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Abstract App stores like Google Play and Apple AppS-

tore have over 3 million apps covering nearly every kind of

software and service. Billions of users regularly download,

use, and review these apps. Recent studies have shown that

reviews written by the users represent a rich source of

information for the app vendors and the developers, as they

include information about bugs, ideas for new features, or

documentation of released features. The majority of the

reviews, however, is rather non-informative just praising

the app and repeating to the star ratings in words. This

paper introduces several probabilistic techniques to classify

app reviews into four types: bug reports, feature requests,

user experiences, and text ratings. For this, we use review

metadata such as the star rating and the tense, as well as,

text classification, natural language processing, and senti-

ment analysis techniques. We conducted a series of

experiments to compare the accuracy of the techniques and

compared them with simple string matching. We found that

metadata alone results in a poor classification accuracy.

When combined with simple text classification and natural

language preprocessing of the text—particularly with

bigrams and lemmatization—the classification precision

for all review types got up to 88–92 % and the recall up to

90–99 %. Multiple binary classifiers outperformed single

multiclass classifiers. Our results inspired the design of a

review analytics tool, which should help app vendors and

developers deal with the large amount of reviews, filter

critical reviews, and assign them to the appropriate

stakeholders. We describe the tool main features and

summarize nine interviews with practitioners on how

review analytics tools including ours could be used in

practice.

Keywords User feedback � Review analytics � Software
analytics � Machine learning � Natural language
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1 Introduction

Nowadays it is hard to imagine a business or a service that

does not have any app support. In July 2014, leading app

stores such as Google Play, Apple AppStore, and Windows

Phone Store had over 3 million apps.1 The app download

numbers are astronomic with hundreds of billions of

downloads over the last 5 years [9]. Smartphone, tablet,

and more recently also desktop users can search the store

for the apps, download, and install them with a few clicks.

Users can also review the app by giving a star rating and a

text feedback.

Studies highlighted the importance of the reviews for the

app success [22]. Apps with better reviews get a better

ranking in the store and with it a better visibility and higher

sales and download numbers [6]. The reviews seem to help

users navigate the jungle of apps and decide which one to

use. Using free text and star rating, the users are able to

express their satisfaction, dissatisfaction or ask for missing

features. Moreover, recent research has pointed the

potential importance of the reviews for the app developers

and vendors as well. A significant amount of the reviews
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include requirements-related information such as bugs or

issues [29], summary of the user experience with certain

features [12], requests for enhancements [19], and even

ideas for new features [8, 29].

Unfortunately, there are also a bunch of useless, low-

quality reviews, which include senseless information,

insulting comments, spam, or just repetition of the star

rating in words. With hundreds of reviews submitted per

day for popular apps [17, 29], it becomes difficult for

developers and analysts to filter and process useful infor-

mation from the reviews.

As a first step towards a tool support for analyzing app

reviews, we suggest automatically classifying them

according to the type of information they include. We

design, evaluate, and compare different classifiers for cat-

egorizing reviews into four basic types. Bug reports

describe problems with the app which should be corrected,

such as a crash, an erroneous behavior, or a performance

issue. In feature requests, users ask for missing function-

ality (e.g., provided by other apps) or missing content (e.g.,

in catalogs and games) and share ideas on how to improve

the app in future releases by adding or changing features.

User experiences combine ‘‘helpfulness’’ and ‘‘feature

information’’ content reported by Pagano and Maalej [29].

These reviews document the experience of users with the

app and how it helped in certain situations. They can be

seen as documentation of the app, its requirements, and

features. Finally, ratings are simple text reflections of the

numeric star rating. Ratings are less informative as they

only include praise, dispraise, a distractive critique, or a

dissuasion. The classification of the reviews would help

with directing the different types to suitable software pro-

ject members; for instance, a bug report can be delivered to

developers and testers, a feature requests can be delivered

to requirements analysts and user experience reports to

documentation team or usability experts.

This paper extends our previous work published at the

International IEEE Requirements Engineering Conference

[23]. The main contribution of this work is threefold. First,

it introduces a landscape of well-known probabilistic

techniques and heuristics that can be used for classifying

reviews based on their metadata (e.g., the star rating and

text length), keyword frequencies, linguistic rules, and

sentiment analysis. Second, we report on an extensive

study to compare the accuracy of the review classification

techniques. The study data and its results serve as a

benchmark for the classification of user app reviews and

can be used and extended by researchers and tool vendors.

Third, we derive from the findings insights into how to

design a tool for review analytics for different stakeholders

in software projects. We also present a research prototype

and report on a preliminary evaluation with practitioners.

The main extension of this paper compared to our pre-

vious RE 2015 paper [23] can be summarized as follows:

1. We extended the classification techniques, in particular

adding bigrams and its combinations. We improved the

data preparation and classification scripts. This signif-

icantly improved the classification accuracy compared

to the results reported previously.

2. We added a differentiated analysis between the

subsamples consisting of iOS reviews and Android

reviews.

3. We added a discussion of the most informative

classification features.

4. We added the results of the statistical tests to check

whether the differences between the various combina-

tion of techniques against a baseline technique are

statistically significant. We used the Holm’s step-down

method [16] to mitigate the problem of multiple

comparisons. This improves the overall reliability of

the reported results.

5. We developed a prototype for a review analytics tool

and added a section in this paper to share insights

about the tool.

6. We also conducted a qualitative study with 9 practi-

tioners from 8 organizations to (a) evaluate the review

analytics tool and (b) capture the current practices and

challenges of how practitioners deal with app reviews

and how this should change in future.

The remainder of the paper is structured as follows.

Section 2 introduces the classification techniques. Sec-

tion 3 describes the study design including the questions,

method, and data used. Section 4 reports on the results

comparing the accuracy and the performance of the various

classification techniques. Then, Sect. 5 discusses the

overall findings, how they should be interpreted and which

threats to validity should be considered when using the

results. Section 6 describes a prototype review analytics

tool and the results of the interviews, which we conducted

with practitioners to evaluate the analytics tool and its

underlying assumptions. Finally, Sect. 7 reviews the rela-

ted work and Sect. 8 concludes the paper.

2 Review classification techniques

A user review consists of a main text part and additional

metadata. The text includes the title and the body of the

review. The metadata can be considered as a set of addi-

tional numerical properties which can be collected with the

reviews such as the star rating or the submission time.

One review can belong to one or more types. For

instance, the review ‘‘Doesn’t work at the moment. Was
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quite satisfied before the last update. Will change the rating

once it’s functional again’’ should be classified as a bug

report and a rating but neither as a user experience nor as a

feature request. The review ‘‘Wish it had live audio, like

Voxer does. It would be nice if you could press the play

button and have it play all messages, instead of having to

hit play for each individual message. Be nice to have a

speed button, like Voxer does, to speed up the playing of

messages. Be nice to have changeable backgrounds, for

each chat, like We Chat does. Other than those feature

requests, it’s a great app’’ should be classified as a feature

request and a rating but neither as a bug report nor as a user

experience.

Here we introduce various classification techniques,

which can be applied on the text and the metadata and

combined to automatically predict the review types.

2.1 Basic classifier: string matching

The most trivial technique to automatically categorize a

user review is to check whether it contains a certain key-

word. We can manually define (and possibly maintain) a

list of keywords that we expect to find in a bug report, a

feature request, a user experience, or a rating. We then

check whether one of the keywords is included in the text.

For this, we can use regular expressions in tools like grep,

string matching libraries, or SQL queries, while ignoring

letter cases and wrapping around the keywords (e.g., using

‘‘LIKE’’ in SQL or \p in grep). Table 1 shows a collection

of possible keywords for each review type, which we

compiled from the literature [1, 19, 29] and used for the

string matching classifier. It is hard to get a complete list

for each of the rows in the table. These lists here were

compiled by the authors based on experience and literature

rather as indicative lists, and it is not meant to be complete

neither exhaustive.

