implementation.

Using the TCC, we seek to answer the following research
questions by means of empirical evaluation in agile software
development projects in both inside and outside of NTT:

RQ1 How many unissued tickets are created in agile soft-
ware development projects?
RQ2 How much undocumented knowledge is created
by unissued tickets that may be required later for future
operation or modification?

We answer RQ1 by measuring how often software engi-
neers modify the source code without tracing the changes
to a stakeholder request. Changes that are not traceable to
stakeholder requests are often, but not always, problematic
in practice. We answer RQ2 by examining how often those
changes affect future development. Both questions address
the extent to which documentation in standard agile projects
is insufficient for future development.

Our first case establishes baseline answers to our two
research questions [26]. Our second case provides an impor-
tant point of comparison. In addition to completely replicat-
ing the results of the first case, we are able to demonstrate
that these results also hold in a large-scale external software
project rather than a smaller, internal software project. The
extent to which there are unissued tickets decreased, but
the essential findings of the research question remained the
same.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work with an emphasis on visualiza-
tion of development activities and knowledge management
within agile software development. Section 3 provides an
overview of the agile software development projects we
examined and evaluated. Section 4 introduces our approach

for visualizing agile software development activities. Sec-
tion 5 presents our empirical analysis procedure and results
from the two cases of our study. Section 6 discusses the
implications of our findings. Section 7 describes the limita-
tions of this work, and Section 8 summarizes the paper and
presents future work.

2 Related research

Two areas of related research provide important background.
First, we discuss research related to software development
tool support and visualizing software development activities.
Second, we introduce research on managing knowledge in
agile software development environments.

2.1 Tool support and visualization of software
development activities

Visualization of software development is a common chal-
lenge in software engineering. Wnuk et al. [33] proposed
a feature transition chart (FTC) to visualize scope dynam-
ics within and across multiple projects. The scope of each
project is maintained in a feature list. The FTC provides a
comprehensive overview of the timing and magnitude of fea-
ture transitions among multiple projects. The feature list is
similar in style and format to the list of tickets in an ITS we
used. However, we focused on commits and corresponding
ticket activities. Our TCC provides an overview of the tim-
ing of commits, whether they are linked to the corresponding
tickets or not.

Lanza et al. [12] developed a real-time visualization tool,
called Manhattan, for team activity within software develop-
ment. This tool, built as an Eclipse plug-in, visualizes pro-
jects in the Eclipse workspace using a 3D city metaphor. It
depicts a living city where code changes from team members
and potential conflicts are animated with different colors and
shapes. The preliminary evaluation shows positive reactions
in terms of team collaboration. However, their visualiza-
tion approach notifies engineers of programing activities,
whereas our visualization approach notifies engineers of
software documentation activities.

In our prior work [24], we proposed an approach to
track requirements evolution using tickets in an ITS. We
provided seven rules that describe the identification of
requirements evolution events (e.g., refine, decompose,
and replace) based on combinations of operations (e.g.,
add, change, and delete) in the tickets. We defined a
requirements evolution chart (REC) to visualize require-
ments evolution history. We also examined whether the
REC supports new requirements engineers conducting
an impact analysis [25]. We found that new requirements
engineers using the REC could identify artifacts affected

an issue ticket because of the explicit methodological desire to con-
nect one commit with one issue ticket in both cases of our study.
Even if a commit could have been linked to an already issued ticket,
the fact that it was not remains problematic.

Footnote 1 (continued)

384 Requirements Engineering (2018) 23:381–399

1 3

by change requests more accurately and quickly than
requirements engineers attempting the same task without
the REC. Our approach in that work focused only on the
tickets in an ITS for visualization of activities of require-
ments engineers. Our approach in this research involves
both ticket data in ITS and commit data in a VCS. In addi-
tion, we visualize software development activities of both
requirements engineers and software engineers.

Comparing other multi-case studies with our own can
clarify and differentiate our exploratory research design
from explanatory work, both of which are common
approaches to case-study research. Exploratory research
identifies and describes phenomena, whereas explanatory
research discovers causal relationships [23, 34]. Dhungana
et al. [7] and Thurimella et al. [30] both develop tools using
explanatory multi-case studies. Thurimella et al. [30] build
plug-ins for requirements tools using case-based research.
Their multi-case study is built on the theory-building pro-
cess [9], and their results show how practitioners can mini-
mize implementation effort when extending an RE tool to
manage variability within software product lines. Their work
is explanatory. They seek to explain why their approach to
variability management is successful using successive cases
to enhance their explanation. Similarly, Dhungana et al. [7]
also develop a meta-tool through an explanatory multi-case
study to improve reuse of assets across multiple product
lines. They examine the flexibility, extensibility, and adapt-
ability of their tool through four separate cases. Their work
is also explanatory, and they use additional cases to mitigate
bias and threats that would otherwise affect the validity of
their results. In contrast to both Thurimella et al. and Dhun-
gana et al., our work is exploratory. We seek to describe,
not to explain the causes of, undocumented knowledge in
agile software development. For example, we are interested
in the extent to which undocumented knowledge is present
and whether engineers and users view it as potentially prob-
lematic. We are not seeking to explain why undocumented
knowledge is present or why it is problematic. We use suc-
cessive cases, therefore, to broaden our exploration rather
than to refine an explanation.

The TCC developed and employed in our study serves
an entirely different purpose than the tools developed by
Dhungana et al. [7] and Thurimella et al. [30]. Their multi-
case studies are designed to explain the effectiveness of their
tools in addressing their respective problems. Our primary
goal is not to establish the effectiveness of the TCC its or
efficiency, but to explore undocumented knowledge as a
part of the agile software process. Tools similar to the TCC
already exist in industry [21]. As researchers, however, we
describe the TCC in detail because the practitioners involved
in this research study make use of it. In addition, we believe
future studies evaluating the TCC would prove both fruitful
and interesting.

2.2 Knowledge management for agile software
development

Knowledge management in software engineering is crucial
because software development is a knowledge-intensive
activity. We discuss knowledge management in requirements
engineering and in agile software development.

Moe et al. [16] presented their experience in developing
and maintaining agile team knowledge, especially virtual
teams in two countries. They focused on shared knowledge
of tasks and how to carry them out, who knows what on the
team, the development process, and team goals. They also
discussed developing team knowledge in a global software
development project. Herein, we focused exclusively on
undocumented knowledge in software development.

Levy and Hazzen [13] discussed how an agile software
development team extracts tacit knowledge without extra
effort. They indicate that when an agile team tries to intro-
duce and apply knowledge management, overcoming cul-
tural and psychological barriers is important. To improve
knowledge extraction and sharing, they discuss several
practices (e.g., whole team, collaboration workspace, and
stand-up meeting). Previously, we introduced a visualization
approach for recovering undocumented knowledge that has
similar coordination benefits [26]. This tool is used in both
cases of our study.

Maalej and Thurimella [14] provide an introduction to
knowledge management in RE, including extensive discus-
sions of identifying requirements knowledge and tool sup-
port for requirements knowledge management. In this work,
we are primarily interested in whether or not a particular
type of requirements knowledge is lost in agile software
development teams. For example, are source code com-
mits no longer traceable to the issue tickets (and thus to
the requirements) that motivated their own creation? Maalej
and Thurimella present several alternative approaches that
may be adapted within agile software projects to support this
aspect of requirements knowledge management.

