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Abstract In goal-oriented requirements engineering, goal

models have been advocated to express stakeholder

objectives and to capture and choose among system

requirement candidates. A number of highly automated

procedures have been proposed to analyze goal achieve-

ment and select alternative requirements using goal mod-

els. However, during the early stages of requirements

exploration, these procedures are difficult to apply, as

stakeholder goals are typically high-level, abstract, and

hard-to-measure. Automated procedures often require for-

mal representations and/or information not easily acquired

in early stages (e.g., costs, temporal constraints). Conse-

quently, early requirements engineering (RE) presents

specific challenges for goal model analysis, including the

need to encourage and support stakeholder involvement

(through interactivity) and model improvement (through

iterations). This work provides a consolidated and updated

description of a framework for iterative, interactive, agent-

goal model analysis for early RE. We use experiences in

case studies and literature surveys to guide the design of

agent-goal model analysis specific to early RE. We intro-

duce analysis procedures for the i* goal-oriented frame-

work, allowing users to ask ‘‘what if?’’ and ‘‘are certain

goals achievable? how? or why not?’’ The i* language and

our analysis procedures are formally defined. We describe

framework implementation, including model visualization

techniques and scalability tests. Industrial, group, and

individual case studies are applied to test framework

effectiveness. Contributions, including limitations and

future work, are described.

Keywords Goal-oriented requirements engineering �
Goal modeling � Modeling � Model analysis � Model

iteration � Interactive modeling � Satisfaction analysis

1 Introduction

Models focusing on stakeholder goals have been proposed

for use in requirements engineering (RE) (e.g., [10, 11, 39,

51]). It has been suggested that such models are particu-

larly suitable for elicitation and analysis in early RE as they

can show the underlying motivations for systems, capture

non-functional success criteria, and show the effects of

high-level design alternatives on goal achievement for

various stakeholders through a network of dependencies.

We call this type of model, including agents with inter-

dependent goals, agent-goal models. Example of agent-

goal model frameworks include i* [51, 52], GRL [3], and

Tropos [6].

An agent-goal model can be used to answer ‘‘what if?’’

analysis by propagating the ‘‘satisfaction level’’ of goals

onto other goals along the paths of contributions as defined

in the model [10]. We refer to this as ‘‘forward’’ analysis.

Conversely, one can start from the desired goals and work

‘‘backwards’’ along contribution paths to determine what

combinations of choices (if any) will satisfy desired sets of

objectives.
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Several procedures have been developed to perform

forward and backward analysis on goal models (e.g., [4, 10,

20, 40, 41]). Most of these procedures aim for a high degree

of automation, desirable especially for large and complex

models. However, during the early stages of requirements

exploration, stakeholder goals are typically high-level,

abstract, and hard-to-measure. Automated procedures often

require formal representations and/or information not easily

acquired in early stages (e.g., costs, temporal constraints).

Consequently, early RE presents specific challenges for

goal model analysis, including the need to encourage and

support stakeholder involvement (through interactivity) and

model improvement (through iteration).

We address these needs by developing a framework for

iterative, interactive analysis of agent-goal models in early

requirements engineering. Our framework facilitates ana-

lysis through methods, algorithms, and tools. We summa-

rize the contributions of this work as follows:

• Our framework provides analysis power, allowing users

to ask ‘‘what if certain requirements alternatives are

chosen?’’, ‘‘is it possible to achieve certain goal(s) in

the model? If so, how? If not, why not?’’

• Our analysis methods are interactive, allowing users to

use their knowledge of the domain to make decisions

over contentious areas of the model, encouraging

stakeholder involvement in the analysis process.

• We provide a guiding methodology for goal model

creation and analysis.

• Our interactive procedures and methodology aim to

encourage model iteration, revealing unknown infor-

mation, and potentially increasing the completeness

and accuracy of the models.

• Our analysis procedures are appropriate for early, high-

level analysis, as they do not require formal or

quantitative information beyond what is captured by

goal models.

• We provide a clear and formal interpretation of our

example goal modeling notation (i*) and the analysis

procedures.

• We place emphasis on procedure usability, tested as

part of several studies.

• We assess scalability of the automated and interactive

elements of the framework, showing the procedures

scale to models of a reasonable size.

This work improves upon and unifies earlier work by the

authors, presenting a cohesive and consistent framework

for interactive and iterative early RE model analysis.

Development of the backward analysis procedure [29, 31]

has helped to clarify the forward analysis procedure, pre-

viously described informally in [28, 30]. The backward

analysis procedure has evolved since its introduction in

[29]—in this work, we include an updated description.

Previous work has described studies which evaluate

components of the framework [24, 28, 30, 31, 33, 35].

Here, we present a consolidated view of study results,

summarizing discovered strengths and limitations. We

present recent scalability results over the framework

implementation and compare the consolidated framework

to related work.

The paper is organized as follows. After a motivating

example in Sects. 1.1 and 2 provides an overview of the

agent-goal model language used in our examples (i*),

including a formal description of the language. Section 3

motivates and describes the analysis procedures, including

examples. Section 4 provides a suggested modeling and

analysis methodology using the running example. Section 5

describes implementation, including the OpenOME tool,

procedural details, visualization techniques, and scalability

tests. Section 6 describes the evaluation of the framework

through several case studies. Section 7 reviews existing

goal model analysis approaches. Section 8 evaluates the

contributions of the framework, discussing limitations and

future work.

1.1 Motivating example: youth counseling

organization

Consider the challenges of a youth counseling organiza-

tion, studied as part of a multi-year strategic requirements

analysis project undertaken by the authors and other col-

leagues [13]. The not-for-profit organization focuses on

counseling for youth over the phone, but must now expand

their ability to provide counseling via the Internet. Online

counseling could be viewed by multiple individuals and

may provide a comforting distance which would encourage

youth to ask for help. However, in providing counseling

online, counselors lose the cues they would gain through

live conversation, such as timing or voice tone. Further-

more, there are concerns with confidentiality, protection

from predators, public scrutiny over advice, and liability

over misinterpreted guidance. The organization must

choose among multiple technical options to expand their

internet counseling service, including a modification of

their existing anonymous question and answer system,

discussion boards, wikis, text messaging, chat rooms. In

order to make strategic decisions, a high-level under-

standing of the organization, system users, and the trade-

offs among technical alternatives is needed.

Modeling methods described in previous work can be

applied to understand the domain, producing agent-goal

models which include systems, stakeholders, goals, con-

tributions, and dependencies [51]. Figure 1 contains a

simplified example of an agent-goal model created for this

domain. In this model, the Counseling Organization must

choose between several forms of online counseling. Their
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choices affect not only their goals, but also the goals of the

Counselors and the Kids and Youth. The model contains

three actors: the Organization (top), Kids and Youth

(bottom left), and Counselors (bottom right). The Orga-

nization, an agent, wants to achieve several softgoals,

including Helping Kids, Increasing Funds, and providing

High Quality Counseling. These goals are difficult to

precisely define, yet are critical to the organization. The

Organization has the hard goal of Providing Online

Counseling Services and explores two alternative tasks

for this goal: Use Text Messaging and Use CyberCafé/

Portal/ChatRoom. These alternatives contribute posi-

tively or negatively by various degrees to the Organiza-

tion’s goals, which in turn contribute to each other. For

example, Use Text Message hurts Immediacy which

helps High Quality Counseling.

