
RE 2015

Improving agile requirements: the Quality User Story framework
and tool

Garm Lucassen1 • Fabiano Dalpiaz1 • Jan Martijn E. M. van der Werf1 •

Sjaak Brinkkemper1

Received: 14 November 2015 / Accepted: 14 March 2016 / Published online: 1 April 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract User stories are a widely adopted requirements

notation in agile development. Yet, user stories are too

often poorly written in practice and exhibit inherent quality

defects. Triggered by this observation, we propose the

Quality User Story (QUS) framework, a set of 13 quality

criteria that user story writers should strive to conform to.

Based on QUS, we present the Automatic Quality User

Story Artisan (AQUSA) software tool. Relying on natural

language processing (NLP) techniques, AQUSA detects

quality defects and suggest possible remedies. We describe

the architecture of AQUSA, its implementation, and we

report on an evaluation that analyzes 1023 user stories

obtained from 18 software companies. Our tool does not

yet reach the ambitious 100 % recall that Daniel Berry and

colleagues require NLP tools for RE to achieve. However,

we obtain promising results and we identify some

improvements that will substantially improve recall and

precision.

Keywords User stories � Requirements quality �
AQUSA � QUS framework � Natural language processing �
Multi-case study

1 Introduction

User stories are a concise notation for expressing require-

ments that is increasingly employed in agile requirements

engineering [7] and in agile development. Indeed, they

have become the most commonly used requirements

notation in agile projects [29, 53], and their adoption has

been fostered by their use in numerous books about agile

development [2, 3, 10, 26]. Despite some differences, all

authors acknowledge the same three basic components of a

user story: (1) a short piece of text describing and repre-

senting the user story, (2) conversations between stake-

holders to exchange perspectives on the user story, and (3)

acceptance criteria.

The short piece of text representing the user story cap-

tures only the essential elements of a requirement: who it is

for, what is expected from the system, and, optionally, why

it is important. The most widespread format and de facto

standard [36], popularized by Cohn [10] is: ‘‘As a htype of

useri, I want hgoali, [so that hsome reasoni].’’ For exam-

ple: ‘‘As an Administrator, I want to receive an email when

a contact form is submitted, so that I can respond to it.’’

Despite this popularity, the number of methods to assess

and improve user story quality is limited. Existing approa-

ches either employ highly qualitative metrics, such as the six

mnemonic heuristics of the INVEST (Independent–Nego-

tiable–Valuable–Estimatable–Scalable–Testable) frame-

work [52], or generic guidelines for quality in agile RE [21].

We made a step forward by presenting the Quality User Story

(QUS) framework (originally proposed in [35]), a collection

of 13 criteria that determine the quality of user stories in

terms of syntax, pragmatics, and semantics.

We build on the QUS framework and present a com-

prehensive, tool-supported approach to assessing and

enhancing user story quality. To achieve this goal, we take

& Garm Lucassen

g.lucassen@uu.nl

Fabiano Dalpiaz

f.dalpiaz@uu.nl

Jan Martijn E. M. van der Werf

j.m.e.m.vanderwerf@uu.nl

Sjaak Brinkkemper

s.brinkkemper@uu.nl

1 Department of Information and Computing Science,

Utrecht University, Princetonplein 5, 3584 CC Utrecht,

The Netherlands

123

Requirements Eng (2016) 21:383–403

DOI 10.1007/s00766-016-0250-x

http://orcid.org/0000-0002-0213-0699
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0250-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0250-x&domain=pdf

advantage of the potential offered by natural language

processing (NLP) techniques. However, we take into

account the suggestions of Berry et al. [4] on the criticality

of achieving 100 % recall of quality defects, sacrificing

precision if necessary. We call this the Perfect Recall

Condition. If the analyst is assured that the tool has not

missed any defects, (s)he is no longer required to manually

recheck the quality of all the requirements.

Existing state-of-the-art NLP tools for RE such as

QuARS [6], Dowser [44], Poirot [9], and RAI [18] take the

orthogonal approach of maximizing their accuracy. The

ambitious objectives of these tools demand a deep under-

standing of the requirements’ contents [4]. However, this is

still practically unachievable unless a radical breakthrough in

NLP occurs [47]. Nevertheless, these tools serve as an inspi-

ration and some of their components are employed in our work.

Our previous paper [35] proposed the QUS framework

for improving user story quality and introduced the concept

of the Automated Quality User Story Artisan (AQUSA)

tool. In this paper, we make three new, main contributions

to the literature:

• We revise the QUS framework based on the lessons

learned from its application to different case studies. QUS

consists of 13 criteria that determine the quality of user

stories in terms of syntax, semantics, and pragmatics.

• We describe the architecture and implementation of the

AQUSA software tool, which uses NLP techniques to

detect quality defects. We present AQUSA version 1

that focuses on syntax and pragmatics.

• We report on a large-scale evaluation of AQUSA on

1023 user stories, obtained from 18 different organiza-

tions. The primary goals are to determine AQUSA’s

capability of fulfilling the Perfect Recall Condition with

high-enough precision, but also acts as a formative

evaluation for us to improve AQUSA.

The remainder of this paper is structured as follows. In

Sect. 2, we present the conceptual model of user stories that

serves as the baseline for our work. In Sect. 3, we detail the

QUS framework for assessing the quality of user stories. In

Sect. 4, we describe the architecture of AQUSA and the

implementation of its first version. In Sect. 5, we report on

the evaluation of AQUSA on 18 case studies. In Sect. 6, we

build on the lessons learned from the evaluation and pro-

pose improvements for AQUSA. Section 7 reviews related

work. Section 8 presents conclusions and future work.

2 A conceptual model of user stories

There are over 80 syntactic variants of user stories [54].

Although originally proposed as unstructured text similar

to use cases [2] but restricted in size [10], nowadays user

stories follow a strict, compact template that captures who

it is for, what it expects from the system, and (optionally)

why it is important [54].

When used in Scrum, two other artifacts are relevant:

epics and themes. An epic is a large user story that is

broken down into smaller, implementable user stories. A

theme is a set of user stories grouped according to a given

criterion such as analytics or user authorization [10]. For

simplicity, and due to their greater popularity, we include

only epics in our conceptual model.

Our conceptual model for user stories is shown in Fig. 1

as a class diagram. A user story itself consists of four parts:

one role, one means, zero or more ends, and a format. In

the following subsections, we elaborate on how to

decompose each of these. Note that we deviate from

Cohn’s terminology as presented in the introduction, using

the well known means end [48] relationship instead of the

ad hoc goal reason. Additionally, observe that this con-

ceptual model includes only aggregation relationships.

Arguably a composition relationship is more appropriate

for a single user story. When a composite user story is

destroyed, so are its role, means, and end(s) parts. How-

ever, each separate part might continue to exist in another

user story in a set of user stories. Because of this difficulty

in conceptualizing, we choose to use aggregation rela-

tionships because it implies a weaker ontological

commitment.

2.1 Format

A user story should follow some pre-defined, agreed upon

template chosen from the many existing ones [54]. The

skeleton of the template is called format in the conceptual

model, in between which the role, means, and optional

end(s) are interspersed to form a user story. See the

introduction for a concrete example.

Subject

User Story

EndMeans

Role
1 1..*

1
0..*

Format

Action Verb Direct
Object

Indirect
objectAdjective

1

Epic

1..*

has

Quality

0..* 0..*

11

1 1 10..* 0..*

Dependency

0..*

Fig. 1 Conceptual model of user stories

384 Requirements Eng (2016) 21:383–403

123

2.2 Role

A user story always includes one relevant role, defining

what stakeholder or persona expresses the need. Typically,

roles are taken from the software’s application domain.

Example stakeholders from the ERP domain are account

manager, purchaser, and sales representative. An alterna-

tive approach is to use personas, which are named, fictional

characters that represent an archetypal group of users [11].

Although imaginary, personas are defined with rigor and

precision to clearly capture their goals. Examples are Joe

the carpenter, Alice the mother, and Seth the young exec-

utive, who all have different goals, preferences and con-

straints. When used in a user story, the name of the persona

acts as the role: ‘‘As a Joe’’ or ‘‘As an Alice.’’

2.3 Means

Means can have different structures, for they can be used to

represent different types of requirements. From a gram-

matical standpoint, we support means that have three

common elements:

1. a subject with an aim such as ‘‘want’’ or ‘‘am able,’’

2. an action verb1 that expresses the action related to the

feature being requested, and

3. a direct object on which the subject executes the

action.

For example: ‘‘I want to open the interactive map.’’ Aside

from this basic requirement, means are essentially free

form text which allow for an unbounded number of con-

structions. Two common additions are an adjective or an

indirect object, which is exemplified as follows: ‘‘I want to

open a larger (adjective) view of the interactive map from

the person’s profile page (indirect object).’’ We included

these interesting cases in the conceptual model, but left out

all other variations, which we are currently examining in a

different research project.

2.4 End

One or more end parts explain why the means [10] are

requested. However, user stories often also include other

types of information. Our analysis of the ends available in

the data sets in our previous work [35] reveals at least three

possible variants of a well-formed end:

1. Clarification of means The end explains the reason of

the means. Example: ‘‘As a User, I want to edit a

record, so that I can correct any mistakes.’’

2. Dependency on another functionality The end (implic-

itly) references a functionality which is required for the

means to be realized. Although dependency is an

indicator of a bad quality criteria, having no depen-

dency at all between requirements is practically

impossible [52]. There is no size limit to this depen-

dency on the (hidden) functionality. Small example:

‘‘As a Visitor, I want to view the homepage, so that I

can learn about the project.’’ The end implies the

homepage also has relevant content, which requires

extra input. Larger example: ‘‘As a User, I want to

open the interactive map, so that I can see the location

of landmarks.’’ The end implies the existence of a

landmark database, a significant additional functional-

ity to the core requirement.

3. Quality requirement The end communicates the

intended qualitative effect of the means. For example:

‘‘As a User, I want to sort the results, so that I can more

easily review the results’’ indicates that the means

contributes maximizing easiness.

Note that these three types of end are not mutually

exclusive, but can occur simultaneously such as in ‘‘As a

User, I want to open the landmark, so that I can more easily

view the landmark’s location.’’ The means only specifies

that the user wishes to view a landmark’s page. The end,

however, contains elements of all three types: (1) a clari-

fication the user wants to open the landmark to view its

location, (2) implicit dependency on landmark functional-

ity, and (3) the quality requirement that it should be easier

than other alternatives.