Dorairaj et al. [8] investigated knowledge management
in agile software development using grounded theory. They
identified approximately 20 practices that promote effec-
tive knowledge management in agile software develop-
ment. These practices are categorized through the following
knowledge-management processes: knowledge generation,
knowledge extraction, knowledge transfer, and knowledge
application. They also provide an overview of knowledge-
management practices for agile software development. Our
approach focuses on a version of their knowledge transfer
problem, but the TCC developed herein may provide benefits
to other knowledge-management practices they identified.

Thurimella et al. [31] provide guidelines managing
knowledge of the reasoning behind software development
decisions, expressed as rationales. Their list of rationales

385Requirements Engineering (2018) 23:381–399

1 3

questions (LoRQ) organizes questions according rationale
concepts: issue, option, criterion, argument, consequences,
and decision. For instance, questions of issue are designed
to elicit information when specifying an issue. However,
the guidelines and the list are not designed for development
projects in which decisions are quick and rapidly changed.
Our approach is designed for that environment, as found in
agile software development.

Hoda et al. [11] examine documentation patterns in agile
software development to identify some of the problems, their
proximate causes, and some suggested solutions. For exam-
ple, some agile teams may follow the “Fake Documentation”
pattern in an attempt to create “just enough” documentation
to satisfy management. In this case, Hoda et al. suggest tim-
ing the minimal amount of time needed to produce enough
traditional documentation that the team could coordinate
with a non-agile team. This could then serve as a guideline
to ensure the “Fake Documentation” pattern is avoided. Our
approach does not consider failure patterns for documenta-
tion generally. However, we believe our examination of the
reasons software engineers commit code to the source code
control repository without an associated issue ticket may
indicate a new pattern not identified in this prior work.

Stettina and Heijstek [28] examine perceptions of docu-
mentation among 79 agile software professionals. Over half
of their participants rated documentation as “very impor-
tant” and said that too little documentation was available
in their own projects. Moreover, they did not seem to agree
with the agile principle that face-to-face communication
is the most efficient method of conveying information.
Although we did not survey developer perception of docu-
mentation, the results of our retrospective meetings for both
cases suggest that a significant portion of the undocumented
knowledge in our study would have been problematic. This
finding aligns with the perceptions identified by Stettina and
Heijstek.

Voigt et al. [32] conducted a follow-on study for the work
by Stettina and Heijstek [28]. In that study, they examined
documentation and information searches in agile software
development through interviews, observation sessions, and
online surveys. They also specifically look at issue tickets
as a documentation problem. Their findings support those
of Stettina and Heijstek. Moreover, they identified docu-
mentation gaps as particularly detrimental for agile projects.
That is, the “worst case scenario” is when agile developers
assume some documentation exists because their process
suggests it should and they are unable to find that documen-
tation with a search. This is precisely the problem we are
attempting to address herein by creating a tool-supported
method to identify gaps in documentation during retrospec-
tive meetings.

Mendes et al. [15] examine documentation as a technical
debt concern in agile software projects. Their retrospective

case study suggests that the costs of undocumented knowl-
edge in this instance were a 47% increase in maintenance
costs and an additional 48% of the initial cost of develop-
ment. Although we do not examine the costs of undocu-
mented knowledge in this study, we find these results par-
ticularly motivating. The increase in maintenance costs
corresponds closely with our results examining the effect of
undocumented knowledge on ongoing software operations.

3 Summary of case‑study projects
and procedures

3.1 Project description and schedule

3.1.1 First case study

The software product for this study is a prototype of a
graphical modeling tool used to draw an enterprise system
model. The estimated budget of the complete project is about
ten million dollars. The tool was developed to support the
engineers as a part of a system development project in NTT
Group. This tool is designed to provide functionality specific
to NTT Group’s system development process.

The development schedule consists of three phases:
planning, iteration one, and iteration two with retrospective
meetings at the end of each iteration. Phase durations are
3, 4, and 4 weeks, respectively. There are three roles: end
user, requirements engineer, and software engineer. Person-
nel filling each role number four, two, and two, respectively.

3.1.2 Second case study

The project for this study is a large-scale commercial sys-
tem development. The system was developed for individual
agriculture farmers to support their operational agricultural
activities: sowing seeds, harvesting, and spraying pest. We
selected a single application development project from this
larger effort that is designed to provide analysis reports (e.g.,
weather forecast, satellite image, and pest prediction) to the
farmers for planning their working schedules.

The development schedule consists of three phases:
planning, iteration one, and iteration two with retrospec-
tive meetings at the end of each iteration. Phase durations
are 2, 3, and 4 months, respectively. There are three roles:
end user (data analyst), requirements engineer, and software
engineer. Personnel filling each role number four, three, and
five, respectively.

In the planning phase, requirements engineers and end
users elicit the software requirements specification together.
The specification includes features, user interface, business
logic, and so on. Each feature is broken down into a set of
implementation tasks for the next iteration phase.

386 Requirements Engineering (2018) 23:381–399

1 3

3.2 Daily and weekly meetings

3.2.1 First case study

In the iteration phases, as shown in Fig. 1, the project holds
two types of meetings: daily and weekly. Requirements
engineers and software engineers get together every even-
ing for the daily meeting. Before the meeting, requirements
engineers create issue tickets in the ITS. Each ticket reflects
one task to implement a natural language requirement.
Some requirements directly address bugs identified during
weekly meetings. Requirements engineers assign the tickets
to the software engineers during the daily meeting. Follow-
ing the task descriptions of the assigned tickets, software
engineers carry out implementation tasks and commit their
source code to the VCS. The software engineers provide a
progress report to the requirements engineers at the next
daily meeting.

This project employs the on-site customer method [3]
wherein requirements engineers hold a weekly meeting to
share the product with the end users. The users examine and
use the product. When they approve of the features devel-
oped, the requirements engineers close the corresponding
tickets. However, end users often request new features or
changes to existing features. In this case, requirements engi-
neers create new issue tickets reflecting these requirements
after the meeting. The requirements engineers then assign
these new tickets to the software engineers at the next daily
meeting.

3.2.2 Second case study

As shown in Fig. 2, the project studied in our second case
holds two types of meetings: daily and biweekly. As in the
first case, requirements engineers and software engineers

get together every evening for the daily meeting. However,
requirements engineers and end users hold a biweekly
meeting—rather than a weekly meeting—to communicate
with each other. As in the first case, each ticket reflects
one task to implement a natural language requirement, and
some requirements directly address bugs identified during
biweekly meetings. During iteration 1, requirements engi-
neers only inquire about features with end users in the meet-
ing. The application was not shared with end users until the
end of iteration 1. At the end of iteration 1, the trial version
of the application was released to end users. Then, end users
operated the trial version and requested changes during the
biweekly meeting for iteration 2. As in the first case, require-
ments engineers created new issue tickets reflecting changes
to requirements after the meeting. They assigned these new
tickets to the software engineers at the next daily meeting.
The team also held retrospective meetings, which are com-
mon in agile software development methodologies, to ensure
documents and tickets were maintained. An important goal
of our work is to improve these meetings by supporting them
with the TCC, but in both cases an initial retrospective was
held without the TCC for comparison.