2.2 Document classification: bag of words

Document classification is a popular technique in infor-

mation science, where a document is assigned to a certain

class. A popular example is the email classification as

‘‘spam’’ or ‘‘no spam.’’ In our case, a document is a single

review including the title and the text. There is a fundament

difference between document classification and the string

matching, as the latter is a static approach (based on the

manual identification of keywords), while the first is a

dynamic approach and the keywords are automatically

identified and weighted by a supervised machine learning

algorithm.

The basic form of document classification is called bag

of words (BOW). The classifier creates a dictionary of all

terms in the corpus of all reviews and calculates whether

the term is present in the review of a certain type and how

often. Supervised machine learning algorithms can then be

trained with a set of reviews (training set) to learn the

review type based on the terms existence and frequency.

Some terms like ‘‘app,’’ ‘‘version,’’ or ‘‘use’’ might appear

more frequently in general. An advantage of bag of words

is that it does not require manually maintaining a list of

keywords for each review type. In addition, the classifier

can use patterns of keywords co-occurrences to predict the

review type. Finally, in addition to the review text, this

technique can be extended with other machine learning

features based on the review metadata.

A common alternative to terms count is to use tf-idf

(term frequency-inverse document frequency), which

increases proportionally to the number of times a term

appears in a review, but is offset by the frequency of the

term in the corpus. Tf-idf combines word (term) frequen-

cies with the inverse document frequency in order to

understand the importance (weight) of a word in the given

document. It gives words a greater weight proportionally to

the number of times the word occurs but reduces the

importance of a word that occurs generally in many or each

documents, like stop words.

2.3 Natural language processing: text preprocessing

Preprocessing the review text with common natural lan-

guage processing (NLP) techniques such as stopword

removal, stemming, lemmatization, tense detection, and

bigrams, can help increasing the classification accuracy.

Stopwords are common English words such as ‘‘the,’’

‘‘am,’’ and ‘‘their’’, which typically have a grammatical

function and do not influence the semantic of a sentence

[4]. Removing them from the review text can reduce noise.

This allows informative terms like ‘‘bug’’ or ‘‘add’’ to

become more influential (with more weight), which might

improve the accuracy of document classifiers. However,

some keywords that are commonly defined as stopwords

can be relevant for the review classification. For instance,

the terms ‘‘should’’ and ‘‘must’’ might indicate a feature

request (e.g., the app should offer a function to share the

images on twitter and Facebook). The terms ‘‘did,’’

‘‘when,’’ ‘‘while,’’ and ‘‘because’’ might indicate a feature

Table 1 Keywords indicating a review type (basic classifier)

Review type Keywords

Bug reports Bug, fix, problem, issue, defect, crash, solve

Feature

requests

Add, please, could, would, hope, improve, miss, need,

prefer, request, should, suggest, want, wish

User

experiences

Help, support, assist, when, situation

Ratings Great, good, nice, very, cool, love, hate, bad, worst
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description and an experience (e.g., I love this app because

it always helped when I had time conflicts organizing

meetings); the terms ‘‘but,’’ ‘‘before,’’ and ‘‘now’’ a bug

report (e.g., before the update I was able to switch to

another open app and copy the text, e.g., from my SMS.

Now, if I do this I cannot paste the copied text in the search

field), and ‘‘very,’’ ‘‘too,’’ ‘‘up,’’ and ‘‘down’’ a rating (e.g.,

Thumbs up! Very good up).

Lemmatization [4] is the process of reducing different

inflected forms of a word to their basic lemma to be ana-

lyzed as a single item. For instance, ‘‘fixing,’’ ‘‘fixed,’’ and

‘‘fixes’’ become ‘‘fix.’’ Similarly, stemming reduces each

term to its basic form by removing its postfix. While

lemmatization takes the linguistic context of the term into

consideration and uses dictionaries, stemmers just operate

on single words and therefore cannot distinguish between

words which have different meanings depending on part of

speech. For instance, lemmatization recognizes ‘‘good’’ as

the lemma of ‘‘better’’ and stemmer will reduce ‘‘goods’’

and ‘‘good’’ to the same term. Both lemmatization and

stemming can help the classifier to unify keywords with

same meaning but different language forms, which will

increase their count [12]. For instance, the classifier will

better learn from the reviews ‘‘crashed when I opened the

pdf’ and ‘‘the new version crashes all time’’ as the term

‘‘crash’’ is an indication for the bug report.

Finally, we can also use bigrams of the n-gram family

[4]. Bigrams are all combinations of two contiguous words

in a sentence. If we have the sentence: ‘‘The app crashes

often,’’ the bigrams are the following: ‘‘The, app,’’‘‘app,

crashes,’’‘‘crashes, often.’’ If used by the document clas-

sifier instead of single terms, bigrams allow to additionally

capture the context of the word in the review [13]. For

instance, the bigrams ‘‘crashes always’’ and ‘‘never cra-

shes’’ have two different meanings and might also reveal

two different types of reviews, while the three single terms

‘‘crashes,’’ ‘‘never,’’ and ‘‘always’’ might all only reveal

bug report (i.e., praise or user experience vs. bug reports).

2.4 Review metadata: rating, length, tense,

and sentiments

Common metadata that can be collected with the reviews

includes the star rating, the length, and the submission time.

The star rating is a numeric value between 1 and 5 given by

the user. For instance, bug reports are more likely to be found

in negative ratings. Previous studies have shown that user

experience (i.e., helpfulness and feature description) is very

likely to be found in positive reviews typically with 4 or 5

stars [17, 29]. The length of the review text can also be used

as a classifier feature. Lengthy reviews might be more

informative indicating a report on an experience or a bug [29].

Finally, the tense of the verbs in the review can be used

as an indication of the review type. For instance, a past

tense is rather used for reporting and might reveal a

description of a feature, while a future tense is used for a

promise or a hypothetical scenario and might rather reveal

an enhancement or a feature request. We distinguish

between past, present, and future verbs and use all of them

as indication for the review types. Since one review can

include several tenses, we calculate the ratio of each tense

(e.g., 50 % of a review verbs are in past, and 50 % are in

present) as metadata. Tense extraction can be seen as NLP

technique since it is identified with part-of-speech tagging,

commonly provided in NLP libraries. It can also be stored

and used as metadata in addition to the text.

Reviews in the app stores usually reflect users’ positive

and negative emotions [12]. For example, a bug report will

probably include a negative sentiment, while a user expe-

rience would probably be combined with a positive senti-

ment [29].

More fine-grained sentiments than the star rating can be

extracted from the reviews and used as a feature for

training the classifier. For this we used the tool Sen-

tiStrength [35], which assigns for each review one negative

sentiment score in a scale of -5 to -1 and one positive

score in a scale of 1 to 5. The review ‘‘This app is useless

!!! I hate it’’ will get the positive score ?1 and the negative

score -5. SentiStrength is designed for short informal texts

such as social media posts, comments, or reviews [36].

There are two options for using the sentiments in the

classification. We can either combine the negative and

positive scores in an absolute signed score as one single

classification feature (e.g., -4 and ?2 are simplified to

-4). Alternatively, we can use two features: one for the

negative and one for the positive score. This enables the

classifier to learn from a more fine-grained sentiment value.

For instance, a feature request might include a positive

sentiment as the user is already using the app and a neg-

ative as the user is missing a feature.

2.5 Supervised learning: binary versus multiclass

classifiers

Machine learning approaches have been used to build

individual classification systems. They can be distin-

guished in supervised and unsupervised learning approa-

ches. The goal of both learning techniques is to classify

text (e.g., document, paragraph, or sentence) or numbers

(e.g., temperature, noise, or tree height) by assigning a

category from a pre-specified set or a real number [30].

Supervised learning approaches need to be trained using

a labeled truth set before they can be applied. The training

set contains already classified instances that supervised
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learning algorithm use to infer a classification model,

which is then used to classify unseen instances.