The Organization depends on the Counselors to pro-

vide the alternative counseling services and for many of its

softgoals, for example, High Quality Counseling. Kids

and Youth depend on the Organization to provide various

counseling services, such as CyberCafé/Portal/Chat

Room. Both the Counselors and Kids have their own

goals to achieve, also receiving contributions from the

counseling alternatives. Although the internal goals of each

actor may be similar, each actor is autonomous, including

the meaning individually attributed to goal, e.g., High

Quality Counseling may mean something different for the

Counselor than for the Organization.

Examining this type of model raises several questions:

Which counseling alternative is the most effective, and for

whom? Are there alternatives which could achieve each

actor’s goals? If not, why not? What important information

is missing from the model? Is the model sufficiently cor-

rect? Generally, how can such an organization explore and

evaluate options for online counseling, balancing the needs

of multiple parties, while dealing with the complexity of

the model and domain?

Although some questions may be answered by studying

the model, tracing effects consistently quickly becomes too

complex for humans. The model in Fig. 1 is a simplified

version of a larger model, tracing the effects of alternative

functionality is especially difficult when the model

Fig. 1 i* Model representing simplified relationships and alternatives for online counseling (adapted from [28, 30])
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becomes large. There is a need for systematic analysis

procedures which help the modeler to trace effects in order

to answer domain questions, evaluate alternative require-

ments, and explore the model. Such procedures should

account for the early, high-level, and exploratory nature of

the models and elicitation process. We return to our

motivating example when illustrating analysis procedures

in Sect. 3.

2 The i* agent-goal modeling framework: variation

and formalization

In order to aid comprehension, illustration, and imple-

mentation, analysis procedures introduced in our frame-

work should be described concretely, over a specific

language. Several possible goal-oriented languages are

available (e.g., NFR [10], Tropos [6], KAOS [11]). The i*

framework, which builds upon the NFR framework, has

been used as a basis for agent-goal modeling in the GRL

and Tropos frameworks. As such, it includes many existing

goal model language concepts. Other frameworks, such as

KAOS, do not support informally or imprecisely defined

softgoals, making them more suitable for later RE speci-

fication and analysis. We select the i* framework as an

underlying base for our analysis procedure (limitations of

this selection are discussed in Sect. 8.2). This section

provides a high-level description of i*, discusses variation

in i* use, then provides a formal definition of i* concepts,

facilitating a formal description of our agent-goal model

analysis, consolidating work presented in [26, 29, 31].

2.1 The i* framework

i* models are intended to facilitate exploration of the

system domain with an emphasis on social aspects by

providing a graphical depiction of system actors including

their intentions, dependencies, and alternatives [51, 52].

The agent-oriented aspect of i* is represented by actors,

including agents and roles, and the associations between

them.

Actors depend upon each other for the accomplishment

of tasks, the provision of resources, the satisfaction of

goals and softgoals. Softgoals are goals without clear-cut

criteria for satisfaction; therefore, a softgoal is satisfied

when it is judged to be sufficiently satisfied. Dependency

relationships include the depender, the actor depending on

another actor, the dependum, the intention being depended

upon, and the dependee, the actor being depended upon.

The intentions which motivate dependencies are

explored inside each actor, considering the goals, softgoals,

tasks, and resources explicitly desired by the actors.

Dependencies are linked to specific intentions within the

dependee and depender. The intention depending on the

dependum is referred to in this work as the depender

intention, while the intention depended on to satisfy the

dependum is referred to as the dependee intention.

The interrelationships between intentions inside an actor

are depicted via three types of links. Decomposition links

show the intentions which are necessary in order to

accomplish a task. Means-Ends links show the alternative

tasks which can accomplish a goal. Contribution links

show the effects of softgoals, goals, and tasks on softgoals.

Positive/negative contributions representing evidence

which is sufficient enough to satisfice/deny a softgoal are

represented by Make/Break links, respectively. Contribu-

tions with positive/negative evidence that is not in itself

sufficient enough to satisfice/deny a softgoal are repre-

sented by Help/Hurt links. Positive/negative evidence of

unknown strength can be represented by Some?/Some-

links.

2.2 i* Variations

The description of the i* framework by Yu in [51] aimed to

be flexible enough to facilitate modeling of early require-

ments, leaving the language open to a certain degree of

interpretation and adaptation. Consequently, the core syn-

tax of the i* framework has often been modified (e.g., [3,

6]). We aim to support common variations from i* syntax

as introduced in [51]. Our previous work in [26] has sur-

veyed i* syntax variations in research papers and course-

work. Commonly occurring syntactical structures are

classified under ‘‘strict’’ and ‘‘loose’’ versions of i* syntax,

corresponding to syntax errors and warnings, respectively.

We use this survey of i* syntax variations to determine

how broad or how flexible to make our formal definition,

aiming to create a balance between clarity and flexibility. A

full list of syntax variations supported by our definition can

be found in [24].

2.3 Formalization

To facilitate partial automation of analysis, we introduce a

more formal description of the i* framework. In our

description, we use the following notation:

• 7! is used as a mapping from an intention or relation to

a member of a set, so i 7! a; bf g means that i maps to

either a or b.

• ! is used to represent relationships between elements,

so if i1; i2ð Þ 2 R we write this as R : i1 ! i2.

We express agent-goal model concepts formally as follows.

Definition 1 (agent–goal model) An agent-goal model is

a tuple M¼\I ;R;A[ , where I is a typed set of
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intentions,R is a set of relations between intentions, and A
is set of actors.

Definition 2 (intention type) Each intention maps to one

type in the IntentionType set, I 7! IntentionType, where

IntentionType ¼ Softgoal;Goal; Task;Resourcef g.

Definition 3 (relation type) [Relation Type] Each rela-

tion maps to one type in the RelationType set,

R7!RelationType, where RelationType ¼ Rme;Rdec;Rdep;
�

Rcg. These relationships correspond to means-ends,

decomposition, dependency, and contribution links,

respectively. Rc can be broken down into a further set

ContributionType ¼ Rm;Rhlp;Ru;Rhrt;Rb
� �

where if r 2
R 7!Rc then r 7!ContributionType. The contribution link

types correspond to make, help, unknown, hurt, and break,

respectively.

Definition 4 (relation behavior) The following rela-

tionships are binary (one intention relates to one intention,

R : I ! I): Rdep, Rc. The remaining relationships (Rme,

Rdec) are ðnþ 1Þ-ary (one to many intentions relate to one

intention), R : I � . . .� I ! I.