3.3 Issue tracking system and version control
system

For our two cases, we examined development activities dur-
ing the two iteration phases using data from our ITS and
VCS. Backlog [2] is a web-based application on public cloud
services, and it was selected as the ITS for this project. Fig-
ure 3 shows a screenshot of the ITS. Each ticket includes
nine data items: ticket ID, subject, task description, priority,
iteration no., issue date, due date, assignee, and status. Soft-
ware engineers used Subversion [1] as the VCS. A server

Fig. 1 Actors, their communications, and tools in two iteration phases
(Case 1) Fig. 2 Actors, their communications, and tools in two iteration phases

(Case 2)

387Requirements Engineering (2018) 23:381–399

1 3

for the VCS was deployed over a private LAN. During the
iteration phases, the software engineers were responsible for
committing updated source code to the VCS. Both projects,
and thus both cases, employ the same tools.

In these projects, only requirements engineers could cre-
ate new issue tickets or close existing tickets. Software engi-
neers can refer to or add comments to the task description
in the tickets. They may do this to ask questions or make
suggestions about the specifications to requirements engi-
neers. When a ticket is newly issued, requirements engineers
enter the initial subject, task description, iteration number,
and due date. They also select one of three priority levels:
“normal,” “high,” or “low.” The ticket ID is automatically
set by the ITS, and the status is set to “issued.” At the daily
meeting, requirements engineers receive a progress report
from the software engineers and then decide to whom to
assign the new tickets. After assignment, requirements engi-
neers set the name of the assigned software engineer as the
assignee in the ticket. The status of the ticket is changed
from “issued” to “assigned.” Later, when software users
approve of the feature as implemented by the software engi-
neer following the task description in the ticket, the require-
ments engineers set the status to “closed.”

4 Visualization of agile development
activities

4.1 Linking ticket to commit

During the iteration phases, software engineers implement
the software product following the task descriptions of the
tickets assigned by the requirements engineers per the fol-
lowing three guidelines for software engineers:

1. When software engineers commit source code to the
VCS, they must enter the corresponding ticket ID in the
first line of the commit message.

2. Only one ticket ID is permitted per commit message.

3. If no ticket has been issued, the software engineers had
no choice but to enter “None” in the first line of the com-
mit message.

Figure 4 shows the dialog box of the commit message.
Based on the guidelines, a software engineer might enter
ticket ID “T-001” in the first line of the commit message.
This ticket ID would link the commit to the corresponding
ticket in the ITS. Occasionally, we expect a requirements
engineer may assign a task to a software engineer without
issuing a ticket because they may be pressed for time. In
this case, the software engineer had no choice but to enter
“None” in the commit message.

Figure 5 shows a commit log file exported from the
VCS. As described above, there are two types of commits:
linked and not linked, shown on the upper and lower parts

Fig. 3 Recording items in ticket

Fig. 4 Entering corresponding ticket ID in commit message

Fig. 5 Commit log (linked commit and unlinked commit)

388 Requirements Engineering (2018) 23:381–399

1 3

of Fig. 4, respectively. Each commit includes a commit
message, a user ID, a commit date, and the path and file
names of files affected by the changes in the commit. In
the linked commit, the corresponding ticket ID “T-001”
is recorded in the first line of the commit message, and
“None” is recorded in the unlinked commit.

Figure 6 illustrates a meta-model that represents the
relationship between information on ticket and commit
log data. As mentioned in the guidelines, ticket ID, which
is set as a value in the corresponding commit message,
links the ticket and commit.

4.2 Ticket‑commit network chart

We previously introduced our TCC which provides a visual
representation of time-series commit activities as described
in the VCS and the ITS in our prior work [26]. The TCC
represents both commits that are linked to tickets in the ITS
and commits that are not linked to tickets in the ITS. We
answer the following questions using our TCC:

• What source code was committed but not linked?
• When did unlinked commits occur?
• How many times did unlinked commits occur?

As shown in Fig. 7, the TCC visualizes both life spans of
tickets and occurrences of commit activities by displaying
colored cells on the spreadsheet. In this figure, the blue cells
represent linked commits, and red cells represent commits
not linked to issue tickets. The red cells in the second col-
umn represent files affected by unlinked commits. We con-
sider blue cells acceptable and red cells unacceptable. The
gray cells represent the life span of an issue ticket, which
is the period from the issue date to close date on the ticket.

This figure visualizes the time-series commit activi-
ties of three source code files (aaa.java, bbb.java, and
ccc.java) for ten successive days (from 9/1 to 9/10). The
time length of one column corresponds to one day. The
path and file names of the files appear in the left two col-
umns. The ticket ID and user ID are the third and fourth

Fig. 6 Meta-model of information on ticket and commit

Fig. 7 Ticket commit network chart (TCC)

389Requirements Engineering (2018) 23:381–399

1 3

columns, respectively. The ticket ID is derived from the
commit message. The time-series activities of commits
are in the sixth and successive columns, as identified by
date labels (e.g., 9/1, 9/2).

Consider the fourth line of the figure. Ticket “T_003”
was issued on 9/2 and then closed on 9/7. The life span
of the ticket was six days. As shown in the bottom part
of Fig. 7, the issue date and close date of each ticket of
the ITS refer to the life span. In the same (fourth) line,
there are two blue cells, which means file “aaa.java” was
committed on two days (9/3 and 9/5) by user “SE02.” The
numbers in the two blue cells also show that SE02 com-
mitted the file “aaa.java” one time on both days. If SE02
engineer committed multiple files simultaneously, then
multiple blue cells will correspond to the committed files.

In the next line (i.e., the fifth line), the two red cells
indicate the occurrences of the commits not linked to the
corresponding tickets. “None” and “SE02” appear in the
ticket no. and user ID columns, respectively, which means
that user SE02 committed the “aaa.java” file on the two
days (9/8 and 9/10) without entering the corresponding
ticket IDs. Like the blue cells, the numbers in the two
red cells show the number of commit times. The two red
cells in the fifth line mean that SE02 committed aaa.java
without the corresponding ticket ID two times on 9/8 and
one time on 9/10. The two red cells in the second column,
which correspond to aaa.java and ccc.java, represent the
two files are committed without a corresponding ticket
ID. In other words, two commits affecting these files (i.e.,
the fifth and ninth lines) include red cells.

As shown on the right side of Fig. 7, the commit logs
in the VCS are denoted as red cells. From the VCS, as
shown in Fig. 5, we use four data items: correspond-
ing ticket ID, user ID, commit date, and path and file
name(s). Unlike a linked commit, one unlinked commit
might color more than one line in the TCC. On the lower
right side of Fig. 6, one unlinked commit log includes two
files, aaa.java and ccc.java. In addition to the cell on 9/10
in the fifth line that corresponds to aaa.java, the cell on
the same day in the ninth line is also red. This line cor-
responds to ccc.java.

The TCC supports a complete analysis of the commit
history for a project. All source code files and all commits
are represented. By linking this information with tickets
from the ITS, we are also able to completely examine the
history of implementing issue tickets as filed. For exam-
ple, a complex issue ticket may remain open for several
days and comprise several commits.

4.3 Software implementation

We implemented a tool to automatically generate the TCC.
Figure 8 provides an overview of the TCC generator. From

two inputs, ticket data (CSV file) exported from Backlog
[2], and commit log (XML file) exported from Subversion
[1], the tool automatically generates the TCC as a spread-
sheet in Microsoft Excel. Figure 10 shows a screenshot of
the TCC generated using the TCC generator in our study.