In our case, a review can belong to more than one type,

e.g., including a negative rating (dispraise) and a bug report

or a positive rating (praise) and a user experience. For

example the following review ‘‘The app crashes every time

I upload a picture. Please fix it and please add the feature of

adding video clip as well’’ should be classified as a bug

report and feature request. That is, the output of the clas-

sifiers consists of four probabilities for each category,

where it is indicated with a certain probability how much

does the review belong to a certain category if particular

properties are observed.

Supervised machine learning algorithms can be used to

classify reviews. The idea is to first calculate a vector of

properties (called features) for each review. Then, in a

training phase, the classifier calculates the probability for

each property to be observed in the reviews of a certain

type. Finally, in the test phase, the classifier uses the pre-

vious observations to decide whether this review is of a

type or not. This is called a binary classification. In our

case, each review can be binary-classified four times: as (1)

a bug report or not, (2) a feature request or not, (3) a user

experience or not, and finally (4) a rating or not. This

requires creating four different classification models and

training each of them with true positives and true negatives

(e.g., true bug reports and not bug reports).

Alternatively, it is possible to assign the review to

several classes at once. This is called multiclass classifi-

cation. In this case one single classification model is cre-

ated based on one training set. That is the classifier is able

to return for each review four different probability values,

each for the review to be in type 1–4.

Naive Bayes is a very popular algorithm for binary

classifiers [4], which is based on the Bayes’ theorem with

strong independence assumptions between the features. It

is simple, efficient, and does not require a large training set

like most other classifiers. Decision Tree learning is

another popular classification algorithm [37], which

assumes that all features have finite discrete domains and

that there is a single target feature representing the clas-

sification (i.e., the tree leaves). Finally, the multinomial

logistic regression (also known as maximum entropy or

MaxEnt) [37] is a popular algorithm for multiclass classi-

fication. Instead of assuming a statistical independence of

the classification features (i.e., all features independently

influence the overall probably of the review to be of a

certain type), MaxEnt assumes a linear combination of the

features and that some review-specific parameters can be

used to determine the probability of each particular review

type.

3 Research design

We summarize the research questions, data, and method.

3.1 Research questions

Our goal is to study how accurately the classification

techniques from Sect. 2 can predict the four review types:

bug report, feature request, user experience, and rating.

This includes answering the following questions:

• Classification techniques: How should the review

metadata, text classification, NLP, and sentiment anal-

ysis be combined for the classification of app reviews?

• Review types: Can the four review types be automat-

ically predicted and which type can be predicted more

accurately?

• Classification algorithms: Which classification algo-

rithm leads to better results (Naive Bayes vs. Decision

Tree, vs. Maximum Entropy)?

• Performance and data: How much time and training

data are needed for an accurate classification, and is

there a difference when using various review data?

3.2 Research method and data

To answer the research questions we conducted a series of

experiments involving four phases. First, we collected real

reviews from app stores and extracted their metadata.

Second, we created a truth set by selecting a representative

sample of these reviews, manually analyzing their content,

and labeling them as bug report, feature request, user

experience, or rating. Third, we implemented different

classifiers and used one part of the truth set to train them

(i.e., as training set). We then ran the classifiers on the

other part to test whether the classification is correct (i.e.,

test or evaluation set). Finally, we evaluated the classifiers’

accuracy and compared the results. The following elabo-

rates on each phase.

We crawled the Apple AppStore [29] and the Google

Play stores to collect the experiment data. We iterated over

app categories in the stores and selected the top apps in

each category. Low-ranked apps typically do not have

reviews and are thus irrelevant for our study [17]. From the

Apple store we collected � 1.1 million reviews for 1100

apps, half of them paid and half free. Google store was

restrictive for collecting the reviews, and we were able to

only gather 146,057 reviews for 80 apps: Also half were

paid and half free. We created a uniform dataset including

the review text, title, app name, category, store, submission

date, username, and star rating.
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From the collected data, we randomly sampled a subset

for the manual labeling as shown in Table 2. We selected

1000 random reviews from the Apple store data and 1000

from the Google store data. To ensure that enough reviews

with 1, 2, 3, 4, and 5 stars are sampled, we split the two

1000-review samples into 5 corresponding subsamples

each of size 200. Moreover, we selected 3 random Android

apps and 3 iOS apps from the top 100 and fetched their

reviews between 2012 and 2014. From all reviews of each

app, we randomly sampled 400. This led to additional 1200

iOS and 1200 Android app-specific reviews. In total, we

had 4400 reviews in our sample.

For the truth set creation, we conducted a peer, manual

content analysis for all the 4400 reviews. Every review in

the sample was assigned randomly to 2 coders from a total

of 10 people. The coders were computer science master

students, who were paid for this task. Every coder read

each review carefully and indicated its types: bug report,

feature request, user experience, or rating. We briefed the

coders in a meeting, introduced the task, the review types,

and discussed several examples. We also developed a

coding guide, which describes the coding task, defines

precisely what each type is, and lists examples to reduce

disagreements and increase the quality of the manual

labeling. Finally, the coders were able to use a coding tool

(shown on Fig. 1) that helps to concentrate on one review

at once and to reduce coding errors. If both coders agreed

on a review type, we used that label in our golden standard.

A third coder checked each label and solved the dis-

agreements for a review type by either accepting the pro-

posed label for this type or rejecting it. This ensured that

the golden set contained only peer-agreed labels.

In the third phase, we used the manually labeled reviews

to train and to test the classifiers. A summary of the

experiment data is shown in Table 3. We only used

reviews, for which both coders agreed that they are of a

certain type or not. This helped that a review in the cor-

responding evaluation sample (e.g., bug reports) is labeled

correctly. Otherwise training and testing the classifiers on

unclear data will lead to unreliable results. We evaluated

the different techniques introduced in Sect. 2, while vary-

ing the classification features and the machine learning

algorithms.

We evaluated the classification accuracy using the

standard metrics precision and recall. Precisioni is the

fraction of reviews that are classified correctly to belong to

type i. Recalli is the fraction of reviews of type i which are

classified correctly. They were calculated as follows:

Precisioni ¼
TPi

TPi þ FPi

Recalli ¼
TPi

TPi þ FNi

ð1Þ

TPi is the number of reviews that are classified as type i

and actually are of type i. FPi is the number of reviews

that are classified as type i but actually belong to another

type j where j 6¼ i. FNi is the number of reviews that are

classified to other type j where j 6¼ i but actually belong to

type i. We also calculated the F-measure (F1), which is

the harmonic mean of precision and recall providing a

single accuracy measure. We randomly split the truth set

at a ratio of 70:30. That is, we randomly used 70 % of the

data for the training set and 30 % for the test set. Based on

the size of our truth set, we felt this ratio is a good trade-

off for having large-enough training and test sets. More-

over, we experimented with other ratios and with the

cross-validation method. We also calculated how infor-

mative the classification features are and ran paired t tests

to check whether the differences of F1-scores are statis-

tically significant.

The results reported in Sect. 4 are obtained using the

Monte Carlo cross-validation [38] method with 10 runs and

random 70:30 split ratio. That is, for each run, 70 % of the

truth set (e.g., for true positive bug reports) is randomly

selected and used as a training set and the remaining 30 %

is used as a test set. Additional experiments data, scripts,

and results are available on the project Web site: http://

mast.informatik.uni-hamburg.de/app-review-analysis/.

4 Research results

We report on the results of our experiments and compare

the accuracy (i.e., precision, recall, and F-measures) as

well as the performance of the various techniques.

4.1 Classification techniques

Table 4 summarizes the results of the classification tech-

niques using Naive Bayes classifier on the whole data of

the truth set (from the Apple AppStore and the Google Play

Store). The results in Table 4 indicate the mean values

obtained by the cross-validation for each single combina-

tion of classification techniques and a review type. The

Table 2 Overview of the evaluation data

App(s) Category Platform #Reviews Sample

1100 apps All iOS Apple 1,126,453 1000

Dropbox Productivity Apple 2009 400

Evernote Productivity Apple 8878 400

TripAdvisor Travel Apple 3165 400

80 apps Top four Google 146,057 1000

PicsArt Photography Google 4438 400

Pinterest Social Google 4486 400

Whatsapp Communication Google 7696 400

Total 1,303,182 4400
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numbers in bold represent the highest scores for each

column, which means the highest accuracy metric (preci-

sion, recall, and F-measure) for each classifier.

