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Abstract A significant impediment to the uptake of for-

mal refinement-based methods among practitioners is the

challenge of validating that the formal specifications of

these methods capture the desired intents. Animation of

specifications is widely recognized as an effective way of

addressing such validation. However, animation tools are

unable to directly execute (and thus animate) the typical

uses of several of the specification constructs often found

in ideal formal specifications. To address this problem, we

have developed transformation heuristics that, starting with

an ideal formal specification, guide its conversion into an

animatable form. We show several of these heuristics and

address the need to prove that the application of these

transformations preserves the relevant behavior of the

original specification. Portions of several case studies

illustrate this approach.

Keywords Formal methods � Requirements

specifications � Validation � Animation � Event-B

1 Introduction

To be correct, a requirements document must be both

complete and consistent. The former property concerns the

fact that the document references all important require-

ments. The latter property concerns the fact that no

requirement contradicts another one.

While there is no mathematical answer to the issue of

completeness, formal techniques can be effectively used to

determine the consistency of requirements [1]. During this

process, requirements are specified using mathematics- and

logic-based notations. There are operative definitions of the

notions of verifiability and soundness for texts using such

notations. The consistency of the requirements can then be

assessed with the help of techniques like theorem proving

and model checking.

However, when a document is written in a formal or

semiformal language, a third property must also be

checked: validity. It concerns the fact that the formal

specification expresses the actual customer’s requirements.

This property can best be attained by involving customers

in the formal modeling process.

Traditionally, software engineers distinguish between

verification and validation. The former activity checks that

a text enjoys some given formal, provable properties. The

latter activity checks that the artifact answers the cus-

tomer’s needs. As verification is mathematically based, it

has been the main focus of designers of formal methods so

far. Current frameworks provide many tools and techniques

to help developers produce verified texts, but far less to

help produce validated texts.

As compared to validation, verification of a specification

is a well-defined process. It ensures that involved expres-

sions do not contradict with each other and maintain certain

properties. Additionally, we also have a set of well-
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engineered assistant tools at our disposal. Theorem provers

like ACL2 [2], PVS [3], HOL [4] and Isabelle [5] and

model checkers like BLAST [6], NuSMV [7], PRISM [8]

and SPIN [9] are already well established in the industry

and have been successfully used in several industrial pro-

jects [10–13].

Casting requirements into predicates allows one to use

proof techniques to assess the consistency. Formalisms,

such as Z [14], B [15] or Event-B [16], provide us with

further help through the notion of refinement which breaks

huge proofs into many smaller ones. Yet, writing the

specification and showing its consistency requires a con-

siderable amount of interaction, efforts, and technical skills

and know-how. As non-technical stakeholders usually lack

these skills and know-how, it is very difficult to integrate

such stakeholders into the modeling process unless the

formal model is presented to them in a comprehensible

form.

The case with validation is different. First, it is highly

subjective. Second, we have fewer tools available for it.

Third, even the tools available for validation have limita-

tions, for example, inability to deal with all the language

constructs, unbounded expressions or implicitly defined

functions and operations. This is particularly true of those

tools that execute models, for example CoreASM [17],

Asmeta tool set [18], VDMTools [19] or ProB [20].

The tools most helpful to validate a specification rely on

animation, the process of executing a formal specification

by invoking its operational semantics. Animation, a mostly

automatic process, is used to reveal the behavior of a for-

mal specification either textually or graphically. This is

similar to the structural exploration technique of [21],

where a formal model containing a collection of constraints

is fed to an analyzer. The analyzer then explores the model

by generating sample structures. It also checks properties

of the model, generating counterexamples when they are

found to not hold.

Validation by animation is appealing even for non-

technical stakeholders. However, the catch is that not all

specifications are directly animatable; some need to be

transformed to achieve execution [22, 23]. During the

process of transformation, the non-animatable expressions

are replaced by equivalent but animatable counterparts.

Then the question is: Are these transformations sound so

that the judgments made on such transformed specifica-

tions can be considered trustworthy as far as validation is

concerned? The main aim of this work is to introduce an

animation process based on behavior-preserving transfor-

mations for validation of formal specifications.

Verify-Transform-Animate (VTA) [24] is a framework

for rigorous verification and validation of requirements

specifications written in a formal refinement-based method.

VTA relies on theorem provers and model checkers for

analyzing the consistency of specifications. Once a speci-

fication is verified, it then proceeds for validation by ani-

mation. During the animation process, a specification that

contains non-animatable traits is first transformed into a

behaviorally equivalent animatable form. Animation is

then used for validation. The result of the whole process is

a specification which is both verified and validated.

The main benefit of this methodology is to enable the

early detection of requirements problems (say, misunder-

standing about a certain behavior). It comes from the fact

that users can be involved in the process of checking the

correctness right from the start. Users can join the valida-

tion part during the animation process, while leaving the

technical proving to the technical experts.

The paper is organized as follows: we first present a

brief overview of the VTA framework in Sect. 2. Section 3

discusses the difference between specifications classified in

terms of their provability and animatability. Section 4

discusses how the class of a specification can be changed.

Section 5 presents some transformational heuristics along

with their semantics. Section 6 demonstrates the applica-

tion of transformations on three case studies. Section 7

presents an evaluation of the proposed animation process.

Section 8 provides some related work. Finally, the paper

concludes with some proposed future work.

2 VTA

VTA is a proposition to associate validation with refine-

ment. One of the major roles of refinement is to break the

verification process into small assessments and to integrate

it with the stepwise development process of the specifica-

tion. VTA, powered by the techniques of verification,

transformation and animation, is based on the same prin-

ciple. VTA allows the correctness of a specification to be

assessed throughout the development process.

The flow through the steps of the VTA framework is

shown within the rectangle in Fig. 1. It consists of the

following steps:

1. Formally specify the requirements by grouping them

into observation levels,

2. Verify the specification:

(a) Discharge all proof obligations (POs) and

(b) Perform model checking when needed,

3. Transform each non-animatable element of the

specification:

(a) Choose the matching heuristic from the list,

(b) Check that its applicability conditions hold,

(c) Prove its application and

(d) Apply the heuristic,
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4. Validate the specification by its animation. If an

unacceptable behavior is encountered, modify the

requirements and restart from step one.

2.1 Observation-level-driven formal modeling

In VTA, an abstract requirements model is transformed

into a formal specification through a technique that is based

on observation levels [24]. An observation level is defined

as a focus on a specific part of the model describing a

unique aspect such as a specific protocol or a physical

decomposition of the system. Grouping refinements into

observation levels provides a specification with a super-

structure which eases the understanding of the model. This

arrangement reflects either the ‘‘natural’’ structure of the

system being modeled, particularly when there are physical

components, or of its behaviors, i.e., the evolutions of its

state. This breakdown facilitates both comprehension and

animation of formal requirements. With this approach, the

important properties are introduced at the desired level of

observation. Each observation level contains one or several

refinements. We recommend animation of at least one

refinement per observation level. Our rationale is that

observation levels are correlated with fundamental char-

acteristics of models which have strong impacts on

behaviors. Checking that the specified behaviors are the

valid ones, and that there is no bad emergent behavior, is of

particular importance. Please see [25] for the detailed

discussion.

2.2 Verification

The next step of our proposed framework is based on

verification of specifications. While verifying a specifica-

tion, both deductive verification and model checking are

important. The VTA framework supports the usage of both

verification techniques where appropriate. We firmly

believe that verification should precede validation because

there is no point in the validation of an inconsistent

specification.

2.3 Transformation

As soon as the specification is verified, we prepare it for

animation. If some unsupported features of the language or

non-executable elements, such as non-constructive defini-

tions, are encountered, they are transformed using the

proposed heuristics (discussed in Sect. 5).

If a problem is discovered, we inspect it and try to match

the case with the list of heuristics. This inspection and

matching practice includes checking whether the heuris-

tic’s application condition holds. The application of a

heuristic may raise a PO. We are then required to justify

this application. This justification can either be provided in

the form of a formal proof (discharge of the PO) or by a

rigorous argument that the application of the heuristic

would not alter the behavior of the specification.

2.4 Animation

Once the transformations have been applied to remove all

uses of unsupported or non-executable language features,

the specification is ready for animation. We use animation

to demonstrate the behavior of the specification to the

stakeholders. If the demonstrated behavior is as per

expectations, then we have the verified and validated

specification in our hands. However, if this is not the case

and a closer look at the specification has revealed devia-

tions from the intended behavior, then we need to go back

to the initial specification to correct the unacceptable be-

havior. This triggers a loop, i.e., reproving, re-application

of heuristics and re-animation until the specification con-

forms to actual requirements.

