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Abstract In this paper, we describe a novel unsupervised

approach for detecting, classifying, and tracing non-func-

tional software requirements (NFRs). The proposed

approach exploits the textual semantics of software func-

tional requirements (FRs) to infer potential quality con-

straints enforced in the system. In particular, we conduct a

systematic analysis of a series of word similarity methods

and clustering techniques to generate semantically cohe-

sive clusters of FR words. These clusters are classified into

various categories of NFRs based on their semantic simi-

larity to basic NFR labels. Discovered NFRs are then

traced to their implementation in the solution space based

on their textual semantic similarity to source code artifacts.

Three software systems are used to conduct the experi-

mental analysis in this paper. The results show that meth-

ods that exploit massive sources of textual human

knowledge are more accurate in capturing and modeling

the notion of similarity between FR words in a software

system. Results also show that hierarchical clustering

algorithms are more capable of generating thematic word

clusters than partitioning clustering techniques. In terms of

performance, our analysis indicates that the proposed

approach can discover, classify, and trace NFRs with

accuracy levels that can be adequate for practical

applications.

Keywords Classification � Non-functional requirements �
Information retrieval � Semantics

1 Introduction

Requirements engineering (RE) is a human-centric process.

Software functional requirements (FRs) are products of

stakeholders’ knowledge of their application domain. Such

knowledge, expressed mainly in natural language

(NL) [36, 56], propagates throughout the entire life cycle

of the software project, from early RE through require-

ments description, to the solution space through code

identifiers and internal code comments [4, 30]. The ability

to capture and model such semantic knowledge has been

proved vital for providing automated solutions for various

basic RE tasks, such as requirements elicitation [58],

analysis [77], traceability [60], and reuse [12].

Following this line of research, in this paper we exploit

the textual semantics of software FRs to discover the non-

functional requirements (NFRs) of the system. NFRs

describe a set of quality attributes that a software system

should exhibit [48]. Such attributes enforce operational

constraints on different aspects of the system’s behavior,

such as its usability, security, reliability, performance, and

portability [17]. Explicitly identifying NFRs early in the

software process is critical for making initial design deci-

sions and later for evaluating architectural alternatives for

the system [68]. However, NFRs are often overlooked

during the system’s requirements elicitation phase, where

the main emphasis is on getting the system’s functional

features explicitly and formally defined [16]. Part of this

phenomenon can be attributed to the vague understanding

of what NFRs actually are and the lack of effective NFR

elicitation, modeling, and documentation methods [35, 37,

39].

Motivated by these observations, we propose a novel,

unsupervised, and computationally efficient approach for

discovering and tracing NFRs in software systems. The
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main assumption is that, even if they are not explicitly

defined, NFRs tend to be embedded in the functional

requirements of the system [25]. For instance, a system

with a login feature is assumed to be secure. However, such

information is typically scattered over the system’s

requirement specifications. The proposed approach exploits

the basic assumptions of the cluster hypothesis and infor-

mation theory to capture and classify such information into

various types of NFRs.

Our earlier work in this domain has appeared in [59]. In

this paper, we extend this work by conducting a compre-

hensive systematic analysis of a series of semantic meth-

ods, commonly used in NLP, to estimate the semantic

similarity between words extracted from the functional

requirements of software systems. These methods include:

latent semantic analysis (LSA) [29], co-occurrence meth-

ods, including Normalized Google Distance (NGD) [19]

and pointwise mutual information (PMI) [84], and the-

saurus-based methods, including techniques that utilize the

linguistic database WordNet [52]. Our main objective is to

identify the most effective semantic schemes in capturing

the notion of similarity between natural language words

appearing in software FRs. Such information is then used

for clustering these words into thematic groups. In partic-

ular, several partitioning and hierarchical clustering algo-

rithms are tuned through a semantically aware objective

function to identify cluster configurations that produce the

most semantically cohesive clusters of FR words. These

clusters are classified into different categories of NFRs

based on their semantic similarity to basic NFR labels.

Extracted NFR clusters are then traced to their imple-

mentation in the solution space based on their semantic

similarity to the textual information extracted from source

code. The proposed approach is calibrated and evaluated

using three software systems from different application

domains. In summary, the contributions of this extension

can be described as follows:

• A systematic evaluation of the accuracy of a series of

word semantic similarity methods and clustering tech-

niques in the context of software requirements.

• A semantically aware cluster quality measure designed

to identify cluster configurations that generate the most

semantically coherent clusters of FR words.

• A computationally efficient technique for extracting the

natural language content of source code to support NFR

traceability link recovery.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews seminal work in NFR classification and

traceability and motivates our research. Section 3 presents

the set of semantic similarity methods and clustering

techniques used in our investigation, and Sect. 4 describes

the implementation, analysis, and evaluation of these

methods and techniques. Section 5 describes the procedure

used to detect different NFRs in the system. Section 6

assesses the performance of different IR methods in tracing

detected NFRs to their implementation. Section 7 discusses

the main threats to the study’s validity. Finally, Sect. 8

concludes the paper and discusses prospects of future work.

2 Background and motivation

Due to their pervasive nature, and the lack of robust

modeling and documentation techniques, NFRs are often

overlooked during the requirements elicitation phase.

Failure to identify NFRs early in the process impacts the

overall quality of the system [39, 64]. In particular, NFRs

tend to be connected through various interdependencies

and trade-offs that span over multiple modules in the

solution space [46]. Therefore, if not accounted for in the

initial design phase, integrating such quality constraints

into the system’s architecture at later stages of the devel-

opment process can lead to architectural anomalies and

erosion problems [63, 68]. Furthermore, the lack of

explicitly defined NFRs complicates the process of map-

ping, or tracing, such high-level quality constraints to their

low-level implementation [20, 25, 37]. The availability of

such information becomes vitally important in safety crit-

ical systems. Failure to satisfy the quality constraints in

such systems can lead to catastrophic consequences [21,

70].

These realizations have motivated researchers to look

for automated methods to enable early discovery and

classification of NFRs and later to trace these NFRs to their

implementation. In what follows, we review the current

state of the art in NFR classification and traceability

research, describe our main research motivations, and lay

out the skeleton of our approach.

2.1 Related work

The analysis in this paper can be divided into two main

phases. The first phase is concerned with detecting and

classifying individual NFRs in software systems, and the

second phase is concerned with tracing these NFRs to their

implementation. In what follows, we briefly review semi-

nal work related to each of these two phases.

2.1.1 NFR detection and classification

Cleland-Huang et al. [24] described an automated approach

for classifying NFRs present in various software artifacts

produced during the life cycle of the software project. The

proposed approach was based on the assumption that dif-

ferent types of NFRs can be distinguished by certain
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keywords known as the indicator terms. In particular, a set

of correctly pre-classified functional requirements was used

to train a classifier to automatically discover and assess the

terms that indicated different types of NFRs. The generated

classifier was then used to classify unseen-before func-

tional requirements into different NFR categories based on

a function of the occurrence of indicator terms in these

requirements. An industrial case study was conducted to

evaluate the proposed approach. The results showed an

average classification recall of 80 %. However, a very high

ratio of false positives (21 % precision) was also reported.

Zhang et al. [88] conducted an empirical study to

investigate the effectiveness of text mining techniques in

NFR classification. Using support vector machines (VSM)

with a linear kernel classifier, the authors analyzed the

performance of three textual structures including N-grams

and individual words and phrases as representatives of

various types of NFRs. Repeating the experiment in [24]

showed that words with Boolean weights were more

effective in detecting and classifying NFRs. Results also

showed that larger numbers of NFRs were needed to

enhance the inference accuracy.

Slankas and Williams [78] proposed an automated

approach for extracting NFRs from several types of soft-

ware documents such as requirement specifications, user

manuals, and data agreements. A word vector representa-

tion was used to extract and classify sentences in such

documents into 14 categories of NFRs. Individual sen-

tences of each document were extracted, parsed, and

classified using multiple classifiers, including K-NN,

Sequential Minimum Optimizer (SMO), and naive Bayes

classifier. The results showed that SMO was the most

effective in classifying requirements’ sentences.

Casamayor et al. [13] proposed a semi-supervised text

categorization approach for detecting and classifying

NFRs. The classifier was initially trained using a small set

of manually categorized requirements. Using Expectation

Maximization (EM), the classifier was then used to cate-

gorize unlabeled requirements. Users’ feedback on classi-

fied requirements was also exploited to further enhance the

accuracy. Empirical evaluation of the proposed approach

showed that it achieved higher levels of classification

accuracy than fully supervised classification methods.

2.1.2 NFR traceability

Cleland-Huang and Schmelzer [22] suggested a design-

based method to facilitate NFR traceability through

exploiting design patterns as intermediary objects. In par-

ticular, NFRs were initially elicited, analyzed, modeled,

and mapped into appropriate design patterns. Traceability

links were then manually established between NFRs and

code classes implementing their design patterns. Such links

were used to track and monitor changes that affect NFRs.

Mirakhorli and Cleland-Haung [63] conducted a com-

prehensive study to identify fundamental issues related to

NFR traceability. The authors analyzed tactical architec-

tural decisions behind enforcing individual NFRs and

investigated different techniques used to trace such deci-

sions. Results showed that NFRs were often difficult to

trace as they were typically satisfied implicitly through

non-documented design decisions. Furthermore, the

authors discussed the benefits of tracing NFRs, including

specific challenges related to their cross-cutting nature and

interdependencies.

Cleland-Huang et al. [23] proposed goal-centric trace-

ability (GCT), a probabilistic approach to trace NFRs to

individual code classes. In particular, NFRs and their

interdependencies were modeled using a Softgoal Interde-

pendency Graph (SIG). A probabilistic network model was

then used to dynamically retrieve links between code

classes and elements of the SIG. The main objective was to

help system analysts to manage the full impact of func-

tional changes on different types of NFRs. The feasibility

of the proposed approach was demonstrated through a case

study. The results showed that using a probabilistic

approach to automatically capture NFR traceability links

saved a considerable effort. However, manual evaluation of

generated links was still required to filter out false

positives.

Kassab et al. [46] proposed an approach to model

functional and non-functional requirements and their

interdependencies. The proposed approach exploited logic-

based queries to identify and trace NFRs that were

impacted by certain changes over the entire life cycle of a

software project. A proof-of-concept study was conducted

to illustrate the effectiveness of the proposed approach over

a small information systems project. However, no empiri-

cal evidence was provided to demonstrate the feasibility of

utilizing such an approach for larger systems.

Frati et al. [70] suggested a method for representing and

tracing basic NFRs in safety critical systems. The authors

used formal models to demonstrate the satisfaction of a

specific NFR requirement in the system through certain

predefined relations. Such relations were then used to

establish traceability links between design artifacts and

requirements and link requirements to validation and ver-

ification elements (test cases) in the system.

2.2 Motivation, approach, and research questions

Our brief review shows that most current NFR detection

and classification methods are supervised in the sense that a

model has to be initially trained, using manually classified

data, in order to be able to classify unseen-before instances.
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Such data might not always be available, especially since

classifiers need large training datasets to achieve accept-

able accuracy. Furthermore, experts from different appli-

cation domains use different terminologies to express their

needs. Therefore, a classifier trained over a certain appli-

cation domain might not necessarily work for other

domains [24].