Table 5 shows the p values of paired t tests on whether

the differences between the mean F1-scores of the baseline

classifier and the various classification techniques are sta-

tistically significant. For Example: If one classifier result is

80 % for a specific combination of techniques and another

result is 81 % for another combination, those two results

could be statistically different or it could be by chance. If

the p value calculated by the paired t test is very small, this

means that the difference between the two values is sta-

tistically significant. We used Holm’s step-down method

[16] to control the family-wise error rate.

Overall, the precisions and recalls of all probabilistic

techniques were clearly higher than 50 % except for three

cases: the precision and recall of feature request classifiers

based on rating only as well as the recall of the same

technique (rating only) to predict ratings. Almost all

probabilistic approaches outperformed the basic classifiers

that use string matching with at least 10 % higher preci-

sions and recalls.

The combination of text classifiers, metadata, NLP, and

the sentiments extraction generally resulted in high preci-

sion and recall values (in most cases above 70 %). How-

ever, the combination of the techniques did not always rank

best. Classifiers only using metadata generally had a rather

low precision but a surprisingly high recall except for

predicting ratings where we observed the opposite.

Concerning NLP techniques, there was no clear trend like

‘‘more language processing leads to better results.’’ Overall,

removing stopwords significantly increased the precision to

predict bug reports, feature request, and user experience,

while it decreased the precision for ratings. We observed the

same when adding lemmatization. On the other hand, com-

bining stop word removal and lemmatization did not had any

significant effect on precision and recall.

We did not observe any significant difference between

using one or two sentiment scores.

4.2 Review types

We achieved the highest precision for predicting user

experience and ratings (92 %), the highest recall, and F-

measure for user experience (respectively, 99 and 92 %).

For bug reports we found that the highest precision

(89 %) was achieved with the bag of words, rating, and one

sentiment, while the highest recall (98 %) with using

bigrams, rating, and one score sentiment. For predicting

bug reports the recall might be more important than pre-

cision. Bug reports are critical reviews, and app vendors

would probably need to make sure that a review analytics

Fig. 1 Tool for manual labeling of the reviews

Table 3 Number of manually

analyzed and labeled reviews
Sample Manually analyzed Bug reports Feature requests User experiences Ratings

Random apps Apple 1000 109 83 370 856

Selected apps Apple 1200 192 63 274 373

Random apps Google 1000 27 135 16 569

Selected apps Google 1200 50 18 77 923

Total 4400 378 299 737 2721
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tool does not miss any of them, with the compromise that a

few of the reviews predicted as bug reports are actually not

(false positives). For a balance between precision and recall

combining bag of words, lemmatization, bigram, rating,

and tense seems to work best.

Concerning feature requests, using the bag of words,

rating, and one sentiment resulted in the highest precision

with 89 %. The bestF-measurewas 85 %with bag of words,

lemmatization, bigram, rating, and tense as the classification

features.

The results for predicting user experiences were sur-

prisingly high. We expect those to be hard to predict as the

basic technique for user experiences shows. The best

option that balances precision and recall was to combine

bag of words with bigrams, lemmatization, the rating, and

the tense. This option achieved a balanced precision and

recall with a F-measure of 92 %.

Predicting ratings with the bigram, rating, and one

sentiment score leads to the top precision of 92 %. This

result means that stakeholders can precisely select rating

among many reviews. Even if not all ratings are selected

(false negatives) due to average recall, those that are

selected will be very likely ratings. A common use case

would be to filter out reviews that only include ratings or to

select another type of reviews with or without ratings.

Table 6 shows the ten most informative features of a

combined classification technique for each review type.

4.3 Classification algorithms

Table 7 shows the results of comparing the different

machine learning algorithms Naive Bayes, Decision Trees,

andMaxEnt.We report on two classification techniques (bag

of words and bag of words ? metadata) since the other

results are consistent and can be downloaded from the pro-

ject Web site.2 In all experiments, we found that binary

Table 5 Results of the paired t test between the different techniques (one in each row) and the baseline BoW (using Naive Bayes on app reviews

from Apple and Google stores)

Classification techniques Bug reports Feature requests User experiences Ratings

F1-score p value F1-score p value F1-score p value F1-score p value

Document classification (&NLP)

Bag of words (BOW) 0.71 Baseline 0.63 Baseline 0.68 Baseline 0.75 Baseline

Bigram 0.80 0.043 0.80 2.5e-06 0.82 0.00026 0.73 0.55

BOW ? bigram 0.87 6.9e-05 0.85 2.6e-07 0.89 4.7e-06 0.87 2.9e-05

BOW ? lemmatization 0.80 0.031 0.74 0.0022 0.77 0.0028 0.81 0.029

BOW - stopwords 0.76 0.09 0.74 0.0023 0.77 0.0017 0.81 0.0019

BOW - stopwords ? lemmatization 0.77 0.051 0.76 0.0008 0.77 0.0021 0.82 0.0005

BOW - stopwords ? lemmatization ? bigram 0.88 6.6e-05 0.85 2.9e-07 0.91 4.3e-08 0.87 0.0009

Metadata

Rating 0.72 1.0 0.31 0.04 0.81 7.1e-05 0.46 6.9e-06

Rating ? length 0.75 0.09 0.67 0.04 0.77 0.0005 0.69 0.0098

Rating ? length ? tense 0.74 0.63 0.67 0.083 0.77 0.0029 0.69 0.029

Rating ? length ? tense ? 19 sentiment 0.73 1.0 0.66 0.16 0.77 0.004 0.68 8.9e-05

Rating ? length ? tense ? 29 sentiments 0.71 1.0 0.68 0.0002 0.76 0.028 0.68 0.029

Combined (text and metadata)

BOW ? rating ? lemmatize 0.78 0.064 0.74 0.0005 0.77 0.0023 0.80 0.0044

BOW ? rating ? 19 sentiment 0.79 0.0027 0.71 0.039 0.81 0.0002 0.83 0.001

BOW ? rating ? 1 sentiment ? tense 0.78 0.0097 0.70 0.039 0.79 0.0002 0.81 0.0012

Bigram ? rating ? 1 sentiment 0.83 0.0039 0.81 9.5e-06 0.85 2e-05 0.79 0.042

Bigram - stopwords ? lemmatization
? rating ? tense ? 29 sentiment

0.82 0.0019 0.80 1.7e-06 0.85 2.5e-05 0.81 0.029

BOW ? bigram ? tense ? 19 sentiment 0.87 0.0001 0.83 1.2e-05 0.91 1.9e-07 0.85 0.0002

BOW ? lemmatize ? bigram ? rating
? tense

0.88 7.6e-06 0.85 7.6e-07 0.92 1.2e-07 0.87 1.6e-05

BOW - stopwords ? bigram ? rating
? tense ? 19 sentiment

0.88 1.6e-06 0.85 7.6e-07 0.90 4.8e-06 0.86 0.0002

BOW - stopwords ? lemmatization
? rating ? tense ? 19 sentiment

0.79 0.064 0.74 0.0008 0.80 0.0014 0.80 0.029

BOW - stopwords ? lemmatization
? rating ? tense ? 29 sentiments

0.78 0.051 0.76 0.0012 0.81 0.0003 0.82 0.0002

2 http://mast.informatik.uni-hamburg.de/app-review-analysis/.
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classifiers are more accurate for predicting the review types

than multiclass classifiers. One possible reason is that each

binary classifier uses two training sets: one set where the

corresponding type is observed (e.g., bug report) and one set

where it is not (e.g., not bug report). Concerning the binary

classifiers Naive Bayes outperformed the other algo-

rithms. In Table 7, the numbers in bold represent the highest

average scores for the binary (B) and multiclass (MC) case.