The formalism could be supplemented to include the

mapping from intentions to actors, actor types, and actor

association links. Currently, these types do not play a role

in the automated portion of our framework. We leave their

inclusion in the formalism to future work. For simplicity,

we treat Some?/Some- as Help/Hurt, respectively. Thus,

we exclude these links from ContributionType.

We define several other concepts useful for analysis,

such as leaves, roots, and positive/negative links.

Definition 5 (leaf/root intention) An intention i 2 I is a

leaf if there does not exist any relation, r 2 R such that

r : I ! i or r : I � . . .� I ! i, it is a root if there does not

exist any relation, r 2 R such that r : i! I or

r : i� . . .� I ! I.

Definition 6 (positive/negative link) A relation r 2 R is

positive if r 7!Pos ¼ Rm;Rhlp, it is negative if

r 7!Neg ¼ Rhrt;Rb.

3 Interactive analysis

This section describes qualitative, interactive evaluation

procedures for goal- and agent-oriented models, allowing

the user to compare alternatives in the domain, asking

forward, ‘‘what if?’’ type questions, and finding satisfying

solutions using backward, ‘‘are these goals achievable?’’

questions. The forward procedure has previously been

described in [28, 30]. Here, the description is expanded and

improved, described more precisely using the formalism

from Sect. 2.3. The backward analysis procedure described

in this section has appeared in [29]. Here, we improve upon

the description, presenting a unifying description of for-

ward and backward analysis, using the same illustrative,

counseling service example.

In the rest of this section, we motivate the need for

forward and backward analysis, provide a procedure

overview, and required definitions and propagation rules.

We end with concrete examples of both forward and

backward analysis.

3.1 Challenges and motivation

In this section, we use the counseling service model from

Sect. 1.1 (Fig. 1) to answer example ‘‘what if?’’ and ‘‘are

certain goals achievable?’’ questions in an ‘‘ad hoc’’

manner, without using a systematic or semiautomated

procedure. This experience reveals some of the more

detailed challenges associated with analyzing goal models,

motivating the need for systematic analysis as introduced

in this section.

Forward analysis. In Sect. 1.1, we asked ‘‘Which

counseling alternative is the most effective?’’ We could

start this analysis by considering the alternative where Use

Text Messaging (shortened hereafter to Text), repre-

sented as a task in the model, is implemented, and Use

Cyber Café/Portal/Chat Room, another task (shortened

hereafter to Chat), is not implemented. The reader can try

to use their knowledge of i* syntax provided in Sect. 2 to

trace the effects of the satisfaction or denial of these tasks

through the links in the model. In one path inside of the

Kids and Youth actor, for example, Text would help

Anonymity, which would help both Comfortableness

with Service and Get Effective Help. In another path,

Text would hurt Immediacy [Service], which, in turn

helps Get Effective Help. In yet another path, Chat is not

implemented, yet this task has a help effect on Comfort-

ableness (with service), which in turn helps Get Effec-

tive Help again. Considering these multiple sources of

incoming evidence (and there are more paths to trace) is

Get Effective Help satisfied? Partially satisfied? Does it

have conflicting evidence? How can we make use of

stakeholder knowledge in order to combine and resolve

multiple sources of evidence for softgoals?

When tracing the effects manually, it is cognitively

difficult to follow all paths and make these decisions

manually. In this example, we have not even left the

boundaries of the Kids and Youth. When considering the

effects of dependencies into and out from the actor, tracing

the effects of alternatives through the paths of links

becomes even more complicated.

Backward analysis. As a model may contain many

alternatives, it is helpful to find key promising alternatives

Requirements Eng (2016) 21:29–61 33
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by asking questions in the backward direction. Given cer-

tain top-level goal targets, ‘‘Are the goals achievable?’’, ‘‘If

so, how?’’, and ‘‘If not, why?’’ For example, is there an

alternative which causes Get Effective Help in Kids and

Youth to be partially satisfied? To answer this manually,

we must trace the links backward until we find potential

solutions.

As we have seen while manually propagating in the

forward direction, some softgoals receive many sources of

incoming evidence through contribution links. During

backward analysis, we must work backward to determine

the labels for contributing intentions, again making use of

stakeholder domain knowledge. For example, to at least

partially satisfy Get Effective Help, what level of satis-

faction do the three contributing goals (Comfortableness

with Service, Anonymity, Immediacy [Service]) need?

In one combination, we could judge that it would be suf-

ficient for these three softgoals to be at least partially sat-

isfied. From this, we could continue to trace links backward

down to the task alternatives. For Immediacy to be par-

tially satisfied, we can judge that Text should be denied

(not implemented), while Chat should be satisfied. The

target label for Anonymity leads us to an opposite judg-

ment. We can see that this selection of analysis results will

not produce a consistent solution, we must return and re-

evaluate our previous judgments, if possible.

We can see that the process of tracing branching back-

ward paths, backtracking through judgments, is challenging

to perform manually. What is needed is an automated

process, tracing down the links to find contributing effects,

finding areas requiring judgment, then backtracking to

previous judgments when judgments result in contradic-

tions (e.g., satisfied and not satisfied).

In formulating such an interactive backward procedure,

we face some interesting questions and technical chal-

lenges. What types of questions could and should be

posed to the user, and at what point in the procedure?

How can we capture and make use of stakeholder

knowledge through human judgments? When a choice

does not lead to an acceptable solution, to what state does

the procedure backtrack? How can we present information

about conflicts to the user? Is there a computationally

realistic approach? The backward analysis procedure

introduced in this work represents one approach to

answering these questions.

3.2 Procedure overview

The analysis procedure starts with an analysis question of

the form ‘‘How effective is an alternative with respect to

model goals?’’ or ‘‘Are certain goals achievable?’’ The

procedure makes use of a set of qualitative evaluation

labels assigned to intentions to express their degree of

satisfaction or denial. The process starts by assigning labels

to intentions related to the analysis question. These labels

are propagated through the model links, either forward or

backward, using defined rules. The procedure is interactive

when the user must make judgments over conflicting or

partial incoming or outgoing evidence for softgoals. The

final satisfaction and denial labels for the intentions of each

actor are analyzed in light of the original question. In the

forward direction, an assessment is made as to whether the

analysis alternative sufficiently achieved key goals. In the

backward direction, the solution achieving key goals (if

found) is examined. These results may stimulate further

analysis and potential model refinement. We can summa-

rize the procedure steps as follows:

1. Initiation: The evaluator decides on an analysis

question and applies corresponding initial evaluation

labels to the model. The initial labels are added to a set

of labels to be propagated.

Steps 2 and 3 are performed iteratively, until there is

nothing new to propagate (forward) or a contradiction

has been found and there are no new applicable

judgments (backward).

2. Propagation: The evaluation labels are propagated

through the model. Results propagated through contri-

bution links are stored in the destination softgoal.