5 Case study

To answer the research questions given in Sect. 1, we con-
ducted an exploratory case study with two cases on agile
software development projects both inside and outside of
NTT Laboratories. Table 1 details relevant artifacts from
each project.

Case studies must include each of the following ele-
ments: objective, cases, theory, research questions, meth-
ods, and selection strategy [23, 34]. The objective of this
work is to evaluate the amount and utility of missing docu-
mentation in agile software development projects. The two
cases are a small, internal project and a larger, external
project, both of which use an agile software development
methodology. Our theory is that agile software develop-
ment projects focus more on implementation than docu-
mentation and that some of this focus results in undocu-
mented knowledge that would be useful in both future
modification of the software and future operation of the
software product by end users. Our two research questions
can be found in the introduction. Our methodology and
case selection strategy are detailed in the following two
subsections.

The second case was conducted after the first case. We
sought to address two concerns from our first case: (1) The
first case was an internal project where the software users
were also engineers working for NTT, and (2) the first
case was a relatively small project and may not have been
representative of a “typical” software project.

Fig. 8 TCC generator

390 Requirements Engineering (2018) 23:381–399

1 3

5.1 Data collection and participants

To select appropriate cases for this study, we sought to
work with two agile software development projects. Both
projects must be conducted primarily because the result-
ing product would be used (i.e., not simply so that we
could study them). In addition, both projects needed to
be comprised primarily of experienced engineers so as to
limit the effects of inexperience on our study. Although we
have attempted to use the exact same data collection pro-
cedures in both cases to mitigate threats to the reliability
of comparisons between them, there are several differences
as we now discuss.

5.1.1 First case study

Our first case is detailed in our prior work [26]. During
the 11-week development period, two requirements engi-
neers created the user stories and design documents (e.g.,
algorithms and user interface sketches) in the first phase.
In the later phases (i.e., two iterations), the requirements
engineers issued 102 tickets. They issued 32 tickets at the
beginning of iteration 1. They also held weekly meetings
seven times with four end users. The remaining 70 tick-
ets resulted from the weekly meetings with users over the
course of the two iterations.

Two software engineers implemented the software prod-
uct in Java following the tasks described in the tickets. The
size of the software was approximately 8000 lines of code
(LOC), about 6000 LOC main program and 2000 LOC test
program. During the two iterations, the total number of
commits by the software engineers was 159. The require-
ments engineers created a user manual in the later part
of iteration 2. All project members had over 10 years of
experience in software development. Two requirements
engineers have previous experience in agile development
(6 years for 1 and 8 years for the other). Both software
engineers have 2 years of experience in agile development.

5.1.2 Second case study

The total duration of one software application is 9 months,
and for this case, all project personnel had previous experi-
ence using agile software development. Three requirements
engineers created the user stories and design documents. For
the design documents, they spent a significant amount of
time creating the system screen images of analysis reports.
Based on the screen of the existing system, the requirements
engineers investigated both needs and problems from end
users. Later in the planning phase, the requirements engi-
neers and end users verified and validated the screens cre-
ated. Then, the requirements engineers issued total 296 tick-
ets during two iterations. The requirements engineers also
created a user manual in the later part of iteration 2.

Five software engineers implemented the software appli-
cation in Java. The size of the software was about 51,000
LOC, which is composed of about 22,000 LOC main pro-
gram and 29,000 LOC test program. The software engineers
committed in total 760 commits during the two iterations.

Table 1 Artifacts of projects Phase Type Artifacts Volume

Case 1 Case 2

Planning/inception Documents User stories 30 pages 34 pages
Algorithms and user

interface sketches
15 pages 576 pages

Iterations 1–2 Source code (Java) Main programs 5931 LOC 21,899 LOC
Test programs 2093 LOC 28,861 LOC

Documents Tickets 102 tickets 296 tickets
Source commits 159 760
User manual 54 pages 78 pages

Fig. 9 Analysis procedure (four steps) in case study

391Requirements Engineering (2018) 23:381–399

1 3

5.2 Analysis procedure

To ensure reliability for our second case, we used exactly
the same analysis procedure used in the first case, as we
now describe. Figure 9 illustrates the analysis procedure,
which contains four steps. In Step 1, we collect commit log
and ticket data from the VCS and ITS, respectively. In Step
2, we generate the TCC by using the TCC generator. In Step
3, requirements engineers and software engineers identify
and collect the unlinked commits found in the TCC (i.e.,
red cells).

In Step 4, we conducted a brief interview with the
requirements engineers and end users2 on the project shortly
after their final retrospective meetings. First, the require-
ments engineers collectively determine whether the unlinked
commits should be linked to a currently issued ticket or if
the ticket remains unissued. Using their response, we answer
the first research question (RQ1: How many unissued tickets
are created in agile software development projects?). The
requirements engineers then collectively evaluate and cat-
egorize these unissued tickets in terms of future software
modification. Specifically, we asked the requirements engi-
neers to answer the following two interview questions3 for
each unlinked commit:

RE-1 Should this unlinked commit be linked to a cur-
rently unissued ticket?
RE-2 Would the recovered ticket be impactful in support-
ing changes to the source code?

Then, we asked the end users collectively evaluate and
categorize the unissued tickets in terms of future software

operation using the following interview question for each
unissued ticket:

EU-1 Would the recovered tickets be impactful in sup-
porting user interface and usability changes?

The requirements engineers and end users could refer
to the contents of the issued tickets and the corresponding
source code files as highlighted by the TCC to determine
whether these tickets contain the required knowledge. Based
on their evaluation results, we answer the second research
question (RQ2: How much undocumented knowledge is cre-
ated by unissued tickets and later required for future opera-
tion or modification?).

5.3 Results

5.3.1 First case results

In Step 1, we collected the 102 tickets from the ITS and
158 commit logs from the VCS. During the two iterations,
the numbers of linked and unlinked commits were 124 and
35, respectively, as shown in first and second columns in
Table 2.

Figure 10 shows the time-series data on the number of
commits per day. As shown on the right side of the figure,
the number of unlinked commits increased in the later part
of the development period. Figure 11 shows the image of the
TCC generated for this case in analysis Step 2.

In Step 3, requirements engineers and software engi-
neers examined the activities of the 35 unlinked commits
for approximately 4 h. This took place about 3 weeks after
the completion of the project.

As shown in the third column of Table 2 (labeled “Step
3”), they identified 26 “unissued” tickets from the contents
of 35 unlinked commits. We found that in 16% (26/159) of
all commits, software engineers committed source code to
the VCS when no corresponding tickets were issued in the
ITS.

Table 2 Evaluation results (first
case)

Step 3 Step 4

Corresponding tickets
were issued or not (unis-
sued)

Unissued tickets are needed or
not

Type of Commits No. of commits For software
modification
(from REs)

For software
operation
(from Users)

Linked to tickets 124 – – –
Not linked to tickets 35 Issued tickets 9 – –

Unissued tickets 26 Needed 6 Needed 11
Not 20 Not 15

2 Note that we did not interview the software engineers because we
felt that they would have been biased in commenting on their own
source code commit data.
3 The original interview was conducted in Japanese. Questions RE-1,
RE-2, and EU-1 are English translations.