4.4 Performance and data

The more data are used to train a classifier the more time the

classifier would need to create its prediction model. This is

depicted in Fig. 2 where we normalized themean time needed

for the four classifiers depending on the size of the training set.

In this case, we used a consistent size for the test set of 50

randomly selected reviews to allow a comparison of the results.

We found that when using more than 200 reviews to train

the classifiers the time curve gets much more steep with a

rather exponential than a linear shape. For instance, the time

needed for training almost doubles when the training size

grows from 200 to 300 reviews. We also found that MaxEnt

needed much more time to build its model compared to all

other algorithms for binary classification. Using the classi-

fication technique BoW and Metadata, MaxEnt took on

average � 40 times more than Naive Bayes and � 1:36

times more than Decision Tree learning.

These numbers exclude the overhead introduced by the

sentiment analysis, the lemmatization, and the tense

detection (part-of-speech tagging). The performance of

these techniques is studied well in the literature [4], and

their overhead is rather exponential to the text length.

However, the preprocessing can be conducted once on each

review and stored separately for later usages by the clas-

sifiers. Finally, stopword removal introduces a minimal

overhead that is linear to the text length.

Figure 3 shows how the accuracy changes when the

classifiers use larger training sets. The precision curves are

Table 6 Most informative features for the classification technique bigram - stop words ? lemmatization ? rating ? 29 sentiment

scores ? tense

Bug report Feature request User experience Rating

Rating (1) Bigram (way to) Rating (3) Bigram (will not)

Rating (2) Bigram (try to) Rating (1) Bigram (to download)

Bigram (every time) Bigram (would like) Bigram (use to) Bigram (use to)

Bigram (last update) Bigram (5 star) Bigram (to find) Bigram (new update)

Bigram (please fix) Rating (1) Bigram (easy to) Bigram (fix this)

Sentiment (-4) Bigram (new update) Bigram (go to) Bigram (can get)

Bigram (new update) Bigram (back) Bigram (great to) Bigram (to go)

Bigram (to load) Rating (2) Bigram (app to) Rating (1)

Bigram (it can) Present cont. (1) Bigram (this great) Bigram (great app)

Bigram (can and) Bigram (please fix) Sentiment (-3) Present simple (1)

Table 7 F-measures of the

evaluated machine learning

algorithms (B = binary

classifier, MC = multiclass

classifiers) on app reviews from

Apple and Google stores

Type Technique Bug R. F req. U exp. Rat. Avg.

Naive Bayes

B Bag of words (BOW) 0.71 0.63 0.68 0.75 0.70

MC Bag of words 0.66 0.31 0.43 0.59 0.50

B BOW ? metadata 0.79 0.71 0.81 0.83 0.79

MC BOW ? metadata 0.62 0.42 0.50 0.58 0.53

Decision Tree

B Bag of words 0.81 0.77 0.82 0.79 0.79

MC Bag of words 0.49 0.32 0.44 0.52 0.44

B BOW ? metadata 0.73 0.68 0.78 0.78 0.72

MC BOW ? metadata 0.62 0.47 0.53 0.54 0.54

MaxEnt

B Bag of words 0.66 0.65 0.58 0.67 0.65

MC Bag of words 0.26 0.00 0.12 0.22 0.15

B BOW ? metadata 0.66 0.65 0.60 0.69 0.65

MC BOW ? metadata 0.14 0.00 0.29 0.04 0.12
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represented with continuous lines, while the recall curves

are dotted. From Figs. 2 and 3 it seems that 100–150

reviews are a good size of the training sets for each review

type, allowing for a high accuracy while saving resources.

With an equal ratio of candidate and non-candidate reviews

the expected size of the training set doubles leading to

200–300 reviews per classifier recommended for training.

Finally, we also compared the accuracy of predicting the

Apple AppStore reviews with the Google Play Store

reviews. We found that there are differences in predicting

the review types between both app stores as shown in

Tables 8 and 9. The highest values of a metric are

emphasized as bold for each review type. The biggest

difference in both stores is in predicting bug reports. While

the top value for F-measure for predicting bugs in the

Apple AppStore is 90 %, the F-measure for the Google

Play Store is 80 %. A reason for this difference might be

that we had less labeled reviews for bug reports in the

Google Play Store. On the other hand, feature requests in

the Google Play Store have a promising precision of 96 %

with a recall of 88 %, while the precision in the Apple

AppStore is 88 % with a respective recall of 84 %, by
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(see Table 4))
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comparing the top F-measure values for feature requests.

Furthermore, we found that the F-measure of the Google

Play Store reviews significantly decreases for user experi-

ence compared to the overall results from Table 4.

One possible reason for this result is that AppStore

reviews are more homogeneous in terms of vocabulary and

follow similar patterns. This might be also caused by a

homogeneous group of iOS users compared to Android

users.

5 Discussion

We discuss the main findings of our study and the limita-

tions of the results.

5.1 What is the best classifier?

Our results show that no single classifier works best for all

review types and data sources. However, several findings

can be insightful for designing a review analytics tool:

• The numerical metadata including the star rating,

sentiment score, and length had an overall low preci-

sion for predicting bug reports, feature requests, and

user experience. A high recall for bug reports is

important (to not miss critical reports). On the other

hand, metadata increased the classification accuracy of

text classification (in particular for feature requests and

ratings).

• On average, the pure text classification (bag of words)

achieved a satisfactory precision and recall around

70 %. However, fine-tuning the classifiers with the

review metadata, the sentiment scores, NLP, and the

tense of the review text increased the precision up to

92 % for user experiences and ratings, and the recall up

to 99 % for user experience and bug reports.

• Lemmatization and stopword removal should be used

with care. Removing the default list of stopwords in

common corpora (e.g., as defined in the Natural

Language ToolKit [4]) might decrease the classification

accuracy as they include informative keywords like

‘‘want,’’ ‘‘please,’’ or ‘‘can’’ while removing non-

informative stopwords such as ‘‘I,’’ ‘‘and,’’ and ‘‘their’’

increased the precision and recall in particular for bug

reports and ratings.

• While the sentiment scores from the automated senti-

ment analysis increased the accuracy of the classifiers,

we did not observe a major difference between one

sentiment score versus two (one negative and one

positive score).

• Four multiple binary classifiers, one for each review

type, performed significantly better than a single

multiclass classifier in all cases.

• Naive Bayes seems to be an appropriate classification

algorithm as it can achieve high accuracy with a small

training set and less training time than other studied

classifiers (more than 30 times faster).

We were able to achieve encouraging results with F-mea-

sures above 85 % for the whole dataset and up to 90 % for

the Apple store reviews. However, we think that there is

still room for improvement in future work. Other potential

metadata such as user names, helpfulness score, and sub-

mission date might further improve the accuracy. First,

some users tend to submit informative reviews, other users

submit more bugs or wishes, while others tend to only

express complains and ratings. For using the user name as

classification feature, we need to track users behaviors over

all apps, which brings restrictions as only app vendors can

simply access this information. Second, some stores allow

users to rate the reviews of others and vote for their

helpfulness (as in Stack Overflow). The helpfulness score

can improve the classification since user experiences and

bug reports are particularly considered helpful by app users

[29]. Finally, the relative submission time of the review can

also indicate its type. After major releases, reviews become

frequent and might be reflective including ratings or bug

reports [29]. After the release storm a thoughtful review

might rather indicate a user experience or a feature request.

5.2 Between-apps versus within-app analysis

One goal of this study is to create a tool that takes a review

as an input, analyzes it, and correctly classifies its infor-

mation. This tool needs a training set including example

reviews, their metadata, and their correct types. In this

paper, we used random training sets including reviews

from different apps—an approach that we call between-

apps analysis. Such a training set can, e.g., be provided by

the research community as an annotated corpora or a

benchmark. It can also be provided and maintained as a

service by the app store providers as Apple, Google, or

Microsoft for all apps available on their stores.