In terms of traceability, our review shows that the

majority of the proposed methods either assume the exis-

tence of explicitly defined NFRs that can be formalized and

modeled or rely on exploiting existing system architecture

and design patterns to aid in the NFR traceability process.

While such methods can be effective for smaller systems,

analyzing such structures and patterns can pose a scala-

bility challenge when dealing with larger, or ill-structured,

systems [39, 63].

Motivated by these observations, in this paperwe describe

a novel approach for detecting, classifying, and tracing

NFRs. The proposed approach can be described as a multi-

step procedure. Initially, individual words of requirement

specifications are extracted and the pairwise semantic simi-

larity between these words is calculated. Clustering is then

used to group these words into cohesive clusters. These

generated clusters are classified into different types of NFRs,

mapped back to functional requirements, and traced to code

classes implementing them. Figure 1 depicts our approach.

This approach is unsupervised; no training of any sort is

required. To enhance its practicality, the approach is inde-

pendent, where NFRs are extracted and traced directly

without any assumptions about an existing model or a well-

defined system architecture. Furthermore, the proposed

approach exhibits moderate computational complexity that

allows it to scale to larger systems without exhausting time

and space requirements.

In what follows, we describe in detail the main steps of

approach in Fig. 1, including the main theoretical

assumptions and experimental analysis associated with

each step. In particular, we attempt to answer the following

research questions:

• RQ1: What is the most accurate measure of semantic

similarity between FR words?

• RQ2: What is the most effective clustering algorithm in

generating meaningful clusters of FR words?

• RQ3: How can the generated NFRs be traced to source

code artifacts?

3 NFR classification

The first phase of our analysis is concerned with detecting

potential NFRs enforced in the system. Our research

assumptions at this phase are based on the main assump-

tions of the cluster hypothesis. This hypothesis states that

documents in the same cluster behave similarly with

respect to relevance to information needs [11, 67]. This

behavior can be tied to the information content of docu-

ments embedded in their individual words. In particular,

words with similar meaning tend to be grouped in the same

cluster [41]. We use these assumptions as the basis for our

approach. In particular, keywords extracted from the

functional requirements of the software system are clus-

tered with the main objective of creating semantically

coherent groups of natural language words. Formally, the

main task at this step is to cluster a group of words W ¼
w1;w2;w3; . . .;wmf g into a set of disjoint groups of

semantically similar words C ¼ c1; c2; c3; . . .; ckf g. Ideally,
clusters in C should describe conceptual themes that

NGDwiki Matrix Clusters of SRS words

NFR Traceability Matrix

w1 w2 wn

w2

w1

wn

...

...

NFRs
Profiles

w1

w5w3

w6

w10

w4 w8

w2 w9

w7

NFRs 
Labels

NGDwiki AL (Qi)

P(C, L)
TSS

C1 C2 Cn

NFR1

...

...
NFR2

NFR3

SRS

Fig. 1 NFR extraction and traceability (NGD Normalized Google Distance, AL average linkage clustering algorithm, Qi cluster quality objective

function, P(C, L) classification formula, TSS text semantic similarity, Ci code class)
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pervade the original text. Such themes might potentially

represent quality constraints enforced in the system.

Identifying optimal cluster configurations that best fit a

certain data space can be an NP-hard problem. However,

near-optimal solutions can be determined experimentally.

To determine such configurations, we investigate the per-

formance of a series of semantic similarity measures and

word clustering techniques to identify the most effective

configurations that can produce semantically coherent, or

thematic, clusters of FR words (i.e., RQ1 and RQ2). Next

is a description of these methods and techniques in greater

detail.

3.1 Semantic similarity of FR words

Several methods have been proposed in the literature to

estimate semantic similarity between natural language

words. Such methods exploit a broad spectrum of semantic

schemes, at different levels of computational complexity,

to capture association relations between words in a corpus.

To answer RQ1, in this paper we consider three categories

of similarity methods that have been intensively used in

NLP research. These methods include: latent semantic

analysis, co-occurrence based methods, and thesaurus-

based methods. The following is a description of these

methods.

3.1.1 Latent semantic analysis

Latent semantic analysis (LSA) is an unsupervised statis-

tical algorithm that is used for extracting and representing

relations between words and documents in large unlabeled

text corpora [29]. LSA is based on the assumption that

there is some underlying (latent) semantic structure that is

partially concealed by the variability of the contextual

usage of words in a certain collection [29]. Formally, LSA

starts by constructing a m� n word–document matrix (v)
for words and documents in the corpus. This matrix is

usually huge and sparse. Rows represent unique words in

the corpus, and columns represent textual artifacts (full

documents or pieces of text). A specific weight is then

assigned to each word in the matrix. Such weights can

range from simple word counts in documents, to more

sophisticated schemes such as the TF.IDF weights of words

[76].

Singular value decomposition (SVM) is applied to

decompose the word � document matrix v into a product of
three matrices v ¼ USVT [31]. S represents a diagonal

matrix of singular values (SVD), where these values appear

in a descending order, and both U and V are column

orthogonal matrices. Dimensionality reduction is then

performed to produce reduced approximations of USVT by

keeping the top k eigenvalues of these matrices. A

dimensionality reduction technique takes a set of objects

that exist in a high-dimensional space and represents them

using lower dimensions. This technique is applied to S by

removing singular values that are too small (often deter-

mined empirically) and only keeping the initial principal

components. The main assumption behind this step is that

reducing the dimensionality of the observed data will

smooth out the data, thus resulting in relatively better

approximations to human cognitive relations [50]. The

reduced matrix can be described as vk ¼ UkSkV
T
k , where vk

represents a compressed matrix of rank k that minimizes

the sum of the squares of the approximation errors of v.
Since UkSkV

T
k are m� k, k � k, and k � n, respectively, vk

is still a m� n matrix similar to v. Using vk, the similarity

between two words in the corpus can be measured as the

cosine of the angle between their corresponding com-

pressed row vectors.

3.1.2 Thesaurus-based methods

Methods under this category exploit lexical knowledge

structures in linguistic databases to discover similarity

relations between words. WordNet is the most popular

English dictionary that is often used to carry out such

analysis. Introduced and maintained by the Cognitive

Science Laboratory of Princeton University, WordNet is a

large lexical database of English verbs, nouns, and adjec-

tives grouped into sets of cognitive synonyms called syn-

sets [32]. English nouns and verbs in WordNet are

connected through a hierarchical structure that models

semantic relations such as hypernym and hyponym among

them. Moving up and down the hierarchy reflects how

different abstract and concrete concepts are related. This

semantic arrangement of concepts gives WordNet an

advantage over classical alphabetical dictionaries when it

comes to semantic analysis.

In general, similarity methods that exploit the lexical

database WordNet can be categorized into three main

categories [81], including:

• Path based: These methods estimate the semantic

similarity between words based on the shortest path

connecting them in the WordNet hierarchy. The shorter

the path, the smaller the semantic distance between

words. An edge in the word hierarchy represents a

uniform distance in terms of semantic similarity. Wu-

Palmer [86] is an example of methods that follow this

approach. Formally, assuming depth is the depth of two

given concepts relative to the root node in the WordNet

taxonomy, and LCS is the depth of the least common

subsumer, or the nearest common node for w1 and w2,

the similarity between w1 and w2 can be described as:
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Wuðw1;w2Þ ¼
2 � depthðLCSÞ

depthðw1Þ þ depthðw2Þ
ð1Þ

• Information content based: Methods under this cate-

gory estimate similarity between words using notions

of information theory. For instance, the Resnik [74]

similarity measure calculates the similarity between

two concepts using the information they share in

common. This amount of information is indicated by

the information content of the concepts that subsume

them in the WordNet is-a hierarchy, or the lowest node

in the is-a hierarchy which is a hypernym of both

words. Formally, assuming P(c) is the probability of

encountering c in the corpus and IC is the information

content of a certain entity c given by

ICðcÞ ¼ � logPðcÞ, Resnik [74] similarity measure

defines the similarity between w1 and w2 as follows:

Resnikðw1;w2Þ ¼ ICðLCSðw1;w2ÞÞ ð2Þ

• Gloss based: Methods under this category use the gloss

(definition) of words available in WordNet to estimate

similarity. In particular, to quantify similarity between

two concepts, their glosses are initially enriched with

glosses of related words. A similarity score can then be

calculated based on the number of overlapping words in

these augmented glosses. Lesk algorithm [53] is an

example of a gloss-based measure.

3.1.3 Co-occurrence methods

Co-occurrence methods quantify semantic similarity

between words based on their distributional cues in the

corpus [10, 57]. The main assumption is that important

semantic schemes are inherent in the way words appear in a

large sample of text documents. In particular, semantically

related words tend to occur in similar contexts [10, 18, 50,

57]. Pointwise mutual information (PMI) and Normalized

Google Distance (NGD) are examples of computationally

simple and effective methods that are used to estimate

semantic similarity between words based on their co-oc-

currence information. These methods can be described as

follows:

• Pointwise mutual information (PMI): Introduced by

Church and Hanks [18], and later used by Turney [84]

to identify synonym pairs based on Web search results,

PMI is an information-theoretical measure of informa-

tion overlap, or statistical dependence, between two

words [18]. Formally, PMI between two words w1 and

w2 can be measured as the probability of them co-

occurring versus their probabilities of occurring in a

text collection. Assuming the collection contains N

artifacts, PMI can be calculated as:

PMI ¼ log2

Cðw1;w2Þ
N

Cðw1Þ
N

Cðw2Þ
N

 !
ð3Þ

where Cðw1;w2Þ is the number of documents in the

collection containing both w1 and w2, and C(w) is the

number of documents in which w occurs. PMI is

symmetrical, which means that the amount of infor-

mation acquired about w2 from observing w1 is

equivalent to the amount of information acquired about

w1 when observing w2. The value of PMI ranges from

�1 to þ1, where �1 indicates that the two words

are not related, or do not co-occur in any text artifact in

the collection.

PMI is intuitive, scalable, and computationally effi-

cient [61, 66]. These attributes have made PMI an

appealing similarity method to be used to process

massive corpora of textual data in tasks such as infor-

mation retrieval [61], Semantic Web [80, 84], and text

mining [44].

• Normalized Google Distance (NGD): This method uses

Google page counts to devise a semantic similarity

measure between words based on information distance

and Kolmogorov complexity [19]. The main assump-

tion is that the statistical co-occurrence of words in the

Web reflects their current similarity status in society,

and thus, can give an indication of their similarity.