3 User story quality

The IEEE Recommended Practice for Software Require-

ments Specifications defines requirements quality on the

basis of eight characteristics [24]: correct, unambiguous,

complete, consistent, ranked for importance/stability, ver-

ifiable, modifiable, and traceable. The standard, however, is

generic and it is well known that specifications are hardly

able to meet those criteria [19]. With agile requirements in

mind, the Agile Requirements Verification Frame-

work [21] defines three high-level verification criteria:

completeness, uniformity, and consistency and correctness.

The framework proposes specific criteria to be able to

apply the quality framework to both feature requests and

user stories. Many of these criteria, however, require sup-

plementary, unstructured information that is not captured in

the primary user story text.

With this in mind, we introduce the QUS framework

(Fig. 2; Table 1). The QUS Framework focuses on the

intrinsic quality of the user story text. Other approaches

1 While other types of verbs are in principle admitted, in this paper

we focus on action verbs, which are the most used in user stories

requesting features.

Requirements Eng (2016) 21:383–403 385

123

complement QUS by focusing on different notions of

quality in RE quality such as performance with user sto-

ries [33] or broader requirements management concerns

such as effort estimation and additional information sour-

ces such as descriptions or comments [21]. Because user

stories are a controlled language, the QUS framework’s

criteria are organized in Lindland’s categories [31]:

Syntactic quality, concerning the textual structure of a

user story without considering its meaning;

Semantic quality, concerning the relations and meaning

of (parts of) the user story text;

Pragmatic quality, considers the audience’s subjective

interpretation of the user story text aside from syntax and

semantics.

The last column of Table 1 classifies the criteria depending

on whether they relate to an individual user story or to a set

of user stories.

In the next subsections, we introduce each criterion by

presenting an explanation of the criterion as well as an

example user story that violates the specific criterion. We

employ examples taken from two real-world user story

databases of software companies in the Netherlands. One

contains 98 stories concerning a tailor-made Web infor-

mation system. The other consists of 26 user stories from

an advanced healthcare software product for home care

professionals. These databases are intentionally excluded

from the evaluation of Sect. 5, for we used them exten-

sively during the development of our framework and tool.

3.1 Quality of an individual user story

We first describe the quality criteria that can be evaluated

against an individual user story.

3.1.1 Well-formed

Before it can be considered a user story, the core text of the

requirement needs to include a role and the expected

functionality: the means. US1 does not adhere to this syn-

tax, as it has no role. It is likely that the user story writer

has forgotten to include the role. The story can be fixed by

adding the role: ‘‘As a Member, I want to see an error when

I cannot see recommendations after I upload an article.’’

3.1.2 Atomic

A user story should concern only one feature. Although

common in practice, merging multiple user stories into a

larger, generic one diminishes the accuracy of effort esti-

mation [32]. The user story US2 in Table 2 consists of two

separate requirements: the act of clicking on a location and

the display of associated landmarks. This user story should

be split into two:

• US2A: ‘‘As a User, I’m able to click a particular location

from the map’’;

• US2B: ‘‘As a User, I’m able to see landmarks associated

with the latitude and longitude combination of a

particular location.’’

3.1.3 Minimal

User stories should contain a role, a means, and (optimally)

some ends. Any additional information such as comments,

descriptions of the expected behavior, or testing hints

should be left to additional notes. Consider US3: Aside

from a role and means, it includes a reference to an

undefined mockup and a note on how to approach the

implementation. The requirements engineer should move

both to separate user story attributes like the description or

comments, and retain only the basic text of the story: ‘‘As a

care professional, I want to see the registered hours of this

week.’’

3.1.4 Conceptually sound

The means and end parts of a user story play a specific role.

The means should capture a concrete feature, while the end

expresses the rationale for that feature. Consider US4: The

end is actually a dependency on another (hidden) func-

tionality, which is required in order for the means to be

realized, implying the existence of a landmark database

which is not mentioned in any of the other stories. A sig-

nificant additional feature that is erroneously represented as

an end, but should be a means in a separate user story, for

example:

User Story Quality

Pragmatic

Complete

Independent

Uniform

Unique

Estimatable

Full sentence

Semantic

Conflict-free

Unambiguous

Problem-oriented

Conceptually sound

Syntactic

Minimal

Atomic

Well-formed

Fig. 2 Quality User Story framework that defines 13 criteria for user

story quality: overview

386 Requirements Eng (2016) 21:383–403

123

Table 1 Quality User Story framework that defines 13 criteria for user story quality: details

Criteria Description Individual/set

Syntactic

Well-formed A user story includes at least a role and a means Individual

Atomic A user story expresses a requirement for exactly one feature Individual

Minimal A user story contains nothing more than role, means, and ends Individual

Semantic

Conceptually sound The means expresses a feature and the ends expresses a rationale Individual

Problem-oriented A user story only specifies the problem, not the solution to it Individual

Unambiguous A user story avoids terms or abstractions that lead to multiple interpretations Individual

Conflict-free A user story should not be inconsistent with any other user story Set

Pragmatic

Full sentence A user story is a well-formed full sentence Individual

Estimatable A story does not denote a coarse-grained requirement that is difficult to plan and prioritize Individual

Unique Every user story is unique, duplicates are avoided Set

Uniform All user stories in a specification employ the same template Set

Independent The user story is self-contained and has no inherent dependencies on other stories Set

Complete Implementing a set of user stories creates a feature-complete application, no steps are missing Set

Table 2 Sample user stories that breach quality criteria from two real-world cases

ID Description Violated qualities

US1 I want to see an error when I cannot see recommendations after I

upload an article

Well-formed the role is missing

US2 As a User, I am able to click a particular location from the map

and thereby perform a search of landmarks associated with that

latitude longitude combination

Atomic two stories in one

US3 As a care professional, I want to see the registered hours of this

week (split into products and activities). See: Mockup from

Alice NOTE—first create the overview screen—then add

validations

Minimal there is an additional note about the

mockup

US4 As a User, I want to open the interactive map, so that I can see the

location of landmarks

Conceptually sound the end is a reference to

another story

US5 As a care professional I want to save a reimbursement—add save

button on top right (never grayed out)

Problem-oriented Hints at the solution

US6 As a User, I am able to edit the content that I added to a person’s

profile page

Unambiguous what is content?

US7 As a User, I am able to edit any landmark Conflict-free US7 refers to any landmark, while

US8 only to those that user has addedUS8 As a User, I am able to delete only the landmarks that I added

US9 Server configuration Well-formed, full sentence

US10 As a care professional I want to see my route list for next/future

days, so that I can prepare myself (for example I can see at what

time I should start traveling)

Estimatable it is unclear what see my route list

implies

EPA As a Visitor, I am able to see a list of news items, so that I stay up

to date

Unique the same requirement is both in epic EPA

and in story

US11 As a Visitor, I am able to see a list of news items, so that I stay up

to date

US11

US12 As an Administrator, I receive an email notification when a new

user is registered

Uniform deviates from the template, no ‘‘wish’’

in the means

US13 As an Administrator, I am able to add a new person to the database Independent viewing relies on first adding a

person to the databaseUS14 As a Visitor, I am able to view a person’s profile

Requirements Eng (2016) 21:383–403 387

123

• US4A: ‘‘As a User, I want to open the interactive map’’;

• US4B: ‘‘As a User, I want to see the location of

landmarks on the interactive map.’’

3.1.5 Problem-oriented

In line with the problem specification principle for RE

proposed by Zave and Jackson [57], a user story should

specify only the problem. If absolutely necessary, imple-

mentation hints can be included as comments or descrip-

tions. Aside from breaking the minimal quality criteria,

US5 includes implementation details (a solution) within the

user story text. The story could be rewritten as follows:

‘‘As a care professional, I want to save a reimbursement.’’

3.1.6 Unambiguous

Ambiguity is intrinsic to natural language requirements,

but the requirements engineer writing user stories has to

avoid it to the extent this is possible. Not only should a user

story be internally unambiguous, but it should also be clear

in relationship to all other user stories. The Taxonomy of

Ambiguity Types [5] is a comprehensive overview of the

kinds of ambiguity that can be encountered in a systematic

requirements specification. In US6, ‘‘content’’ is a super-

class referring to audio, video, and textual media uploaded

to the profile page as specified in three other, separate user

stories in the real-world user story set. The requirements

engineer should explicitly mention which media are edi-

table; for example, the story can be modified as follows:

‘‘As a User, I am able to edit video, photo and audio

content that I added to a person’s profile page.’’

3.1.7 Full sentence

A user story should read like a full sentence, without typos or

grammatical errors. For instance, US9 is not expressed as a

full sentence (in addition to not complying with syntactic

quality). By reformulating the feature as a full sentence user

story, it will automatically specify what exactly needs to be

configured. For example, US9 can be modified to ‘‘As an

Administrator, I want to configure the server’s sudo-ers.’’

3.1.8 Estimatable

As user stories grow in size and complexity, it becomes

more difficult to accurately estimate the required effort.

Therefore, each user story should not become so large that

estimating and planning it with reasonable certainty

becomes impossible [52]. For example, US10 requests a

route list so that care professionals can prepare themselves.

While this might be just an unordered list of places to go to

during a workday, it is just as likely that the feature

includes ordering the routes algorithmically to minimize

distance travelled and/or showing the route on a map.

These many functionalities inhibit accurate estimation and

call for splitting the user story into multiple user stories; for

example,

• US10A: ‘‘As a Care Professional, I want to see my route

list for next/future days, so that I can prepare myself’’;

• US10B: ‘‘As a Manager, I want to upload a route list for

care professionals.’’

3.2 Quality of a set of user stories

We focus now on the quality of a set of user stories; these

quality criteria help verify the quality of a complete project

specification, rather than analyzing an individual story. To

make our explanation more precise, we associate every

criterion with first-order logic predicates that enable veri-

fying if the criterion is violated.

Notation Lower-case identifiers refer to single elements

(e.g., one user story), and upper-case identifiers denote sets

(e.g., a set of user stories). A user story l is a 4-tuple

l ¼ hr;m;E; f i where r is the role, m is the means, E ¼
fe1; e2; . . .g is a set of ends, and f is the format. A means m

is a 5-tuple m ¼ hs; av; do; io; adji where s is a subject, av

is an action verb, do is a direct object, io is an indirect

object, and adj is an adjective (io and adj may be null, see

Fig. 1). The set of user stories in a project is denoted by

U ¼ fl1; l2; . . .g.

Furthermore, we assume that the equality, intersection,

etc. operators are semantic and look at the meaning of an

entity (e.g., they account for synonyms). To denote that a

syntactic operator, we add the subscript ‘‘syn’’; for

instance, ¼syn is syntactic equivalence. The function

dependsðav; av0Þ denotes that executing the action av on an

object requires first executing av0 on that very object (e.g.,

‘‘delete’’ depends on ‘‘create’’).