One alternative approach is to train the classifiers sep-

arately for each single app—that is to conduct within-app

analyses. The customization of the classifier to learn and

categorize the reviews written for the same app might

improve its accuracy. In addition to general keywords that

characterize a review type (e.g., ‘‘fix’’ for bug reports or

‘‘add’’ for feature requests) the classifier can also learn

specific app features (e.g., ‘‘share picture’’ or ‘‘create cal-
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endar’’). This app-specific approach can add a context to

the classification. For instance, a specific feature is prob-

ably buggy as noted by the developers in the release note.

Or, if a feature name is new in the reviews, it probably

refers to a new or missing feature. Moreover, additional

app-specific data such as current bug fixes, release notes, or

app description pages could also be used for training the

classifiers. In practice, we think that a combination of

between-apps analysis and within-app analysis is most

reasonable. In particular, grouping the reviews according to

their types and according the app features might be useful

for the stakeholders (see Sect. 7.2).

Finally, it might be useful to fine-tune the classifiers to

specific app categories. For instance, we observed that

some reviews for gaming apps are particularly hard to

classify and it is difficult to judge whether the review refers

to a bug or to a feature. Since requirements for this cate-

gory might be handled differently, it might also make sense

to use a different classification scheme, e.g., focusing on

scenarios or situations.

5.3 Limitations and threats to validity

As for any empirical research, our work has limitations to

its internal and external validity. Concerning the internal

validity, one common risk for conducting experiments with

manual data analysis is that human coders can make mis-

takes when coding (i.e., labeling) the data, resulting in

unreliable classifications.

We took several measures to mitigate this risk. First, we

created a coding guide [27] that precisely defines the

review types with detailed examples. The guide was used

by the human coders during the labeling task. Moreover,

each review in the sample was coded at least by two

people. In the experiment, we only used the reviews, where

at least two coders agreed on their types. Finally, we hired

the coders to reduce volunteer bias, briefed them together

for a shared understanding of the task, and used a tool to

reduce concentration mistakes. The guide, data, and all

results are available on the project Web site.3

However, we cannot completely exclude the possibility

of mistakes as reviews often have low-quality text and

contain multiple overlapping types of information. We

think that this potential risk might marginally influence the

accuracy evaluation, but does not bias the overall results.

An additional careful, qualitative analysis of the disagree-

ments will lead to clarifying ‘‘unclear reviews’’ and give

insights into improving the classification.

Moreover, there are other possibilities to classify the

content of the review. Previously, we have reported on 17

types of information that can be found in reviews [29]. This

study focuses on four which we think are the most relevant

for requirements engineering community. Other studies

that use different types and taxonomies might lead to dif-

ferent results.

We are aware that we might have missed some key-

words for the basic classifiers. Including more keywords

will, of course, increase the accuracy of the string match-

ing. However, we think the difference will remain signifi-

cant as the recall shows for this case. Similarly, we might

have missed other machine learning features, algorithms,

or metrics. Also, improving classification scripts and ran-

dom runs will lead to slightly different results. We thus

refrain from claiming the completeness of the results. Our

study is a first step toward a standard benchmark that

requires additional replication and extension studies. We

did not report on an automated selection of the machine

learning features, which might have resulted into statisti-

cally more significant results. Automated feature selection

can only be applied in part for this experiment, since some

features are exclusive (e.g., using lemmatization/removing

the stopwords or not, and using one or two sentiments).

Finally, manually combining and comparing the classifiers

help interpret the findings. We think, this is a reasonable

compromise for a first study of its kind.

Finally, while the results indicate differences between

the single combinations of the classification techniques to

predict a certain review type, an important question is how

significant are the differences. To mitigate these threats we

conducted multiple paired t test on the mean values of the

single k-iteration runs. The p values of these tests should be

used carefully when interpreting how strong is the differ-

ence between the techniques for a specific scenario. Nev-

ertheless, the large number of paired t tests might imply

that we accumulate the type I error. We applied the Holm’s

step-down method [16] to mitigate this threat.

Concerning the external validity, we are confident that

our results have a high level of generalizability for app

reviews. In particular, the results are widely applicable to

Apple and Google app stores due to our large random

sample. Together, these stores cover over 75 % of the app

market. However, the results of this study might not apply

to other stores (e.g., Amazon) which have a different ’’re-

viewing culture,’’ to other languages that have different

patterns and heuristics than English, and to other types of

reviews, e.g., for hotels or movies.

6 A review analytics tool

Our results show that app reviews can be classified as bug

reports, feature requests, user experiences, and ratings

(praise or dispraise) with a high accuracy between3 http://mast.informatik.uni-hamburg.de/app-review-analysis/.
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85–92 %. This is encouraging for building analytics tools

for the reviews.

Simple statistics about the types (e.g., ‘‘How much bug

reports, feature requests, etc. do we have?’’) can give an

overall idea about the app usage, in particular if compared

against other apps (e.g., ‘‘Is my app getting more feature

requests or more bug reports than similar apps?’’). Reviews

that are only ratings can be filtered out from the manual

analysis. Ratings are very persuasive in app reviews (up to

70 %) while rather uninformative for developers. Filtering

them out would save time. Feature request reviews can be

assigned to analysts and architects to discuss and schedule

them for future releases or even to get inspirations for new

requirements.

User experience reviews can serve as ad-hoc docu-

mentation of the app and its features. These reviews can,

e.g., be posted as Frequently Asked Questions to help other

users. They can also help app vendors to better understand

the users; in particular, those analysts have never thought

about. Some user experience reviews describe work-

arounds and unusual situations that could inspire analysts

and architects as well.

These use cases and the results of our quantitative

evaluation of the single classification techniques inspired

us to design a prototype tool for review analytics. In the

following we discuss how the data collection and pro-

cessing of the tool works and how the classification can be

visualized to the tool user in a user interface. Finally, we

report on a qualitative evaluation of the tool with

practitioners.

6.1 Data collection and processing

In the data collection phase the app reviews are collected

and stored in a canonical dataset. Only data needed for

further processing are stored in the dataset. If a review

dataset already exists, it gets updated with new submitted

reviews. The tool collects both the text data and the

metadata available from the stores.

The usage of the tool includes two steps. In the first step

the classifiers of the tool are trained. In the second step the

classifiers are used to perform the classification. The

research dataset collected and annotated in this study can

be used as input for the first step which enables to imme-

diately start using the tool by stakeholders. The classifi-

cation can be done either continuously (when a review is

submitted, it gets immediately classified), or periodically,

e.g., every day or a week a bunch of review data is fetched

and classified. The tool offers an interface to the user to

define the period of time for the collection and processing

of the data. If integrated into the app stores, the user

reviews can be fetched and classified immediately.

There is bunch of preprocessing operation that need

to be conducted before the classification can be done.

This includes the NLP, the extraction of the sentiments,

and the extraction of the tense. This kind of prepro-

cessing is related to the single reviews. Therefore, it can

be done independently from the classification. Every

time the review is submitted (or fetched), the prepro-

cessing is conducted and additional data are stored in

the database.

6.2 User interface

Figures 4, 5, and 6 show the prototype of the review ana-

lytics tool. On the top of each figure, in the navigation bar,

the tool users can log in, get support, and submit feedback,

see notifications like reviews from watched app users, or go

to the home screen to see the dashboard. The start page of

the prototype (see Fig. 4) shows the functionality for

importing the reviews, where developers can, e.g., import

locally stored reviews in form of a CSV file. Alternatively,

a crawler could retrieve app reviews automatically, based

on a link to the app page in the corresponding store.

After importing reviews, the tool user is able to get an

overview of the current trends. Figure 4 shows the num-

ber and ratios of classified reviews for each category (bug

report, feature request, user experience, and rating) and

for each version of the app. This grouped bar chart gives

an overview about what app users reported within the

given time frames. The chart helps to understand whether,

for example, app users reported more bug reports and

feature requests after the release of a new version. The

trend can also be used as overall indicator to understand

how the project is going. If the number of bug reports is

usually high, development teams might increase their

focus on quality management and testing. If feature

requests are increasing over time, the focus might shift

more to analyzing requirements and the development

roadmap might be changed to better address the needs of

users.