The animation cycle stops when all the scenarios that

were designed from the informal requirements have been

executed and the behavior of the specification has been

approved by stakeholders.

First two steps of the VTA framework are out of scope

of this paper. Rest of the paper will focus only on trans-

formation and animation steps.

Fig. 1 The VTA framework: structure of a refinement step
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3 Animatability versus provability

Animatability and provability are distinct characteristics

of a specification. Both depend on intrinsic properties of

models and on the power of the tools used. Animatability

is particularly dependent on the tools. Therefore, a spec-

ification may fall into one of four classes shown by

Table 1.

Just as a faulty program can be executed, an incor-

rect specification can also be animated. Of course,

neither would be an admissible solution to the problem

at hand. However, observations on a program’s execu-

tion can provide developers with insights guiding them

toward a correct solution. Likewise, animation that

reveals a specification to be invalid provides guidance

to the developers on how the specification needs

correction.

Formal specifications often make use of constructs that

render them non-directly animatable. For example, non-

constructive definitions, infinite sets or complex quantified

logic expressions make specifications non-animatable. As

animation, by nature, heavily depends on tools, so any

limitation of the tool will also be a restriction on the class

of animatable specifications.

One can always try to produce from the start a specifi-

cation which belongs to the animatable class ‘‘Provable and

animatable.’’ However, this is not a good idea for two main

reasons. The first reason is that the specifier should avoid

over-specification [26]. The second reason concerns the

refinement principles that encourage us to make liberal use

of abstract definitions, non-determinism and small refine-

ment steps [27].

A well-written specification can later, of course, be

brought to the right class for the sake of animation. How-

ever, during the process of bringing specifications into an

animatable class, the elements which are necessary to

discharge POs in the verified specification may be altered

or even suppressed. By compromising on proofs, we are at

a risk of generating inconsistent specifications. In fact,

sometimes we cannot prove within the formal rules of the

given formal method that a transformation does not modify

the original behavior. This implies that the provability of

these transformations must be asserted through other

means. In such cases, the mathematical tradition of pro-

viding rigorous and convincing arguments as a paper-and-

pencil proof of the preservation of the behavior for each

transformation heuristic can be followed.

4 Rendering a specification animatable

We may have to change the form of a specification to make

it animatable. We do this primarily by reformulating its

expressions and adding some constructive elements to it.

The techniques to do this (depicted by Fig. 2) are the

following.

4.1 Approximation

Approximation is a standard technique to modify a model

so that the result is close to the original but has better

computational properties. For our purpose, we look for

approximations that will result in efficiently exe-

cutable models. In our transformations, we use two types of

approximations: under-approximation and over-approxi-

mation. The former is the idea of taking a reasonable subset

of the original model, whereas the latter takes a superset.

These approximation techniques are based on abstract

interpretation [28] and are often used to address state

explosion problems in model checking.

Under-approximation can be used to address the prob-

lem of non-termination. This is a specific kind of termi-

nation which is based on enumeration of values. When a

formula is based on an unbounded value an animator may

continue enumerating it indefinitely. Consequently, ani-

mation fails. Restricting the enumeration within finite

bounds addresses the problem. In other cases, where a

formula is constituted of complex and composite data

structures, such as sequences or lists, the technique of over-

approximation can be exploited to simplify the formula and

achieve its execution. For instance, a list, which is a total

function on an interval of integers, can be over-approxi-

mated by a partial function on integers.

The rationale of using approximation for model check-

ing is applicable here as well. For example, if some

property exists in the abstract (under-approximate) model,

then it holds in the concrete model. However, if the

property does not hold in the former, we do not know

whether the latter violates this property.

4.2 Refinement

Refinement is an established formal activity to transform

an abstract formal specification into a concrete exe-

cutable program. When possible, VTA uses refinement to

transform non-executable high-level non-constructive

Table 1 Classes of

specifications
Non-animatable Animatable

Non-provable Non-provable and non-animatable Non-provable but animatable

Provable Provable but non-animatable Provable and animatable
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formulas and expressions into lower-level animatable and

executable elements.

When a specification is refined, we need to prove the

abstract–refinement relationship between the two models.

This amounts to establish two properties:

1. The refined model maintains the invariant of the

abstract model. We must prove that the refined guards

are stronger than the originals. Furthermore, the

resulting actions do not lead to an incorrect state in

the abstract specification. We must also prove that the

new events are refinement of the SKIP event (i.e., the

‘‘do-nothing’’ event).

2. The newevents do not introduce a divergence. Technically,

we must prove there is no infinite chain of new events.

4.3 Rewriting

Rewriting is the process of replacing either some sub-terms

or the whole formula with equivalent terms. In VTA, term

rewriting is used to simplify non-animatable complex for-

mulas to make them animatable. Application of this tech-

nique is fruitful for formalisms such as B or Z, where

generalized substitutions are used to describe state modi-

fications. Animators often find it difficult to compute the

state transition relation if it contains dynamic functions

whose parameters are passed at runtime and depend upon

the computations performed by guards. As a solution, the

non-computable formula is then partly or completely

rewritten by its equivalent counterpart in set algebra or

conjunctive normal form (CNF).

4.4 Inlining

Inline/macro-expansion is an optimization technique to

replace a call of a function by its body. While writing

specifications, this is a common practice to use functions

for readability and simplifying proofs. A function based on

a case analysis has multiple definitions and cannot be

enumerated straightforwardly, thus preventing the execu-

tion of the incorporating specification. This problem can be

solved by using inline expansion technique, i.e., to replace

the function call by its body. Thus, enumeration is no

longer required and the animator proceeds with its normal

operation.

Inline expansion, in fact, is based on two previously

defined transformation techniques: rewriting and refine-

ment. It is rewriting because the function call is being

replaced by its body which means semantically both

expressions are equivalent. Of course, proper care has to be

exerted with the use of the involved variables. It can be

defined as refinement since the PO of enabledness preser-

vation (see Sect. 5.2) which must be discharged requires us

to prove that if a transition is enabled in the transformed

specification, then it should also be enabled in the initial

specification and vice-versa. Formally, the enabledness

preservation PO is defined by a conjunction where the first

formula is a standard Event-B PO for event refinement:

8Sa;Ca; Sr;Cr;Va;Vr; xa; xr:Aa ^ Ar ^ Ia ^ Ir ) ðGr ) GaÞ
^
8Sa;Ca; Sr;Cr;Va;Vr; xa; xr:Aa ^ Ar ^ Ia ^ Ir ) ðGa ) GrÞ

where Sa, Ca, Sr and Cr represent sets and constants of the

abstract and refined specifications, respectively. Va and Vr

denote variables of the abstract and refined specifications,

respectively. xa and xr represent local variables of the

abstract and refined state transition relation, respectively.

Aa, Ar, Ia, Ir, Ga, Gr are axioms, invariants and guards of

the abstract and refined specifications, respectively.

5 Transformational heuristics and their semantics

From the general principles used to make a specification

animatable, we can design practical heuristics tailored to a

specific specification language and a specific animation

tool. The correctness of heuristics and of their application

becomes an issue at two levels. At the usage level, users

must be confident that they chose and applied an adequate

heuristic. At the formal level, we must guarantee that the

behaviors of the transformed model are the same as those

of the original model. We address this issue of correctness

using a two-step approach.

(a) Step 1: we present the heuristics using a pattern and

give rigorous arguments to justify their use. We

assume that they are applied to an already verified

formal text. The pattern is shown in Table 2.

For each heuristic, we first describe the symptom, i.e.,

what indication from the animator of its inability to execute

a specification would prompt the use of this heuristic. It

also indicates the construct of the model, such as axiom,

guard or transition statement, where the problem lies and

which is susceptible to modification. The transform

explains how the original statement must be transformed in

order to be animatable. Each transform is based on the

execution techniques discussed in Sect. 4. Caution is the

Fig. 2 Types of class changing techniques
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description of the applicability conditions, the assumptions

to check, the possible effects and the precautions to follow.

In the justification part, we provide a rigorous argument

about the validity of the transformation.