In the following subsections, let l1 ¼ hr1;m1;E1; f1i and

l2 ¼ hr2;m2;E2; f2i be two user stories from the set U,

where m1 ¼ hs1; av1; do1; io1; adj1i and m2 ¼ hs2; av2;

do2; io2; adj2i.

3.2.1 Unique and conflict-free

We present these two criteria together because they rely on

the same set of predicates that can be used to check whe-

ther quality defects exist.

A user story is unique when no other user story in the

same project is (semantically) equal or too similar. We

focus on similarity that is a potential indicator of duplicate

user stories; see, for example, US11 and epic EPA in

388 Requirements Eng (2016) 21:383–403

123

Table 2. This situation can be improved by providing more

specific stories, for example:

• US11A As a Visitor, I am able to see breaking news;

• US11B As a Visitor, I am able to see sports news.

Additionally, a user story should not conflict with any of

the other user stories in the database. A requirements

conflict occurs when two or more requirements cause an

inconsistency [42, 46]. Story US7 contradicts the require-

ment that a user can edit any landmark ðUS8Þ, if we assume

that editing is a general term that includes deletion too. A

possible way to fix this is to change US7 to: ‘‘As a User, I

am able to edit the landmarks that I added.’’

To detect these types of relationships, each user story

part needs to be compared with the parts of other user

stories, using a combination of similarity measures that are

either syntactic (e.g., Levenshtein’s distance) or semantic

(e.g., employing an ontology to determine synonyms).

When similarity exceeds a certain threshold, a human

analyst is required to examine the user stories for potential

conflict and/or duplication.

Full duplicate A user story l1 is an exact duplicate of

another user story l2 when the stories are identical. This

impacts the unique quality criterion. Formally,

isFullDuplicateðl1; l2Þ $ l1 ¼syn l2

Semantic duplicate A user story l1 that duplicates the

request of l2, while using a different text; this has an

impact on the unique quality criterion. Formally,

isSemDuplicateðl1; l2Þ $ l1 ¼ l2 ^ l1 6¼syn l2

Different means, same end Two or more user stories that

have the same end, but achieve this using different means.

This relationship potentially impacts two quality criteria, as

it may indicate: (1) a feature variation that should be

explicitly noted in the user story to maintain an unam-

biguous set of user stories, or (2) a conflict in how to

achieve this end, meaning one of the user stories should be

dropped to ensure conflict-free user stories. Formally, for

user stories l1 and l2:

diffMeansSameEndðl1; l2Þ $ m1 6¼ m2 ^ E1 \ E2 6¼ ;

Same means, different end Two or more user stories that

use the same means to reach different ends. This rela-

tionship could affect the qualities of user stories to be

unique or independent of each other. If the ends are not

conflicting, they could be combined into a single larger

user story; otherwise, they are multiple viewpoints that

should be resolved. Formally,

sameMeansDiffEndðl1; l2Þ $ m1 ¼ m2 ^
ðE1 n E2 6¼ ; _ E2 n E1 6¼ ;Þ

Different role, same means and/or same end Two or more

user stories with different roles, but same means and/or

ends indicates a strong relationship. Although this rela-

tionship has an impact on the unique and independent

quality criteria, it is considered good practice to have

separate user stories for the same functionality for different

roles. As such, requirements engineers could choose to

ignore this impact. Formally,

diffRoleSameStoryðl1; l2Þ $ r1 6¼ r2 ^
ðm1 ¼ m2 _ E1 \ E2 6¼ ;Þ

End = means The end of one user story l1 appears as the

means of another user story l2, thereby expressing both a

wish and a reason for another wish. When there is this

strong a semantic relationship between two user stories, it

is important to add explicit dependencies to the user stories,

although this breaks the independent criterion. Formally,

purposeIsMeansðl1; l2Þ is true if the means m2 of l2 is an

end in l1:

purposeIsMeansðl1; l2Þ $ E1 ¼ fm2g

3.2.2 Uniform

Uniformity in the context of user stories means that a user

story has a format that is consistent with that of the

majority of user stories in the same set. To test this, the

requirements engineer needs to determine the most fre-

quently occurring format, typically agreed upon with the

team. The format f1 of an individual user story l1 is syn-

tactically compared to the most common format fstd to

determine whether it adheres with the uniformity quality

criterion. US12 in Table 2 is an example of a nonuniform

user story, which can be rewritten as follows: ‘‘As an

Administrator, I want to receive an email notification when

a new user is registered.’’ Formally, predicate

isNotUniformðl1; fstdÞ is true if the format of l1 deviates

from the standard:

isNotUniformðl1; fstdÞ $ f1 6¼syn fstd

3.2.3 Independent

User stories should not overlap in concept and should be

schedulable and implementable in any order [52]. For

example, US14 is dependent on US13, because it is

impossible to view a person’s profile without first laying

the foundation for creating a person. Much like in pro-

gramming loosely coupled systems, however, it is practi-

cally impossible to never breach this quality criterion; our

recommendation is then to make the relationship visible

through the establishment of an explicit dependency. How

Requirements Eng (2016) 21:383–403 389

123

to make a dependency explicit is outside of the scope of the

QUS Framework. Note that the dependency in US13 and

US14 is one that cannot be resolved. Instead, the require-

ments engineer could add a note to the backside of their

story cards or a hyperlink to their description fields in the

issue tracker. Among the many different types of depen-

dency, we present two illustrative cases.

Causality In some cases, it is necessary that one user

story l1 is completed before the developer can start on

another user story l2 (US13 and US14 in Table 2). For-

mally, the predicate hasDepðl1; l2Þ holds when l1 causally

depends on l2:

hasDepðl1; l2Þ $ dependsðav1; av2Þ ^ do1 ¼ do2

Superclasses An object of one user story l1 can refer to

multiple other objects of stories in U, indicating that the

object of l1 is a parent or superclass of the other objects.

‘‘Content’’ for example can refer to different types of

multimedia and be a superclass, as exemplified in US6.

Formally, predicate hasIsaDepðl1; l2Þ is true when l1 has

a direct object superclass dependency based on the sub-

class do2 of do1.

hasIsaDepðl1; l2Þ $ 9l2 2 U: is-aðdo2; do1Þ

3.2.4 Complete

Implementing a set of user stories should lead to a feature-

complete application. While user stories should not thrive to

cover 100 % of the application’s functionality preemptively,

crucial user stories should not be missed, for this may cause a

show stopping feature gap. An example: US6 requires the

existence of another story that talks of the creation of content.

This scenario can be generalized to the case of user stories

with action verbs that refer to a non-existent direct object: to

read, update or delete an item one first needs to create it. We

define a conceptual relationship that focuses on dependen-

cies concerning the means’ direct object. Note that we do not

claim nor believe these relationships to be the only relevant

one to ensure completeness. Formally, the predicate

voidDepðl1Þ holds when there is no story l2 that satisfies a

dependency for l1’s direct object:

voidDepðl1Þ $ dependsðav1; av2Þ^ 6 9l2 2 U: do2 ¼ do1

4 The Automatic Quality User Story Artisan tool

The QUS framework provides guidelines for improving the

quality of user stories. To support the framework, we

propose the AQUSA tool, which exposes defects and

deviations from good user story practice.

In line with Berry et al.’s [4] notion of a dumb tool, we

require AQUSA to detect defects with close to 100 % re-

call2, which is the number of true positives in proportion to

the total number of relevant defects. We call this the

Perfect Recall Condition. When this condition is not ful-

filled, the requirements engineer needs to manually check

the entire set of user stories for missed defects [51], which

we want to avoid. On the other hand, precision, the number

of false positives in proportion to the detected defects,

should be high enough so the user perceives AQUSA to

report useful errors.

AQUSA is designed as a tool that focuses on easily

describable, algorithmically determinable defects: the

clerical part of RE [51]. This also implies that the first

version of AQUSA focuses on the QUS criteria for which

the probability of fulfilling the Perfect Recall Condition is

high; thus, we include the syntactic criteria and a few

pragmatic criteria that can be algorithmically checked, but

we exclude semantic criteria as they require deep under-

standing of requirements’ content [47].

Next, we present AQUSA’s architecture and discuss the

selected quality criteria including their theoretical and

technical implementation in AQUSA v1 as well as example

input and output user stories.

4.1 Architecture and technology

AQUSA is designed as a simple, stand-alone, deployable as

a service application that analyzes a set of user stories

regardless of its source of origin. AQUSA exposes an API

for importing user stories, meaning that AQUSA can easily

integrate with any requirements management tool such as

Jira, Pivotal Tracker or even MS Excel spreadsheets by

developing adequate connectors. By retaining its indepen-

dence from other tools, AQUSA is capable of easily

adapting to future technology changes. Aside from

importing user stories, AQUSA consists of five main

architectural components (Fig. 3): linguistic parser, user

story base, analyzer, enhancer, and report generator.

The first step for every user story is validating that it is

well-formed. This takes place in the linguistic parser,

which separates the user story in its role, means and

end(s) parts. The user story base captures the parsed user

story as an object according to the conceptual model,

which acts as central storage. Next, the analyzer runs tailor-

made method to verify specific syntactic and pragmatic

quality criteria—where possible enhancers enrich the user

story base, improving the recall and precision of the

2 Unless mathematically proved, 100 % recall is valid until a

counterexample is identified. Thus, we decide to relax the objective

to ‘‘close to 100 % recall’’.

390 Requirements Eng (2016) 21:383–403

123

analyzers. Finally, AQUSA captures the results in a com-

prehensive report.

The development view of AQUSA v1 is shown in the

component diagram of Fig. 4. Here we see that AQUSA v1 is

built around the model–view–controller design pattern.

When an outside requirements management tool sends a

request to one of the interfaces, the relevant controller parses

the request to figure out what method(s) to call from the

Project Model or Story Model. When this is a story analysis,

AQUSA v1 runs one or more story analyses by first calling

the StoryChunker and then running the Unique-, Minimal-,

WellFormed-, Uniform-, and AtomicAnalyzer. Whenever

one of these encounters a quality criteria violation, it calls the

DefectGenerator to record a defect in the database

tables associated to the story. Optionally, the end user can

call the AQUSA-GUI to view a listing of all his projects or a

report of all the defects associated with a set of stories.

AQUSA v1 is built on the Flask microframework for

Python. It relies on specific parts of both Stanford Cor-

eNLP3 and the Natural Language ToolKit4 (NLTK) for the

StoryChunker and AtomicAnalyzer. The majority of the

functionality, however, is captured in tailor-made methods

whose implementation is detailed in the next subsections.