Formally, to estimate the semantic distance between

two words w1 and w2 using NGD, a Google search

query Q is requested for w1, w2, and w1 AND w2. The

semantic distance is then measured as:

NGD ¼ max logðD1Þ; logðD2Þf g � logðjD1 \ D2jÞ
logðjDjÞ �min logðD1Þ; logðD2Þf g

ð4Þ

where D1 and D2 are the hit counts (number of returned

links) of Qðw1Þ and Qðw2Þ, or the number of documents

containing w1 and w2, respectively, and jD1 \ D2j is the
hit count of Qðw1 AND w2Þ, or the number of Web

documents that contain both w1 and w2. The main tenet

is that pages that contain both words indicate similarity,

while pages that contain only one of the words suggest

the opposite. NGD is a distance measure, meaning that

NGDðw1;w1Þ ¼ 0, and the NGD of two words that do

not occur together on any Web page, but do occur

separately (i.e., D12 ¼ 0) is 1. In order to bound NGD

value between 0 and 1, the following formula is often

used [38]:

nNGD ¼ e�2�NGDðw1;w2Þ ð5Þ

NGD has gained momentum in recent years due to its

solid theoretical foundation, simplicity, low computa-

tional complexity across several applications, and
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ability to achieve a decent correlation with the human

perception of similarity [15, 85, 87].

3.2 Requirement word clustering

Several word clustering algorithms have been proposed in

the literature [7, 79]. These algorithms apply various

strategies to group words into semantically coherent clus-

ters. To answer RQ2, in our analysis we investigate two

families of clustering techniques, including hierarchical

and partitioning clustering. Next is a description of these

techniques in greater detail.

3.2.1 Partitioning clustering

Partitioning clustering relocates data instances by moving

them from one cluster to another, starting from an initial

partitioning until a certain error criterion is minimized.

k-means is the most popular example of partitioning-based

methods. This unsupervised clustering technique seeks to

minimize the average distance between data points in the

same cluster. Initially, K centroids are randomly selected

from the data space. These centroids represent the seeds of

the K clusters to be generated. Each point in the space is

then assigned to the cluster with the nearest centroid. After

all the points have been assigned, the centroids are recal-

culated as the average of all points in the cluster. The data

points in the space are then reassigned to their nearest

centroid. This process is repeated until the centroids do not

move any more. In other words, the within-cluster distance

is minimized.

Identifying the optimal number of clusters and the initial

combination of centroids that minimize the within-cluster

distance in a certain data space is an NP-hard problem.

However, approximate solutions can be found by mini-

mizing the squared error objective function. Formally,

given a K number of clusters and a set of n data points, the

main objective is to choose the K centroids in such a way

that minimizes the total squared distance between each

point and its closest centroid, given by:

Error ¼
XK
i¼1

XjKij

j¼1

jxj � cij2 ð6Þ

K is the number of clusters, jKij is the number of data

points in the cluster Ki, xj is a data point in the cluster Ki,

and ci is the centroid of that cluster.

In our analysis, words are clustered based on their

pairwise similarity that is given in the form of a distance

matrix. Therefore, determining new clusters’ centroids by

averaging data points in the cluster does not make sense.

To cluster such data, another derivation of k-means, known

as k-medoids, is used. Unlike k-means, k-medoids chooses

data points as centroids (medoids). A medoid is the data

point for which the average distance to other data points in

the set is minimal (i.e., the most centrally located point in

the set). Partitioning Around Medoids (PAM) is a classical

algorithm that is used to solve the k-medoids problem [47].

This algorithm can be described as a three-step procedure,

including:

• Initialize: K points are randomly selected as initial

medoids (centroids)

• Build: Each data point x in the space is assigned to the

nearest centroid c, creating K clusters. The total cost of

the configuration is then calculated as:

cost ¼
XK
i¼1

XjKij

j¼1

jxj � cij ð7Þ

• Swap: For each cluster Ki, the centroid ci is exchanged

with a point xj inKi and the total cost of the configuration

is recalculated. If the cost has increased, undo the swap.

Otherwise, if the cost has decreased, the space is rebuilt

again around the new centroids (go to step 2). This

process is repeated iteratively until no further changes in

the centroids can reduce the overall cost.

k-medoids is computationally more expensive than

k-means since finding the medoid is usually harder than

simply calculating the average. However, k-medoids is

known to be more robust to noise and outliers in compar-

ison with k-means as it minimizes a sum of general pair-

wise distances (dissimilarities) instead of a sum of squared

distances. To illustrate k-medoids operation, consider the

data space represented in the distance matrix in Table 1.

Assuming K = 2, the initial medoids are selected to be the

words font and color. Based on their pairwise distance,

words logon and password will be assigned to the

medoid word color, and email will be assigned to the

medoid font. The overall cost of this configuration

(Fig. 2a) is [(0.93 ? 0.86) ? 0.8 = 2.59]. In the second

iteration, assuming the medoid color is replaced by

logon, this results in a cost reduction of [(0.2 ? 0.93) ?

Table 1 A semantic distance matrix of the word sample: email,
color, password, font, and logon

email color password font logon

email 0.0 0.88 0.12 0.8 0.3

color 0.88 0.0 0.86 0.37 0.93

password 0.12 0.86 0.0 0.91 0.2

font 0.8 0.37 0.91 0.0 0.96

logon 0.3 0.93 0.2 0.96 0.0
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0.8 = 1.93]. However, swapping the medoid color with

password will reduce the cost to ((0.2 ? 0.86) ? 0.8 =

1.86). The latter swap minimizes the overall cost. The

space is therefore rebuilt around the new medoids

(Fig. 2b). Now color is assigned to the medoid font,

and email is reassigned to the medoid password. The

total cost of the new configuration is [(0.2 ? 0.12) ? 0.37 =

0.69]. No other possible changes can reduce the cost any

further.

3.2.2 Hierarchical clustering

The underlying logic of hierarchical clustering is to suc-

cessively merge the most similar elements in a data space

into larger clusters. Hierarchical clustering algorithms

produce hierarchical structures that can be represented as

dendrograms—a tree-structured graph that reflects how

objects in a space are being grouped at different iterations

of the algorithm [3].

Hierarchical agglomerative clustering (HAC) is the most

popular family of hierarchical clustering. In our analysis,

we experiment with three categories of HAC algorithms,

including complete linkage (CL), single linkage (SL), and

average linkage (AL). SL calculates the distance between

two clusters as the distance between their most similar pair

of elements, while CL uses the distance between most

dissimilar pair of elements as the distance between two

clusters, and AL merges the two clusters with the maxi-

mum average pairwise similarity between all their data

elements. Formally, assuming the distance between any

two data items in two clusters A and B is given by d(a, b),

the linkage (merging) criteria for clusters A and B can be

described as follows:

• SL: MðA;BÞ ¼ min dða; bÞ : a 2 A; b 2 Bf g
• CL: MðA;BÞ ¼ max dða; bÞ : a 2 A; b 2 Bf g
• AL: MðA;BÞ ¼ average dða; bÞ : a 2 A; b 2 Bf g

To demonstrate the HAC process, we refer to the data

space in Table 1. Figure 3 shows the generated dendrogram

using average linkage algorithm. First, each word is

assigned to a separate cluster. The two closest words in the

space email and password are merged. At the second

step, the word logon is merged with the cluster\email,

password[ since its average distance to this cluster is

((0.3 ? 0.2) / 2 = 0.25), which is smaller than the distance

to the two other clusters\color[ and\font[. At the

third step, words font and color are merged as they are

closer to each other than to the cluster\email, pass-

word, logon[. Eventually, all clusters are merged into

one big cluster.

4 Implementation, analysis, and evaluation

In this section, we analyze the performance of the different

semantic similarity methods and clustering techniques

introduced in Sect. 3 to approximate proper cluster con-

figurations for our approach (i.e., answering research

questions RQ1 and RQ2). In particular, we describe our

experimental systems and our evaluation strategy, provide

technical details about the implementation of the different

methods, and discuss the analysis results.

4.1 Experimental systems

Three experimental software systems from different

application domains are used to conduct our analysis.

These Java systems were chosen based on their size, the

diversity of their application domains, and the availability

of requirements documentation and original developers. In

order to honor our confidentiality agreement, we use the

following pseudonyms to refer to these systems:

• SmartTrip: An Android mobile application that is

designed to provide up-to-date routing and pricing

information for users planning road trips through the

USA. The application exploits several third-party APIs

to make routing and accommodation recommendations.

• SafeDrink: A software system that is designed to help

users to manage their drinking habits. The system has apassword font

logon
color

email

logon font

color
password

email

(a) Initial Configuration

(b) Final Configuration

Fig. 2 k-medoids clustering of the data in Table 1. a Initial

configuration (cost = 2.59), b final configuration (cost = 0.69)

logonemail color password font

Fig. 3 Hierarchical clustering of the data in Table 1
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mobile application interface which provides services

such as recording the number of alcoholic beverages

consumed and estimating the blood alcohol content

(BAC). The system also provides a fast access to a list

of emergency contacts and safety information.

• BlueWallet: A subscription-based Web service which

provides users with options to plan their budgets and

manage their personal finances, including their credit

cards, banking accounts, and tax information.

The functional requirements of each system were extracted

from the SRS document maintained for each project. In

particular, individual features (sections in the SRS docu-

ment) of each system were first identified. Diagrams,

indexes, and references were removed. Each atomic spec-

ification of each feature was then treated as a separate

functional requirement. Each requirement is around one or

two sentences and often starts with phrases such as The

system shall or The user must. For instance, the generate

map feature of the SmartTrip system was broken down into

a set of FRs including:

The system shall establish a connection ..
The system shall display most recent ..
The user can zoom into different ..
Zooming should be enabled through ..

In total, we were able to extract 170, 214, and 184

unique FRs from SmartTrip, SafeDrink, and BlueWallet,

respectively. Table 2 summarizes the characteristics of our

different experimental systems, including the size of each

system in terms of lines of source code (LOC), lines of

code comments (CLOC), number of functional require-

ments (FR), number of unique words in each system’s

requirements (FR. WORDS), number of code classes

(CLS), and number of developers available to participate in

the study (DEVL).

4.2 Measuring cluster quality

Recent analysis in NLP research shows that groups of

words that have a higher average of pairwise semantic

similarity between their words tend to be more

semantically coherent, thus more meaningful to end

users [62, 65]. Similarly, words that share a higher average

of semantic similarity with other words in the cluster tend

to be more representative of the cluster’s subject mat-

ter [49, 51]. Based on these observations, in our analysis,

the semantic coherence of a cluster ci of size n words (wi)

is calculated as the average pairwise semantic similarity

between its words:

cohesionðciÞ ¼
1
n
2

� � X
wi;wj2c;i6¼j

similarityðwi;wjÞ ð8Þ

Furthermore, meaningless clusters are penalized. In par-

ticular, any generated cluster with less than 8 words is

assigned a cohesion of 0. This heuristic is enforced based

on previous observations that clusters with less than 8

words hardly convey any meaningful concepts [14, 62, 65].