392 Requirements Engineering (2018) 23:381–399

1 3

We interviewed both the requirements engineers and the
software engineers regarding the 26 unissued tickets. We
found that the requirements engineers verbally assigned
the tasks to the software engineers without issuing tickets
because requirements engineers were too busy. Moreover,
when the tasks were assigned to the software engineers,
they supposed that requirements engineers would issue the
corresponding ticket afterward. Therefore, the software
engineers had no choice but to enter “None” in the commit
message when they committed updated source code to the
VCS. However, the tickets were still unissued at the end of
the project period.

We also asked both the requirements engineers and
the software engineers about the nine commits out of 35
unlinked commits that had issued tickets but remained
unlinked. The software engineers responded that the cause
of unlinked commits was due to their own error. They failed
to enter the corresponding ticket ID in the each “issued”
ticket, although the requirements engineers had issued and
assigned the tickets to them.

As described above, the requirements engineers created
102 tickets and did not issue 26 tickets during the two itera-
tions. To answer RQ1 from Sect. 1, we show that 20% [26
unissued tickets/(102 issued tickets + 26 unissued tickets)] of
all tickets were not issued during the project period.

In Step 4, the requirements engineers recovered 26 unis-
sued tickets, which they identified in the previous step. After
the recovery of the unissued tickets, we separately conducted
interviews with both the requirements engineers and the end
users. In the interviews, they evaluated whether the recov-
ered tickets would have contained knowledge necessary for
future development. We must note, however, the degree to

which the knowledge would be necessary is subjective. The
criteria for “necessary,” both in these two projects, but also
generally across all software projects are inherently sub-
jective when estimating future development. Traditional
methods err on the side of over documenting, whereas agile
methods err on the side of under documenting. By asking the
requirements engineers on the team, we are able to get the
perspective of the engineers designing the system, which we
believe to be the most “fair” approach in this circumstance.

Both the requirements engineers and the end users evalu-
ated the contents of the recovered tickets for approximately
one hour. The requirements engineers evaluated them from
the viewpoint of the need for future software modifications,
and the end users evaluated them from the viewpoint of the
need for future software operations. The evaluation results
are in the two sub-columns of Column 4 in Table 2 (labeled
“For software modification (from REs)” and “For software
operation (from Users)”). The requirements engineers
responded that 23% of the recovered tickets (6/26) were
required. The end users responded that 42% of those tickets
(11/26) were required. Both groups agreed that four of the 26
unissued tickets contained knowledge that would be required
in the future, and 13 of the 26 commits were identified by
at least one of the two groups as containing knowledge that
would be required in the future.

We also categorized the types of task descriptions on
activities carried out by software engineers. As shown in
the second column of Table 3, the requirements engineers
and end users in this case study defined seven categories
of changes: external function changes, business logic
changes, user interface (system screen) changes, system
property changes, bug fixing, source code refactoring, and

Fig. 10 First case: number of
commits per day

393Requirements Engineering (2018) 23:381–399

1 3

Fig. 11 First case generated
TCC

394 Requirements Engineering (2018) 23:381–399

1 3

development environment management. The first three are
originally derived from meetings with end users, and the last
four are derived from daily developer meetings.

The fifth and sixth columns in the table detail the evalu-
ations conducted by requirements engineers and end users,
respectively. The right-most column gives examples of the
subjects described in the recovered tickets.

From their detailed evaluations, the end users deter-
mined that the knowledge on both external function change
(Type 1) and user interface change (Type 3) was necessary,
although the requirements engineers did not. However, the
requirements engineers evaluated the knowledge on system
property change (Type 4) as necessary for forthcoming soft-
ware modification, although the end users did not think this
as necessary. Both actors agreed that knowledge on source
code refactoring (Type 6) and development environment

change is not necessary for software modification and opera-
tion. To answer RQ2 from Sect. 1, our study revealed that
41% of unissued tickets contain knowledge necessary for
continued software operation and 22% of unissued tickets
contain knowledge necessary for future software modifica-
tions. Half of all unissued tickets (13/27) contain knowl-
edge necessary for either continued operation or future
modification.

5.3.2 Second case results

We collected the 296 tickets from the ITS, and 159 com-
mit logs from the VCS in Step 1. As shown in two left side
columns in Table 4, the numbers of linked and unlinked
commits during two iterations were 712 and 48, respectively.

Table 3 Detailed evaluations of unissued tickets (first case)

Type No. Types of task descrip-
tions

Num-
ber of
unlinked
commits

Number of
unissued
tickets

Number of tickets
necessary for software
modification

Number of tickets
necessary for software
operation

Examples of subjects
described in recovered
tickets

(1) External function
changes

6 4 1 [25% (= 1/4)] 4 [80% (= 4/4)] Add function for display-
ing calculation result

(2) Business logic changes 2 2 2 [100% (= 2/2)] 2 [100% (= 2/2)] Modify calculation algo-
rithms

(3) User interface (system
screen) changes

9 5 1 [20% (= 1/5)] 5 [100% (= 5/5)] Change layout of input
forms in system screens

(4) System property changes 4 3 2 [66% (= 2/3)] 0 [0% (= 0/3)] Add/remove parameters in
initial file

(5) Bug fixing 2 0 – – –
(6) Source code refactoring 3 3 0 [0% (= 0/3)] 0 [0% (= 0/3)] Create utility class for

aggregating common
methods

(7) Development environ-
ment change

9 9 0 [0% (= 0/9)] 0 [0% (= 0/9)] Rename brunch and tag
Eliminate unreachable

code (dead code)
Total 35

unlinked
of 159
total

26 [20%
(= 26/
(102 + 25)]

6 [23% (= 6/26)] 11 [42% (= 11/26)]

Table 4 Evaluation results
(second case)

Step 3 Step 4

Corresponding tickets
were issued or not (unis-
sued)

Unissued tickets are needed or
not

Type of commits No. of commits For software
modification
(from REs)

For software
operation
(from Users)

Linked to tickets 712 – – –
Not linked to tickets 48 Issued tickets 7 – –

Unissued tickets 41 Needed 20 Needed 9
Not 21 Not 32

395Requirements Engineering (2018) 23:381–399

1 3

Figure 12 shows the time-series data on the number of
commits per day. As shown in the figure, unlinked commits
start to appear in the later part of the iteration 1. Moreover,
unlinked commits continue to appear during iteration 2,
increasing slightly near the end of that iteration. This is not
surprising given that when software deadlines loom, docu-
mentation is often not viewed as a mission-critical task but
rather as a task that slows engineers down from delivering
operational software in a timely manner. Regardless, the
increase in unlinked commits suggests that by this time the
engineers were perhaps spending resources on source code
that were, earlier in the iteration, spent on documentation.

In Step 2, the TCC was generated from the two data by
our TCC generator. However, because the TCC generated in
the second case is much larger and more detailed than that
of the first case study, it has been omitted.

In Step 3, both the requirements engineers and the soft-
ware engineers examined the activities of the 48 unlinked
commits for approximately half day. This took place about
one month after the completion of the development of the
application.