2.b. Backtrack: (Backward) if a contradiction is found,

the procedure backtracks to the last set of softgoal

resolutions, if such a set exists.

3. Softgoal resolution: Sets of multiple labels are resolved

by applying automatic cases or manual judgments,

producing results which are incorporated back in to the

propagation.

4. Assessment: The final results are examined in light of

the initial analysis question. Model issues can be

discovered, and further possibilities are evaluated.

3.3 Qualitative analysis labels and predicates

We adopt the qualitative labels used in NFR evaluation

[10], replacing ‘‘weakly’’ with ‘‘partially.’’ The resulting

labels are satisfied, partially satisfied, conflict, unknown,

partially denied, and denied. The satisfied ( ) label rep-

resents the presence of evidence which is sufficient to

satisfy a goal. Here, evidence comes from connected

intentions, which themselves have evidence of the afore-

mentioned types. Partially satisfied ( ) represents the

presence of positive evidence not sufficient to satisfy a

goal. Partially denied ( ) and denied ( ) have the same

definition with respect to negative evidence. Conflict ( )

indicates the presence of both positive and negative evi-

dence judged to have roughly the same magnitude.

34 Requirements Eng (2016) 21:29–61

123



Unknown ( ) represents the situation where there is evi-

dence, but its effect is unknown. We use partially satisfied

and denied labels for tasks, resources, and goals, despite

their clear-cut nature, to allow for greater expressiveness.

In order to express evaluation evidence as part of our

formalism, we introduce analysis predicates, similar to

those used in Tropos analysis [21].

Definition 7 (analysis predicates) Model analysis evi-

dence is expressed using a set of predicates, V ¼ SðiÞ;f
PSðiÞ;CðiÞ;UðiÞ;PDðiÞ;DðiÞg over i 2 I . Here SðiÞ=PSðiÞ
represents evidence of full/partial satisfaction, CðiÞ repre-
sents conflict, UðiÞ represents unknown, and DðiÞ=PDðiÞ
represents full/partial denial.

It is important to note that analysis labels and predicates,

although similar, are not handled in exactly the same way

by our procedure. Typically, there is a one-to-one mapping

between labels and predicates for an intention, and labels

can be seen as the graphical representation of predicates,

while predicates are the encoding of labels. However, in

our implementation, it is possible for more than one ana-

lysis predicate to hold (be true) for an intention. Such sit-

uations are resolved through human judgment, with the

output being a single label/predicate displayed on the

intention (more detail provided in Sects. 3.5.2 and 3.6.2).

The predicates which hold for an intention tell us

nothing about whether the other evaluation predicates hold

for this intention. For example, a value of true for SðTextÞ
does not imply that DðTextÞ is false, and a false value for

SðTextÞ only means that S does not hold, not that DðTextÞ
or any other predicate is true.

Similarly, in our framework, conflict predicates are not

automatically derived from other, non-conflict predicates

(unless there is a contribution link of the type Conflict). For

example, SðTextÞ and DðTextÞ does not imply CðTextÞ.
This allows the user greater flexibility, giving the user the

option to resolve conflicting evidence through human

judgment. We still use the term analysis predicate conflict

to indicate a situation such as SðTextÞ and DðTextÞ, where
more than one analysis predicate holds for an intention and

those predicates represent conflicting evidence.

Definition 8 (analysis predicate conflict) When, for an

intention i 2 I , a predicate from more than one of the

following four sets is true: SðiÞ;PSðiÞf g; UðiÞf g; CðiÞf g;
PDðiÞ;DðiÞf g

We also make use of the term contradiction, where an

analysis predicate, vðiÞ, is both true and false

ðvðiÞ ^ :vðiÞÞ.

3.4 Analysis runs and initial labels

Analysis is started by placing a set of initial labels

reflecting an analysis question on the model. In our Fig. 1

counseling service model, we have asked in the forward

direction ‘‘What if Text and not Chat is implemented?’’

We can express this question by labeling Text as satisfied

and Chat as denied, expressed in our procedure by making

the following analysis predicates true: SðTextÞ and

DðChatÞ. In the backward direction, we have asked ‘‘is it

possible for Get Effective Help to be partially satisfied?’’

In backward analysis, initial labels are often called targets,

as they are desired outcome of analysis. In this case, the

target would be expressed using the predicate

PSðGetEffectiveHelpÞ.
Our example initial labels have been applied to a subset

of our counseling service example in Fig. 2 (also showing

final analysis results), where elements receiving forward

and backward initial labels are highlighted green and blue

(medium and dark gray), respectively.

We can express the selection of initial analysis labels as

follows:

Definition 9 (initial analysis labels) For some subset of

intentions within an agent-goal model, i1. . .in 2 I , a

selection of analysis labels is made and is encoded with the

corresponding analysis predicates, vði1Þ. . .vðinÞ 2 V. This
selection represents an analysis question in the domain. We

refer to the set of predicates representing initial labels,

vði1Þ. . .vðinÞ, as IL.

In this work, the selection of initial labels in both the

forward and backward procedure is called an alternative.

Often, when referring to i* models, an alternative is also

used to mean the choice between means in a means-ends

relationship. For example, in our counseling organization

model, Provide Online Counseling can be achieved via

one (or both) of Chat or Text. In order to produce

evaluation results which take into account all connected

intentions in the model, forward analysis typically places

initial labels both over alternatives for goals and over

other intentions, covering at least all leaves. Similarly,

backward analysis targets cover intentions across the

model, typically covering most root intentions. We often

use the broader notion of an alternative in this work,

using the narrower (means-ends) meaning only for spe-

cific model examples.

Together, we call the selection of initial labels, human

judgments, and the corresponding analysis results an ana-

lysis run, defined more precisely as follows:
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Definition 10 (analysis run) The results of a single run of

the analysis procedure. Given a selection of initial analysis

labels translated to predicates, IL, for some subset of

intentions, i1. . .in 2 I , within an agent-goal model, and

given a set of human judgments (see Sect. 3.5.2), the

analysis algorithm produces analysis results for a set of

intentions, i1. . .im 2 I ,
vði1Þ. . .vðimÞ 2 V, visualized using analysis labels. If a

different set of initial analysis labels or judgments were

used, this would be a different analysis run, with poten-

tially different results over i1. . .im.

Any intention could be selected to receive an initial

label as part of an analysis run (although leaf and root

intentions are the most likely). Furthermore, each initial

intention could be given one of six labels. If there are n

intentions in the model, there are 6n possible sets of initial

analysis labels over the model, although the number of

intentions given initial labels is usually far less than n.

Generally, evaluating an analysis alternative is not helpful

unless it reflects a realistic potential selection of require-

ments, i.e., a useful analysis question in the real world.

Initial labels should be derived from domain-relevant

questions or be selected to test the ‘‘sanity’’ of the model.

The development of analysis questions is discussed in more

detail while considering methodology in Sect. 4.