Therefore Eq.(8) can be expanded as follows:

0 n\8
1
n
2

� � X
wi;wj2c;;i6¼j

similarityðwi;wjÞ n[ ¼ 8

8<
: ð9Þ

The separation, or coupling, of a cluster is quantified as the

average pairwise word semantic similarity between a

cluster and its nearest neighbor in the generated cluster

space. Formally, assuming M number of clusters, coupling

of ci is calculated as follows:

couplingðciÞ ¼ max
0� j�M; j 6¼i

similarityðci; cjÞ; ð10Þ

where similarityðci; cjÞ is the average word pairwise simi-

larity between clusters ci and cj. The overall quality of the

generated cluster space is then calculated as:

QðCÞ ¼ 1

jCj
XjCj
i¼1

ðcohesionðciÞ � couplingðciÞÞ ð11Þ

The value of this semantically aware quality metric fits in

the range [-1, 1]. 1 indicates a perfect scenario, where

cohesion is maximized and coupling is minimized and -1

is a worst-case scenario, where formed clusters have no

semantic coherence. Given this objective quality function,

the main task is to identify cluster configurations that can

actually generate a solution (converge) given the different

semantic distance measures introduced earlier.

4.3 Identifying cluster configurations

To evaluate the performance of the different semantic

similarity methods, similarity matrices are generated for

the words extracted from the FRs of each experimental

system using each of the methods discussed earlier (Res-

nik, Wu, Lesk, LSA, PMI, and NGD).

Table 2 Experimental systems

System LOC CLOC FR FR. WORDS CLS. DEVL.

SmartTrip 27.3k 7.7K 170 622 173 3

SafeDrink 44k 13.5K 214 717 266 3

BlueWallet 56.7k 19.4K 184 1034 374 2
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To implement LSA (i.e., perform SVD), the Bluebit

Matrix Calculator1, a high-performance matrix algebra for

.NET programming, is used. To build the LSA word �
document matrix of the system, each FR is treated as a

separate document. FRs are initially stemmed using Porter

stemmer [73]. English stop-words are then removed, and

words and documents are arranged in a m� n matrix,

where each row represents a unique FR word (mi), and

each column (nj) represents a system document (an indi-

vidual FR in our analysis). The matrix entry i.j is the fre-

quency of mi in nj.

The Java API WordNet::Similarity2 is used to imple-

ment the list of thesaurus-based semantic similarity meth-

ods (i.e., Wu, Lesk, and Resnik). Initially, each FR of the

system is extracted and lemmatized. The goal of lemma-

tization is to reduce the inflectional forms of a word to a

common base, or a linguistically valid form, known as the

lemma. Stanford OpenNLP lemmatizer is used in our

analysis. The reason lemmatization is selected over-stem-

ming, for this particular set of methods is to preserve the

naturalness of words. In particular, popular stemmers such

as Porter are prone to over-stemming [73] which happens

when too much of the word is removed that the outcome of

the stemming process is not a valid natural word (e.g.,

general and generous are stemmed to gener). This can be a

key factor in the performance of methods that rely on

English dictionaries for similarity calculations. For exam-

ple, Table 3 shows the resulting text after applying

lemmatization and stemming over a sample FR. When

using Porter stemmer, certain words such as updat,

repair, and facil are over-stemmed to unnatural

words. However, using lemmatization, all generated words

are still valid dictionary words. After lemmatization,

English stop-words are removed (e.g., the, was). The

pairwise similarity between remaining words is then cal-

culated using the different similarity methods provided in

the WordNet::Similarity API.

To implement the co-occurrence method PMI, the

word � word matrix of the system is constructed based on

the words’ co-occurrence patterns in the system’s FRs.

This matrix size is n� n, where n is the number of unique

words in the system. Note that since co-occurrence is a

symmetrical relation, the upper and the lower triangles of

the PMI/NGDWiki co-occurrence matrices are identical,

thus reducing the space requirements by half.

The Google API3 is often used to build the hit-count

matrix for NGD [33]. This API provides developers with

an interface to integrate Google services in their programs.

However, Google enforces hard quotas on the number of

free programmatic queries per time frame, allowing only a

limited number of requests to be made. Another drawback

of methods that rely solely on Web counts stems from the

fact that the Web is a constantly growing corpus, and hit

counts returned by search engines can vary in an unre-

peatable manner, producing different counts at different

time periods or different search engines [83]. Moreover,

due to the high ratio of noisy content (e.g., random ad

placement) on the Web, some words might occur together

arbitrarily, or due to pure error [8], thus raising major

concerns about the reliability of such counts for similarity

estimations [33]. In order to control for such effects, we

constrain the co-occurrence data search process to Wiki-

pedia (i.e., NGDWiki). Even though Wikipedia is naturally a

smaller corpus of human knowledge than the entire World

Wide Web, it is still the largest freely available, semi-

structured, and constantly evolving source of human

knowledge. Moreover, Wikipedia is often updated by

experts, which makes it less noisy in comparison with the

entire Web [34, 82]. To implement NGD using Wikipedia,

we downloaded the most recent XML dumps of the English

Wikipedia4. Individual articles were then extracted and

indexed by lemmatization and removing English stop-

words and hyperlinks. Indexed artifacts were then stored in

a local database. The total number of extracted articles was

4.5 millions, and the database size on disk was 26.7 GB.

The generated pairwise semantic similarity matrices of

each of our experimental systems are fed to the different

clustering algorithms discussed earlier (k-medoids, AL,

CL, and SL). The performance of these different cluster

configurations is then assessed using the quality measure

defined in Eq. (11). To approximate a near-optimal number

of clusters (K) in k-medoids, K is initially set to 2. The

system’s FR words are then clustered, and the quality

function Q is measured. K value is then increased by 1, and

the process is repeated. The value that generates the best

performance is considered. In HAC algorithms, the number

of clusters is initially set to n, which is the number of words

Table 3 An example of text

lemmatization, stemming, and

stop-word removal

Original sentence Only adjusters with a supervisor role can update preferred repair facility ratings

OpenNLP lemmatizer Only adjuster with a supervisor role can update prefer repair facility rating

Porter stemmer Only adjust with a supervisor role can update prefer repair facility rate

Stop-word removal Only adjuster supervisor role update preferred repair facility rating

1 http://www.bluebit.gr/net/.
2 http://wn-similarity.sourceforge.net/.

3 https://developers.google.com/web-search/docs/.
4 http://en.wikipedia.org/wiki/Wikipedia:Database_download.
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extracted from the system’s FRs. To determine the optimal

cut point in the generated dendrogram at which to stop the

merging process, the quality function is measured at each

level. The level (number of clusters) that maximizes the

quality function is considered as the optimal cut point.

It is important to point out that optimizing clustering

results using LSA is more complicated than other similarity

measures. In particular, the LSA�k value has to be initially

determined before the LSA pairwise similarity distance

matrix of the system is generated. In our analysis, we adopt

a brute-force strategy to approximate such values. Initially,

LSA�k is set to 10, the LSA pairwise similarity matrix is

generated, and the optimization process is executed. The

value of LSA�k is then gradually increased by 10, and the

process is repeated until LSA�k is equal to the number of

singular values in S of the system (Sect. 3.1.1). The step

size of 10 is determined as the minimum step that has a

noticeable impact on the quality.

Given the complexity of the optimization process (3

systems � 4 clustering algorithms � 6 similarity mea-

sures), the entire evaluation process is automated. It is

important to point out that a brute-force solution is only

feasible in our experiment because the number of data

items (words) in the space is relatively low (Table 2).

However, this should not affect the scalability of our

approach given that requirements are often described using

limited domain terminology [36, 60].

The results of the optimization process over our three

experimental systems are shown in Tables 4, 5, 6, 7. Due to

space limitations, we only report the configurations that

maximized the value of our quality function (Eq. 11). Next

we discuss these results in greater detail.

4.4 Results and analysis

To get a sense of the different similarity methods’ and

clustering algorithms’ performance, we average the gen-

erated results, in terms of cluster quality (Eq.11), over all

our experimental systems. The results, displayed using

boxplot charts in Figs. 4 and 5, show the aggregated

average performance of the different clustering algorithms

and similarity methods, respectively (i.e, RQ1 and RQ2).

Table 4 Results of the

optimization process using

k-medoids clustering algorithm

System Resnik Wu Lesk LSA PMI NGDWiki

Q K Q K Q K Q K LSA-k Q K Q K

SmartTrip 0.09 21 0.08 13 0.09 12 0.07 32 60 0.01 15 0.03 22

SafeDrink 0.09 15 -0.25 22 -0.12 33 0.08 6 110 -0.04 24 -0.02 11

BlueWallet -0.3 7 0.01 14 0.07 43 -0.1 12 130 -0.03 31 -0.1 7

Table 5 Results of the

optimization process using

complete linkage clustering

algorithm

System Resnik Wu Lesk LSA PMI NGDWiki

Q K Q K Q K Q K LSA-k Q K Q K

SmartTrip 0.1 17 0.01 16 0.1 6 0.1 28 60 0.09 21 0.2 22

SafeDrink 0.07 19 0.05 24 0.03 14 0.11 23 100 0.08 41 0.11 18

BlueWallet 0.07 24 0.08 31 0.04 26 0.1 14 80 -0.08 15 0.14 33

Table 6 Results of the

optimization process using

single linkage clustering

algorithm

System Resnik Wu Lesk LSA PMI NGDWiki

Q K Q K Q K Q K k Q K Q K

SmartTrip 0.04 13 -0.11 68 -0.13 97 0.14 17 60 -0.12 105 0.19 21

SafeDrink 0.01 44 0.04 48 0.07 43 0.17 43 110 -0.03 65 0.22 22

BlueWallet 0.05 117 -0.05 135 -0.06 74 0.24 37 160 -0.17 74 0.3 44

Table 7 Results of the

optimization process using

average linkage clustering

algorithm

System Resnik Wu Lesk LSA PMI NGDWiki

Q K Q K Q K Q K k Q K Q K

SmartTrip 0.04 12 -0.07 14 -0.03 40 0.41 22 80 -0.1 103 0.67 16

SafeDrink -0.09 6 0.04 3 -0.2 110 0.47 18 90 0 10 0.63 26

BlueWallet -0.09 33 0.04 22 -0.03 130 0.32 42 130 -0.13 220 0.57 33
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The aggregated clustering results in Fig. 4 show that k-

medoids was almost random in its operation, failing to

converge, or achieve competitive results in all three sys-

tems. The family of HAC algorithms was relatively more

successful in finding cohesive clusters. In particular, the

results show that average linkage (AL), using NGDWiki and

LSA as the underlying similarity measures, was the most

successful in extracting highly cohesive word clusters in all

systems. CL and SL, however, could not match AL’s

performance, with CL achieving slightly better results than

SL. In general, AL tends to produce relatively balanced

word clusters, where a word has to have a high average

pairwise similarity to all other words in the cluster in order

to be merged in, thus preserving the context, or the theme,

of the cluster [2]. CL and SL, on the other hand, rely on a

single word pair to determine the distance between two

clusters, which seems to affect the word clustering process

negatively as other words that might be more distinctive to

the cluster may be ignored.

In general, the set of hierarchical clustering algorithms

produced higher-quality results in all systems, which

answers our first research question (RQ1). The family of

k-means, represented by k-medoids in our analysis, was not

as successful. This can be explained based on the fact that

k-means algorithms tend to be extremely sensitive to the

initial seeds. For instance, reconsider the semantic distance

matrix in Table 1. Assuming the initial seeds for a k-me-

doids space were selected to be the words email and

password, based on their pairwise distance, the words

color and logon will be assigned to the centroid

password and the word font will be assigned to the

centroid email. The cost of this configuration is [(0.2 ?