(b) Step 2: we define a formal semantics of transforma-

tions to give a proof of soundness of their applica-

tion. The proof indicates under which conditions

both the original and transformed specifications are

behaviorally equivalent, i.e., provided same values,

the same sequences of state transitions can be

followed on both specifications.

Animating a specification is all about observing its

behavior, i.e., its evolution during its execution. Then, the

property we want to assure is: ‘‘what is observed on the

animation of the transformed specification would have

been observed on the animation of the initial specification

(be it possible).’’ Two further points should be noted. First,

we can restrict the relation to a form of inclusion of

behaviors rather than a strict equality. We can ‘‘lose’’

behaviors (e.g., by restricting some ranges), but we cannot

‘‘add’’ behaviors (e.g., by allowing transitions). Second,

during an animation, we can look only at two things: the

enabledness status of all transitions and the values of state

variables. So, we should express the relationship with these

two features of the execution.

5.1 The heuristics

During our experimentation with valuation-based anima-

tors, such as Brama [29], we have encountered ten kinds of

impediments to animation of formal specifications and

designed heuristics to deal with each of them. In the

interest of brevity, in this paper we discuss only four of

them in detail and summarize the other six. The reader is

referred to [30] for a detailed description of all ten of them.

Table 3 contains the list of symbols used in the fol-

lowing sections.

Heuristic 1: Generalize expressions involving complex

iterations

This heuristics is motivated by the difficulty of iterating

over complex nested predicated expressions. Such

expressions can occur when models use types such as lists

or trees.

Symptom: Failure of an animator to build iterators of a

predicate. The problem lies often with list-like types.

Transform: Take the superset of the expression.

Original var ¼ fxj9n:n 2 N1 ^ x 2 1. . .n ! yg

Caution: This transformation loosens the constraints on

the values, some of which maybe essential to the behavior.

For instance, the property that all integer numbers between

1 and the length of the sequence belong to the domain of

the function. An animator may not ensure any more that

this property holds. The burden of the check is passed onto

the input of the values. It must be ensured that animation is

performed on a shared set of values between the original

and transformed specifications.

Justification: On the subset of shared values, that is,

those values respecting the constraints left out by the

generalization, both specifications must have the same

behavior. Two cases must be considered:

• the value is associated with a constant: it does not

change during the animation and it keeps its properties,

• the value is associated with a variable: at least one of

the POs in the initial specification deals with proving

that the result of the computation belongs to the set.

Since the initial specification is verified, the values in

the modified specification have the same property.

This is an example of abstraction because the trans-

formed formula is an abstraction of the original one. In

abstraction framework, this technique is known as over-

approximation.

Heuristic 2: Avoid expressions involving mapping of

variables in substitutions

Some animators have difficulty with computing set

values defined by comprehension. This can often be over-

come by rewriting the term using Cartesian product.

Table 2 The heuristic pattern
Heuristic pattern

Symptom What reveals the situation, i.e., the error message generated by the animation engine

Transform The expression schema of the original specification and its transformed counterpart

Caution Description of the application conditions, hypotheses to check, possible effects and

precautions to follow

Justification A rigorous argument about the validity of the transformation
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Symptom: Failure of an animator to compute sets of

tuples in substitutions. The problem lies in substitutions of

the model.

Transform: Rewrite the substitution to avoid mapping.

Original fx; y:x 2 X ^ y 2 Y jx 7! yg
Transformed fx 2 Xjxg � fy 2 Y jyg

Justification: The transformation is simply rewriting of

the initial expression as a formula in set algebra. This

heuristic can also be used in guards and axioms.

Heuristic 3: Inline the function definition in events

Some formal methods do not distinguish between

functions defined as finite maps and functions defined by

analytical expressions. The latter are defined as constants

using axioms which cannot be assigned a value by enu-

meration-based animators.

Symptom: Failure of an animator to assign the start-up

values to complex functions. The problem is associated

with the axioms of the model which define analytical

functions.

Transform: Substitute function calls by their inline

equivalent

Original (in axiom) 8x:x 2 S ) f ðxÞ ¼ expressionðxÞ
Original (in transition) f ðvÞ
Transformed (in axiom) true

Transformed (in transition) Add a new guard v 2 S and

replace f(v) with expression(v).

Caution: All occurrences of f in the specification must be

replaced; be consistent when replacing formal parameters

by actual values.

Justification: This is the case of refinement. In a math-

ematical context, the value f(v) is equal to its definition

expression where v has been substituted to x; both

expressions are interchangeable.

Heuristic 4: Replicate transitions which use functions

defined ‘‘by cases’’

Some formal methods do not support conditional con-

structs such as if-then-else. Specifiers must define functions

with ‘‘cases’’ through axioms written as disjunctive for-

mulas. Some animators also cannot handle such definitions.

Symptom: Same as Heuristic 3 plus a case analysis.

Transform:

Original (in axiom) ∀x.x ∈ S ⇒ (p(x) ⇒ f(x) =
expression(x) ∧ q(x) ⇒ f(x) = expression′(x))

Original (in transition)

Transition A

WHERE ...f(v)...THEN ...f(v)...END

Transformed (in axiom) true

Transformed (in transitions)

Transition A1

WHERE ... grdCase1 p(v) THEN ... END

Transition A2

WHERE ... grdCase2 q(v) THEN ... END

Table 3 The symbol table
Symbol Meaning Symbol Meaning

j Such that \ Intersection

9 There exists 8 For all

! Total function Partial function

2 Element of � Subset of

N Set of natural numbers N1 Set of ?ve natural numbers

P Power set 7! Maplet

/ Domain restriction � Total injection

, Logical equivalence ) Logical implication

^ Logical conjunction _ Logical disjunction

6¼ Not equal to = Equal to

:= Becomes equal to : j Becomes such that

[ Greater than ; Empty set

B Boolean � Cartesian product
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Caution: This heuristic must be followed by the appli-

cation of Heuristic 3. Check that all cases have been cov-

ered. Be particularly careful if the function is applied to

several different actual parameters; this may require sev-

eral applications of this heuristic.

This heuristic entails a major surgery in a specification.

A blind application may introduce many copies of state

transition relations. By grouping several functions into one

transformation, it is possible to reduce the number of

duplications.

Justification: This is a case of refinement. The predicates

used in ‘‘by case’’ definitions are equivalent to guards in

state transitions. They have the same form and are used for

the same purpose. The state transition relations A1 and A2

are the copies of A (except for the new guard); their union

is equivalent to A. Hence, the transformed specification has

the same behavior as the original specification.

The six other heuristics are summarized below.

Removing the finite axioms. Such axioms are intro-

duced in specifications just to discharge the related POs;

however, they do not alter the behavior of the specification.

Hence, it is safe to remove them.

Specifying the finiteness of a quantified domain. For

example, if the range is of natural numbers, specifying a

finite range between a minimum and a maximum. This is

the issue of termination that is a common animation

problem. Our solution to fix it by stating that any variable,

parameter or constant can only take finitely possible values

is a standard solution for such problems.

Explicitly providing the typing information of all variables

and constants used in a predicate. While proving theorems,

provers can automatically infer the typing information of

involved variables and constants; however, this is not the case

with valuation-based animators which explicitly require this

information to set up the enumeration process.

Avoiding dynamic function computation in substitu-

tions. This heuristic is similar to Heuristic 2 and requires

the same treatment: rewriting.

Complex invariant predicates. Invariants are conditions

that must be satisfied by the behavior of a specification. In the

case of inability to compute them, either they can be rewritten

(like Heuristic 2) or removed (provided that they have already

been taken care of during the verification process).

Introduction of ‘‘observation’’ variables. These variables

are required due to the limitation of the communication

protocol between the animator and the external graphical

environment. For example, Adobe Flash� has limited

support for data structures. Our solution in this case is to

transform the output values unsupported by the external

graphical environment.

5.2 Formal semantics of transformations

The transformational heuristics proposed in VTA actually

modify the original specification. Therefore, we need to

show that, as far as animation is concerned, what is observ-

able on the transformed specification would have been

observable on the original specification, if it was animatable.