4.2 Linguistic parser: well-formed

One of the essential aspects of verifying whether a string of

text is a user story is splitting it into role, means, and

end(s). This first step takes place in the linguistic parser

(see the functional view) that is implemented by the

component StoryChunker. First, it detects whether a

known, common indicator text for role, means, and ends is

present in the user story such as ‘‘As a,’’ ‘‘I want to,‘‘ ‘‘I

am able to,’’ and ‘‘so that.’’ If successful, AQUSA

categorizes the words in each chunk by using the Stanford

NLP POS Tagger.5 For each chunk, the linguistic parser

validates the following rules:

• Role: Is the last word a noun depicting an actor? Do the

words before the noun match a known role format, e.g.,

’’as a‘‘?

• Means: Is the first word ’’I‘‘? Can we identify a known

means format such as ’’want to‘‘? Does the remaining

text include at least a second verb and one noun such as

’’update event‘‘?

• End: Is an end present? Does it start with a known end

format such as ’’so that‘‘?

Basically, the linguistic parser validates whether a user

story complies with the conceptual model presented in

Sect. 2. When the linguistic parser is unable to detect a

known means format, it takes the full user story and strips

away any role and ends parts. If the remaining text contains

both a verb and a noun it is tagged as a ’’potential means‘‘

and all the other analyzers are run. Additionally, the lin-

guistic parser checks whether the user story contains a

comma after the role section. A pseudocode implementa-

tion is shown in Algorithm 1. Note that the Chunk method

tries to detect the role, means, and ends by searching for the

provided XXX_FORMATS. When detecting a means fails,

it tests whether a potential means is available.

If the linguistic parser encounters a piece of text that is

not a valid user story such as ‘‘Test 1,’’ it reports that it is

not well-formed because it does not contain a role and the

remaining text does not include a verb and a noun. The

story ‘‘Add static pages controller to application and define

static pages’’ is not well-formed because it does not

explicitly contain a role. The well-formed user story ‘‘As a

Visitor, I want to register at the site, so that I can con-

tribute,’’ however, is verified and separated into the fol-

lowing chunks:

Role: As a Visitor

Means: I want to register at the site

End: so that I can contribute

User
stories

AQUSA

Linguistic
parser

Enhancer

Analyzer

Synonyms Homonyms Ontologies

Error
report

Atomic Independent UniqueMinimal Uniform

Report
generator

User story
base

Corrections

Fig. 3 Functional view on the architecture of AQUSA. Dashed

components are not fully implemented yet

3 http://nlp.stanford.edu/software/corenlp.shtml.
4 http://www.nltk.org/. 5 http://nlp.stanford.edu/software/tagger.shtml.

Requirements Eng (2016) 21:383–403 391

123

http://nlp.stanford.edu/software/corenlp.shtml
http://www.nltk.org/
http://nlp.stanford.edu/software/tagger.shtml

4.3 User story base and enhancer

A linguistically parsed user story is stored as an object with

a role, means, and ends part—aligned with the first

decomposition level in the conceptual model in Fig. 1—in

the user story base, ready to be further processed. But first,

AQUSA enhances user stories by adding possible syn-

onyms, homonyms, and relevant semantic information—

extracted from an ontology—to the relevant words in each

chunk. Furthermore, the enhancer has a subpart corrections

which automatically fixes any defects that it is able to

correct with 100 % precision. For now, this is limited to the

good practice of injecting comma’s after the role sec-

tion. AQUSA v1 does not include the other enhancer’s

subparts.

4.4 Analyzer: atomic

To audit that the means of the user story concerns only one

feature, AQUSA parses the means for occurrences of the

conjunctions ‘‘and, &, ?, or’’ in order to include any

double feature requests in its report. Additionally, AQUSA

suggests the reader to split the user story into multiple user

stories. The user story ‘‘As a User, I’m able to click a

particular location from the map and thereby perform a

search of landmarks associated with that latitude longitude

combination’’ would generate a suggestion to be split into

two user stories: (1) ‘‘As a User, I want to click a location

from the map’’ and (2) ‘‘As a User, I want to search

landmarks associated with the lat long combination of a

location.’’

AQUSA v1 checks for the role and means chunks

whether the text contains one of the conjunctions ‘‘and, &,

?, or.’’ When this is the case, it triggers the linguistic

parser to validate that the text on both sides of the con-

junction has the building blocks of a valid role or means as

defined in Sect. 4.2. Only when this is the case, AQUSA v1

records the text after the conjunction as an atomicity

violation.

4.5 Analyzer: minimal

To test this quality criterion, AQUSA relies on the results

of chunking and verification of the well-formedness quality

criterion to extract the role and means. When this process

has been successfully completed, AQUSA reports any user

story that contains additional text after a dot, hyphen,

semicolon, or other separating punctuation marks. In ‘‘As a

care professional I want to see the registered hours of this

week (split into products and activities). See: Mockup from

Alice NOTE: First create the overview screen—Then add

validations’’ all the text after the first dot (’’.‘‘) AQUSA

reports as not minimal. AQUSA also records the text

between parentheses as not minimal.

AQUSA v1 runs two separate minimality checks on the

entire user story using regular expressions in no particular

order. The first searches for occurrences of special punc-

tuation such as ‘‘-, ?, ., *.’’ Any text that comes afterward is

AQUSA

CRUD project

<<component>>
Object analyzer

<<component>>
StoryChunker

<<component>>
WellFormedAnalyzer

<<component>>
MinimalAnalyzer

<<component>>
UniqueAnalyzer

<<component>>
UniformAnalyzer

<<component>>
AtomicAnalyzer

<<component>>
DefectGenerator

<<component>>
CoreNLP

<<component>>
Story reporter

<<component>>
AQUSA-GUI

<<component>>
NLTK

Analyze

Story event

<<component>>
AQUSA-Controllers

<<web service>>
Analysis

Controller

<<web service>>
Project

Controller

<<web service>>
Event Controller

<<component>>
Project Model

<<component>>
Story Model

<<component>>
Project Lister

<<component>>
CommonFormat

Project
analysis

Project
object

Story
object

Project
formatStory

analysis

Chunk

analysis

Tags

Defects

Project

Story

Fig. 4 Development view on the architecture of AQUSA

392 Requirements Eng (2016) 21:383–403

123

recorded as a minimality violation. The second minimality

check searches for text that is in between brackets such as

‘‘(), [], {}, hi’’ to record as a minimality violation.

4.6 Analyzer: explicit dependencies

Whenever a user story includes an explicit dependency on

another user story, it should include a navigable link to the

dependency. Because the popular issue trackers Jira and

Pivotal Tracker use numbers for dependencies, AQUSA

checks for numbers in user stories and checks whether the

number is contained within a link. The example ‘‘As a care

professional, I want to edit the planned task I selected—see

908’’ would prompt the user to change the isolated number

to ‘‘See PID-908,’’ where PID stands for the project iden-

tifier. In the issue tracker, this should automatically change

to ‘‘see PID-908 (http://company.issuetracker.org/PID-

908).’’ This explicit dependency analyzer has not been

implemented for AQUSA v1. Although it is straightfor-

ward to implement for a single issue tracker, we have not

done this yet to ensure universal applicability of AQUSA

v1.

4.7 Analyzer: uniform

Aside from chunking, AQUSA extracts the user story

format parts out of each chunk and counts their occurrences

throughout the set of user stories. The most commonly

occurring format is used as the standard user story format.

All other user stories are marked as non-compliant to the

standard and included in the error report. For example,

AQUSA reports that ‘‘As a User, I am able to delete a

landmark’’ deviates from the standard ’’I want to.‘‘

When the linguistic parser completes its task for all the

user stories within a set, AQUSA v1 first determines the

most common user story format before running any other

analysis. It counts the indicator phrase occurrences and

saves the most common one. An overview of the under-

lying logic is available in Algorithm 2. Later on, the ded-

icated uniformity analyzer calculates the edit distance

between the format of a single user story chunk and the

most common format for that chunk. When this number is

bigger than 3, AQUSA v1 records the entire story as vio-

lating uniformity. We have deliberately chosen 3 so that

the difference between ’’I am‘‘ and ’’I’m‘‘ does not trigger

a uniformity violation, while ’’want‘‘ versus ’’can‘‘ or

’’need‘‘ or ’’able‘‘ does.

4.8 Analyzer: unique

AQUSA could implement each of the similarity measures

that we outlined in [35] using the WordNet lexical data-

base [40] to detect semantic similarity. For each verb and

object in a means or end, AQUSA runs a WordNet::Sim-

ilarity calculation with the verbs or objects of all other

means or ends. Combining the calculations results in one

similarity degree for two user stories. When this metric is

bigger than 90 %, AQUSA reports the user stories as

potential duplicates.

AQUSA v1 implements only the most basic of unique-

ness measures: exact duplication. For every single user

story, AQUSA v1 checks whether an identical other story

is present in the set. When this is the case, AQUSA v1

records both user stories as duplicates. The approach out-

lined above is part of future work, although it is unlikely to

fulfill the Perfect Recall Condition unless a breakthrough in

computer understanding of natural language occurs [47].

4.9 AQUSA-GUI: report generator

The AQUSA-GUI component of AQUSA v1 includes a

report generation front-end that enables using AQUSA

without implementing a specific connector. Whenever a

violation is detected in the linguistic parser or one of the

analyzers, a defect is immediately created in the database,

recording the type of defect, a highlight of where the defect

is within the user story and its severity. AQUSA uses this

information to present a comprehensive report to the user.

At the top, a dashboard is shown with a quick overview of

the user story set’s quality showing the total number of

issues, broken down into defects and warnings as well as

the number of perfect stories. Below the dashboard, all user

stories with issues are listed with their respective warnings

and errors. See Fig. 5 for an example.

5 AQUSA evaluation

We present an evaluation of AQUSA v1 on 18 real-world

user story sets. Our evaluation’s goals are as follows:

1. To validate to what extent the detected errors actually

exist in practice;

2. To test whether AQUSA fulfills the Perfect Recall

Condition;

Requirements Eng (2016) 21:383–403 393

123

http://company.issuetracker.org/PID-908
http://company.issuetracker.org/PID-908

3. To measure AQUSA’s precision for the different

quality criteria.

The 18 real-world user story sets have varying origins.

Sixteen are from medium to large independent software

vendors (ISVs) with their headquarters in the Netherlands.