0.86) ? 0.8 = 1.86]. In the second iteration, assuming the

centroid password is replaced by the word logon, this

results in a cost increase of [(0.2 ? 0.93) ? 0.8 = 1.93].

Similarly, swapping the centroid color with the word

password will increase the cost to [(0.93 ? 0.86) ? 0.8 =

2.59]. Therefore, the algorithm terminates at this point

keeping the original decomposition shown in Fig. 6. This

example shows how poor initialization of the clusters will

lead to poor clustering results, causing a major drop in the

cohesion and coupling of generated decompositions. A

suggested solution for this problem would be to run the

algorithm as many times as possible and to consider the

best performance, or to use seeding techniques to pick

potentially good initial seeds [6]. However, adding such

parameters to the optimization problem increases the

complexity to exponential levels.

In terms of similarity measures (RQ2), the aggregated

results in Fig. 5 show that LSA and NGDWiki were in

general more successful than the set of thesaurus-based

methods and the co-occurrence method PMI. To explain

this difference in the performance, we use the word

sample in Table 1 (email, logon, password,

color, and font). We calculate the similarity of the

word email to the rest of the words in the sample. A

human with a common knowledge of Web technologies

would rank the words password and logon as more

similar to the word email than color and font.

Table 8 shows how the different similarity methods

ranked these words. Our first observation is that the set

of thesaurus-based methods behaved almost the same. In

particular, Wu, Lesk (which expresses similarity in

integer numbers), and Resnik, ranked the word logon

at the bottom of the list, with no similarity to the word

k-medoids CL SL AL
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Fig. 4 Aggregated performance of the clustering algorithms (k-

medoids, CL, SL, and AL) in terms of quality (Eq. 11)

Resnik Wu Lesk LSA PMI NGD
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Fig. 5 Aggregated performance of the similarity methods (Resnik,

Wu, Lesk, LSA, PMI, and NGDWiki) in terms of quality (Eq. 11)

color email

logon

password
font

Fig. 6 Example of bad seeding of k-medoids using the data in

Table 1
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email. This can be attributed to the fact that this word

does not exist in the WordNet dictionary. In fact, the

lack of named entities is regarded as one of the most

dominant problems of thesaurus-based methods. In par-

ticular, due to the explosive growth of the amounts of

textual data being shared online, natural language is

evolving in a pace like never before. Expert-generated

linguistic databases such as classical dictionaries or

semantic knowledge bases (e.g., WordNet) cannot keep

up with such a fast pace of change; rather, they record

snapshots at various stages of that evolution. Therefore,

relying on such databases for text analysis might lead to

misleading, and often out-of-date, results.

The table also shows that PMI was almost random in its

operation. This can be explained based on the fact that PMI

struggles with smaller corpora. In particular, the amount of

contextual knowledge often available in an SRS document

is not sufficient enough for PMI to function probably. For

instance, the words email and logon do not appear

together in any FR in the dataset in [24], thus taking PMI

accuracy to lower levels, which also explains why addi-

tional training data greatly enhances the performance of

PMI [9]. In contrast, LSA was able to achieve more sen-

sible results than PMI. However, specifying the LSA-k

value that achieved these results was a computationally

expensive process. Basically, we had to run LSA under

different k values [10–300] to identify the value that

achieved the desired results (k = 50). Finally, the

table shows that NGDWiki was able to detect sensible

similarity relations that reflect the way these words are

typically used by humans. In general, Wikipedia is an up-

to-date source of human knowledge and thus does not

suffer from coverage issues often associated with linguistic

dictionaries. For instance, the word logon appears in 299

Wikipedia articles, while the word email appears in

16,735 articles. Both words appear together (co-occur) 117

times. Given that our version of Wikipedia has 4.5 million

articles, nNGD(email, password) = 0.36. Password,

however, appears in 4125 articles and co-occur with

email in 1337 articles, thus nNGD(email,

password) = 0.49.

5 Detecting NFRs

After FR words in each system have been clustered using

the cluster configurations identified in the previous section,

the main task at this step of the proposed procedure is to

capture clusters of words that potentially represent non-

functional requirements of the system. Formally, this task

can be described as a standard classification problem where

the generated clusters are classified into various NFR cat-

egories. Next is a description of our classification

procedure.

5.1 NFR classification

To guide the classification process, a list of classification

labels that describes the basic types of NFRs is used. Even

though there are almost 150 recognized categories[17],

only the most general categories of NFRs that have been

identified in the literature are used [24, 78]. These cate-

gories include: security, performance, accessibility, accu-

racy, portability, safety, legal, privacy, reliability,

availability, and interoperability.

To assign word clusters to these NFR labels, the average

NGDWiki between each label and the words in each indi-

vidual word cluster is calculated. To enhance the accuracy

of the classification process, different morphological vari-

ants (Table 9) of these labels are provided. An individual

word’s similarity to a certain NFR is calculated as the

maximum NGDWiki similarity between that word and any

of the morphological variants of that NFR. Formally,

assuming a cluster C, with N number of words

w1;w2;w3; . . .;wNf g, and a non-functional requirement

(L), with M number of morphological variants

l1; l2; l3; . . .; lMf g, the probability that C belongs to L is

given by:

PðC; LÞ ¼ 1

N

XN
i¼1

max
0� j�M

NGDwikiðwi; ljÞ; ð12Þ

After calculating the similarity of a certain word cluster to

all NFR labels, the cluster is assigned to the label with the

maximum average pairwise similarity. Note that in our

Table 8 Similarity of the words logon, password, color, and font to the word email according to the different similarity methods

Resnik Wu Lesk LSA PMI NGDWiki

word sim word sim word sim word sim word sim word sim

password 0.78 color 0.38 font 41 password .52 password .083 password 0.49

color 0.78 password 0.33 color 35 logon .14 logon .083 logon 0.355

font 0.77 font 0.3 password 16 color .02 color .083 font 0.23

logon 0 logon 0 logon 0 font .01 font .083 color 0.20
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analysis, we adopt crisp clustering, where a word can

belong to one cluster only. This constraint is enforced to

ensure that the classification process produces more clear-

cut results. For instance, certain popular English words

(e.g., performance) tend to have high semantic simi-

larity to multiple NFR labels; therefore, if this word was

allowed to belong to multiple clusters, it might overshadow

other, less popular, but more deterministic words (e.g.,

logon), thus taking the overall classification accuracy

down.

The functional requirements of each system are then

automatically classified into different NFR categories

based on their semantic similarity to the clusters of words

representing individual NFRs. The task at this step is

treated as a standard IR problem. In particular, the words of

each individual FR are extracted and matched with the text

(word cluster) of each detected NFR of the system using

the text semantic similarity measure (TSS) proposed by

Mihalcea et al. [61]. TSS combines information from

word-to-word similarity and word specificity to calculate

the similarity between short paragraphs. Formally, the

semantic similarity between two texts TSSðT1; T2Þ can be

described as follows:

1

2

P
ðmaxSimðwi; T2Þ � IDFðwiÞÞP

IDFðwiÞ
þ
P

ðmaxSimðwj; T1Þ � IDFðwjÞÞP
IDFðwjÞ

� �

ð13Þ

maxSimðwi; T2Þ is a function that returns the NGDWiki

similarity score between wi from T1 and its most similar

word in T2, and IDFðwiÞ is the word’s specificity, calcu-

lated as the number of documents in the corpus divided by

the number of documents that contain wi.

We notice that, using Eq. (13), an FR might be assigned

to an NFR category due to noise. For instance, due to its

massive size, some words might co-occur in Wikipedia due

to pure error. This might contribute to the similarity of

words even if they are not semantically related. Therefore,

a similarity threshold has to be enforced to filter out noise.

Formally, an FR will be classified under a specific NFR

category if and only if their pairwise TSS similarity

exceeds a specific similarity threshold.

To determine this threshold, developers from different

experimental systems were asked to manually classify the

system’s FRs into the different NFR categories identified

earlier (Table 9), creating our ground-truth dataset. Each

functional requirement can be classified under multiple

NFRs; therefore, we have a (M:N) relation between FRs

and NFRs. For instance, the SafeDrink’s FR: ‘‘According to

state regulations, text messages exchanged between the

user and the designated hcp should be encrypted’’ enforces

both a security and a legal constraints. In cases of conflicts

(i.e., different developers classify a certain functional

requirement under different NFRs) the researchers inter-

vened to help making a decision. To minimize the exper-

imental bias, researchers’ involvement was limited to

initiating further discussion to help developers reach a

consensus. Only a few cases of conflict were reported, and

a consensus was reached in all of these cases. The different

types of NFRs were explained to the participants, and the

task was demonstrated by the researchers using sample

functional requirements prior to the experiment. No time

constraint was enforced.

To assess the classification accuracy of the proposed

approach under different similarity thresholds, recall and

precision values are calculated after all the FRs in the

system are classified. Recall of each NFR is calculated as

the percentage of correctly classified functional require-

ments (true positives) from the set of functional require-

ments that enforce the NFR, and precision is calculated as

the percentage of classified functional requirements under

that NFR that are correct [24, 78]. Precision and recall are

measured at different similarity thresholds (k). Figure 7

shows the classification results in all three systems over the

k values of 0:0; 0:2; 0:4; 0:6; 0:8; 1:0f g. The results are

reported using the F measure, which represents the har-

monic mean of recall and precision. Formally, the F

measure is described as follows:

Fb ¼ ðb2 þ 1ÞPR
b2Pþ R

ð14Þ

In our analysis, we use b ¼ 2. F2 emphasizes recall over

precision. The main assumption is that, from a practicality

point of view, commission errors (false positives) tend to

be easier to deal with than omission errors (false

negatives) [24].

Figure 7 shows the classification results in terms of F2

averaged over all the NFRs in all of our experimental

Table 9 NFR categories and their representative words

NFR Morphological variants

Security Security, secure

Performance Performance, perform

Accessibility Access, accessible, accessibility

Accuracy Accuracy, accurately, accurate

Portability Portable, portability

Safety Safe, safety

Legal Legally, legal

Privacy Privacy, private

Reliability Reliable, reliability

Availability Availability, available

Interoperability Interoperable, interoperability
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systems. These results include also FRs which do not

enforce any NFR (other). An FR that does not enforce any

NFR and is classified under other is considered a correct

case of classification. At k ¼ 0, all FRs in all systems are

classified under all NFRs. In this case, recall is maximized

except for the other case; however, precision is very low.

In contrast, at k ¼ 1, none of the FRs are classified (all FRs

are assigned to other category). In this case, both recall and

precision are 0 except for the other case.

In general, results show that the best performance in all

systems was detected in the k range of [0.2–0.4]. At

k[ 0:4, less and less FRs are being assigned to NFR

categories; thus, while the precision might be increasing,

the recall is deteriorating, which explains the very low F2

values. In contrast, at k\0:2, almost every FR is getting

assigned to one or more FRs, which explains the high

recall, but the very low precision. Since we favor recall

over precision, the performance seems to be better (in

terms of F2) at this level than higher threshold levels.