From the contents of 48 unlinked commits, 41 “unis-
sued” tickets were identified as shown in the third column
of Table 4. As a result, we found that in 5% (41/760) of all
commits, five software engineers committed source code

to the VCS without entering corresponding ticket IDs. The
requirements engineers created 296 tickets and did not issue
41 tickets during the two iterations. To answer RQ1 from
Sect. 1, our study revealed that 12% [41 unissued tickets/
(296 issued tickets + 41 unissued tickets)] of all tickets were
not issued during the project period of the second case.

In Step 4, the requirements engineers recovered 41 unis-
sued tickets identified in Step 3. After the recovery of the
unissued tickets, as in the first case, those “recovered” tickets
were evaluated from the viewpoints of the needs for future
development, namely future software modification and oper-
ation. The evaluation results are shown in the fourth and fifth
columns in Table 4. To answer RQ2 from Sect. 1, our results
indicate that 49% of the recovered tickets (20/41) were
required for future software modification and 22% of those
tickets (9/41) were required for future software operation.

As in the first case, we detailed the evaluations as
shown in Table 5. We also used the same seven types of
task descriptions used in the first case. As shown in the
fourth column, the implementation tasks of unissued tickets
mapped to four categories: Types 3, 4, 6, and 7.

The knowledge on user interface change (Type 3) was
needed for both software modification and operation. From
the viewpoint of software operation, the task descriptions of
source code refactoring (Type 6) were not needed. On the

Fig. 12 Second case: number of commits per day

396 Requirements Engineering (2018) 23:381–399

1 3

other hand, the engineers valued the knowledge as necessary
for future software modification. The engineers determined
the knowledge on system property changes (Type 4) was
not required. The tasks on development environment change
(Type 7) were not necessary for software modification and
operation.

6 Discussion

In this section, we discuss the implications of our findings
and its possible applications for practitioners.

6.1 Identifying undocumented knowledge

Based on the results of the case studies, we found two rea-
sons software engineers committed source code to the VCS
without linking the commit to a ticket ID. The first is that the
software engineers simply failed to enter the corresponding
ticket ID in the commit message. The second reason is that
requirements engineers did not issue a corresponding ticket
for the requested feature. We argue that unissued tickets
(i.e., the second reason) may cause serious problems. As we
mentioned before, in both cases, requirements engineers and
software engineers hold a retrospective meeting to maintain
the software document just before delivering the software
product at the end of the second iteration. In that meeting,
the engineers using the TCC found about 22% of the unis-
sued tickets in the first case and 49% of the unissued tickets
in the second case to be critical for future software modifi-
cation (i.e., adding new features). Similarly, approximately
41% of the unissued tickets in the first case and 22% of the
unissued tickets in the second case were found to be crucial
documentation for future software operation (i.e., maintain-
ing current features). We believe use of our TCC contributes
to detecting this type of undocumented knowledge.

We do not claim that requirements engineers should
always issue tickets that record all software engineer’s tasks
in a project. If so, documentation (i.e., describing and man-
aging tickets) will become a heavy burden on requirements
engineers and software engineers in an agile environment.
The project might not benefit from the advantages of agile
software development approaches (e.g., flexibility, quick
feedback). We suggest that it is better that project members
examine their activities using our TCC or any similar visu-
alization tool during their retrospective meetings. In these
meetings, they could examine the unissued tickets required
for future software modifications or operations and docu-
ment any relevant undocumented knowledge.

6.2 Understanding unrecorded activities

In agile software development projects, the number of
tickets issued in past projects has been used as reference
information of cost estimation for new projects [6]. In the
first case, we found 34 unissued tickets and recovered 27 of
them. Before that, the requirements engineers had already
issued 102 tickets. As a result, 129 tickets (102 + 27) were
finally documented. To answer the first research question,
we found that about 21% of all tickets (27/129) had not been
recorded in the ITS. Similarly, in the second case, we found
that about 12% [41/(296 + 41)] of all tickets had not been
issued in the ITS.

If the original numbers of tickets (i.e., 102 tickets for the
first case and 296 tickets for the second) were used as refer-
ence information for estimating future software modification
costs, then there might be differences in actual and estimated
costs of more than 20 and 12% for the first case and the sec-
ond case, respectively.

To accurately estimate software development costs and
avoid costs identified by Mendes et al. [14], we should
understand the actual activities of past projects, which we
aim to use as reference information. Our approach supports

Table 5 Detailed evaluations of unissued tickets (Second Case)

Type no. Types of task descriptions Number of
unlinked
commits

Number of
unissued
tickets

Number of tickets necessary
for software modification

Number of tickets
necessary for software
operation

(1) External function changes 0 – – –
(2) Business logic changes 0 – – –
(3) User interface (system screen) changes 10 9 9 [20% (= 9/9)] 9 [100% (= 9/9)]
(4) System property changes 22 16 0[0% (= 0/16)] 0 [0% (= 0/16)]
(5) Bug fixing 0 – – –
(6) Source code refactoring 11 11 11 [100% (= 11/11)] 0 [0% (= 0/3)]
(7) Development environment change 5 5 0 [0% (= 0/5)] 0 [0% (= 0/5)]

Total 48 unlinked
of 760
total

41 [12% (= 41/
(296 + 41)]

20 [49% (= 20/41)] 9 [22% (= 9/41)]

397Requirements Engineering (2018) 23:381–399

1 3

understanding actual work activities to estimate software
development cost for forthcoming projects.

6.3 Timing of visualizations and evaluations

Timing might be a decisive factor for enhancing the effec-
tiveness of our visualization approach. In our case studies,
actors in both projects evaluated and responded regarding
the unissued tickets within 1 month (i.e., 3 weeks for the first
case and 1 month for the second case) after completion of
the development. During the evaluations, their memory of
the project remained fresh in their minds. If the evaluation
had been much later, it would have been more difficult for
them to identify and recover the unissued tickets.

Once the project is completed, most project members
(i.e., requirements engineers and software engineers) will
be assigned to a new project. If there are no “original” pro-
ject members, detecting unissued tickets and documenting
previously undocumented knowledge may be impossible,
even if a TCC is generated.

6.4 The effect of undocumented knowledge

Although we cannot completely characterize the effect of
undocumented knowledge based on these two cases in our
case study, our results suggest that undocumented knowl-
edge in agile software projects is an important long-term
challenge. We believe this is particularly important for
undocumented knowledge from the second case, which
involved nearly six times the number of commits as the first
case. In both of our cases, the unissued tickets had an out-
sized impact in terms of their effect on future software modi-
fication and operations. Between roughly one-fifth and two-
fifths of the unissued tickets resulted in a situation where
future development could have been stalled unnecessarily.

If our findings could be generalized as a result of addi-
tional case studies, then perhaps the most important result
would be that we can better understand the actual trade-
off being made when switching from traditional methods
to agile methods. Agile software development proponents
believe that documentation is too heavily prioritized in tra-
ditional approaches [4]. Advocates of traditional approaches
favor documentation as a means of preventing possible con-
fusion [15, 22]. In a perfect software development methodol-
ogy, engineers would only create documentation that would
definitely be referenced in the future, an impossibility in
the real world which requires trade-offs made on imperfect
information.

Exploratory research is needed for traditional software
methodologies to understand how much unused documenta-
tion is created. This needlessly created documentation is the
other side of the trade-off. Such a study would produce the
most direct comparison to our finding that between roughly

20 and 40% of unissued tickets result in a need for additional
documentation. If both aspects can be better quantified, then
both agile and traditional methods could be improved. In
addition, we may be able to provide better guidance to soft-
ware engineers about what must be documented and where
documentation may not be as useful.