3.5 Forward analysis

In this section, we provide more technical details con-

cerning forward analysis, including propagation rules and

the resolution of multiple sources of evidence using human

judgments.

3.5.1 Forward propagation rules

We present rules in order to facilitate a standard propaga-

tion of labels through agent-goal model relationships

(links). We develop axioms which cover the propagation of

each possible analysis label through each type of relation.

Generally, for an intention i 2 I , which is the destina-

tion of a relationship, r 2 R; r : i1 � . . .� in ! i forward

propagation predicates take on the form:

Forward propagation

(Some combination of vði1Þ. . .vðinÞ, v 2 VÞ ! vðiÞ

We present propagation rules for dependency, decom-

position, and means-ends relationships, with rules pre-

sented in Table 1.

Dependency links. The nature of a dependency indicates

that if the dependee intention is satisfied then the intention

depended for (the dependum) will be satisfied. If the depen-

dum is satisfied, then the depender intention will be satisfied

as well. Thus, the analysis label of the dependee intention is

propagated directly to the depender intention through the

dependum.We express this propagation by looking only at a

piece of the dependency link at a time (from the dependee

intention to the dependum, or from the dependum to the

depender intention), supporting flexibility for syntax varia-

tions (e.g., sharing or omitting dependums). We express

propagation for these relationships in the axiom below.

Fig. 2 Kids and Youth actor showing initial forward analysis labels and leaf highlighting (left) and initial backward analysis labels and root

highlighting (right)
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Given :rdep : is ! id; vðisÞ 2 V
vðisÞ ! vðidÞ:

ð1Þ

Recall that s is used to indicate the source of the rela-

tionship, while d indicates the destination (see top pic-

ture in Table 1). In this case, we are referring to the

source and destination of the analysis label in forward

propagation, not necessarily the source and destination of

the dependency. It could be argued that as the depender

intention is depending on something, it is the ‘‘source’’

of the dependency, but in forward analysis, it is the

destination of the analysis label.

Decomposition links. Decomposition links depict the

intentions necessary to accomplish a task, indicating the

use of an AND relationship, selecting the ‘‘minimum’’

label among the source labels. In order to facilitate this

type of propagation, we must provide an ordering over our

set of analysis labels, V, defining minimum and maximum.

Unlike Tropos analysis [21], we are not able to define a

total order over analysis predicates, such that for

vðiÞ 2 V; v1� v2 , v1 ! v2, as there are no implication

relationships between satisfaction/denial labels and

unknown labels, and as we have chosen not to add impli-

cations producing conflict labels (Sect. 3.3). We are,

however, able to define and utilize the following partial

orders.

8i 2 I : SðiÞ�PSðiÞ , SðiÞ ! PSðiÞ
DðiÞ�PDðiÞ , DðiÞ ! PDðiÞ ð2Þ

These partial orders have been used to reduce the number

of axioms required to express propagation in Table 1. In

addition, we can define a conceptually useful total order

where v1� v2 implies that v1 is more desirable (or

‘‘higher’’) than v2. This order is as follows:

SðiÞ�PSðiÞ�UðiÞ�CðiÞ�PDðiÞ�DðiÞ: ð3Þ

Here we chose an optimistic ordering between UðiÞ and
CðiÞ, with the idea that no information (unknown) is better

(closer to being satisfied) than conflicting information.

From this ordering, we can define max and min labels.

Definition 11 (max (min) label) Given a set of analysis

labels, vði1Þ. . .vðinÞ; v 2 V , over i1 � � � � � in, i 2 I , the

maximum (minimum) label is the largest (smallest) label,

v, given the ordering in Eq. 3.

From this, we can define propagation over decomposi-

tion links, listed in the middle of Table 1:

Given : rdec : i1 � � � � � in ! id; vði1Þ. . .vðinÞ 2 V;
minimumðvði1Þ. . .vðinÞÞ ! vðidÞ:

ð4Þ

Means-ends links. Similarly, Means-Ends links depict the

alternative tasks which are able to satisfy a goal, indicating

an OR relationship, taking the maximum label of intentions

Table 1 Propagation axioms for dependency, decomposition, and means-ends

Dependency VðisÞ VðisÞ ! VðidÞ

isid D v 2 V vðisÞ ! vðidÞ

Decomposition VðidÞ Vði1Þ. . .VðinÞ ! VðidÞ

i1 in…

id
S ð

Vn
j¼1 SðijÞÞ ! SðidÞ

PS ð
Vn

j¼1 PSðijÞÞ ! PSðidÞ
U ððð

Wn
j¼1 UðijÞÞ ^ ð

V j
k¼1 PSðikÞ ^

Vn
p¼jþ1 PSðipÞÞÞ ! UðidÞ

C ððð
Wn

j¼1 CðijÞÞ ^ ð
V j

k¼1 :PDðikÞ ^
Vn

p¼jþ1 :PDðipÞÞÞ ! CðidÞ
PD ð

Wn
j¼1 PDðijÞÞ ^ ð

V j
k¼1 :DðikÞ ^

Vn
p¼jþ1 :DðipÞÞÞ ! PDðidÞ

D ð
Wn

j¼1 DðijÞÞ ! DðidÞ

Means-ends VðidÞ Vði1Þ. . .VðinÞ ! VðidÞ

id

i1 in…

S ð
Wn

j¼1 SðijÞÞ ! SðidÞ
PS ððð

Wn
j¼1 PSðijÞÞ ^ ð

V j
k¼1 :SðikÞ ^

Vn
p¼jþ1 :SðipÞÞÞ ! PSðidÞ

U ððð
Wn

j¼1 UðijÞÞ ^ ð
V j

k¼1 :PSðikÞ ^
Vn

p¼jþ1 :PSðipÞÞÞ ! UðidÞ
C ððð

Wn
j¼1 CðijÞÞ ^ ð

V j
k¼1 PDðikÞ ^

Vn
p¼jþ1 PDðipÞÞÞ ! CðidÞ

PD ððð
Vn

j¼1 PDðijÞÞ ! PDðidÞ
D ð

Vn
j¼1 DðijÞÞ ! DðidÞ
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in the relation (bottom of Table 1). To increase flexibility,

the OR is interpreted to be inclusive.

Given : rme : i1 � � � � � in ! id; vði1Þ. . .vðinÞ 2 V;
maximumðvði1Þ. . .vðinÞÞ ! vðidÞ

ð5Þ

Contribution links. We adopt the Contribution link

propagation rules from the NFR procedure, as shown in

Table 2. These rules intuitively reflect the semantics of

contribution links. For instance, the Make link represents a

positive contribution which is sufficient to satisfy a soft-

goal. Therefore, this link propagates satisfied and partially

satisfied labels as is. For negative evidence, links are

treated as symmetric (evidence is also propagated in the

inverse). In other words, if an intention Makes another

intention when it is satisfied, it effectively Breaks this

intention when it is denied. As a result, the Make link

propagates denied and partially denied labels as is. Prop-

agation rules for the Help link are similar, except that this

link provides only a partial positive contribution. As a

result, full evidence is weakened when passing through this

link, although partial evidence remains partial (is not

weakened enough to be non-existent).