However, it is practically useless as the average precision

is very low.

5.2 Analysis

Table 10 shows the classification performance, in terms of

precision and recall, achieved in our three experimental sys-

tems at a threshold similarity k ¼ 0:3. The results show that

our procedure managed to achieve an average classification

recall of 88, 74, and 57 % and an average classification pre-

cision of 52, 57, and 50 % in SmartTrip, SafeDrink, and

BlueWallet, respectively. These results can be interpreted by

analyzing individual cases. For instance, SafeDrink enforces a

high security constraint. This NFR is characterized by the

word cluster {password, login, email, authenti-

cate, authorize, log, register, protect,

access, allow, role}. These words appear in functional

requirements such as ‘‘registered users should login using

their email and password’’ and ‘‘the system shall authenticate

users’ access credentials.’’

In the BlueWallet system, the security constraint is

emphasized through the encryption algorithm the system

uses to protect its users’ data. In particular, this system

deals with sensitive user information. It requires encryption

of all the data stored on the user’s mobile device or

exchanged over the network. Therefore, the security con-

straint in this system is enforced through the word group

{encrypt, decrepit, biometric, sensitive,

restrict, prevent, deny, attack, malicious,

protect}. Such words appear in functional requirements

such as ‘‘three keys encrypt the data with a 168-bit

encryption.’’ In addition to the security constraint,

BlueWallet also enforces an accuracy constraint, captured

by the words {precision, decimal, margin, tol-

erance, measurement, calculation, exact}.

Such words appear in functional sentences such as ‘‘the

precision of the calculation is controlled by the predefined

epsilon’’ and ‘‘the total should be rounded to two decimal

places.’’

SafeDrink maintains a list of different states’ drinking

laws and provides information about local law enforcement

agencies and current drinking regulations in the area, thus

enforcing a legal constraint. This particular NFR is cap-

tured by the word cluster {law, lawyer, regulation,

guidelines, legal, police, insurance, stan-

dard, comply, ramification, liability, state}.

SafeDrink also enforces an accessibility constraint. In

particular, the target users of this application are people

under the influence of alcoholic substances. Therefore,

unlike SmartTrip, which assumes that its users are not

operating a vehicle under the influence, SafeDrink provides

extra accessibility requirements. This constraint is detected

through the word cluster {easy, access, thump, font,

magnify, picture, color, graphic, red, blue,

green, cup, access, look, feel, simple, ap-

pealing}. SmartTrip, however, enforces a performance

constraint as it performs several real-time operations such

as locating all nearby hotels and using different API’s to

get routing and pricing information. This constraint is

captured through the word cluster {processor, speed,

memory, response, time, date, start-up, sec-

ond, hour, trans, transmit, signal, live}.

In terms of limitations, SmartTrip and SafeDrink enforce

an interoperability constraint. This NFR is enforced by

functional requirements that manage the interaction

between the client side interface, the server, and the third-

party APIs. We notice that the clustering algorithm failed

to group keywords with semantic similarity to the word

interoperability. This can be attributed to two different
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Fig. 7 The performance of our classification procedure in terms of F2

at different similarity thresholds (k)
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reasons. First, the word Interoperability appears in a rela-

tively smaller number of Wikipedia articles (63 articles).

Therefore, its chances to co-occur with other words are

limited. Second, words that are often associated with this

particular NFR tend to be scattered over the clustering

space and are often grouped with clusters related to per-

formance and portability. Another example of potential

failure is polysemy, or when a word has a different

meaning based on the context. For instance, in BlueWallet,

the word fault appears in two contexts, in one instance

referring to a software fault, and in another instance

referring to a mathematical fault. Therefore, it could either

be an indicator of reliability or accuracy. Semantically, the

word fault stands at almost the same NGDWiki distance

from these two NFRs, where NGDWikiðaccuracy; faultÞ ¼
0:25 and NGDWikiðreliability; faultÞ ¼ 0:24. This problem

can be probably controlled by considering phrases rather

than single words. However, such claims are yet to be

evaluated in our future work.

6 NFR traceability

In the second phase of our analysis, we trace discovered

NFRs to their implementation in the solution space. The

main objective is to generate NFR traceability information

with accuracy levels that can be adequate for practical

applications. NFR-to-code traceability helps to verify that

all quality constraints in the system have been imple-

mented, aid in tasks such as regression testing, verification

and validation, and change impact analysis [23, 37, 63].

In our analysis, we adopt an IR approach for tracing

NFRs. Our approach is enabled by the fact that, in the first

phase of our analysis, NFRs were extracted and explicitly

defined as clusters of FR words. Therefore, they can be

matched with other artifacts in the system based on their

textual content. The underlying tenet is that developers use

common vocabulary to describe domain concepts; thus,

software artifacts sharing similar textual information are

likely to be traceable from one another [27, 45].

6.1 IR-based traceability

The main research question at this phase of our analysis is

how to trace the discovered NFRs to the source code

artifacts implementing them (RQ3). To answer this ques-

tion, we investigate the performance of three different IR

methods in establishing and recovering similarity relations

between source code artifacts and NFR clusters. These

methods include:

• Text semantic similarity (TSS): Based on our findings

in the first phase of our analysis, we adopt TSS (Eq. 13)

[61] as an IR method to match discovered NFRs with

code entities. TSS was originally introduced to measure

semantic similarity between short texts. Short text is a

relatively recent NLP classification of text that has been

motivated by the explosive growth of micro blogs on

social media (Twitter, YouTube comments, status

updates, instant messaging), and the urgent need for

effective methods to analyze such large amounts of

limited textual data [40]. The main characteristics of

Table 10 NFR classification performance at k ¼ 0:3

NFR SmartTrip SafeDrink BlueWallet

FR TP FP R P FR TP FP R P FR TP FP R P

security 2 2 2 1 0.5 23 23 11 1 0.68 24 23 24 .96 0.52

performance 33 33 20 1 0.62 9 7 3 0.78 0.7 12 11 12 0.92 0.48

accessibility 4 4 8 1 0.33 32 15 11 0.47 0.58 8 8 14 1 0.36

accuracy 9 7 12 0.78 0.37 11 8 4 0.73 0.67 36 36 14 1 0.72

portability 16 16 21 1 0.43 21 14 4 0.67 0.78 2 2 4 71 0.33

safety 10 10 13 1 0.43 21 14 11 0.67 0.56 NA NA NA NA NA

legal 6 6 12 1 0.33 38 28 7 0.74 0.8 16 14 13 0.88 0.52

privacy 9 8 14 0.89 0.36 12 9 9 0.75 0.5 9 8 9 0.89 0.47

reliability 21 20 9 0.95 0.69 4 2 22 0.5 0.08 14 12 11 0.86 0.52

availability 7 4 2 0.57 0.67 NA NA NA NA NA 4 2 4 0.5 0.33

interoperability 19 18 13 0.95 0.58 14 12 14 0.86 0.46 NA NA NA NA NA

other 53 21 1 0.4 0.95 29 27 22 0.93 0.55 69 33 10 0.48 0.77

average 0.88 0.52 0.74 0.57 0.86 0.50

FR is the number of functional requirements classified manually under the associated NFR category, TP is the number of true positive

classifications and FP is the number of false positives, and P is precision and R is recall
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short text include data sparsity, noisy content, and

colloquial terminologies. Such characteristics can also

be observed in source code, including the limited

vocabulary that is used in the code, the noisy content

generated by arbitrary naming conventions, and the

colloquial terminologies emerging from domain-speci-

fic acronyms and abbreviations [43, 72]. Therefore, we

find it appropriate here to use this method to match

NFRs with code.

• Vector space model (VSM): VSM is an algebraic

model that describes and compares objects using N-

dimensional vectors, where each dimension corre-

sponds to an orthogonal feature of the object [76].

Formally, using VSM, each document in the collection

is represented as a set of weighted terms

T ¼ ft1; . . .; tng. The terms in T are regarded as the

coordinate axes in an N-dimensional coordinate system,

and the term weights are their corresponding values. If

q and d are two artifacts represented in the vector space,

then their similarity can be measured using the cosine

of the angle between their vectors:

Simðq; dÞ ¼
P

qi � diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
q2i �

P
d2i

p ð15Þ

where qi and di are real numbers representing the

TF.IDF weights (importance) of the term i in q and d,

respectively [76]. VSM with TF.IDF weights is often

used in traceability studies as an experimental base-

line [45, 60].

• Latent semantic indexing (LSI): LSI is a derivation of

LSA that is used for calculating documents’ similarity.

The underlying assumptions are similar to LSA.

However, LSI considers the document vectors in the

LSA semantic space (Sect. 3.1.1). More specifically, a

document is represented as a vector of weighted corpus

words. The similarity between two documents can then

be calculated as the cosine similarity between their

vectors in the LSI-SVD reduced space [29, 75]. Using

LSI, two documents can have a high similarity even if

they do not have any overlapping words, as long as

their words are semantically similar in the latent

semantic space.

In our analysis we work at class-granularity level, where

individual NFRs are matched with code classes potentially

implementing them [22]. This decision is supported by the

observation that higher granularity levels (e.g., a code

snippet or a method) do not provide sufficient information

for a method such as TSS or LSI to work [10]. On the other

hand, at lower levels (e.g., package), the window size is so

big that words’ distributional cues become meaningless,

thus increasing the likelihood of irrelevant and misleading

information and depriving IR methods of context. In what

follows, we describe in detail the evaluation process of

these different methods.

6.2 Pre-processing and evaluation

NFRs are represented in our analysis as clusters of natural

language words. To ensure an accurate retrieval process,

the natural language content of source code, embedded in

identifiers, comments, and string literals, must be initially

extracted. In software systems, comments and code mes-

sages are mainly used to communicate the code, its features

(e.g., help messages), and errors (e.g., exception messages)

with other programmers and end users of the system.

Therefore, they are often expressed in natural language and

can be simply indexed by lemmatization and stop-word

removal. However, this process is more challenging when

dealing with code identifiers (e.g., method, variable, and

class names). Identifiers appearing in a software system can

be natural language words, unnatural tokens (e.g., abbre-

viations, acronyms, arbitrary names), or a combination of

both. Camel-casing is often used to split identifiers into

their constituent words (e.g., UserID is split to User and

ID). However, recent studies of code indexing have

revealed that source code often contains a considerable

percentage of identifiers with names that are not properly

camel-cased. Therefore, relying solely on camel-case

splitting might lead to information loss [42].

To overcome this problem, we propose an algorithm that

looks for natural language words in code identifiers. The

algorithm recognizes two types of tokens, including natural

language words (dictionary words) and unidentified tokens

(abbreviations, acronyms, or arbitrary alphanumerical

sequences). The algorithm attempts to identify the split that

generates the least number of unidentified tokens. For-

mally, at the first iteration, the algorithm scans the input

string (identifier name) from left to right starting from the

first character. After each character scanned, a candidate

split is taken. The algorithm checks whether the left or the

right parts of the string are a natural word. In particular, the

algorithm first looks for the word in the list of the system’s

FR words. If it is not found, the algorithm uses the Ispell

English word list5 to identify natural words. If both parts of

the string after the split are words, the algorithm termi-

nates. If the split did not result in any natural words, one

more character is scanned. If either the left or the right

parts of the string are a natural word, that word is returned

and the algorithm is re-executed on the other part of the

string that is not a natural word. If the entire input string is

scanned and no words are identified, the algorithm executes

another iteration, scanning the input string starting from its

second character, and so on.