If an app is distributed in multiple app stores like the

Google Play Store or the Apple App Store, the tool user can

switch to the App Store Comparison tab on the top of the

page. Figure 5 illustrates pie charts that represent the overall

review type distribution in each store. This view provides an

overview and allows for comparing the app performance

across the stores. Project managers could use this informa-

tion in order to set the development priorities. For instance,

if there are much more bugs in the Google Play Store than in

other stores, the development team might focus on fixing

bugs first. Or, if the Windows Phone app has few bugs the

development team might focus on implementing frequently

asked features first.
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Details about each review types, like the feature requests,

can be seen in the third tab, called Review Details (see

Fig. 6). As developers might need more detailed information

about the current version or specific review types, they can

retrieve in-depth, automatically extracted information in this

view. The selection of displayed reviews can be narrowed

down by using the first three drop-down menus. In the first

drop-down menu, tool users can choose if they want to know

more about a specific review type. The second drop-down

menu filters the data by the source of the reviews (app

stores). The third can help to filter for reviews with a specific

language (e.g., German vs. English). The fourth drop-down

menu helps to sort the reviews by the given star rating. The

filtered data are then visualized below the menus. On the left

side, a pie chart can also be used to filter specific types by

clicking on the chart. On the right side of the pie chart, tool

users can see a scrollable list of actual reviews that apply to

the filters.

For each review, tool users are able to perform two

actions. First, a drop-down menu shows the review type as

it was classified by the system. If tool users think, that a

review was misclassified, they are able to correct this by

choosing the proper type in the drop-down menu. This

input can help improve the classification as it extends the

training set. The second action allows tool users to

‘‘watch’’ the reviews of app users. This is useful when an

app user, for example, gives a lower star rating because of

some difficulties with the app, but also promises to increase

the rating as soon as the issue will be resolved [29]. By

using this feature, developers can track if an update helped

Fig. 4 Analytics tool: review types over time

Fig. 5 Analytics tool: app store comparison
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the user and if it had any effect on the review. Some app

stores, as the Google Play Store allows developers to

directly answers reviews in their store. This functionality

can be used to communicate with users by, e.g., writing

them that a fix for their problem will implemented next

version or to proactively ask whether the last update

improved their experience. Watched users are bookmarked.

This helps when reviews are meaningful but of a low

priority.

6.3 Evaluation

To better understand the needs of developers and analysts

for a review analytics tool support, we have conducted

interviews with multiple practitioners. The interviews

focused on answering the following research questions:

1. Review usefulness: How do practitioners perceive app

reviews, their usefulness, and do they currently use

these reviews?

2. Analytics use cases: What are the main use cases for a

review analytics tool for developers, analysts, and

managers?

3. Feedback on tool: How do practitioners perceive our

analytics tool? Which features are they missing and

what would they change?

4. Integration into workflows: How should our analytics

tool be integrated in a professional work environment?

In January 2016, we interviewed nine practitioners from 7

European companies and one research organization. The

interviewees are summarized in Table 10. The subjects had

different job positions, such as developers, requirements

engineers, researcher, project manager, and software

architects. Each interview lasted for 30–45 min and was

conducted by two of the authors. Our findings are sum-

marized below.

Review usefulness The interviewees think that reviews

are useful, but most interviewees do not look at the reviews

regularly. Feedback about apps comes from multiple

channels like the app stores, email or the customer care

department, as well as from internal employees. Partici-

pants do not use tools to extract information from reviews

but do this manually by looking at individual reviews, by

inviting test groups or by directly asking users. One of the

difficulties mentioned is that many reviews contain non-

informative comments like ‘‘I like this app,’’ ‘‘it crashed,

fix it!,’’ which must be filtered as it takes too much time

otherwise to look at all of them. The subjects 2, 3, 4, 5, and

6 state that feedback influences the development process of

an app if an issue is reported by multiple users. If, e.g., a

bug occurs on a very specific hardware device that just

Fig. 6 Analytics tool: review details
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little costumers own, developers and project managers are

more likely to ignore or delay that issue in their planning.

Analytics use cases The interviewees state that they

desire to understand users as they want to provide a better

experience by reducing bugs and adding requested features

as subject 3 stated, that the image of the company is

important and reacting to reviews is about the company

image. Therefore, most of the interviewees wish an auto-

matic tool support for extracting information from reviews.

Subject 2, 3, 6, and 7 state that a tool should be able to filter

non-informative reviews. Furthermore, subject 2, 4, 5, and

6 suggest to quantify and group feature requests and bugs

to better prioritize them in the development phase.

Feedback on tool Overall, our tool suggestion by the

interviewees as helpful, clearly designed and well packed

with functionality. Nevertheless, subjects also suggested

making the classification more ‘‘powerful,’’ by aggregating

frequently mentioned issues. Moreover, subjects suggested

adding hardware and interaction data from the app itself so

that developers can better undeFurthermore, some inter-

viewees stated thatrstand the undertaken steps of the user

before a bug occurred (stated by subject 1 and 2). Fur-

thermore, some interviewees stated that it is important to

have more options to sort reviews, e.g., by showing the

most recent or the most frequent issues. Subjects wanted to

have the most important information directly visible on the

screen and look into minor issues afterward. Depending on

the job positions, interviewees liked different parts of the

tool more. Project managers especially found the view of

Figs. 4 and Fig 5 useful. They gave reason that they do not

have time to check individual reviews and just want to

know the current situation of the app. Subject 2 explained

that he wants to have such views on separate screens in

their office, so that his team can check the current status

every morning. If a lot of bug reports occurred after pub-

lishing a new version of their app, they could take imme-

diate action.

Integration into workflows We found that there are three

common ideas for integrating the review analytics tool into

the app development. One group of interviewees said that

they would like to have this analytics support as a stan-

dalone web-based tool with responsive design, so that they

could still monitor the status of their app outside the office.

The second group of interviewees asked for an integration

into issue trackers or at least to have an export functionality

for these systems. The best case for this would be the

automatic creation of issues out of the reviews. Some also

said that it would be good if these issues could be sug-

gested proactively by the tool but eventually edited by a

team member in order to formulate it more clearly. One

subject stated: ‘‘Having some actual reviews attached to the

issue would be useful.’’ The third group stated that they

would like to see an integration into crash trackers like

crashlytics4 that reports the stack trace of occurred crashes.

Since there are also bugs that do not produce any crash;

combining these two perspectives would provide a more

complete view on current problems in once place.

7 Related work

We focus the related work discussion on three areas: user

feedback and crowdsourcing requirements, app store

analysis, and classification of issue reports.

7.1 User feedback and crowdsourcing requirements

Research has shown that the involvement of users and their

continuous feedback are major success factors for software

projects [34]. Bano and Zowghi identified 290 publications

that highlight the positive impact of user involvement [2].

Pagano and Bruegge [28] interviewed developers and

found that user feedback contains important information to

improve software quality and to identify missing features.

Recently, researchers also started discussing the potentials

of a crowd-based requirements engineering [11, 21]. These

works stressed the scalability issues when involving many

Table 10 Overview of the

interviewed subjects
Subject Role Company

1 Senior app developer German SME, app development

2 Senior tester, quality manager Large European social media company

3 Lead engineer European telecommunication company

4 Project manager for apps Global market research company

5 Lead architect, project manager Software development company for Mac solutions

6 RE researcher with practice experience University

7 Usability/requirements engineer Large software development company

8 Project manager, requirements analyst Danish SME, app development

9 Project manager, requirements analyst Danish SME, app development

4 http://crashlytics.com.
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users and the importance of a tool support for analyzing

user feedback.

Bug repositories are perhaps the most studied tools for

collecting user feedback in software projects [3], mainly

from the development and maintenance perspective. We

previously discussed how user feedback could be con-

sidered in software lifecycles in general [24] and

requirements engineering in particular, distinguishing

between implicit and explicit feedback [25]. Seyff et al.