The second case had a lower percentage of unissued tick-
ets despite having a far larger number of commits. Perhaps
this is a result of all team members having prior experience
with agile software methods. It may also be a result of this
project being developed for external stakeholders rather than
internal stakeholders as in the first case. Unfortunately, we
were unable to justify a deeper examination of this. How-
ever, we believe it suggests that experience and context play
significant roles in the impact of adopting agile methods on
documentation.

7 Case‑study limitations

When designing any case study, including exploratory case
studies, care should be taken to mitigate threats to validity.
This paper describes an exploratory case study seeking to
determine: (1) the extent to which undocumented knowledge
exists in agile software development projects and (2) the
extent to which this may cause problems for future develop-
ment. We evaluate this case study using both quantitative
data (e.g., unlinked tickets) and qualitative data (e.g., deter-
minations regarding the future utility of an unlinked ticket).
These data represent our units of observation, which should
not be confused with our unit of analysis: documented
knowledge.

Some may question whether this work is explanatory
rather than exploratory in nature. Runeson and Höst describe
exploratory work as “finding out what is happening, seeking
new insights and generating ideas and hypotheses for new
research” [23]. In contrast, our goal in this work is to deter-
mine whether undocumented knowledge exists in agile soft-
ware development and whether it may affect future develop-
ment. Runeson and Höst describe explanatory research as
“seeking an explanation of a situation or a problem, mostly
but not necessary in the form of a causal relationship” [23].
Because we are not investigating why undocumented knowl-
edge occurs or attempting to establish and define any related
causal relationships, this work remains exploratory in nature.
Runeson and Höst also characterize case studies, rather than
experiments, as typically exploratory in nature, as com-
monly using both quantitative and qualitative data, and as
using explicit research questions from the outset [23]. The
presence of research questions, quantitative data, or quali-
tative data is fully consistent with exploratory research and
does not indicate, either on their own or collectively, that
this is explanatory work.

398 Requirements Engineering (2018) 23:381–399

1 3

Construct validity addresses the degree to which a case
study aligns with the theoretical concepts used. Three ways
to reinforce construct validity are using multiple sources
of reliable evidence, establishing a chain of evidence, and
having key informants review draft case-study reports [34].
We used two projects in the case study. We collected 158
and 760 commit logs, and 102 and 296 tickets from two
iterations from projects of the first case and the second case,
respectively. The length of iterations of the first case is 2
months. For the second case, this is 7 months. Three differ-
ent types of actors (i.e., requirements engineers, software
engineers, and end users) were engaged in both projects. To
establish a chain of evidence, we used the supporting tools
(i.e., ITS and VCS) to maintain a record of all data of our
studies. Finally, other engineers of NTT Group’s Agile Pro-
fessional Center [17] reviewed our draft case-study report.

Our interview at the end of each case produced another
important limitation for construct validity. We asked require-
ments engineers to identify whether unlinked commits
would be needed for future modification of the software
and end users to identify whether those same unlinked com-
mits would be needed to maintain future operation of the
software. Essentially, we filled out a “yes” or “no” for each
unlinked commit with each group to their respective ques-
tions. We did not provide heuristics, checklists, or guidelines
to either group to help them make this determination. There-
fore, the participants in this interview may have had differing
subjective expectations related to answering their questions.

In this exploratory case study, we make no causal infer-
ences. That is, we do not attempt to definitively determine
why the tickets were unlinked; we simply seek to discover
how many were unlinked and qualitatively characterize them
as impactful for future development or use. Therefore, inter-
nal validity is not a concern.

External validity is the ability of a case study’s findings
to generalize to broader populations [34]. A possible threat
to external validity is the fact that we analyzed only two
projects. In addition, we do not examine the consequences
of these gaps. It is possible that, although our interview
subjects felt the unlinked commits were problematic, other
groups would not find similar unlinked commits to be prob-
lematic for future modification or operation of the software.
That said, our visualization approach (i.e., TCC) is not
domain specific and would work for any project using the
commit log procedure described herein and used widely in
industry. We used an ITS and VCS in the approach, both of
which are commonly used in agile software development
projects. We also used the standard data formats of both
ITS and VCS. Our TCC generator does not require changes
to these data formats. We believe these facts reinforce the
external validity of our case.

Reliability is the ability to repeat a study and observe
similar results [34]. In this work, we use data collection and

analysis procedures that are as similar as possible in both
cases to mitigate the threat of reliability and ensure com-
parisons between the two cases remain valid. A complete
discussion of the differences can be found in Sects. 5.1 and
5.2. This decision does limit our ability to explain new phe-
nomena. For example, we could have altered our procedures
in the second case based on things we learned in the first
case to better explain our results. To do so, we would need
to have examined another smaller project more similar to the
first case. This would also have changed the nature of our
study from exploratory to explanatory. However, we chose
instead to extend our exploratory goals from an internally
used, smaller project (i.e., the first case) to an externally
used, larger project (i.e., the second case). To further rein-
force our study’s reliability, the ITS and VCS used for the
case studies have no specific features. Both are open-source
software. We also developed a tool that generates the TCC.
This tool enabled the automatic carrying out of Step 2 of
the cases. By using open-source software and the tool, other
researchers and study participants will be able to follow the
steps of the case study rigorously.

8 Summary and future work

Agile software development is popular and widely used, but
the effects of an agile approach to documentation are not
well understood. In this paper, we examine undocumented
knowledge—information that could have been documented,
but was not—in two industrial cases using agile software
methods.

Our study revealed that software engineers committed
source code to the VCS without entering the corresponding
ticket IDs in 17 and 5% of all commits in the first case and
the second case, respectively. The unissued tickets accounted
for 21% of all tickets in the first case and 12% of those in
the second case. The end users and requirements engineers
evaluated the contents of the unissued tickets, and we found
that 42% of these tickets in the first case and 22% of those
in the second case were required for end users in future soft-
ware operation. Moreover, 22% of the unissued tickets in the
first case and 49% of those in the second case were required
for engineers in future software modification. These results
suggest that undocumented knowledge in agile software
development is a non-trivial problem that will compound
over time.

We plan to design and develop a tool to predict the occur-
rence of unissued tickets through real-time monitoring and
visualization of the activities of the ITS and VCS. The goal
of this tool is to prevent undocumented knowledge due to
human error and mitigate the effort expended during retro-
spective meetings to uncover these errors.

399Requirements Engineering (2018) 23:381–399

1 3

Acknowledgements The authors are grateful to Messrs. Takashi
Hoshino, Keiichiro Horikawa, Daisuke Hamuro, and Masayuki Inoue
of NTT, Tetsuo Kobashi, Masatoshi Hiraoka and Hironori Shibayama
of NTT DATA, Dr. Noriaki Izumi and Motoi Yamane at Piecemeal
Technology for their assistance in the case study. We also wish to thank
the anonymous referees of both the Requirements Engineering Confer-
ence and this special issue of the Requirements Engineering Journal
for their feedback.