5 http://wordlist.aspell.net/.
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To demonstrate this algorithm’s operation, consider the

variables requesthcprrecord, setThemecolor,

and cptvehicletypestr. All these identifiers are

defined with no proper camel-casing. The algorithm’s

operation over the identifier requesthcprrecord is

shown in Table 11. The input string is read from left to

right starting from the first character. The first valid split

identified by the algorithm is {request hcprecord}.

The algorithm re-executes over the right part of the string

hcprecord, and the split {hcp record} is identified.

The algorithm terminates at this point as the renaming part

of the string (hcp) is less than 4 characters long, and it is

highly unlikely that it contains a meaningful natural word.

For the identifier setThemecolor, the algorithm

initially splits this string based on camel-casing into set

and Themecolor. The algorithm then scans the substring

Themecolor from left to right looking for natural words.

The first word The is detected after the split {The

mecolor}. This splits generates one natural language

word and one unidentified token. The algorithm continues

until the split {Theme color} is reached. This split

divides the input string into two natural words and no

unidentified tokens. The algorithm terminates at this point.

Similarly, for cptvehicletypestr, the first three

iterations of the algorithm do not detect any natural words.

The fourth iteration, starting from character ‘‘v,’’

detects the string vehicle in the split {cpt vehicle

typestr}. The algorithm then re-executes over type-

strg. The split {type str} is taken. The algorithm then

terminates as the remaining substrings are less than 4

characters long. In cases where there are many possible

valid splits, the algorithm chooses the split that generates

the least number of natural language words. For example,

consider the case officevisit the algorithm finds two

valid splits off ice visit and office visit. Both of

these splits are equally valid since they only generate

natural language words. However, the algorithm picks the

second split as it returns longer natural language words.

This heuristic has been found to generate more accurate

results.

The outcome of the indexing process is compact content

descriptors, or profiles, containing keywords of individual

code classes. To answer RQ3, for each experimental sys-

tem, the discovered NFR clusters are matched with all the

code class profiles in the system using TSS, VSM, and LSI.

Retrieved classes are then ranked in a list of candidate

traceability links based on their similarity to the NFR being

traced. For LSI, the word � document matrix is constructed

considering each code class profile and each NFR word

cluster as separate documents. To run TSS, natural lan-

guage words from the system’s class profiles are tabulated

in the system’s word co-occurrence matrix based on their

Wikipedia occurrence patterns with FR words. TSS is then

used to match code classes with NFRs (IDFðwiÞ in Eq.(13)

is calculated considering source code classes as system

artifacts).

The performance of TSS, LSI, and VSM is measured in

terms of precision and recall. Recall measures the per-

centage of correct links that are retrieved, and precision

measures the percentage of retrieved links that are correct.

Formally, if A is the set of correct links and B is the set of

retrieved links, then recall (R) and precision (P) can be

defined as:

R ¼jA \ Bj=jAj ð16Þ

P ¼jA \ Bj=jBj ð17Þ

To prepare our answer sets, the original developers from

each of our experimental systems were asked to separately

identify the individual code classes implementing the dif-

ferent NFRs of each system. A single class might imple-

ment multiple NFRs, and an NFR might be implemented in

multiple classes. Answers were manually inspected and

compiled by the researchers using the same data collection

protocol in Sect. 5. In cases of conflicts (i.e., whether a

certain class implements a certain NFR), the researchers

intervened to resolve the issue. Researchers involvement

was limited to initiating further discussion with the

developers to elaborate on why they thought a certain class

was implementing, or not-implementing, a certain NFR.

Overall, only a few conflicts were detected and a consensus

was reached in all cases during one discussion session.

6.3 Results and discussion

VSM, TSS, and LSI are used to match each NFR word

cluster with each class profile in each of our experimental

systems. Retrieved classes with similarity scores greater

than zero are displayed in a list format. Classes with higher

similarity scores appear at the top of the list. The

Table 11 Splitting the variable requesthcprecord

Split Action Output

r equesthcprecord no-split

re questhcprecord no-split

req uesthcprecord no-split

requ esthcprecord no-split

reque sthcprecord no-split

reques thcprecord no-split

request hcprecord split request

h cprecord no-split

hc precord no-split

hcp record split record

hcp no-split hcp
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performance of each IR method over each experimental

system is reported over multiple threshold levels

0:1; 0:2; . . .; 1f g (at threshold 0.1 only the top 10 % of the

retrieved classes in the ranked list of candidate links are

considered). In particular, for each system and each IR

method, each individual NFR is traced to all the classes in

the system using that IR method. Results in terms of pre-

cision and recall are then measured at the different

thresholds. For each system, the precision and recall values

for each IR are averaged for all NFRs at each threshold

level, producing the precision-recall performance line of

that IR method over the system as shown in Fig 8.

In general, our results show that VSM tends to have

higher precision. However, it exhibits the lowest overall

average recall in all three systems. In contrast, TSS and LSI

are able to achieve higher recall values at different

threshold levels. The higher recall levels of TSS in com-

parison with VSM can be explained based on TSS’s ability

to capture semantically similar words in the system. In

particular, relying solely on lexical matching often leads to

information loss [45, 60]. This can be attributed to the fact

that, as projects evolve, new and inconsistent terminology

gradually finds its way into the system’s vocabulary,

causing various types of related system artifacts (require-

ments, source code, design cases) to exhibit a large degree

of variance in their lexical contents [5]. This phenomenon,

known as the vocabulary mismatch problem, is regarded as

one of the principal causes of poor accuracy in traceability

engines [45]. Therefore, by matching words based on their

meanings, TSS is expected to help bridging the textual gap

between different system’s artifacts, thus improve the

retrieval recall.

LSI also seems to be able to capture semantic relations

in the system, achieving comparable results to TSS, espe-

cially at lower threshold levels. However, the main disad-

vantage of LSI in comparison with TSS lies in its

computationally expensive calibration process. In particu-

lar, as observed in LSA analysis (Tables 4, 5, 6, 7), no

single universal k works for all systems, rather each system

has to be tuned individually to discover the best dimen-

sionality reduction configurations. Such configurations

have to be further readjusted for the same system under

different tasks. Furthermore, every time k value is changed,

the SVD space has to be recalculated. In particular, after an

LSA space has been established, changing k values requires

recomputing the approximation of the original matrix.

However, for methods that rely solely on word counts,

even though the co-occurrence matrix has to be updated to

accommodate new words, no additional processing over

the matrix is required other than a straightforward tabula-

tion of new co-occurrence information.

The main disadvantage of TSS is the fact that unnatural

words extracted from source code are ignored. In particu-

lar, TSS uses Wikipedia to calculate the similarity of nat-

ural language words. Therefore, code abbreviations and

acronyms are not included in the analysis. However, a

method such as LSI analyzes the internal semantics of the

corpus, thus a similarity relation between an acronym and a

natural language word might be detected. A proposed

solution for this problem is to use abbreviation expansion

techniques. Such techniques attempt to automatically

expand short forms of source code identifiers (e.g., abbre-

viations and acronyms) into their long forms, consisting

mainly of natural words. However, such techniques are still

far from achieving optimal accuracy [43, 71]. Nonetheless,

we believe that a future study dedicated to investigating the

effect of such techniques on retrieval accuracy is worth

pursuing.

The low precision of all methods in all three systems can

be explained by the impurity of our NFR word clusters. In

particular, due to the near-optimal clustering process, some

NFR clusters contain noise, or unrelated words, that con-

tribute to the similarity calculations, thus enhancing the

possibility of retrieving unrelated code classes. This

problem is more dominant in LSI which seems to achieve

drastically lower precision than TSS and VSM especially at
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lower thresholds. Another observation is that all methods

seem to be consistently achieving a better performance in

the BlueWallet system. Further investigation revealed that

this improvement in the performance can be attributed to

the fact that this particular system is larger in size (lines of

code and comments) than the other two systems (Fig. 9).

Therefore, more data are available for the different IR

methods to work with. For instance, a technique such as

TSS, which relies on natural language words, benefits

greatly from more code comments which are considered a

very rich source of English words. LSI is also a data-in-

tensive techniques that tends to perform better with larger

amounts of data [1].

Table 12 shows the number of classes in each system

implementing each NFR and the F2 values achieved by

each IR method over each experimental system for each

individual NFR. These results are measured at a 70 %

threshold level, a heuristic that is commonly used to report

results in traceability studies [26]. The results in Table 12

show that some NFRs were easier to trace than others. For

instance, BlueWallet enforces a strong precision NFR. This

NFR is implemented in 241 classes in the system. The

developers of BlueWallet indicated that each class that did

some sort of calculations had to enforce this constraint in

order to ensure accurate results. Almost each of these

classes has the words accuracy, precision, calculation,

margin and decimal. Therefore, our IR methods had no

problem recovering the precision NFR traceability links.

Similarly, SafeDrink enforces strong safety and privacy

NFRs. These two constraints are implemented in 43 and 31

classes, respectively. These classes contain a large number

of safety and privacy semantically related words especially

in their code comments. Therefore, a method such as TSS

was able to recover these classes with high accuracy levels.

In contrast, some other NFRs were more challenging to

trace. For instance, the privacy NFR in SmartTrip is

implemented in 7 classes. Our results show that VSM, LSI,

and TSS all managed to retrieve and rank all these classes

(100 % recall) at the 70 % threshold level. However, so

many other unrelated classes (false positives) were also

retrieved, taking the precision down to 21, 6, and 6 % in

VSM, TSS, and LSI, respectively. This decline in the

precision can be attributed to the fact that words repre-

senting this particular NFR in SmartTrip were semantically

vague, thus linking its cluster to several other unrelated

classes.

In summary, to answer RQ3, TSS seems to be achieving

a balance in accuracy between VSM and LSI. Given that

recall is often emphasized over precision in traceability

research [45], TSS can be considered as a more effective

approach for NFR traceability link recovery.

7 Experimental limitations

The experiment presented in this paper has several limi-

tations that might affect the validity of the results. This

section discusses these limitations in terms of external,

internal, and construct validities [28].

7.1 External validity

The experiment presented in this paper has several limi-

tations that might affect the external validity of the results.

In particular, our results might not generalize beyond the

specific experimental settings used in this paper. A

potential threat to the external validity stems from the

systems used to conduct our analysis. In particular, our

experimental dataset consisted of only three midsize soft-

ware systems with a limited number of functional

requirements. Such systems are likely to exhibit different

characteristics from large-scale systems or systems from

different application domains. However, we believe that

using three software systems from different application

domains helps to mitigate this threat. Another limitation is

the fact that all these experimental systems are object-

oriented systems that are developed in Java. Thus, whether

our findings will generalize over structured code, or sys-

tems developed in different programming languages, is still

unclear.