One ISV is headquartered in Brazil. Although all ISVs

create different products focusing on different markets, a

number of attributes are in common. For one, all 16 ISVs

create and sell their software business to business. In terms

of size, five ISVs have less than 50 employees, seven have

between 100 and 200 employees, and five have between

500 and 10,000 employees. Unfortunately, we are unable to

share these user story sets and their analyses due to con-

fidentiality concerns. Because of this, we also analyzed a

publicly available set of user stories created by a Duke

University team for the Trident project.6 This public

dataset and its evaluation results are available online.7 Note

that due to its substantially different origin, this data set has

not been incorporated in the overall statistics.

For each user story set a group of two graduate students

from Utrecht University evaluated the quality of these user

story sets by interpreting AQUSA’s reports and applying

the QUS Framework. As part of this research project,

students investigated how ISVs work with user stories by

following the research protocol accompanying the public

dataset. Furthermore, the students assessed the quality of

the company’s user stories by applying the QUS Frame-

work and AQUSA. They manually verified whether the

results of AQUSA contained any false positives as well as

false negatives and reported these in an exhaustive table as

part of a consultancy report for the company. The first

author of this paper reviewed a draft of this report to boost

the quality of the reports. On top of this, we went even

further to ensure the quality and uniformity of the results.

An independent research assistant manually rechecked all

the user stories in order to clean and correct the tables. He

checked the correctness of the reported false positives and

negatives by employing a strict protocol:

1. Record a false positive when AQUSA reports a defect,

but it is not a defect according to the short description

in the QUS Framework (Table 1).

2. Record a false negative when a user story contains a

defect according to the short description in the QUS

Framework (Table 1), but AQUSA misses it.

3. When a user story with a false negative contains

another defect, manually fix that defect to verify that

Fig. 5 Example report of a

defect and warning for a story in

AQUSA

6 http://blogs.library.duke.edu/digital-collections/2009/02/13/on-the-

trident-project-part-1-architecture/.
7 http://staff.science.uu.nl/*lucas001/rej_user_story_data.zip.

394 Requirements Eng (2016) 21:383–403

123

http://blogs.library.duke.edu/digital-collections/2009/02/13/on-the-trident-project-part-1-architecture/
http://blogs.library.duke.edu/digital-collections/2009/02/13/on-the-trident-project-part-1-architecture/
http://staff.science.uu.nl/~lucas001/rej_user_story_data.zip

AQUSA still does not report the false negative. If it

does, remove the false negative. This is relevant in

some cases: (1) When a user story is not well-formed,

AQUSA does not trigger remaining analyzers; (2)

When a minimality error precedes a false negative

atomicity error, removing the minimal text changes the

structure of the user story which may improve the

linguistic parser’s accuracy.

5.1 Results

The quantitative results of this analysis are available in

Table 3. For each user story dataset, we include:

Def The total number of defects as detected by AQUSA.

FP The number of defects that were in the AQUSA

report, but were not actually a true defect.

FN The number of defects that should be in the AQUSA

report, but were not.

From this source data, we can extract a number of

interesting findings. At first glance, the results are

promising, indicating high potential for successful further

development. The average number of user stories with at

least one defect as detected by AQUSA is 56 %.

The average recall and precision of AQUSA for all the

company sets is given in Table 4. Note the differences

between the average and weighted average (macro- vs.

micro-) for recall and precision [50]. This highlights the

impact of outliers like #13 SupplyComp, having only 2

violations, 0 false positives, and 1 false negative out of 50

user stories. For the micro-average, the number of viola-

tions of each set is taken into account, while the macro-

average assigns the same weight to every set . This means

that #13 SupplyComp its macro-average 67 % recall and

100 % precision weighs as much as all other results, while

for the micro-average calculations its impact is negligible.

In total, AQUSA fulfills the desired Perfect Recall

Condition for five cases, obtains between 90 and 100 % of

defects for six sets and manages to get between 55 and

89 % for the remaining six. AQUSA’s results for precision

are not as strong, but this is expected because of our focus

on the Perfect Recall Condition. For just two sets, AQUSA

manages to get 100 % precision; for five sets, precision is

between 90 and 100 %; three sets are only just below this

number with 88–90 %. In seven cases, however, precision

is rather low with a range of 50–73 %. While AQUSA is

unable to achieve 100 % recall and precision for any of the

sets, some do come close: for companies 7, 8, 9, 11, and 14,

AQUSA v1 achieves recall and precision higher than 90 %.

We discuss some improvements in Sect. 6.

Looking at the distribution of violations in Table 3 and

the total number of violations, false positives, and false

negatives in Table 5, a number of things stand out. With

the exception of the quality criteria unique, the absolute

number of false positives lies close to one another. Rela-

tively speaking, however, well-formed and atomic stand

out. Approximately 50–60 % of violations as detected by

AQUSA are false positives. Similarly, the number of false

negatives is particularly large for atomic, minimal, and

uniform. In the remainder of this section, we investigate the

causes for these errors.

Atomic Throughout the user story sets, the most fre-

quently occurring false positive is caused by the symbol

’’&‘‘ within a role such as: ‘‘As an Product Owner W&O’’

and ‘‘As an R&D Manager’’ (n = 38). As we show in Sect.

6, this can be easily improved upon. The other two main

types of false positives, however, are more difficult to

resolve: nouns incorrectly tagged as nouns triggering the

AtomicAnalyzer (n = 18) and multiple conditions with

verbs interspersed (n = 14).

Tallying the number of false negatives, we find a

diversity of causes. The biggest contributor is that forward

or backward slashes are not recognized as a conjunction

and thus do not trigger the atomic checker (n = 5). A more

significant issue, however, is that our strategy of checking

whether a verb is present on both sides of the conjunction

backfired in two cases. Specifically, the words ’’select‘‘

and ’’support‘‘ were not recognized as a verb by the

CoreNLP part-of-speech tagger, which employs a proba-

bilistic maximum entropy algorithm that miscategorized

these words as nouns.

Minimal The primary cause for minimality false positives

is the idiosyncratic use of a symbol at the start of a user story

such as the asterisk symbol (n = 24). Although a fairly easy

false positive to prevent from occurring, the fix will intro-

duce false negatives because in some cases a symbol at the

start is an indication of a minimality error. Because our

priority is to avoid false negatives, we have to accept these

false positives as an unavoidable byproduct of the AQUSA

tool. Another frequently occurring error is abbreviations or

translations between brackets (n = 14). It might be possible

to reduce this number with custom methods.

The seven false negatives for minimality primarily

concern idiosyncratic, very specific textual constructs that

are unsupported by AQUSA v1. For example, dataset 11

(AccountancyComp) delivered two user stories with

superfluous examples preceded by the word ’’like.‘‘

HealthComp (dataset 10) has three very large user stories

with many different if clauses and additional roles included

in the means and one user story with an unnecessary pre-

condition interspersed between the role and means.

Well-formed The vast majority of false positives is due

to unexpected, irregular text at the start of a user story

which AQUSA v1 is unable to properly handle (n = 32).

Examples are: ‘‘[Analytics] As a marketing analyst’’ and

Requirements Eng (2016) 21:383–403 395

123

‘‘DESIGN the following request: As a Job coach …’’ by

company 3 and 15. Although these are not well-formed

defects themselves, this text should not be included at all

which means the violation itself is not without merit.

Nevertheless, AQUSA could improve the way these

violations are reported because these issues are also

reported as a minimality violation. Similar to the mini-

mality violations, a well-formedness error is also recorded

when a symbol such as the asterisk starts the user story

(n = 24) because AQUSA v1 is unable to detect a role.

Table 3 Detailed results split per data sets, showing number of defects correctly detected (Def), false positives (FP), and false negatives (FN)

1: ResearchComp 2: ExpenseComp 3: EnterpriseComp 4: DataComp 5: RealProd

Def # FP # FN # Def # FP # FN # Def # FP # FN # Def # FP # FN # Def # FP # FN

Atomic 5 2 1 10 4 0 1 1 0 6 0 1 6 3 2

Minimal 6 3 0 3 1 0 25 5 0 4 2 0 16 6 0

Well-formed 6 4 0 1 1 0 33 21 0 2 0 0 0 0 0

Uniform 17 8 0 27 9 0 38 17 0 7 0 0 9 0 1

Unique 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0

SUM 36 17 1 41 15 0 97 45 0 19 2 1 33 9 3

N, precision, recall 50 53 % 95 % 50 63 % 100 % 50 55 % 100 % 23 89 % 94 % 51 73 % 89 %

6: E-ComComp 7: EmailComp 8: ContentComp 9: CMSComp 10: HealthComp

Def # FP # FN # Def # FP # FN # Def # FP # FN # Def # FP # FN # Def # FP # FN

Atomic 7 5 0 12 6 0 9 2 3 1 0 1 8 1 2

Minimal 20 6 0 6 0 0 6 0 0 10 0 0 5 1 0

Well-formed 8 8 1 8 0 0 0 0 0 2 0 0 0 0 0

Uniform 33 4 1 36 0 0 34 0 0 35 0 0 11 0 7

Unique 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUM 68 23 2 62 6 0 49 2 3 48 0 1 24 2 9

N, precision, recall 64 66 % 96 % 77 90 % 100 % 50 96 % 94 % 35 100 % 98 % 41 92 % 71 %

11: AccountancyComp 12: PharmacyComp 13: SupplyComp 14: IntegrationComp 15: HRComp

Def # FP # FN # Def # FP # FN # Def # FP # FN # Def # FP # FN # Def # FP # FN

Atomic 12 2 0 10 3 1 4 2 1 3 2 0 21 7 6

Minimal 0 0 2 1 0 4 2 0 0 1 0 0 52 28 0

Well-formed 0 0 0 0 0 0 0 0 0 0 0 0 44 26 1

Uniform 11 0 0 14 0 9 0 0 0 46 0 0 41 17 0

Unique 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUM 41 2 2 25 3 14 6 2 1 50 2 0 158 78 7

N, precision, recall 53 95 % 95 % 47 88 % 61 % 54 67 % 80 % 65 96 % 100 % 207 51 % 92 %

16: FilterComp 17: FinanceComp Public 1: Duke University

Def # FP # FN # Def # FP # FN # Def # FP # FN

Atomic 42 39 0 13 4 0 10 1 2

Minimal 5 0 0 25 5 0 4 3 0

Well-formed 0 0 0 0 0 0 0 0 0

Uniform 38 0 0 29 0 0 18 0 0

Unique 2 0 0 6 0 0 0 0 0

SUM 87 39 0 73 9 0 32 4 2

N, precision, recall 51 55 % 100 % 55 88 % 100 % 48 88 % 93 %

396 Requirements Eng (2016) 21:383–403

123

There are only two false negatives for the well-

formedness criterion. Both of these user stories, however,

include other defects that AQUSA v1 does report on.