References

 1. Apache Subversion. Enterprise-class centralized version control
for the masses. https ://subve rsion .apach e.org/. Accessed 03 Jan
2017

 2. Backlog. Online project management tool for developers. https ://
backl og.com/. Accessed 03 Jan 2017

 3. Beck K, Cynthia A (2005) Extreme programming explained:
embrace change. Addison-Wesley Professional, Boston

 4. Beck K, Grenning J, Martin RC, Beedle M, Highsmith J, Mellor
S, van Bennekum A, Hunt A, Schwaber K, Cockburn A, Jefferies
R, Sutherland J, Cunningham W, Kern J, Thomas D, Fowler M,
Marick B (2001) Manifesto for agile software development. http://
agile manif esto.org/. Accessed 10 Jan 2017

 5. Cockburn A (2006) Agile software development: the cooperative
game, 2nd edn. Addison-Wesley Professional, Boston

 6. Cohn M (2005) Agile estimating and planning. Prentice Hall,
Upper Saddle River

 7. Dhungana D, Grünbacher P, Rabiser R (2011) The DOPLER
meta-tool for decision-oriented variability modeling: a multiple
case study. Autom Softw Eng 18(1):77–114

 8. Dorairaj S, Noble J, Malik P (2012) Knowledge management in
distributed agile software development. In: The Agile conference,
pp 64–73

 9. Eisenhardt KM (1989) Building theories from case study research.
Acad Manag Rev 14(4):532–550

 10. GitHub. The world’s leading software development platform. https
://githu b.com/. Accessed 03 Jan 2017

 11. Hoda R, Noble J, Marshall S (2010) How much is just enough?:
Some documentation patterns on agile projects. In: Proceedings of
the 15th European conference on pattern languages of programs,
New York, NY, USA, pp 13:1–13:13

 12. Lanza M, D’Ambros M, Bacchelli A, Hattori L, Rigotti F (2013)
Manhattan: supporting real-time visual team activity awareness.
In: Proceedings of the 21st international conference on program
comprehension, pp 207–210

 13. Levy M, Hazzan O (2009) Knowledge management in practice:
the case of agile software development. IN: Proceedings of the
2009 ICSE workshops (CHASE’09), pp 60–65

 14. Maalej W, Thurimella AK (2015) Managing requirements knowl-
edge. Springer, Berlin

 15. Martin RC (2003) Agile software development: principles, pat-
terns, and practices. Prentice Hall, Upper Saddle River

 16. Mendes TS, de F. Farias MA, Mendonça M, Soares HF, Kalinow-
ski M, Spínola RO (2016) Impacts of agile requirements docu-
mentation debt on software projects: a retrospective study. In:

Proceedings of the 31st annual ACM symposium on applied com-
puting, pp 1290–1295

 17. Moe NB, Faegri TE, Cruzes DS, Faugstad JE (2016) Enabling
knowledge sharing in agile virtual teams. In: Proceedings of the
11th international conference on global software engineering, pp
29–34

 18. NTT DATA. NTT DATA: Global IT Innovator. http://www.nttda
ta.com/globa l/en/. Accessed 10 Jan 2017

 19. NTT R&D. NTT Research & Development. http://www.ntt.co.jp/
RD/e/index .html. Accessed 10 Jan 2017

 20. Palmer SR, Felsing JM (2002) A practical guide to feature driven
development. Prentice Hall, Upper Saddle River

 21. Redmine. Flexible project management. https ://redmi ne.org/.
Accessed 03 Jan 2017

 22. Rubin KS (2012) Essential Scrum: a practical guide to the most
common agile process. Addison-Wesley Professional, Boston

 23. Runeson P, Höst M (2009) Guidelines for conducting and report-
ing case study research in software engineering. EmpirSoftw Eng
14(2):131–165

 24. Saito S, Iimura Y, Takahashi K, Massey AK, Antón AI (2014)
Tracking Requirements evolution by using issue tickets: a case
study of a document management and approval system. In: 36th
international conference on software engineering, pp 245–254

 25. Saito S, Iimura Y, Tashiro H, Massey AK, Antón AI (2016) Visu-
alizing the effects of requirements evolution. In: 38th International
conference on software engineering, pp 152–161

 26. Saito S, Iimura Y, Massey AK, Antón AI (2017) How much
undocumented knowledge is there in agile software development?:
Case study on industrial project using issue tracking system and
version control system. In: Proceedings of the 25th international
conference on requirements engineering, pp 194–203

 27. Schwaber K, Beedle M (2001) Agile software development with
Scrum. Prentice Hall, Upper Saddle River

 28. Stettina CJ, Heijstek W (2011) Necessary and neglected?: An
empirical study of internal documentation in agile software devel-
opment teams. In: Proceedings of the 29th ACM international
conference on design of communication, pp 159–166

 29. Trac. Integrated SCM & project management. https ://trac.edgew
all.org/. Accessed 03 Jan 2017

 30. Thurimella AK, Bruegge B, Janzen D (2017) Variability Plug-Ins
for Requirements Tools: a Case-Based Theory Building Approach.
IEEE Syst J 11(4):1935–1946

 31. Thurimella AK, Schubanz M, Pleuss A, Botterweck G (2017)
Guidelines for managing requirement rationales. IEEE Softw
34(1):82–90

 32. Voigt S, von Garrel J, Müller J, Wirth D (2016) A study of docu-
mentation in agile software projects. In: Proceedings of the 10th
ACM/IEEE international symposium on empirical software engi-
neering and measurement, pp 4:1–4:6

 33. Wnuk K, Regnell B, Karlsson L (2009) Feature transition charts
for visualization of cross-project scope evolution in large-scale
requirements engineering for product lines. In: Proceedings of the
4th international workshop on requirements engineering visualiza-
tion, pp 11–20

 34. Yin RK (2003) Case study research: design and methods, vol 5,
3rd edn. Sage, Thousand Oaks

https://subversion.apache.org/
https://backlog.com/
https://backlog.com/
http://agilemanifesto.org/
http://agilemanifesto.org/
https://github.com/
https://github.com/
http://www.nttdata.com/global/en/
http://www.nttdata.com/global/en/
http://www.ntt.co.jp/RD/e/index.html
http://www.ntt.co.jp/RD/e/index.html
https://redmine.org/
https://trac.edgewall.org/
https://trac.edgewall.org/

	Discovering undocumented knowledge through visualization of agile software development activities
	Abstract
	1 Introduction
	2 Related research
	2.1 Tool support and visualization of software development activities
	2.2 Knowledge management for agile software development

	3 Summary of case-study projects and procedures
	3.1 Project description and schedule
	3.1.1 First case study
	3.1.2 Second case study

	3.2 Daily and weekly meetings
	3.2.1 First case study
	3.2.2 Second case study

	3.3 Issue tracking system and version control system

	4 Visualization of agile development activities
	4.1 Linking ticket to commit
	4.2 Ticket-commit network chart
	4.3 Software implementation

	5 Case study
	5.1 Data collection and participants
	5.1.1 First case study
	5.1.2 Second case study

	5.2 Analysis procedure
	5.3 Results
	5.3.1 First case results
	5.3.2 Second case results

	6 Discussion
	6.1 Identifying undocumented knowledge
	6.2 Understanding unrecorded activities
	6.3 Timing of visualizations and evaluations
	6.4 The effect of undocumented knowledge

	7 Case-study limitations
	8 Summary and future work
	Acknowledgements
	References