Certain design decisions might also impact the external

validity of our results. For example, we only experimented

with a limited number of clustering algorithms (hierarchi-

cal and partitioning) and similarity methods (co-occur-

rence, thesaurus-based, and latent semantics). In terms of

traceability, only TSS, VSM, and LSI were considered in

our analysis. Therefore, it is still unclear whether other

similarity measures, clustering algorithms, or IR methods

(latent dirichlet allocation (LDA) [60, 69] or Jensen-

Shannon [1]) might be more appropriate for our approach.

Nonetheless, we believe that using this combination of

methods that are broadly used in related research is suffi-

cient for drawing preliminary conclusions.

smartTrip SafeDrink BlueWallet

1,000

2,000

3,000

Natural words Unnatural words

Fig. 9 The number of natural and unnatural words extracted from

each of our experimental systems
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An external validity threat might stem from the fact that

only a limited number of NFRs (Table 9) were included in

the analysis. Industry standards, such as the ISO standards

9126 and 25010, list more fine-grained categories of NFR.

Including such categories and subcategories in our analysis

might change the performance drastically. However, our

decision to only consider these general categories of NFRs

can be justified based on the fact they categories cover

most of the quality constraints enforced in our experi-

mental systems. Therefore, we did not feel the need to

introduce more fine-grained categories to avoid confusing

our study participants. In particular, considering all cate-

gories and subcategories of NFRs will substantially

increase the complexity of the study, especially when

creating the ground-truth answer set, thus impacting the

overall accuracy of the analysis.

7.2 Internal validity

Internal validity refers to factors that might affect the

causal relations established in the experiment [28]. A

potential threat to the proposed study’s internal validity is

the fact that human judgment is used to prepare our clas-

sification and traceability answer sets. This might result in

an experimental bias as different project personnel might

have different understandings of the system, its constraints,

and traceability relations. While these threats are inevi-

table, they can be partially mitigated by using multiple

human subjects to classify and trace each requirement.

The class-granularity level adopted in our analysis can

also influence the performance. In particular, different

granularity levels might considerably change the behavior

of methods such as LSI and PMI. Therefore, we believe

that a future study (e.g., [10]) dedicated to investigating the

effect of granularity level on the performance of semantic

similarity methods and clustering algorithms is necessary

to further confirm our observations.

An internal validity argument could be made about

using a brute-force strategy to calibrate methods such as

LSI or to configure different clustering algorithms. For

instance, for larger datasets, other automated optimization

strategies might be more computationally efficient [55].

However, since our data space is relatively limited in size,

exhaustive search solutions can be computationally feasi-

ble. Furthermore, a brute-force strategy is highly likely to

find a solution if a solution exists in the space.

7.3 Construct validity

Construct validity is the degree to which the various per-

formance variables accurately measure the concepts they

purport to measure [28]. In our experiment, there are

minimal threats to construct validity as standard perfor-

mance measures (e.g., precision, recall, cluster quality),

which are extensively used in related research, are used to

assess the performance of the different investigated meth-

ods. We believe that these measures sufficiently capture

and quantify the different aspects of the performance we

are interested in.

8 Conclusions, applications, and future work

This section summarizes our main findings in this paper,

discusses the potential practical significance of the pro-

posed approach, and explores directions for future work.

Table 12 NFR traceability

results for each individual NFR
NFR SmartTrip SafeDrink BlueWallet

N VSM TSS LSI N VSM TSS LSI N VSM TSS LSI

security 4 0.43 0.17 0.41 31 0.69 0.41 0.41 46 0.77 0.89 0.88

performance 42 0.78 0.77 0.38 7 0.38 0.42 0.59 14 0.75 0.44 0.47

accessibility 4 0.69 0.41 0.45 32 0.57 0.45 0.34 3 0.67 0.6 0.59

accuracy 24 0.52 0.57 0.57 14 0.65 0.61 0.33 241 0.93 0.73 0.73

portability 31 0.49 0.56 0.69 24 0.71 0.71 0.31 1 0 0.83 0.83

safety 12 0.58 0.65 0.21 43 0.75 0.67 0.35 NA NA NA NA

legal 3 0.29 0.42 0.08 29 0.63 0.54 0.52 17 0.81 0.59 0.59

privacy 7 0.57 0.24 0.24 31 0.85 0.64 0.43 12 0.67 0.9 0.91

reliability 28 0.66 0.79 0.46 3 0.29 0.65 0.88 26 0.63 0.5 0.33

availability 4 0.64 0.52 0.3 NA NA NA NA 9 0.54 0.48 0.41

interoperability 39 0.75 0.32 0.53 3 0.23 0.29 0 NA NA NA NA

N is the number of classes in the system. VSM, LSI, and TSS columns show the F2 measure achieved by

each IR method in each system at a 70 % threshold level
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8.1 Summary

This paper proposes a novel, unsupervised, and computa-

tionally efficient approach for detecting, classifying, and

tracing non-functional software requirements (NFRs). The

analysis in this paper is based on the main assumption that

NFRs tend to be implicitly enforced by the software sys-

tem’s functional requirements. Such knowledge can be

captured, modeled, and used to identify specific NFRs in

the system.

In particular, a comprehensive systematic analysis of a

series of word semantic similarity methods and clustering

algorithms was conducted to identify the clustering con-

figurations that generate the most cohesive groups of

functional requirement words. A semantically aware clus-

ter quality function was designed to capture the notion of

semantic coherence of generated word clusters. Three

software systems from different application domains were

used to conduct our analysis.

The results showed that hierarchical clustering algo-

rithms, especially average linkage (AL), were more effec-

tive in generating thematic clusters of FR words than

partitioning algorithms (k-medoids). In terms of semantic

distance, our results showed that the method that exploited

the online encyclopedia Wikipedia was more accurate than

methods that relied on linguistic dictionaries or the corpus

itself for semantic similarity analysis. In general, from a

linguistic point of view, Wikipedia provides a balance in

size, quality, and structure between the highly structured,

but limited in coverage, linguistic databases (e.g., Word-

Net), and the large-scale, but less-structured corpora such

as the entire Web. Furthermore, our results showed that a

corpus-based method such as PMI suffered from the lack of

sufficient textual data in our systems. LSA, on the other

hand, was able to achieve competitive results. However,

the computationally expensive calibration process associ-

ated with this technique can limit its practicality.

Generated clusters of FR words were classified into

different categories of NFRs based on their semantic sim-

ilarity to basic NFR labels. The TSS measure of textual

semantic similarity was then used to assign FRs to different

categories of NFRs. Our analysis showed that a semantic

similarity threshold in the range of [0.2–0.4] generated the

best classification results. Lower similarity thresholds

resulted in a very high recall, but very low precision, while

higher similarity thresholds caused a drastic drop in the

recall (very low classification rate).

In terms of traceability, three IR methods, exploiting

different lexical and semantic schemes, were used to match

the discovered NFRs with code classes implementing them.

To enhance the retrieval accuracy, a novel algorithm was

proposed to extract natural language words from source

code identifiers. The results showed that relying solely on

lexical matching often led to information loss. On the

contrast, methods that utilized the textual semantics of

software words (e.g., TSS and LSI) were found to be more

successful in terms of recall and precision. LSI, however,

achieved a very low precision at higher threshold levels,

unlike TSS, which was found to achieve a balance between

precision and recall, thus providing a computationally

efficient alternative that can be adequate for practical IR-

based traceability solutions. In summary, the proposed

approach (Fig. 1) can be described as a formal procedure as

follows:

Algorithm 1 NFR classification and traceability
1: procedure
2: Extract words from the system’s FRs
3: Calculate NGDWiki similarity between FR words
4: Cluster FR words using AL based on their NGDWiki
5: Find the number of clusters using Q - Eq.(11)
6: Classify FR word clusters to NFR types using Eq.(12)
7: Assign FRs to NFRs using Eq.(13)
8: Trace NFRs to code classes using TSS - Eq.(13)
9: end procedure

8.2 Applications, reflection, and future work

There is no doubt that there is still a major gap in the state

of research and practice between functional and non-

functional software requirements. In general, majority of

requirement documentation, modeling, and traceability

research is focused on functional requirements, with only a

little attention paid to non-functional requirements. This

can be attributed to the general lack of understanding of the

important role of NFRs and their long-term influence on

the different phases of the project’s life cycle. The work

presented in this paper, as well as previous work in this

domain [22, 24, 46, 78], represents a step toward bridging

this gap.

The approach presented in this paper relies on the online

collaborative encyclopedia Wikipedia to estimate the

semantic similarity between individual FR words. This

provides a practical advantage over other techniques that

rely on static linguistic dictionaries or ad-hoc lists of words

for classification. In particular, the textual content of

Wikipedia evolves constantly in such a way that is aligned

with the way natural language evolves in society [34, 82].

Therefore, even if the language of the project, used in

requirements or code, has changed over time, the proposed

approach should be able to adapt to these changes without

the need for updating any static dictionaries or retraining

any classifiers.

In terms of classification quality, our analysis showed an

average classification recall of 83 %. As for precision, our

approach managed to keep a precision average of 53 % in
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our three experimental systems. As implied earlier, in our

analysis we emphasized recall over precision, this decision

was adopted based on the previous observation that false

positives can be easier to deal with than false negatives.

For example, an incorrectly classified FR can be simply

ignored by the user. However, an FR that enforces a certain

NFR but was not classified under that NFR can be hard to

find.

Our findings in the traceability phase of our analysis

emphasize the importance of enforcing a standard coding

convention in software institutions. In particular, using

meaningful code identifiers not only enhances the read-

ability and maintainability of the code, but also improves

the performance of tools that rely on such information for

operation. Similarly, comments can be an essential source

of semantic knowledge as they are expressed mainly in

natural language. Our findings in this paper help to high-

light these long-term benefits of promoting such culture in

software development.

The proposed approach in this paper is unsupervised. In

particular, it does not require any training and can be

operated with minimum calibration. This design decision

was enforced to facilitate an easy transfer of our findings to

practice. In other words, simplify the process of imple-

menting the approach and producing the output while

keeping the operating cost as low as possible [54]. Finally,

The line of research in this paper has opened several

research directions to be pursued in our future work. These

directions can be described as follows:

• Empirical analysis: Our experimental dataset will be

enhanced with more experimental systems. In addition,

more participants will be recruited to help to prepare

larger answer sets. In terms of methods, we will

continue to explore different types of word semantic

similarity methods and clustering techniques that

exploit different aspects of software artifacts to gener-

ate more coherent software word clusters.

• Applications: Our future research will be focused on

utilizing discovered NFRs and their traceability links in

basic software engineering tasks, such as code design

and architecture, software verification and validation,

and change impact analysis.

• Tool support: A set of working prototypes that imple-

ment our findings in this paper will be developed.

These prototypes will include stand-alone tools and

plug-ins that developers can use as an integral part of

their daily software production practices. Furthermore,

working prototypes will allow us to conduct long-term

usability studies to gain a better understanding of our

approach’s scalability, usability, and scope of

applicability.
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