Fixing these will automatically remove the well-formed-

ness error as well. Therefore the priority of resolving these

false negatives is low.

Uniform The false positives are caused by a combination

of the factors for minimality and well-formedness. Due to

the text at the start, the remainder of the user story is

incorrectly parsed, triggering a uniformity violation.

Instead, these errors should be counted only as a minimal

error and the remainder of the story re-analyzed as a reg-

ular user story.

The 22 uniformity false negatives are all similar: the

user story expresses an ends using an unorthodox format.

This can be either a repetition of ’’I want to‘‘ or a com-

pletely unknown like ’’this way I.‘‘ AQUSA v1 does not

recognize these as ends, instead considering them as a valid

part of the means—leading to a situation where AQUSA v1

never even tests whether this might be a deviation from the

most common format.

Unique The recall and precision score for all unique

measures is 100 %. This is because AQUSA v1 focuses

only on exact duplicates, disregarding all semantic dupli-

cates. One could argue that the data sets must thus contain

a number of false negatives for unique. Unfortunately, we

found in our analysis that this is very difficult to detect

without intimate knowledge of the application and its

business domain. Unsurprisingly, considering that the

importance of domain knowledge for RE is well docu-

mented in the literature [57]. Exact duplicates do not occur

in the data very often. Only company 11 has 18 violations

in its set—the precise reason for why these duplicates are

included is unclear.

5.2 Threats to validity

We discuss the most relevant threats to validity for our

empirical study. For one, there is a selection bias in the

data. All the analyzed user story sets are supplied by

Independent Software Vendors (ISVs). Moreover, the

majority of these ISVs originate from and have their

headquarters in the Netherlands. This means that the

evaluation results presented above might not be general-

izable to all other situations and contexts. Indeed, the user

stories from a tailor-made software company with origins

in a native English speaking country could possess further

edge cases which would impact the recall and precision of

AQUSA.

Furthermore, the analysis suffers from experimenter

bias because the quality criteria of the QUS Framework

may have different interpretations. Thus, the independent

researcher’s understanding of the framework impacts the

resulting analysis. To mitigate this, the independent

researcher received one-on-one training from the first

author, immediate feedback after his analysis of the first

user story set and was encouraged to ask questions if

something was unclear to him. In some cases a subjective

decision had to be made, which the independent researcher

did without interference from the authors. In general, he

would opt for the most critical perspective of AQUSA as

possible. Nevertheless, the data set includes some false

negatives and false negatives the first author would not

count as such himself.

6 Enhancements: toward AQUSA v2

To enhance AQUSA and enrich the community’s under-

standing of user stories, we carefully examined each false

positive and false negative. By analyzing each user stories

in detail, we identified seven edge cases that can be

addressed to achieve a substantial enhancement of AQUSA

both in terms of precision and recall.

6.1 FN: unknown ends indicator

One of the most problematic type of false negatives is the

failure to detect irregular formats because AQUSA is not

familiar with a particular ends indicator (instead of the

classic ’’so that‘‘). A simple first step is to add the

unorthodox formats available in our data set. This tailored

approach, however, is unsustainable. We should, thus,

make AQUSA v2 customizable, so that different organi-

zations can define their own vocabulary. Moreover, a

Table 4 Overall recall and precision of AQUSA v1, computed using

both the micro- and the macro-average of the data sets

Recall (%) Precision (%)

Macro 92.1 77.4

Micro 93.8 72.2

Table 5 Number of defects, false positives, false negatives, recall,

and precision per quality criterion

n = 1023 Totals

Def # FP # FN Rec (%) Prec (%)

Atomic 170 83 18 82.9 51.18

Minimal 187 57 6 95.5 69.52

Well-formed 104 60 2 95.7 42.31

Uniform 426 55 18 95.4 87.09

Unique 30 0 0 100 100

SUM 917 255 44 93.8 72.2

Requirements Eng (2016) 21:383–403 397

123

crowdsourcing feature that invites users to report whenever

one of their indicators is not detected by AQUSA should

quickly eradicate this problem.

6.2 FN: indicator and chunk repetition

A particular elusive problem is the repetition of indicators

and accompanying role, means, or ends chunks. When

AQUSA v1 encounters an indicator text, all text afterward

is a part of that chunk until it encounters an indicator text

for the subsequent chunk. Consequentially, AQUSA does

not raise any red flags when for example (1) a second role

chunk is interspersed between the means and ends section

like ‘‘As a pharmacist, I want to …, if …, if …, I as a

wholesale employee will prevent …’’ or (2) a known

means indicator format is used to express an ends as in ‘‘I

want to change my profile picture because I want to express

myself.’’ To solve this problem, AQUSA v2 will scan for

all occurrences of indicator texts and generate a warning

whenever an indicator type occurs twice in the user story.

6.3 FN: add slash and greater than

One very simple improvement is to include the forward and

backward slash symbols ’’/‘‘ and ’’\‘‘ in the list of con-

junctions. In one user story, the greater than symbol ’’[‘‘

was used to denote procedural steps in the user story,

prompting us to include this symbol and its opposite ‘‘\’’

in the list of conjunctions as well. Together, these simple

improvements reduce the number of atomicity false nega-

tives by one third.

6.4 FN: verb phrases after ’’and‘‘

AQUSA v1 takes a ’’smart‘‘ approach to detecting

atomicity errors. Whenever the atomic analyzer encounters

a conjunction like ’’and,‘‘ a POS tagger makes sure a verb

is present on both sides of the conjunction. When this is not

the case, it is likely that the user story does not include two

separate actions. For 3 user stories in our data sets, how-

ever, the POS tagger incorrectly tags a verb as a noun

introducing a false negative. This is not surprising. Because

no available POS tagger is perfect, our approach is guar-

anteed to not to achieve the Perfect Recall Condition in all

cases.

There are two options to resolve this issue. The simple

method is to remove this smart approach and simply report

all user stories that include a conjunction in the means as

violating the atomic quality criteria. The problem is,

however, that this introduces a substantial number of false

positives. An alternative approach is to include exceptions

in the POS tagger for a specific domain. In our dataset, we

see that the four incorrectly tagged nouns are common

actions in software development: select, support, import,

and export. Compiling such an exception list does not

guarantee the prevention of false negatives, but would

improve the situation without re-introducing many false

positives.

6.5 FP: symbols and starting text

Symbols cause the vast majority of false positives in our set

of user stories. We want to resolve these without intro-

ducing new false negatives. To do this, we plan to enhance

AQUSA in two ways.

Symbol in role Many user stories include a reference to a

department as part of the role. When AQUSA v2 encoun-

ters an ampersand (&) or plus sign (?) in the role chunk, it

takes the following approach:

1. Check whether there is a space before or after the

ampersand/plus.

2. Count whether the number of characters before and

after the ampersand/plus is bigger than a specific

threshold such as three.

3. Run the POS tagger to check whether the phrases

before and after the ampersand/plus are actual words.

Exceptions are ’’I‘‘ and ’’A.‘‘

Only when the answer to two or more of these checks is no,

AQUSA v2 records an atomicity violation.

Removing symbol (text) Whenever a user story has text

with a symbol before the start of the role chunk, AQUSA

v1 is unable to properly apply its analysis. To resolve this

issue, AQUSA v2 will try to remove the symbol and any

associated text preceding the first indicator text, check

whether a valid user story remains and then rerun its

analyses.

6.6 FP: abbreviations and translations

The majority of false positives for the minimality quality

criterion are caused by an abbreviation or translation of a

word in between brackets. To reduce this number, when-

ever the minimality analyzer detects a single phrase in

between brackets it verifies whether the phrase could be an

abbreviation of the word or word group immediately before

the phrase.

6.7 Expected results

We expect that introducing these enhancements will gen-

erate a substantial improvement in terms of recall and

precision. To foresee how substantial this improvement

would be, we categorized all false positives and false

negatives and removed those that the enhancements should

398 Requirements Eng (2016) 21:383–403

123

be able to prevent from occurring by conducting a manual

analysis of the data set. The results of our analysis are that

the new micro-averaged recall and precision for this col-

lection of user story sets would be 97.9 and 84.8 %

(compare this to the values of AQUSA v1: recall 93.8 %

and precision 72.2 %). With these changes, AQUSA would

fulfill the Perfect Recall Condition for 9 of the 18 data sets.

7 Related work

We discuss relevant works about the syntax and use of user

stories (Sect. 7.1), quality of requirements (Sect. 7.2), and

applications of NLP to RE (Sect. 7.3).

7.1 User stories

Despite their popularity among practitioners [29, 53],

research efforts concerning user stories are limited. While

scenario-based requirements engineering has been studied

since the 1990s [22, 34], the earliest research work on user

stories proposes their use as the initial artifact in the design

of human–computer interaction systems [25], and argues

that user stories contain the intention and motives of a user.

In later design stages, the authors propose to transform user

stories into the more formal notation of use cases.

The majority of research in the field, however, attempts

to create methods and tools that support or improve user

story practice. Rees [45] proposes to replace the pen-and-

card approach for writing user stories with the DotStories

software tool to translate the index card metaphor to a

digital environment. This tool relies on so called teglets

which are ‘‘small rectangular areas on a webpage’’ …
‘‘users can drag teglets around the page in a similar manner

to laying out cards on a table.’’ Today, most project man-

agement tools for agile software development with user

stories are built around the same interface design, including

Jira, PivotalTracker, Taiga, and Trello.

Observing that the simple comparison of a user story

with a pair of other user stories is insufficient to accurately

estimate user story complexity, Miranda et al. [41] propose

a paired comparison estimation approach using incomplete

cyclic designs. This work reduces the number of necessary

comparisons while still producing reliable estimations. In

industry, however, planning poker remains the de facto

standard for estimating user story complexity. In a com-

parative study, Mahnič and Havelja found that the esti-

mates from planning poker played by experts tend to be

more accurate than the mean of all individual expert esti-

mates [38].

Liskin et al. investigate the expected implementation

duration of user story as a characteristic of granularity.

They find that in practitioners’ experience combining the

effort estimation of two small, clear-cut user stories pro-

duces more accurate results than when estimating a

sinÆŠe, larger, more opaque user story [32]. Dimitrijevic

et al. qualitatively compare five agile software tools in

terms of their functionality, support for basic agile RE

concepts and practices, and user satisfaction. They con-

clude that basic functionality is well supported by tools, but

that user role modeling and personas are not supported at

all [12].