[33] and Schneider et al. [32] proposed to continuously

elicit user requirements with feedback from mobile

devices, including implicit information on the application

context. In this paper we propose an approach to sys-

tematically analyze explicit, informal user feedback. Our

discussion of review analytics contributes to the vision of

crowd-based requirements by helping app analysts and

developers to identify and organize useful feedback in the

app reviews.

7.2 App store analysis

In recent year, app store analysis has become a popular

topic among researchers [14] and practitioners.5 We can

observe three directions: (a) general exploratory studies,

(b) app features extraction, and (c) reviews filtering and

summarization.

General Studies Finkelstein et al. [6] studied the rela-

tionships between customer, business, and technical char-

acteristics of the apps in the BlackBerry Store, using data

mining and NLP techniques to explore trends and corre-

lations. They found a mild correlation between price and

the number of features claimed for an app and a strong

correlation between customer rating and the app popularity.

This finding motivates the importance of reviews for both

developers and users.

Hoon et al. [17] and Pagano and Maalej [29] conducted

broad exploratory studies of app reviews in the Apple

Store, identifying trends for the ratings, review quantity,

quality, and the topics discussed in the reviews. Their

findings motivated this work. Our review types [29] and the

evidence of their importance [17, 29] are derived from

these studies. One part of our experiment data (iOS ran-

dom) is derived from Pagano and Maalej’s dataset. We

extended this dataset with Android reviews and took

additional recent reviews from 2013 and 2014. Finally this

work is rather evaluative than exploratory. We studied how

to automatically classify the reviews using machine

learning and NLP techniques.

Feature Extraction and Opinion Mining Other

researchers mined the app features and the user opinions

about them from the app stores. Harman et al. [13]

extracted app features from the official app description

pages using a collocation and a greedy algorithm. Guzman

and Maalej also applied collocations and sentiment anal-

ysis to extract app features from the user reviews together

with an opinion summary about the features [12]. Simi-

larly, Li et al. [22] studied user satisfaction in the app

stores. The authors extracted quality indicators from

reviews by matching words or phrases in the user com-

ments with a predefined dictionary. Opinion mining is

popular in other domains to analyze opinions about movies,

cameras, or blogs [18, 26, 31]. Mining reviews in app

stores exhibits different challenges. The text in app reviews

tends to be 3 to 4 times shorter [20], having a length that is

comparable to that of a Twitter message [29], but posing an

additional challenge in comparison to feature extraction in

Twitter messages due to the absence of hash tags. While

we also use natural language processing and sentiment

analysis, we focus on a complementary problem. Our goal

is to classify the reviews and assign them to appropriate

stakeholders rather then to extract the features and get an

overall average opinion.

Filtering and Summarizing Reviews Recently,

researchers also suggested probabilistic approaches to

summarize the reviews content and filter informative

reviews. Galvis Carreño and Winbladh [8] extracted word-

based topics from reviews and assigned sentiments to them

through an approach that combines topic modeling and

sentiment analysis. Similarly, Chen et al. [5] proposed AR-

miner, a review analytics framework for mining informa-

tive app reviews. AR-miner first filters ‘‘noisy and irrele-

vant’’ reviews. Then, it summarizes and ranks the

informative reviews also using topic modeling and

heuristics from the review metadata. The main use case of

these works is to summarize and visualize discussion topics

in the reviews. This visualization could inspire analysts and

managers for planning and prioritizing future releases. Our

goal is similar but our approach and use case are different.

Instead of topic modeling, we use supervised machine

learning based on a variety of features. While the overhead

is bigger to train the algorithm, the accuracy is typically

higher. Our use case is to automatically categorize the

reviews into bug reports, feature requests, feature experi-

ences, and ratings. This classification helps to split the

reviews over the stakeholders rather than to summarize

them. Finally, our approach is app-independent, while

review summarization and opinion mining approaches are

applied on separate apps with separate vocabularies and

topics.

Finally, perhaps the most related work to ours is of

Iacob and Harrison [19]. In a first step, the authors

extracted feature requests from app store reviews by means

of linguistic rules. Then they used LDA to group the fea-

ture requests. While Iacob and Harrison focused on one5 http://www.appannie.com/.
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type of reviews, i.e., feature requests, we also studied bug

reports, user experiences, and ratings, as we think all are

relevant for project stakeholders. Iacob and Harrison fine-

tuned an NLP approach and developed several linguistic

rules to extract feature requests. We tried to combine dif-

ferent information and evaluated different techniques

including NLP, sentiment analysis, and text classification,

which are not specific to the English language. Applying

LDA to summarize the classified bug reports, user expe-

riences, and ratings is a promising future work—as Iacob

and Harrison showed that this works well for feature

requests.

7.3 Issue classification and prediction

Bug tracking and bug prediction are well-studied fields in

software engineering. One alternative to our approach is to

ask users to manually classify their reviews. Herzig et al.

[15] conducted a study and found that about a third of all

manually classified reports in the issue trackers of five

large open-source projects are misclassified, e.g., as a bug

instead of documentation or a feature request. This finding

shows that the manual classification of reports is error-

prone, which is one important motivation for our study. We

think that manually classifying reviews is misleading for

users and most popular app stores do not provide a field to

enter the type of a review.

Antoniol et al. [1] reported on a study about classifying

entries of an issue tracker as bugs or enhancements. Our

study is inspired by theirs but targets different type of data

(app reviews) that are created by other stakeholders (end

users). We also target user experiences and ratings that

are very common in app reviews. Finally, in addition to

pure text classification, we evaluated other heuristics and

features such as tense, sentiment, rating, and review

length.

Fitzgerald et al. [7] reported on an approach for the early

prediction of failures in feature request management sys-

tems. Unlike our work, the authors focused on feature

requests, but defined various subtypes such as abandoned

development, stalled development, and rejection reversal.

The authors also used data from the issue trackers of open-

source projects. Instead of issue trackers, we mine app

stores and combine metadata and heuristics with text

classification.

Finally, there is a large body of knowledge on predicting

defects by mining software repositories [10]. We think that

the manual description of issues by users (i.e., the crowd)

is complementary to the analysis of code and other tech-

nical artifacts. Moreover, our work also includes predicting

new ideas (innovations) as well as feature descriptions and

documentation.

8 Conclusion

App stores provide a rich source of information for software

projects, as they combine technical, business, and user-related

information in one place. Analytics tools can help stake-

holders to deal with the large amount, the variety, and quality

of the app stores data and to take the right decisions about the

requirements and future releases. In this paper, we proposed

and studied one functionality of app store analytics that

enables the automatic classification of user reviews into bug

reports, feature requests, user experiences, and ratings

(i.e., simple praise or dispraise repeating the star rating). In a

series of experiments, we compared the accuracy of simple

string matching, text classification, natural language pro-

cessing, sentiment analysis, and review metadata to classify

the reviews.We reportedon several findingswhich can inspire

the design of review analytics tools. In particular, metadata-

only-based classifiers have a poor performance. The perfor-

mance of text-based classification can be enhanced with

metadata such as the tense of the text, the star rating, the

sentiment score, and the length. Moreover, stopword removal

and lemmatization, two popular NLP techniques used for

preprocessing the text in document classification, should be

used carefully, since everyword in a short informal reviewcan

be informative. For instance, stop word removal can decrease

the classification accuracy. We also found that using bigrams

instead of singlewords for text-based classification (i.e., ‘‘bag

of bigrams’’) leads to higherF1-score values. Overall, the best

precision and recall for all four review types are encourag-

ing—ranging from 89 up to 99 %. Our work helps to filter

reviews of interest for certain stakeholders as developers,

analysts, and other users as our 9 qualitative interviews con-

firmed. Complementary within-app analytics such as the

feature extraction, opinion mining, and the summarization of

the reviews, will make app store data more useful for software

and requirements engineering decisions.
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