Our work is based on a kind of trace semantics where we

consider sequences of states and transitions. In the fol-

lowing, Specx denotes a specification. The basic elements

of the semantics are then:

State: a mapping of names from set N to values from set

V, constrained by the invariant (variables) or axioms

(constants) of the specification

S ¼ N ! V ^ 8s:s 2 S ) InvðsÞ

Event: a transition from one state to another defined with

the help of a guard Ge and a state transition Ue

e ¼ When Geðs; vÞ Then Ueðs; vÞ End

where s denotes the state and v denotes the non-deter-

ministic values (i.e., parameters) used by the event. We

note the firing of an event as

s�!eðvÞ t

Behavior: a sequence of states and event firing, starting

from an initial state

b 2 seqðS� E � PðVÞ � SÞ
^ 8i:i 2 domðbÞ ) ðPr4ðbðiÞÞ ¼ Pr1ðbðiþ 1ÞÞ

^ Pr1ðbðiÞÞ �!Pr2ðbðiÞÞðPr3ðbðiÞÞÞ
Pr4ðbðiÞÞ

where Pri denotes the ith projection of the quadruples. We

note Bp as the set of all behaviors of the specification Specp

Relation: the two compared specifications may not have

exactly the same events, so we need to introduce a relation

between events, Rel, defined as:

8e0:e0 2 EventsðSpectÞ
) 9e:e 2 EventsðSpecoÞ ^ e0 7! e 2 Rel

8e:e 2 EventsðSpecoÞ
) 9e0:e0 2 EventsðSpectÞ ^ e0 7! e 2 Rel

where Events(Spec) denotes the set of all events of the

specification Spec.

Shared state: a state where all the variables common to

both specifications have the same values:

S0o ¼ fs:s 2 SojNt \ No/sg
S0t ¼ fs:s 2 StjNt \ No/sg
Sc ¼ S0o \ S0t
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Shared behaviors: the behaviors which go through the

same sequence of states by firing events related by Rel. Let

us denote Rel� the extension of Rel to behaviors where each
event in a behavior is related to the event at the same

position in the other one:

8bo; bt:bo 2 Bo ^ bt 2 Bt ^ bo 7! bt 2 Rel�

, ð8i:i 2 domðboÞ ) ðPr2ðboðiÞÞ 7! Pr2ðbtðiÞÞ 2 RelÞÞ

The shared behaviors between two specifications Speco and

Spect, seen from the Spect perspective, are defined as:

Bt
c ¼ fbtjbt 2 Bt ^ ðRel��1½fbtg� � BoÞg

Behavior preservation: a specification Spect preserves

the behavior of Speco if all the behaviors observed on

Spect are shared behaviors. This intuitive definition is

slightly too broad and should be qualified on two aspects.

First, the starting state must be a shared state. Second, all

non-deterministic parameters must be admissible in both

specifications. This property is expressed by the following

predicates:

validParamðv; s; e;RelÞ ¼ Geðs; vÞ
^ e 2 ranðRelÞ ) ð9e0:e0 2 Rel�1½feg� ^ Ge0 ðs; vÞÞ
^ e 2 domðRelÞ ) ð9e0:e0 2 Rel½feg� ^ Ge0 ðs; vÞÞ

validParam�ðb; Spec;RelÞ
¼ 8 ðsi; ei; vi; tiÞ:ðsi; ei; vi; tiÞ 2 b

) validParamðvi; si; ei;RelÞ

So, the formal definition of behavior preservation is:

Spect B
�

jRel
Speco

, 8bi:bi 2 Bt ^ s1 2 Sc

^ validParam�ðbi; Speco;RelÞ ) bi 2 Bt
c

This definition then needs to be connected to what is

actually observed during an animation: which events are

enabled and what are the values in the states.

SameEnabledness expresses the idea that on the shared

states, events in both specifications have the same status

(enabled or not); formally, the guard of both events is true.

SameEnablednessðSpect; Speco;RelÞ
, ð8s; e; v:s 2 Sc ^ e 2 EventsðSpecoÞ
^ validParamðv; s; e;RelÞ ^ Geðv; sÞ
) ð9e0:e0 2 EventsðSpectÞ ^ e0 7! e 2 Rel ^ Ge0 ðv; sÞÞÞ
^ ð8s; e0; v:s 2 Sc ^ e0 2 EventsðSpectÞ
^ validParamðv; s; e0;RelÞ ^ Ge0 ðv; sÞ
) ð9e:e 2 EventsðSpecoÞ ^ e0 7! e 2 Rel ^ Geðv; sÞÞÞ

SameReachability expresses the fact that all states that

can be reached from a shared state in a specification can

also be reached in the other one.

SameReachabilityðSpect; Speco;RelÞ
, ð8s; t; e; v:s; t 2 Sc ^ e 2 EventsðSpecoÞ

^ validParamðv; s; e;RelÞ ^ s�!eðvÞ t

) ð9e0:e0 2 EventsðSpectÞ ^ e0 7! e 2 Rel ^ s�!e
0ðvÞ

tÞÞ
^ ð8s; t; e0; v:s; t 2 Sc ^ e0 2 EventsðSpectÞ

^ validParamðv; s; e0;RelÞ ^ s�!e
0ðvÞ

t

) ð9e:e 2 EventsðSpecoÞ ^ e0 7! e 2 Rel ^ s�!eðvÞ tÞÞ

SameClosure states the idea that a behavior with valid

parameters reaches only shared states from a shared

state.

SameClosureðSpect; Speco;RelÞ
, 8s; t; e; v:s 2 Sc ^ t 2 So ^ e 2 EventsðSpecoÞ

^ validParamðv; s; e;RelÞ ^ Geðv; sÞ ^ s�!eðvÞ t ) t 2 Sc

These definitions allow us to give the observation theorem:

if two specifications have the three preceding properties,

the first specification preserves the behavior of the second

specification:

SameEnablednessðSpect; Speco;RelÞ
^ SameReachabilityðSpect; Speco;RelÞ
^ SameClosureðSpect; Speco;RelÞ

) Spect �
B

jRelSpeco

Proof Let Speco be the original specification and Spect be

the transformed specification. Let Rel be the relation

between these specifications. Let Bt ¼ BehaviorðSpectÞ
and Bo ¼ BehaviorðSpecoÞ. Let bt; bo:bt 2 Bt ^ bo 2 Bo:

Now if SameEnablednessðSpeco; Spect;RelÞ ^ Same

ReachabilityðSpeco; Spect;RelÞ ) 9Bc:bt; bo 2 Bc

Same enabledness and reachability means specifications

share behaviors. However, some events may lead to non-

shared states; therefore, we take closure to consider only

the shared states of both specifications, i.e.,

8s; t; e; v:s 2 Sc ^ t 2 So ^ e 2 EventsðSpecoÞ

^ validParamðv; s; e;RelÞ ^ Geðv; sÞ ^ s�!eðvÞ t ) t 2 Sc

If the specification has also the same closure (i.e., no

transition leads to a non-shared state) in addition to the

same enabledness and reachability (shared behaviors), then

the specifications are behaviorally equivalent, i.e., any
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behavior which is observed in the transformed specification

would also be observed in the original specification, if it

was animatable.

Therefore,

SameEnablednessðSpect; Speco;RelÞ
^ SameReachabilityðSpect; Speco;RelÞ
^ SameClosureðSpect; Speco;RelÞ

) Spect �B jRelSpeco

h

6 Demonstration of the approach on case studies

We applied the VTA framework to assess the correctness

of three specifications, all written in the Event-B speci-

fication language [16]. The Event-B method is an off-

spring of the B method [15] and is designed for system-

level modeling and analysis of large reactive systems. It

uses set-theory and first-order logic as the specification

notation. It also uses the notions of refinements (to rep-

resent systems at different levels of abstraction) and

theorem proving (to prove the consistency between vari-

ous refinement levels). Development of Event-B specifi-

cations is supported by the RODIN platform [31]. For

animation purposes, we used the valuation-based anima-

tors Brama [29] and AnimB.1

An Event-B specification is composed of Contexts

which specify the static part of the requirements model and

Machines which specify the dynamic part of the model.

The refinement relation is called refinement between

machines, and extension between contexts. All machines

have a special event, INITIALISATION, which specifies

the initial state.

The first case study is about a land transport domain

model [32, 33]. The second case study is about the landing

system of an aircraft [34]. The third case study is about a

platooning system [35]. All case studies are available at

http://dedale.loria.fr.

The VTA framework explicitly requires all specifi-

cations to be proven before proceeding with their ani-

mation. The specifications are then animated by creating

reasonable behavioral scenarios representing the proto-

cols that would have been expected to occur in reality.

The animators are provided with start-up values

accordingly.