The propagation rules for the Break and Hurt links are

nearly symmetric to Make and Help; positive evidence

becomes negative and negative evidence becomes positive.

Asymmetry occurs when denied is propagated through

break, with the idea that negative evidence through a

negative link is positive, but not strong enough to produce

full satisfaction [10]. The Some? and Some- links are

evaluated pessimistically, treating them as Help and Hurt

links, respectively. As such they are omitted from Table 2.

Conflict and Unknown labels always propagate without

modification, unless through an unknown link, where a

Conflict becomes Unknown.

The rules in Table 2 can be expressed using propagation

axioms, similar to the axioms described for dependency,

decomposition, and means-ends links. Generally, given the

type of contribution link, rc 7! Rm, Rhlp, Ru, Rhrt, Rb, and the

source label, vðisÞ, a rule for each row/column combination

of Table 2 of the form vðisÞ ! vðidÞ, can be defined. For

example, for a help contribution link (Rhlp) from and

intention is to an intention id (row , column Help),

SðisÞ ! PSðidÞ.

3.5.2 Resolving multiple contributions

Softgoals are often the recipient of multiple incoming

contribution links, each of which produces an evaluation

label as per the rules in Table 2. In the forward direction, it

is our desire to resolve (combine) multiple incoming labels

into a single, resulting label. We collect incoming labels in

a label bag and then resolve labels either by identifying

cases where the label can be determined automatically, or

by human judgment: presenting the incoming labels to the

user and asking for a single resulting label.

Automatic resolution. We describe the cases where

multiple incoming labels in forward analysis can be

resolved automatically in Table 3. If there is only one

incoming label (case 1), the result is that label. If there are

multiple labels of the same polarity with one full label

(case 2), the result is the full label. If the same human

judgment has already occurred within the same analysis

run, the previous answer will be used (case 3). Finally, if a

previous human judgment produced a full label, and the set

of labels has become more positive or more negative

matching the polarity of the full label, the result is auto-

matically the same full label (case 4).

For instance, in our running example, given our initial

labels, the Immediacy [Service] softgoal in Kids and

Youth receives both a partially denied and a fully denied

label from incoming contribution links, resolved to a

denied label using Case 2 in Table 3, reflecting the idea

that evidence propagated to softgoals is roughly cumu-

lative. We show the example including final analysis

results for both forward and backward analysis in Fig. 3.

A detailed explanation of the results is given in Sect.

3.7.

Human Judgment. Human judgment is used to decide on

a label for softgoals in the cases not covered in Table 3. By

representing incoming analysis labels in their predicate

form, we can formally define what it means for an intention

to require human judgment.

Definition 12 (Need for human judgment) An intention,

i 2 I, needs human judgment if:

• i is the recipient of more than one incoming contribu-

tion link, i.e., there exists an r1 and r2 2 R such that

rc
1 : i1 ! i and rc

2 : i2 ! i, AND:

Table 2 Propagation rules showing resulting labels for contribution

links adapted from [10]

Source Label Contribution Link Type

Name Make Help Break Hurt Unkn.

Satisfied

Partially
Satisfied

Unknown

Conflict

Partially
Denied

Denied
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• There is an analysis predicate conflict, as defined in

Definition 8.

• Or, PSðiÞ or PDðiÞ holds and i has not received human

judgment in the current algorithm iteration.

Human judgment may involve promoting partial labels

to a full label, or combining many sources of conflicting

evidence. When making judgments, domain knowledge

related to the destination and source intentions should be

used. For example, the resulting label for Comfortable-

ness in Fig. 3 is determined by human judgment.

According to the propagation rules in Table 2, and given

our initial labels, this softgoal receives a partially denied

label from Chat and a partially satisfied label from Text.

Here, using our knowledge of the domain, we decide that

kids would be mostly comfortable having a text service,

with their level of comfort not significantly decreased by

not being able to chat, labeling the softgoal as partially

satisfied. Situations such as this would be good areas for

potential discussions with stakeholders involved in the

modeling process.

When recording a human judgment, the judgment can be

stored as a new propagation axiom reflecting the decision

of the user(s). In the example above, the following axiom

would be added:

DðChatÞ ^ SðTextÞ ! PSðComfortablenessÞ: ð6Þ

The utility of interactive judgments is tested with various

empirical studies described in Sect. 6.

3.6 Backward analysis

In this section, we provide technical details concerning the

backward analysis procedure. When asking an ‘‘Are the

goals achievable?’’ question, we essentially wish to con-

strain the model using both our target analysis labels and

the semantics of label propagation, as described by our

propagation rules in Sect. 3.5.1. Although it is possible to

use the forward propagation axioms as constraints for

backward analysis, use of only these axioms makes it dif-

ficult to find derived label targets, i.e., labels which are

indirectly required to achieve target labels. For this reason,

and for ease of understanding, we explicitly encode back-

ward axioms for all types of relationships. Such formal-

ization and implementation choices are further discussed in

Sect. 5.4.

3.6.1 Backward propagation rules

Dependency, decomposition, and means-ends links. Back-

ward propagation rules for dependency, decomposition,

and means-ends links are identical to the forward, but are

written in the opposite implication direction. For example,

in Fig. 3, for Help be acquired to be satisfied, in the

forward direction, Chat and/or Text must be satisfied,

SðChat _ SðTextÞ ! SðHelp be acquiredÞ. The backward

axiom expresses the other direction:

SðHelp be acquiredÞ ! SðChat _ SðTextÞ. We can

express the general form for backward propagation of

satisfaction for means-ends links with n sources and des-

tination id as SðidÞ ! ð
Wn

j¼1 SðijÞÞ. Backward axioms for

other evaluation labels and relationships can be derived by

reversing the direction of the implication (! to  ) for

each rule in Table 1.

Table 4 Backward contribution propagation axioms

Backward contribution VðidÞ VðidÞ ! Vði1Þ. . .VðinÞ

id

i1

r1 c

in

r n
c

…

S;PS PSðidÞ ! ðfor rc
j 2 Pos ;

Wn
j¼1 PSðijÞ _ for rc

j 2 Neg ;
Wn

j¼1 PDðijÞÞ
C CðidÞ !