In line with our conceptual model of Fig. 1, some

authors have linked user stories with goals. Lin et al. [30]

propose a mixed top-down and bottom-up method where an

initial top-down analysis of the high-level goals is com-

plemented by a bottom-up approach that derives more

refined goals by analyzing user stories. A similar attempt

has been implemented in the US2StarTool [39], which

derives skeletons of i* goal models starting from user

stories. The key difference is that these models represent

user stories as social dependencies from the role of the user

stories to the system actor.

Other recent work is revisiting user stories from a con-

ceptual perspective. Wautelet et al. [54] propose a unified

model for user stories with associated semantics based on a

review of 85 user story templates and accompanying

example stories—20 from academic literature and 65 from

practice. Gomez et al. [20] propose a conceptual method

for identifying dependencies between user stories, relying

on the data entities that stories refer to. Although related,

these are different approaches from our conceptual model

presented in Sect. 2, which does not aim at reconciling and

supporting all possible dialects.

7.2 Quality of requirements

Multiple frameworks exist for characterizing the quality of

(software) requirements. The IEEE Standard Systems and

software engineering—Life cycle processes—Requirements

engineering is the standard body of work on this subject,

defining characteristics of a single requirement, sets of

requirements as well as linguistic characteristics for indi-

vidual requirements [23]. Unfortunately, most require-

ments specifications are unable to adhere to them in

practice [19], although evidence shows a correlation

between high-quality requirements and project

success [28].

Heck and Zaidman created the Agile Requirements

Verification Framework, which is a tailor-made quality

framework for software development in an agile context.

Some authors do mention a selection of quality recom-

mendations [13, 37], but the majority of these are generic,

organizational pieces of advice for high-level processes.

One exception is the rigorous set of validation checks by

Zowghi and Gervasi [58] to detect errors in requirements

Requirements Eng (2016) 21:383–403 399

123

specifications. As part of their NORPLAN framework,

Farid and Mitropoulos [15] propose requirements quality

metrics for non-functional requirements. Aside from

ambiguity, however, these metrics are based on the pro-

cesses related to requirements instead of the actual

requirements themselves. Patel and Ramachandran [43]

propose the Story Card Maturity Model, a CMM-based

process improvement model for story cards and their key

process areas. They identify maturity levels that consist of

six to seven key process areas with specific activities to

obtain that maturity level. An example is the key process

area of defining a standard story card structure which

defines seven key attributes to include, or the risk assess-

ment key process area which prescribes the user to (1)

understand the problem, (2) assess story card risk, and (3)

include the risk assessment on the story card. Unfortu-

nately, however, their maturity model has not been vali-

dated yet.

7.3 Natural language processing for RE

Applying NLP to RE has historically been heralded as the

final frontier of RE. Nowadays, the ambitious objective of

automation is regarded as unattainable in the foreseeable

future [4, 47].

Therefore, RE research has applied NLP to specific use

cases. Trying to determine and/or improve the quality of

requirements documents using NLP is a popular research

domain for example. The DODT tool applies NLP and a

domain ontology to semi-automatically transform NL

requirements into higher quality semi-boilerplate require-

ments for embedded systems development [14]. The

MaramaAI tool extracts semi-formal Essential Use Cases

(EUC) models from natural language requirements and

enables an end user to detect inconsistency, incomplete-

ness, and incorrectness by visually highlighting the dif-

ferences to a baseline EUC [27]. The EuRailCheck project

uses rule-based techniques and ontologies to validate for-

malized requirement fragments and pinpoint flaws that are

not easy to detect in an informal setting [8]. The HEJF tool

bases its detection of ‘‘requirements smells’’ that are

checked against the ISO 29148 [23] requirements quality

standard. Their proposed light-weight approach uses POS-

tagging, morphological analysis, and dictionaries to detect

linguistic errors in requirements. In an evaluation with

industry experts, they obtained positive feedback despite

the inability to fulfill the Perfect Recall Condition [16].

Some tools look at very specific aspects of parsing natural

language requirements. The SREE tool aims to detect a

scoped set of ambiguity issues with 100 % recall and close to

100 % precision by using a lexical analyzer instead of a

syntactic analyzer [51]. Although their precision is only

66 %, they argue that using their tool is still faster and more

reliable than manually searching for all instances of ambi-

guity. Yang et al. combines lexical and syntactical analyzers

with an advanced technique from the machine learning

domain called conditional random fields (CRFs) to detect

uncertainty in natural language requirements. They apply

their tool to 11 full-text requirements documents and find

that it performs reasonably well in identifying uncertainty

cues with F-scores of 62 % for auxiliaries, verbs, nouns, and

conjunctions. On the other hand, it under-performs in iden-

tifying the scope of detected uncertainty causing the overall

F-score to drop to 52 % [56].

Another class of NLP for RE tools extract specific ele-

ments from natural language requirements. The NFR

locator [49] uses a vector machine algorithm to extract

non-functional requirements from install manuals, requests

for proposals and requirements specifications. Their

approach was twice as effective as a multinomial naı̈ve

Bayes classifier. The glossary tool suite by Arora et al.

applies a collection of linguistic techniques to automati-

cally extract relevant domain specific concepts to generate

a glossary of terms. Their approach outperforms earlier

tools in candidate term identification thanks to the appli-

cation of tailor-made heuristics [1]. Finally, the Text2Pol-

icy tool attempts to extract access control policies (ACP)

from natural language documents to reduce the manual

effort for this tedious but important security task. Using

both syntactic and semantic methods, this tool achieves

accuracies ranging between 80 and 90 % for ACP sen-

tence, rule, and action extraction [55]. The generation of

models from natural language requirements has also been

studied; for example, Friedrich et al. [17] combined and

augmented several NLP tools to generate BPMN models,

resulting in an accuracy of 77 % on a data set of text–

model pairs from industry and textbooks.

Berry et al. argue that these tools suffer from lack of

adoption because of their inaccuracy. If the tool provides

less than 100 % recall, the analyst still has to repeat the

entire task manually without any tool support. He pro-

poses—and we support his position—that tools that want to

harness NLP should focus on the clerical part of RE that

software can perform with 100 % recall and high precision,

leaving thinking-required work to human requirements

engineers [4].

8 Conclusion and future research

In this paper, we presented a holistic approach for ensuring

the quality of agile requirements expressed as user stories.

Our approach consists of (1) the QUS framework, which is

a collection of 13 criteria that one can apply to a set of user

stories to assess the quality of individual stories and of the

set and (2) the AQUSA software tool, that employs state-

400 Requirements Eng (2016) 21:383–403

123

of-the-art NLP techniques to automatically detect viola-

tions of a selection of the quality criteria in the QUS

framework.

In addition to laying foundations for quality in agile

requirements, the implementation and evaluation of

AQUSA on over 1000 user stories from 18 organizations

provide evidence about the viability of the Perfect Recall

Condition. According to this condition, NLP tools for RE

should focus on the clerical activities that can be auto-

mated with 100 % recall and high-enough precision. Our

results show that for some syntactic quality criteria of the

QUS framework it is possible to achieve results that are

close to the Perfect Recall Condition.

Based on our case studies, we have identified a number

of easy-to-implement improvements that will be included

in AQUSA v2. Although these improvements originate

from 18 different cases, we will have to determine whether

these changes lead to over-fitting for the datasets that we

have studied so far, and if the actual benefit is as good as

we expect.

Further research directions exist that future work should

address. The effectiveness of the QUS framework as a

quality framework for user stories should be studied in case

studies and action research, which may lead to further

improvements. Longitudinal studies should be conducted

to determine the effectiveness of the AQUSA tool while

the requirements database is being populated, as opposed to

the current case studies where an existing requirements

database was imported. To do this, an approach that

explains how to embed AQUSA and the QUS Framework

in a standard agile development environment is necessary.

The challenge of reducing the number of false positives

while staying (close to) 100 % recall will be a central

direction to follow for AQUSA development. To determine

whether our approximation of the Perfect Recall condition

is sufficient, we will evaluate AQUSA’s performance in

comparison to human analysts. After all, humans are

unable to achieve the Perfect Recall Condition them-

selves [4]. Finally, it is necessary to study whether and to

what extent the pragmatic and semantic quality criteria can

be included in AQUSA, at least to assist the engineering in

specific sub-problems for which our recall/precision goals

can be met.

Acknowledgments This paper would not have been made possible

without the contributions of many people. We would like to thank

Floris Vlasveld, Erik Jagroep, Jozua Velle, and Frieda Naaijer for

providing the initial real-world user story sets. We also thank the

graduate students who participated in the course Software Product

Management for their hard work in finding user stories to examine.

Special thanks go to Marcel Robeer who did great work as inde-

pendent research assistant. Petra Heck and Andy Zaidman’s collec-

tion of agile requirements quality literature was of great help for

writing Sect. 7.2. Finally, we thank the companies who generously

contributed sets of user stories, time, and feedback.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Arora C, Sabetzadeh M, Briand L, Zimmer F (2014) Improving

requirements glossary construction via clustering: approach and

industrial case studies. In: Proceedings of the ACM/IEEE inter-

national symposium on empirical software engineering and

measurement (ESEM)

2. Beck K (1999) Extreme programming explained: embrace

change. Addison-Wesley, Boston

3. Beck K, Fowler M (2000) Planning extreme programming, 1st

edn. Addison-Wesley Longman, Boston

4. Berry D, Gacitua R, Sawyer P, Tjong S (2012) The case for dumb

requirements engineering tools. In: Proceedings of international

conference on requirements engineering: foundation for software

quality (REFSQ), LNCS, vol 7195. Springer, pp 211–217

5. Berry DM, Kamsties E (2004) Ambiguity in requirements spec-

ification. In: Perspectives on software requirements, international

series in engineering and computer science, vol 753. Springer,

pp 7–44

6. Bucchiarone A, Gnesi S, Pierini P (2005) Quality analysis of NL

requirements: an industrial case study. In: Proceedings of the

IEEE international conference on requirements engineering (RE),

pp 390–394

7. Cao L, Ramesh B (2008) Agile requirements engineering prac-

tices: an empirical study. Software 25(1):60–67

8. Cimatti A, Roveri M, Susi A, Tonetta S (2013) Validation of

requirements for hybrid systems: a formal approach. ACM Trans

Softw Eng Methodol 21(4):22:1–22:34

9. Cleland-Huang J, Berenbach B, Clark S, Settimi R, Romanova E

(2007) Best practices for automated traceability. Computer

40(6):27–35

10. Cohn M (2004) User stories applied: for agile software devel-

opment. Addison Wesley, Boston

11. Cooper A (1999) The inmates are running the asylum. Macmil-

lan, Indianapolis

12. Dimitrijević S, Jovanović J, Devedžić V (2015) A comparative

study of software tools for user story management. Inf Softw

Technol 57:352–368

13. Dumas-Monette JF, Trudel S (2014) Requirements engineering

quality revealed through functional size measurement: an empirical

study in an agile context. In: Proceedings of the international

workshop on software measurement (IWSM), pp 222–232

14. Farfeleder S, Moser T, Krall A, Stålhane T, Zojer H, Panis C

(2011) DODT: increasing requirements formalism using domain

ontologies for improved embedded systems development. In:

Proceedings of the IEEE international symposium on design and

diagnostics of electronic circuits systems (DDECS), pp 271–274

15. Farid W, Mitropoulos F (2013) Visualization and scheduling of

non-functional requirements for agile processes. In: Proceedings

of the IEEE Region 3 technical, professional, and student con-

ference (Southeastcon), pp 1–8

16. Femmer H, Fernández DM, Juergens E, Klose M, Zimmer I,

Zimmer J (2014) Rapid requirements checks with requirements

smells: two case studies. In: Proceedings of the international

workshop on rapid continuous software engineering (RCoSE),

pp 10–19

Requirements Eng (2016) 21:383–403 401

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

17. Friedrich F, Mendling J, Puhlmann F (2011) Process model

generation from natural language text. In: Proceedings of the

international conference on advanced information systems engi-

neering (CAiSE), LNCS, vol 6741. Springer, pp 482–496

18. Gacitua R, Sawyer P, Gervasi V (2010) On the effectiveness of

abstraction identification in requirements engineering. In: Pro-

ceedings of the IEEE international requirements engineering

conference (RE), pp 5–14

19. Glinz M (2000) Improving the quality of requirements with

scenarios. In: Proceedings of the World Congress on Software

Quality (WCSQ), pp 55–60

20. Gomez A, Rueda G, Alarcón P (2010) A systematic and light-

weight method to identify dependencies between user stories. In:

Proceedings of the international conference on agile software

development (XP), LNBIP, vol 48. Springer, pp 190–195

21. Heck P, Zaidman A (2014) A quality framework for agile

requirements: a practitioner’s perspective. http://arxiv.org/abs/

1406.4692

22. Holbrook H III (1990) A scenario-based methodology for con-

ducting requirements elicitation. SIGSOFT Softw Eng Notes

15(1):95–104

23. IEEE: systems and software engineering—life cycle processes—

requirements engineering. ISO/IEC/IEEE 29148:2011(E),

pp 1–94, 2011

24. IEEE Computer Society (1994) IEEE recommended practice for

software requirements specifications. IEEE Std 830-1993

25. Imaz M, Benyon C (1999) How stories capture interactions. In:

Proceedings of the IFIP international conference on human–

computer interaction (INTERACT), pp 321–328

26. Jeffries RE, Anderson A, Hendrickson C (2000) Extreme pro-

gramming installed. Addison-Wesley Longman, Boston

27. Kamalrudin M, Hosking J, Grundy J (2011) Improving require-

ments quality using essential use case interaction patterns. In:

Proceedings of the international conference on software engi-

neering (ICSE), pp 531–540

28. Kamata MI, Tamai T (2007) How does requirements quality relate

to project success or failure? In: Proceedings of the IEEE interna-

tional requirements engineering conference (RE). IEEE, pp 69–78

29. Kassab M (2015) The changing landscape of requirements

engineering practices over the past decade. In: Proceedings of the

IEEE international workshop on empirical requirements engi-

neering (EmpiRE). IEEE, pp 1–8

30. Lin J, Yu H, Shen Z, Miao C (2014) Using goal net to model user

stories in agile software development. In: Proceedings of the

IEEE/ACIS international conference on software engineering,

artificial intelligence, networking and parallel/distributed com-

puting (SNPD). IEEE, pp 1–6

31. Lindland OI, Sindre G, Sølvberg A (1994) Understanding quality

in conceptual modeling. IEEE Softw 11(2):42–49

32. Liskin O, Pham R, Kiesling S, Schneider K (2014) Why We need

a granularity concept for user stories. In: Proceedings of the

international conference on agile software development (XP),

LNBIP, vol 179. Springer, pp 110–125

33. Lombriser P, Dalpiaz F, Lucassen G, Brinkkemper S (2016)

Gamified requirements engineering: model and experimentation.

In: Proceedings of the 22nd international working conference on

requirements engineering: foundation for software quality

(REFSQ)

34. Loucopoulos P, Karakostas V (1995) System requirements

engineering. McGraw-Hill, New York

35. Lucassen G, Dalpiaz F, van der Werf JM, Brinkkemper S (2015)

Forging High-quality user stories: towards a discipline for agile

requirements. In: Proceedings of the IEEE international confer-

ence on requirements engineering (RE). IEEE, pp 126–135

36. Lucassen G, Dalpiaz F, van der Werf JM, Brinkkemper S (2016)

The use and effectiveness of user stories in practice. In:

Proceedings of the international conference on requirements

engineering: foundation for software quality (REFSQ), LNCS,

vol 9619. Springer, pp 205–222

37. Lucia A, Qusef A (2010) Requirements engineering in agile

software development. J Emerg Technol Web Intell 2(3):212–220

38. Mahnič V, Hovelja T (2012) On using planning poker for esti-

mating user stories. J Syst Softw 85(9):2086–2095

39. Mesquita R, Jaqueira A, Agra C, Lucena M, Alencar F (2015)

US2StarTool: generating i* models from user stories. In: Pro-

ceedings of the international i* workshop (iStar)

40. Miller GA (1995) WordNet: a lexical database for English.

Commun ACM 38(11):39–41

41. Miranda E, Bourque P, Abran A (2009) Sizing user stories using

paired comparisons. Inf Softw Technol 51(9):1327–1337

42. Paja E, Dalpiaz F, Giorgini P (2013) Managing security

requirements conflicts in socio-technical systems. In: Proceedings

of the international conference on conceptual modeling (ER),

LNCS, vol 8217, pp 270–283

43. Patel C, Ramachandran M (2009) Story card maturity model

(SMM): a process improvement framework for agile require-

ments engineering practices. J Softw 4(5):422–435

44. Popescu D, Rugaber S, Medvidovic N, Berry DM (2008)

Reducing ambiguities in requirements specifications via auto-

matically created object-oriented models. In: Innovations for

requirement analysis. From Stakeholders’ needs to formal

designs, LNCS, vol 5320. Springer, pp 103–124

45. Rees M (2002) A feasible user story tool for agile software

development? In: Proceedings of the Asia-Pacific software

engineering conference (APSIC), pp 22–30

46. Robinson WN (1989) Integrating multiple specifications using

domain goals. SIGSOFT Softw Eng Notes 14(3):219–226

47. Ryan K (1993) The role of natural language in requirements

engineering. In: Proceedings of the IEEE international sympo-

sium on requirements engineering (ISRE), pp 240–242. IEEE

48. Simon H (1996) The sciences of the artificial, 3rd edn. MIT Press,

Cambridge

49. Slankas J, Williams L (2013) Automated extraction of non-

functional requirements in available documentation. In: Pro-

ceedings of the international workshop on natural language

analysis in software engineering (NaturaLiSE), pp 9–16

50. Tague-Sutcliffe J (1992) The pragmatics of information

retrieval experimentation. Revisited. Inf Process Manag

28(4):467–490

51. Tjong SF, Berry DM (2013) The design of SREE: a prototype

potential ambiguity finder for requirements specifications and

lessons learned. In: Proceedings of the international conference

on requirements engineering: foundation for software quality

(REFSQ), LNCS, vol 7830. Springer, pp 80–95

52. Wake B (2003) INVEST in good stories, and SMART tasks.

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/.

Accessed 2015-02-18

53. Wang X, Zhao L, Wang Y, Sun J (2014) The role of requirements

engineering practices in agile development: an empirical study.

In: Proceedings of the Asia Pacific requirements engineering

symposium (APRES), CCIS, vol 432, pp 195–209

54. Wautelet Y, Heng S, Kolp M, Mirbel I (2014) Unifying and

extending user story models. In: Proceedings of the international

conference on advanced information systems engineering

(CAiSE), LNCS, vol 8484. Springer, pp 211–225

55. Xiao X, Paradkar A, Thummalapenta S, Xie T (2012) Automated

extraction of security policies from natural-language software

documents. In: Proceedings of the ACM SIGSOFT international

symposium on the foundations of software engineering (FSE).

ACM, pp 12:1–12:11

56. Yang H, De Roeck A, Gervasi V, Willis A, Nuseibeh B (2012)

Speculative requirements: automatic detection of uncertainty in

402 Requirements Eng (2016) 21:383–403

123

http://arxiv.org/abs/1406.4692
http://arxiv.org/abs/1406.4692
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

natural language requirements. In: Proceedings of the IEEE

international requirements engineering conference (RE),

pp 11–20

57. Zave P, Jackson M (1997) Four dark corners of requirements

engineering. ACM Trans Softw Eng Methodol 6(1):1–30

58. Zowghi D, Gervasi V (2003) On the interplay between consis-

tency, completeness, and correctness in requirements evolution.

Inf Softw Technol 45(14):993–1009

Requirements Eng (2016) 21:383–403 403

123

	Improving agile requirements: the Quality User Story framework and tool
	Abstract
	Introduction
	A conceptual model of user stories
	Format
	Role
	Means
	End

	User story quality
	Quality of an individual user story
	Well-formed
	Atomic
	Minimal
	Conceptually sound
	Problem-oriented
	Unambiguous
	Full sentence
	Estimatable

	Quality of a set of user stories
	Unique and conflict-free
	Uniform
	Independent
	Complete

	The Automatic Quality User Story Artisan tool
	Architecture and technology
	Linguistic parser: well-formed
	User story base and enhancer
	Analyzer: atomic
	Analyzer: minimal
	Analyzer: explicit dependencies
	Analyzer: uniform
	Analyzer: unique
	AQUSA-GUI: report generator

	AQUSA evaluation
	Results
	Threats to validity

	Enhancements: toward AQUSA v2
	FN: unknown ends indicator
	FN: indicator and chunk repetition
	FN: add slash and greater than
	FN: verb phrases after ’’and‘‘
	FP: symbols and starting text
	FP: abbreviations and translations
	Expected results

	Related work
	User stories
	Quality of requirements
	Natural language processing for RE

	Conclusion and future research
	Acknowledgments
	References