Not all refinements need to be animated. Some refine-

ments based on small incremental steps are uninteresting

from the animation’s point of view because they do not

bring much information in terms of new behaviors. At least

one refinement per observation level was subjected to

animation. An interesting point to note is that an Event-B

refinement of a specification may introduce uses of non-

animatable constructs, which would then need to be

transformed to (re)achieve animatability.

The result of the application of heuristics is an animat-

able specification. In the following, the application of

heuristics on formal specifications is presented in a before-

after state clearly indicating how the specification has been

transformed. When necessary, the application of heuristics

is justified in the form of a formal proof.

6.1 Case study 1: the land transport domain model

The specification in this case study is about modeling of the

land transportation domain. The term ‘‘transportation’’

refers to the movement of people or goods by vehicles from

one location to another. Many important transportation

concepts, such as vehicles, hubs (stations, junctions),

connections (paths, routes) and movement, appear in this

definition of transportation. They must be defined in the

domain description. In the specification, we also express

properties that any system working within the domain is

expected to meet and maintain.

In this specification effort, the focus is on the formal

definition of domain’s laws, protocols and properties,

rather than on the implementation of a particular system.

Refinement is used to introduce new notions; the POs serve

to guarantee the consistency of the model.

The domain model, shown in Fig. 3, contains one

abstract machine Movement0 and its seven refinements.

All machines of the model are shown by green blocks. In

parallel with machines, two contexts are being refined. The

first is the context Net, which models the static properties

of the network (its topology, quantities associated with its

elements, etc.). The second is the context StartState

which helps to set and prove the INITIALISATION

event of the machines. The contexts of the model are

shown by blue blocks. Extension between contexts and

refinement between machines are shown by single arrow

lines, whereas the use of contexts by machines is shown by

dashed lines.

The development is structured into four different

observation levels. The abstract model, the first two

refinements and the fifth refinement sit at the first obser-

vation level, which defines the travel protocol that means a

vehicle can move between two distinctive geographical

points (hubs). Though technically realized as the refine-

ment of Movement4, the fifth refinement step is logically

situated at the first level of observation; it introduces time

and concerns only the events at the first level. The third

refinement belongs to the second level of observation,

which decomposes the travel protocol into further two sub-1 http://www.animb.org.
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protocols crossing hubs and traversing paths. The fourth

refinement belongs to the third observation level, which

decomposes the protocol of crossing a hub into further sub-

protocols of entrance in a hub, leaving a path and waiting

to enter in a hub. The sixth and seventh refinements model

the fourth observation level, which decomposes the pro-

tocol of traversing a path into further sub-protocols of wait

to enter on a path, leaving a hub, moving on a path and

waiting to move on a path. Machine Movement7 com-

pletes the introduction of time into the model and concerns

the events and situations at this level.

This specification exhibits several properties which call

for animation as the mean to check their validity, namely:

• complex data with behavioral constraints (following a

route, for instance),

• protocols and iterations (travel as a sequence of hub

crossing and path traversing protocols, for instance),

and

• unplanned interaction between elements (autonomous

vehicles, for instance).

The second refinement of the model introduces the notion

of routes in the context Net2 as shown by the left-hand

side of Fig. 4. The constant routes is a set of sequences

of paths; a path is an edge in the graph between two

hubs (stations) which are the vertices. The set of routes is

introduced as follows:

seqPaths ¼ fseqj9n:n 2 N1 ^ seq 2 1. . .n� paths

^ finiteðseqÞ ^ cardðseqÞ ¼ ng

As sequence is not a primitive data type in Event-B data

structure, we must provide its definition. This definition

uses double quantification which the employed animator

was unable to support when we tried to animate the model.

To make the model animatable, we employ Heuristic 1 to

transform the axiom to use the following superset of its

expression:

Since the type information of seqPaths has been chan-

ged, the model properties pro1 and pro2 (see the left-

hand side of Fig. 4) expressed in terms of the original type

information may no longer hold. Actually, these properties

state that valid origin and destination hubs of a route are

stations (and not junctions), both hubs belong to the same

network, both hubs are connected to each other, and both

hubs forbid cyclic connections (it is a domain restriction to

avoid infinite circular paths). The properties use functions

defined in previous refinements, such as connec-

tionOrigin/Destination and obsNetHubs,

which provide the connections and the hubs of a network,

respectively. Both pro1 and pro2 are removed. Hence,

the specification is now animatable. Figure 4 shows the

context Net2 before and after the application of Heuristic

1.

The most important effect of the application of Heuristic

1 is the invalidation of all proofs, either in Net2 or in

Movement2 and their subsequent refinements, which

relied on the essential property of sequences:

8s:s 2 seqPaths ) domðsÞ ¼ 1::cardðsÞ

Proof of application of Heuristic 1 Animation requires us

to provide actual values for seqPaths. Since seqPaths

is a constant, we just need to ensure that the actual values

conform to the axioms of the original Net2. Then, since

the Movement2 machine is verified, we are guaranteed

that animation will only reach shared legal states. h

6.2 Case study 2: the landing gear system

The second case study deals with the specification of a

landing gear system (LGS) of an aircraft. The LGS is in

charge of maneuvering landing gears and associated doors.

The LGS is composed of three landing sets: front, left and

right. Each landing set contains a door, a landing gear and

associated hydraulic cylinders. The main parts of the LGS

are as following:

1. a mechanical part that contains all the mechanical

devices and the three landing sets,

2. a digital part including the control software and

3. a pilot interface.

The corresponding Event-B model specifies the pilot

interface, the digital part and the mechanical and hydraulic

Fig. 3 Event-B model of the land transport domain [25]
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parts of the system. Additionally, it describes the hardware

(gears, doors, sensors, lights, electro-valve, etc.), the nor-

mal working of the hardware and software, and the safety

properties (normal and emergency modes).

As shown by Fig. 5, the Event-B model of the landing

gear system contains one abstract machine Land-

ingSystem and its four refinements, all shown by green

blocks. In parallel with machines, two contexts Con-

textInit and Hardware are also being refined. The

former contains the information necessary to set and

prove the INITIALISATION event of the machines. The

latter contains the description of the hardware configura-

tion and status, such as description of landing sets as

front, left and right, and handle states as up and down.

Additionally, the context CockpitHardware contains

the description of the pilot interface and the context

Phase_Ident contains the information regarding read-

ings of the sensors. The contexts of the system are shown

by blue blocks. Extension between contexts and refine-

ment between machines are shown by single arrow lines,

whereas the use of contexts by machines is depicted by

dashed lines.

Figure 5 also shows three levels of observations. The

abstract model sits at the first observation level that deals

with the status of the plane: ready to land or fly. The first,

second and third refinement of the model belongs to the

second observation level, which deals with the movement

of the mechanical elements of the landing gears (doors,

legs, locks, etc.). The fourth refinement sits at the third

observation level, which was introduced when we wanted

to model the reading of the sensors.

An interesting feature of the LGS case study is a

requirement that the maneuvers can be interrupted and

reversed at any time. So, exercising the events which

model the reversal is an important part of the validation.

One such event, restore_up, introduced in the third

refinement, LandingSystem_3, updates the related

variables using the following pattern:

var:jvar0 2 LANDING SETS ! SENSOR OUTPUTS

^ ð8g:g 2 LANDING SETSÞ ) ðvar0ðgÞ ¼ sfalseÞÞ
or

var:jvar0 2 LANDING SETS ! SENSOR OUTPUTS

^ ð8g:g 2 LANDING SETSÞ ) ðvar0ðgÞ ¼ strueÞÞ

where sfalse and strue model the binary information sent

by the sensors.