�Wn
j¼1 CðijÞ _ ðfor rc

j 2 Pos ;
Wn

j¼1 PSðijÞ ^ for rc
j 2 Neg ;

Wn
j¼1 PSðijÞÞ

_ðfor rc
j 2 Pos ;

Wn
j¼1 PDðijÞ ^ for rc

j 2 Neg ;
Wn

j¼1 PDðijÞÞ
_ðfor rc

j 2 Pos ;
Wn

j¼1 PSðijÞ ^ for rc
j 2 Pos ;

Wn
j¼1 PDðijÞÞ

_ðfor rc
j 2 Neg ;

Wn
j¼1 PSðijÞ ^ for rc

j 2 Neg ;
Wn

j¼1 PDðijÞÞ
�

D;PD PDðidÞ ! ð for rc
j 2 Pos ;

Wn
j¼1 PDðijÞ _ for rc

j 2 Neg ;
Wn

j¼1 PSðijÞÞ
U if rc

j 7!R n Ru, for j ¼ 1. . .n, UðidÞ !
Wn

j¼1 UðijÞ

Table 3 Cases where softgoal labels can be automatically deter-

mined (adapted from [30])

Label bag contents Resulting label

1. The bag has is only one label, e.g., or The label:

or

2. All labels in the bag are of the same polarity,

and the full label is present, e.g., , , or

,

The full label:

or

3. The human judgment situation has already

occurred for this intention and the answer is

known

The known

answer

4. A previous judgment situation for this intention

has produced or , and the new

contributions are of the same polarity

The full label:

or
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Contribution links. In the backward direction, when

an intention, i, is the recipient of multiple contribution

links (there exists an r1. . .rn 2 R such that

rc
1 : i1 ! i. . .rc

n : in ! iÞ, the destination label for i; vðidÞ is
used to place constraints on the labels of one or more

sources, vjðijÞ 2 V, for j from 1. . .n. For example, if PSðidÞ,
we assume that at least one of the incoming labels is PS,

meaning that one of the positive links propagates at least a

PS label (i.e., 9j, rj 2 Pos, such that vjðijÞ 7!PS) or one of

the negative links propagates at least a PD label (i.e.,

9k; rk 2 Neg, such that vkðikÞ 7!PD).

Further backward axioms make similar assumptions. We

list backward contribution propagation rules in Table 4,

using our partial ordering (Eq. 2) to simplify axioms.

When analyzing the model in the backward direction,

in addition to finding labels through backward propaga-

tion, we wish to consider the consequences of the analysis

predicates which hold as part of the suggested solution. In

other words, we want to consider the forward conse-

quences of the labels in the solution. For example, given

our backward constraint over Get Effective Help, the

solver may pick a solution where Comfortableness with

Service is partially satisfied and where Immediacy

Service is denied. This satisfies our constraint that at

least one of the contributing softgoals is partially satisfied.

However, the denial of Immediacy should be factored

back into the analysis results for Get Effective Help. In

this case, this intention is both partially satisfied (assigned

by the user as a target) and partially denied (via Imme-

diacy). To account for such consequences, our backward

analysis algorithm makes use of both forward and back-

ward contribution axioms. Backward to find a possible set

of analysis predicates which satisfies target labels, and

forward to understand the consequences of such possible

choices.

3.6.2 Human judgment in backward analysis

As a result of using both backward and forward propaga-

tion rules as part of backward analysis, just as in forward

analysis, it is possible that a softgoal may be the recipient

of more than one analysis label.

Backward analysis requires human judgment under the

same conditions as forward analysis (Sect. 3.5.2), when a

softgoal is the recipient of conflicting or partial, unresolved

evidence. In the backward case, given a target label for a

softgoal, vðiÞ, the user must provide a set of possible labels

for softgoals which contribute to this softgoal. Specifically,

the user is asked the following:

Results indicate that i must have a label of vðiÞ. Enter

a combination of evaluation labels for intentions

contributing to i which would result in vðiÞ for i:

ð8j; j ¼ 1. . .n; rj : ij ! iÞ
Ij; rc

j ; ðchoose S; PS; U; C; PD; D; or Don’t careÞ
. . .

For example, for a target of partially satisfied for Get

Effective Help in Fig. 3, the user would be asked to pro-

vide a set of potential labels for incoming softgoals, spe-

cifically, users are asked:

Results indicate that Get Effective Help, must have

a label of partially satisfied. Enter a combination of

evaluation labels for intentions contributing to Get

Effective Help which would result in partially satis-

fied for Get Effective Help:

Contributing intention Link type Select label

Comfortableness Help \selection[
Immediacy Help \selection[
Anonymous Help \selection[

In this case, the user would like for all three of these

goals to be at least partially satisfied. The user also has the

option to select ‘‘Don’t care’’ instead of a specific analysis

label, indicating that a softgoal may have any label, i.e., its

contribution is insignificant in light of the other

contributions.

When recording a human judgment, the judgment can be

stored as a new propagation axiom reflecting the decision

of the user(s). In the example above, the following axiom

would be added:

Fig. 3 Kids and Youth actor showing forward and backward

evaluation results for using text messaging
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PSðGetEffectiveHelpÞ ! PSðComfortablenessÞ
^PSðImmediacyÞ ^ PSðAnonymityÞ:

ð7Þ

3.6.3 Understanding contradictions

Applying backward analysis described thus far allows users

to ask ‘‘are certain goals achievable? if so, how?’’ In this

section, we describe mechanisms for answering ‘‘If not,

why not?’’ when a solution which achieves desired targets

cannot be found.

When the backward procedure is unable to find a solu-

tion, there is a contradiction (e.g., PSðChatÞ and

:PSðChatÞ), as described in Sect. 3.3. Our implementation

uses existing tools to find intentions which are involved in

a contradiction (see Sect. 5.3.4 for details). We can dif-

ferentiate between intentions on the path involved in the

contradiction, and intentions which are the ‘‘source’’ for the

contradiction, in our example, Chat. When a contradiction

occurs as part of backward analysis (no solution is found),

we show intentions involved in the contradiction in orange

(medium gray), and logical sources of the contradiction in

red (dark gray). Additional text describes assigned analysis

labels producing the contradiction. An example contra-

diction for our Kids model subset is shown in Fig. 4.

When a contradiction is found, the user has the oppor-

tunity to backtrack through previous judgments, entering

more possibilities which are feasible in the domain, if any.

3.7 Analysis examples

In this section, we illustrate the semiautomated version of

both forward, ‘‘what if?’’ and backward, ‘‘are certain goals

achievable?’’ analysis using our motivating example. We

illustrate both approaches to analysis over the contents of

the Kids and Youth actor in Fig. 3, using a subset of the

original example in order to reduce details.

3.7.1 Forward analysis example

From a ‘‘what if?’’ perspective, we would like to explore

the effects of choosing different combinations of the two

task alternatives: Chat and Text. For example, if we were

to start with exploring the effects of implementing Text

and not Chat, we would place initial labels of satisfied and

denied, respectively. When initiating the algorithm for such

analysis questions, initial labels would be propagated,

iteratively, through links, stopping to collect human judg-

ment when necessary. We illustrate the iterative steps as

follows.

Iteration 1. Initial labels are propagated through the first

set of links, with Text and Chat directly as sources.