During animation, the animator fails to execute these

substitutions due to its inability to dynamically map

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes, isRoute, seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths = { seq | ∃ n . n ∈ N1 ∧ seq ∈ 1..n paths ∧

finite (seq) ∧ card(seq) = n}
typ3 isRoute ∈ seqPaths → B

typ4 routes = {sp | sp ∈ seqPaths ∧ isRoute(sp) = TRUE}

pro1 ∀r.r∈seqPaths ∧
((connectionOrigin(r(1)) ∈ stations ∧
connectionDestination(r(card(r )))∈stations∧
(obsNetHubs[{connectionOrigin(r(1))}] ∩
obsNetHubs[{connectionDestination(r(card(r)))}] = ∅) ∧
(∀i . i∈2..card(r) ∧ connectionDestination(r(i−1)) = connectionOrigin(r(i )))
∧ connectionOrigin(r(1))= connectionDestination(r(card(r))) ∧
(∀i1, i2 . i1∈1..card(r) ∧ i2∈1..card(r) ∧ i1 = i2 ⇒
connectionOrigin(r(i1 )) = connectionOrigin(r(i2 )))
∧ (∀ i1 , i2 . i1∈1..card(r) ∧ i2∈1..card(r) ∧ i1= i2
⇒ connectionDestination(r(i1 )) =
connectionDestination(r(i2 )))) ⇔ isRoute(r) = TRUE)

pro2 ∀c.c∈Connections ⇒
(connectionDestination(c)∈stations ∧ connectionOrigin(c) ∈ stations ⇒
(∃r. r∈routes ∧ connectionOrigin(c) = connectionOrigin(r(1)) ∧
connectionDestination(c) = connectionDestination(r(card(r )))))

END

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes, isRoute, seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths ∈ P(N → paths)

typ3 isRoute ∈ seqPaths → B

typ4 routes = {sp|sp∈seqPaths ∧ isRoute(sp) = TRUE}

END

Fig. 4 The context Net2 before (left) and after (right) the application of Heuristic 1

Fig. 5 Event-B model of the landing gear system [25]
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variables to each other. We then rewrote the actions using

Heuristic 2 as following to achieve their execution.

var :¼ LANDING SETS� fsfalseg
or

var :¼ LANDING SETS� fstrueg

Figure 6 shows the event restore_up before and after

the application of Heuristic 2.

6.3 Case study 3: the platooning system

The third case study deals with the specification of a pla-

tooning system. Platooning is a mode of moving where

vehicles are synchronized and follow one another closely.

A platoon can be seen as a road train where cars are linked

by software, instead of hardware. Platooning has several

potential uses in an urban mobility system: augmenting

throughput, herding unused cars to stations or running

transient buses, for instance.

Several platooning control systems are being developed

and experimented. The one developed at INRIA [36] and

LORIA [37] is based on situated multi-agent (SMA) the-

ory. In this system, each vehicle has its own local control

algorithm which uses a perception/decision/action loop.

The Event-B specification of the system is presented

in [35, 38, 39]. In contrast to the first case study, the

structure of the development in this case study can be

interpreted as a sequence of refinements toward an imple-

mentation. Each refinement decomposes some events to

make explicit a part of the general computation.

The Event-B model of the specification is presented by

Fig. 7. The specification consists of five machines (four

refinements):

• Platoon: defines platoons and sets the basic safety

property. It contains only one event, all_move,

where all vehicles change positions while keeping safe

distance.

• Platoon_1: decomposes the event into one which

moves the leader vehicle and one which moves the

followers. This organizes the basic ‘‘iteration along the

platoon’’ of each move.

• Platoon_2: computes the length of each basic move.

This leads to the introduction of kinematic functions in

the contexts and to the refinement of move events into

several ones, each corresponding to a different situation

(whether the maximum and minimum speeds are

reached or not). This models the action part of the

SMA.

• Platoon_3: introduces the notion of decision of the

SMA model into the specification. Two events, one for

the leader, and one for the followers, are introduced and

integrated in the control loop.

• Platoon_4: introduces the notion of perception which

allows decision events to be refined so the actual

restore up =
REFINES
restore up

WHERE
grd1 all gear up gear position = all up
grd2 nominal mode operating mode = normal
grd3 abort command continuation mode = continue
grd4 all raised ∀g.g∈LANDING SETS ⇒(gear movement(g) = locked up

∨ gear movement(g) = stored up)
grd5 handle down handle state = handle up

THEN
act1 door open door open :| door open’ ∈ LANDING SETS →

SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS ⇒
(door open’(g) = sfalse))

act2 all gears up gear position := all up
act3 all stored gear movement := {Front → stored up, Left → stored up,

Right → stored up}
act4 normal mode operating mode := normal
act5 continue continuation mode := continue
act6 light maneveur off light maneuver := light off
act7 gear extended gear extended :| gear extended’ ∈ LANDING SETS →

SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS ⇒
(gear extended’(g) = sfalse))

act8 gear retracted gear retracted :| gear retracted’ ∈ LANDING SETS →
SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS ⇒
(gear retracted’(g) = strue))

act9 door closed door closed :| door closed’ ∈ LANDING SETS →
SENSOR OUTPUT ∧ (∀g. g∈LANDING SETS ⇒
(door closed’(g) = strue))

act10 presurized circuit presurized :| circuit presurized ’∈ SENSOR OUTPUT
∧ ( circuit presurized ’ = sfalse)

act11 switch analog switch :| analog switch’ ∈ SWITCH POSITIONS ∧
(analog switch’ =open)

END

restore up =
REFINES
restore up

WHERE
grd1 all gear up gear position = all up
grd2 nominal mode operating mode = normal
grd3 abort command continuation mode = continue
grd4 all raised ∀g.g∈LANDING SETS ⇒(gear movement(g) = locked up

∨ gear movement(g) = stored up)
grd5 handle down handle state = handle up

THEN
act1 door open gear extended := LANDING SETS × {sfalse}

act2 all gears up gear position := all up
act3 all stored gear movement := {Front → stored up, Left → stored up,

Right → stored up}
act4 normal mode operating mode := normal
act5 continue continuation mode := continue
act6 light maneveur off light maneuver := light off
act7 gear extended gear extended := LANDING SETS × {sfalse}

act8 gear retracted gear retracted := LANDING SETS × {strue}

act9 door closed door closed := LANDING SETS × {strue}

act10 presurized circuit presurized :| circuit presurized ’∈ SENSOR OUTPUT
∧ ( circuit presurized ’ = sfalse)

act11 switch analog switch :| analog switch’ ∈ SWITCH POSITIONS ∧
(analog switch’ = open)

END

Fig. 6 The event restore_up before (left) and after (right) the application of Heuristic 2
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computation of the parameters of the control law

(acceleration) can be performed.

The result of the last refinement is very close to an

implementation, in spirit if not in form. Nevertheless, we

decided to use animation to validate the specification for

the following reasons: to satisfy our curiosity regarding the

heavy use of functions; to compare the results of the ani-

mation with the results of simulations that had been made

previously; and to confirm the correctness of a certain

‘‘formal approximation.’’

The last reason is a consequence of using discrete tools

to model what is inherently continuous. In this case, all

POs were discharged, assuming one property, namely

xðy=zÞ ¼ ðxyÞ=z, holds. True in R, this property is false in

N. However, the difference becomes actually negligible

when numerators are much bigger than denominators.

Animation with realistic values gives insight on the

validity of the ‘‘approximation’’ and on the solidity of the

model.

The context of the model contains the notions of speed

and acceleration. Several constants and axioms have been

introduced into the context to help introducing the kine-

matics of a platooning system. The definition of the kine-

matics is comprised of complex mathematical functions

and definitions which are non-animatable. Their non-ani-

matability is primarily due to the complex definition of the

functions. It does not allow the assignment of a single start-

up value to the constant for animation. In fact, some of the

functions are based on multiple definitions, each corre-

sponding to a different case.

The first complexity arose in the refinement Pla-

toon_2 with the definition of the new_xpos function:

8xpos0; speed0; accel0:
ððxpos0 2 N ^ speed0 2 0::MAX SPEED

^ accel0 2 MIN ACCEL::MAX ACCELÞ
) ðnew xposðxpos0 7! speed0 7! accel0Þ
¼ xpos0þ speed0þ ðaccel0=2ÞÞÞ

which models the kinematic law of computing a new

position of a vehicle based on its acceleration and speed. It

was used in some event guards in the following form and

naturally could not be computed because actual values

were required by the animators instead of calling a function

in the context.

nxpos ¼ new xposðxposðvehicleÞ 7! speedðvehicleÞ
7!magic accelÞ

where magic_accel denotes a free variable for this refine-

ment, which will be replaced by a state variable later in the

development. Using Heuristic 3, we rewrote the guards as

nxpos ¼ xposðvehicleÞ þ speedðvehicleÞ
þ ðmagic accel=2ÞÞ

Proof of application of Heuristic 3 The PO indicates that

the Gr ) G must be proven.

nxpos ¼ new xposðxposðvehicleÞ
7! speedðvehicleÞ 7!magic accelÞ ðGÞ

The function new xpos is defined as:

new xposðxpos0 7! speed0 7! accel0Þ
¼ xpos0þ speed0þ ðaccel0=2Þ

Inlining the definition of function into G with the corre-

sponding local variables:

nxpos ¼ xposðvehicleÞ þ speedðvehicleÞ
þ ðmagic accel=2ÞÞ

ðGrÞ

Therefore, Gr ) G. h

The most important complication came with another

kinematic function, new_xpos_max, that calculates the

position of a vehicle when its speed exceeds the maximum

limit if acceleration continued through the entire time step. It

is quite similar to new_xpos, except there is a case defi-

nition, i.e., either the particular vehicle is accelerating or not:

8xpos0; speed0; accel0:
ððxpos0 2 N ^ speed0 2 0::MAX SPEED

^ accel0 2 MIN ACCEL::MAX ACCELÞ
) ðaccel0 ¼ 0 ) new xpos max

ðxpos0 7! speed0 7! accel0Þ
¼ xpos0þMAX SPEEDÞ
^ ðaccel 6¼ 0 ) new xpos max

ðxpos0 7! speed0 7! accel0Þ
¼ xpos0þMAX SPEED

� ðððMAX SPEED� speed0Þ
� ðMAX SPEED� speed0ÞÞ=ð2 � accel0ÞÞÞÞ

Fig. 7 The Event-B model of the platooning system [35]
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The events using new_xpos_max function had to be

duplicated (Heuristic 4), one with the guard accel=0 and

the other with its negation.

The prime example of such cases is the event

move1_max which is shown by Fig. 8. The grd3 of the

original event calculates the new speed of a vehicle as:

nspeed ¼ new speedðspeedðvehicleÞ 7!magic accelÞ

The speed is then checked against the maximum allowed

speed grd4, and consequently, a new position for the

vehicle is determined in grd5 as:

nxpos ¼ new xpos maxðxposðvehicleÞ 7! speedðvehicleÞ
7!magic accelÞ

To solve the issue, the cases defined to calculate

new_xpos_max are broken down into two events, each

catering for one particular case. Figure 9 shows the trans-

formed move1_max event.

The original context and the transformed context

Context_2 that specifies which functions have been

relocated to machines are shown in Fig. 10.

Proof of application of Heuristic 4 The PO needs to be

proved is

GeðvÞ ) 9e0:e0 2 Rel½feg� ^ G0
e0 ðvÞ ^ ð8e0:G0

e0 ðvÞ
) GeðvÞÞ

The non-animatable expression is the following:

nxpos ¼ new xpos maxðxposðvehicleÞ 7! speedðvehicleÞ
7!magic accelÞðGeÞ

The function new xpos max is defined as:

If accel0 ¼ 0

) new xpos maxðxpos0 7! speed0 7! accel0Þ
¼ xpos0þMAX SPEED

else if accel0 6¼ 0

) new xpos maxðxpos0 7! speed0 7! accel0Þ
¼ xpos0þMAX SPEED

� ðððMAX SPEED� speed0Þ
� ðMAX SPEED� speed0ÞÞ=ð2=accel0ÞÞ

Inlining the definition of function into Ge while splitting it

into G0 and G00

move1 max =
REFINES
move1

ANY
magic accel, nspeed, nxpos

WHERE
grd1 vehicle = 1
grd2 magic accel ∈ MIN ACCEL..MAX ACCEL
grd3 nspeed = new speed(speed(vehicle)→magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = new xpos max(xpos(vehicle)→

speed(vehicle)→magic accel)
WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

Fig. 8 The event move1_max before the application of Heuristics 3

and 4

move1 max =
REFINES
move1

ANY
magic accel, nspeed, nxpos

WHERE
grd1 vehicle = 1
grd2 magic accel ∈ MIN ACCEL..MAX ACCEL
grd’ magic accel = 0
grd3 nspeed = new speed(speed(vehicle)→ magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = xpos(vehicle) +

MAX SPEED − (((MAX SPEED −
speed(vehicle))∗(MAX SPEED −
speed(vehicle))) / (2∗magic accel))

WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

move1 max zero =
REFINES
move1

ANY
magic accel, nspeed, nxpos

WHERE
grd1 vehicle = 1
grd2 magic accel ∈ MIN ACCEL..MAX ACCEL
grd ’’ magic accel = 0
grd3 nspeed = new speed(speed(vehicle)→ magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = xpos(vehicle) + MAX SPEED

WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

Fig. 9 The event move1_max after the application of Heuristics 3 and 4
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G0 states:

grd0 magic accel 6¼ 0

grd5 nxpos¼ xposðvehicleÞþMAX SPEED

�ðððMAX SPEED� speedðvehicleÞÞ
� ðMAX SPEED� speedðvehicleÞÞÞ=ð2 �magic accelÞÞ

G00 states:

grd00 magic accel ¼ 0

grd5 nxpos ¼ xposðvehicleÞ þMAX SPEED

Therefore, G0 _ G00 ) GeðvÞ. h

The major discovery from animating the specification

was the presence of oscillation in the platoon, i.e., the

propagation of a wave inside the platoon without

stabilization. The last vehicles of the platoon frequently

adjusted their acceleration while the ones in the front ran

steadily. Animation’s revelation of this undesirable feature

showed the specification needed to be improved.

7 Evaluation of the animation process

Breuer et al. [40] listed three qualitative measures that can

be used to evaluate any animation process. In addition to

completeness, they mention coverage, i.e., how many

language constructs are handled; efficiency, i.e., how

quickly an animation process is performed; and sophisti-

cation, i.e., how many of the animation processes actually

terminate.

In addition, [41] provides further criteria to strengthen

the evaluation of an animation process, i.e., interactivity,

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX SPEED, MIN ACCEL, MAX ACCEL, initial speed, new speed,
new xpos, new xpos max, new xpos min

AXIOMS
typ01 MAX SPEED ∈ N1
typ02 MAX ACCEL ∈ N1
typ03 MIN ACCEL ∈ INT

pro01 MIN ACCEL < 0
pro02 initial speed ∈ 1..VEHICLES → 0..MAX SPEED
pro03 ∀ vehi0.(vehi0∈1..VEHICLES ⇒ (∃ speed0.

(speed0 ∈ 0..MAX SPEED ∧ initial speed(vehi0) = speed0)))
pro04 new speed ∈ (0..MAX SPEED X

MIN ACCEL..MAX ACCEL) → INT
pro05 ∀ speed1,accel1 .

(speed1∈0..MAX SPEED ∧ accel1∈
MIN ACCEL..MAX ACCEL ⇒
new speed(speed1→accel1) = speed1 + accel1)

pro06 new xpos ∈ (N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL)→ N

pro07 ∀ xpos0,speed0,accel0 . ((xpos0 ∈ N ∧
speed0 ∈ 0..MAX SPEED ∧
accel0 ∈ MIN ACCEL..MAX ACCEL) ⇒
(new xpos(xpos0→speed0→accel0) =
xpos0 + speed0 + (accel0 / 2)))

pro08 new xpos max ∈ N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL → N

pro09 ∀ xpos0,speed0,accel0 . (xpos0 ∈ N
∧ speed0 ∈ 0..MAX SPEED ∧
accel0 ∈ MIN ACCEL..MAX ACCEL ⇒
((accel0 = 0 ⇒
new xpos max(xpos0→speed0→accel0)
= xpos0 + MAX SPEED) ∧
(accel0 = 0 ⇒
new xpos max(xpos0→speed0→accel0) =
xpos0 + MAX SPEED −
(((MAX SPEED − speed0) ∗
(MAX SPEED−speed0))/(2∗accel0)))))

pro10 new xpos min ∈ N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL → N

pro11 ∀ xpos0,speed0,accel0 . (xpos0 ∈ N ∧
speed0 ∈ 0..MAX SPEED ∧
accel0 ∈ MIN ACCEL..MAX ACCEL ⇒
((accel0 = 0 ⇒
new xpos min(xpos0→speed0→accel0) =
xpos0) ∧ (accel0 = 0 ⇒
new xpos min(xpos0→speed0→accel0) =
xpos0 − ((speed0∗speed0) / (2∗accel0)))))

END

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX SPEED, MIN ACCEL, MAX ACCEL,
initial speed ,

AXIOMS
typ01 MAX SPEED ∈ N1
typ02 MAX ACCEL ∈ N1
typ03 MIN ACCEL ∈ INT

pro01 MIN ACCEL < 0
pro02 initial speed ∈ 1..VEHICLES → 0..MAX SPEED
pro03 ∀ vehi0.(vehi0∈1..VEHICLES ⇒

(∃ speed0 . (speed0 ∈ 0..MAX SPEED ∧ initial speed(vehi0) = speed0)))

END

Fig. 10 The context Context_2 before (left) and after (right) the application of Heuristic 3
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transparency and operational equivalence. Interactivity is

the idea that a user should be able to interact with the

animator in order to perform better exploration of the

specification. Transparency is directly related to the inter-

mediate transformations that help achieve animations of

specifications. Finally, operational equivalence of an ani-

mator is ensured when its performed operations are

equivalent to the specification’s operation, and not the

operations of the refinements of the specification.

The VTA framework meets most of the stipulated criteria

for a desirable animation process. As described in this paper,

we are able to compensate for an animation tool’s inability to

execute specifications. For example, if a specification lan-

guage construct is not supported by a tool, we promote its

rewriting into an equivalent formula that not only extends its

coverage but also contributes toward its efficiency and

sophistication. Our heuristics that deal with the simplifica-

tion of formulas, providing missing types, inlining function

values, etc., also help achieve efficiency and sophistication.

VTA not only increases the interactivity of users with

tools by proposing heuristics but with the help of provided

semantics one can also reason about transparency of the

proposed transformations. In some cases, transformations

are identity functions (e.g., rewriting), so they are highly

transparent. However, in case of unsupported elements

where specifications need to undergo some structural

reordering and optimizations, our proposed semantics

provide a basis to argue about the soundness and, conse-

quently, transparency of transformations.

It is not always possible to maintain the operational

equivalence between the original and the transformed

specification, for example, in case of refinement and

approximation. In the transformation process, one can lose

certain behaviors, for example, by restricting some inputs,

but one cannot have additional behaviors such as new state

transitions. We have, therefore, introduced the notion of

‘‘fidelity’’ which is looser than strict behavioral equiva-

lence, but ensures that observations made on the trans-

formed specification equate with the original specification.

8 Related work

The concept of specification animation is not a new one.

Program visualizations have been previously used for

designing, developing, monitoring and debugging soft-

ware. Some notable visualization environments spanning

across different areas of interest are graphics interface

development [42], visualization of concurrent pro-

cesses [43], etc.

Execution of specifications is a controversial issue.

More than two decades ago, Hayes et al. [44] objected to

the idea of specification execution. They argued that

execution suppresses the expressiveness of a language and

as far as specifications are concerned, the latter quality of a

specification should be preferred over the former. In

addition, they stated that executable specifications can

negatively affect implementations.

In response to these concerns, [45] replied that it is the

issue of correctness which is the major challenge in soft-

ware development and not the expressiveness of specifi-

cation languages. A technique like animation is, in fact, a

very powerful method to ensure that specifications are

validatable by customers as early as possible, thus mini-

mizing the chances of software faults.

Our approach addresses both issues. Our rules help

specifications achieve their animation, and at the same

time, we ensure that they remain consistent. Our work can

be seen as an extension of the approach presented in [46].

This work highlights the steps of converting a formal

problem specification to a final program by applying

semantics-preserving transformation rules.

9 Conclusion

We have presented an animation-based process for vali-

dation of formal requirements specifications. The idea of

stepwise development is further enriched by a proposition

of an auxiliary animation step associated with key

refinements.

One limiting factor associated with the technique of

animation is that not all specifications are animatable, at

least, not directly. However, a specification can be trans-

formed into a behaviorally equivalent animatable specifi-

cation which may be unprovable. We have then proposed

several transformations to realize this idea. Naturally, the

validity of such a technique depends on semantics of the

transformations. We have then developed a specific formal

notion based on the behavior-preservation property of a

model, to guarantee that the transformations can be trusted.

We have developed heuristics that guide the application

of the proposed transformations to make a specification

animatable. We have applied them in several case studies,

each dealing with a specification written in the Event-B

language. When the animators we were using were unable

to deal with the form of the specification, our heuristics

indicated which transformation(s) to apply. Application of

the indicated transformations resulted in animatable speci-

fications. Portions of these case studies have been illus-

trated in this paper, showing the before and after forms of

the specifications, and the proofs confirming the correct-

ness of the transformation applications. In our studies, we

applied the transformations manually. Having now estab-

lished the utility of this approach, we plan to mechanize

our transformations.
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Despite our transformation rules, animators may still

fail to execute a specification, for instance when state

spaces are still too big to be blindly explored. For the

validation of such specifications, the technique of simu-

lation [47], where users can safely replace nondetermin-

istic expressions by computable expressions in the

program generated from the specification, best suits the

purpose. In future, we plan to extend the VTA framework

also in this direction.

References

1. Heitmeyer CL, Jeffords RD, Labaw BG (1996) Automated con-

sistency checking of requirements specifications. ACM Trans

Softw Eng Methodol (TOSEM) 5(3):231–261

2. Kaufmann M, Moore JS (1996) ACL2: an industrial strength

version of Nqthm. In: Proceedings of the eleventh annual con-

ference on computer assurance (COMPASS-96)

3. Owre S, Rushby JM, Shankar N (jun 1992) PVS: a prototype

verification system. In: Kapur D (ed) 11th international confer-

ence on automated deduction (CADE), ser. lecture notes in arti-

ficial intelligence, vol 607. Springer, Saratoga, pp 748–752

4. Gordon MJC, Melham TF (1993) Introduction to HOL: a theo-

rem-proving environment for higher-order logic. Cambridge

University Press, New York

5. Paulson LC (1994) Isabelle: a generic theorem prover, ser. lecture

notes in computer science. Springer, Berlin

6. Beyer D, Henzinger TA, Jhala R, Majumdar R (2007) The soft-

ware model checker BLAST: applications to software engineer-

ing. Int J Softw Tools Technol Transf 9(5):505–525

7. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M,

Roveri M, Sebastiani R, Tacchella A (2002) NuSMV 2: an open

source tool for symbolic model checking. In: Brinksma E, Larsen

K (eds) Computer aided verification, ser. lecture notes in com-

puter science, vol 2404. Springer, Berlin, pp 359–364

8. Hinton A, Kwiatkowska M, Norman G, Parker D (2006) PRISM:

a tool for automatic verification of probabilistic systems. In:

Hermanns H, Palsberg J (eds) Tools and algorithms for the

construction and analysis of systems, ser. lecture notes in com-

puter science, vol 3920. Springer, Berlin, pp 441–444

9. Holzmann GJ (1997) The model checker SPIN. IEEE Trans

Softw Eng 23(5):279–295

10. Butler R, Caldwell J, Carreno V, Holloway C, Miner PS, Di Vito

B (1995) NASA Langley’s research and technology-transfer

program in formal methods. In: Computer assurance, 1995.

COMPASS ’95. Systems integrity, software safety and process

security. Proceedings of the tenth annual conference on June

1995, pp 135–149

11. Kaufmann M, Moore J (1997) An industrial strength theorem

prover for a logic based on Common Lisp. Softw Eng IEEE Trans

23(4):203–213

12. Cimatti A (2001) Industrial applications of model checking. In:

Cassez F, Jard C, Rozoy B, Ryan M (eds) Modeling and verifi-

cation of parallel processes, ser. lecture notes in computer sci-

ence, vol 2067. Springer, Berlin, pp 153–168. doi: 10.1007/3-

540-45510-8_6

13. Bormann J, Lohse J, Payer M, Venzl G (1995) Model checking in

industrial hardware design. In: Proceedings of the 32Nd annual

ACM/IEEE design automation conference, ser. DAC ’95. ACM,

New York, pp 298–303. doi: 10.1145/217474.217545

14. Spivey JM (1988) Understanding Z: a specification language and

its formal semantics. Cambridge University Press, New York

15. Abrial J-R (1996) The B book. Cambridge University Press, New

York

16. Abrial J-R (2010) Modeling in event-B: system and software

engineering. Cambridge University Press, New York
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http://tel.archives-ouvertes.fr/tel-00614269/en/

31. Abrial J-R, Butler M, Hallerstede S, Hoang T, Mehta F, Voisin L

(2010) Rodin: an open toolset for modelling and reasoning in

Event-B. Int J Softw Tools Technol Transf 12(6):447–466

32. Mashkoor A, Jacquot J-P, Souquières J (2009) B Evénementiel

pour la Modélisation du Domaine: application au transport. In:

Approches formelles dans l’Assistance au Développement de
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