Comfortableness (with Service) receives incoming

labels of partially denied, partially satisfied, and requires

human judgment, Immediacy receives labels of denied and

partially denied, resulting in an automatic label of denied,

Help be acquired is satisfied via the satisfaction of one

means-ends alternative, and Anonymity receives labels of

partially satisfied and partially satisfied, also requiring

human judgment.

The judgment questions are posed to the user, for

example:

Comfortable in Kids and Youth has received the

following labels. Please select a resulting label.

Fig. 4 Example contradiction in the backward analysis run for the kids subset model
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Partially Denied from UseChatRoom

Partially Satisfied from UseTextMessaging

\selection from list of possible labels[

In which case, the user decides that Comfortableness

has a conflict label. A similar question is posed for Ano-

nymity, receiving partially satisfied from both Chat and

Text. In this case, the user judges the softgoal to be par-

tially satisfied, deciding not to promote multiple partial

satisfaction labels to the full label.

Iteration 2. The algorithm propagates through the next

set of links, using provided judgments as part of the set of

labels to be propagated. Judgment is again required for

Comfortableness, now having an additional input of

partially satisfied from Anonymity. In this case, the soft-

goal is judged to be partially satisfied. Get Effective Help

has incoming labels of partially denied from Immediacy,

partially satisfied from Anonymity and Conflict from

Comfortableness (the label being propagated is still the

label from the previous iteration). The user decides this

softgoal has a conflicting evaluation label.

Iteration 3. The algorithm propagates the label of the

first judgment collected in the last round, partially satisfied

for Comfortableness, and re-asks judgment for Get

Effective Help. This time there are incoming labels of

partially satisfied and partially denied (as before) and now

partially satisfied from Comfortableness. In this case,

with the new partial positive evidence, the user decides that

Get Effective Help is partially satisfied. All labels have

now been propagated and the procedure ends.

In this run of the analysis procedure, we have asked

‘‘What if Text is implemented and Chat is not?’’ Result

show us that Immediacy would not be satisfied, while

Comfortableness and Anonymity would be partially

satisfied, resulting in a judgment of partial satisfaction for

Get Effective Help. Although this selection requires some

trade-offs among identified goals, it may be a viable

alternative. Final results over our model subset are shown

in Fig. 3.

We can perform forward analysis over the entire coun-

seling model in a similar manner. Example results evalu-

ating the Chat alternative over the entire model are shown

in Fig. 5.

3.7.2 Backward analysis example

In the forward direction, we have found a solution which

achieves key goals in our model. However, we would like

to know if there are others. Looking at Kids and Youth, we

would like to find a solution, if possible, which achieves

the actor root goals: Get Effective Help and Help be

Acquired. As Get Effective Help is a softgoal as part of a

highly interconnected model, we set its target to partially

satisfied, while the target of Help be Acquired is set to

satisfied. The backward algorithm makes several interac-

tive iterations over this analysis question, as described in

the following.

Iteration 1. The algorithm tries to find a satisfying

assignment of analysis labels given our targets. One is

found; however, there are intentions which require human

judgment. Judgment is gathered for the intention(s) closest

to the root(s), the user is prompted for judgment for Get

Effective Help, asking the question as specified in Sect.

3.6.2. As before, the user would like for all three of these

goals to be at least partially satisfied. The judgment is

encoded and the algorithm again tries to find a satisfying

assignment of analysis labels, considering the new

judgment.

Iteration 2. The algorithm again finds a satisfying

assignment. This time there are three intentions equidistant

to the root which require human judgment: Immediacy,

Anonymous, and Comfortableness. Analysis questions

are posed to the user using the wording and structure as

presented. Immediacy has a target of partially satisfied,

with contributing make and hurt contributions for Chat and

Text, respectively. As such, the user chooses satisfied for

Chat and denied for Text.

Anonymity has a target of partially satisfied, with con-

tributing hurt and help contributions for Chat and Text,

respectively. Given this local information, the user chooses

labels of denied for Chat and satisfied for Text. As these

two questions are posed simultaneously, the user may be

aware of the contradiction in his/her choices and chose to

force a backtrack to previous judgments. However, as such

conflicts may not be obvious, or as users may not have

experience in goal models or analysis, we continue the

example selecting labels from a local perspective. In the

third judgment, Comfortableness has a target of partially

satisfied, with three intentions contributing via help links.

The user selects partially satisfied for Anonymity and

satisfied for both Chat and Text. The procedure again tries

to find a solution, given the latest round of human

judgments.

Iteration 3. A conflict is found, specifically, Text and

Chat have labels of both satisfied and denied (see Fig. 4).

The procedure backtracks through the last set of human

judgments. Given the target labels for Immediacy and

Anonymity, the user sticks with her judgments, indicating

that she has no more possible combinations for these tar-

gets. For Comfortableness, there may be more possible

combinations of labels; however, entering such labels will

not solve the current conflict, so the user skips this judg-

ment. The algorithm backtracks up to the last set of judg-

ments, specifically the judgment for Get Effective Help.

Returning to this judgment, it is now clear that Imme-

diacy and Anonymity cannot be achieved simultaneously.
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The user will have to either make a trade-off between these

softgoals or look for further alternatives. In this case, the

user judges that Anonymity is more important for Kids

and Youth than Immediacy, as kids would be reluctant to

use a service that reveals their identity even in urgent cases.

Thus, the new judgment for Get Effective Help asks for

partially satisfied for both Anonymity and Comfortable-

ness, but provides no constraints over Immediacy,

selecting ‘‘don’t care.’’

Iteration 4. The algorithm finds a satisfying assignment,

with Anonymity and Comfortableness requiring human

judgment (as the algorithm has backtracked, previous judg-

ments over these nodes are discarded). The user enters the

same judgment as previous for Anonymity (Text satisfied,

Chat denied). For Comfortableness, given a target label of

partially satisfied and three incoming help links, the user may

be able to live without one or the other of Text and Chat. In

this case, the user enters a combination of partially satisfied

for Anonymous, denied for Chat, and satisfied for Text.

Iteration 5. The new judgments are encoded, this time

the procedure finds a satisfying assignment of labels which

do not require human judgment. Final results (see Fig. 3)

show it is possible to partially achieve Get Effective Help

and provide help using the Text option and not the Chat,

making a trade-off between Anonymity and Immediacy,

and lowering requirements for Comfortableness. Results

are shown in Fig. 3.

As with forward analysis, we can pose backward ana-

lysis questions over the entire counseling model. However,

as this model is highly interconnected with many trade-

offs, we are unable to find an assignment of leaf labels

(solution) which sufficiently satisfies key goals without a

conflict. Specifically, the hurt link from Help as many

kids as possible to High Quality Counseling in Coun-

selors makes it impossible for either Happiness [Coun-

selors] in Counselors and Help Kids in Organization to

be at least partially satisfied.

4 Modeling and analysis usage methodology

In order to facilitate the use of agent-goal models for early

RE analysis, we provide a set of guidelines for elicitation

and scoping, model creation, iteration, and analysis. Case

Fig. 5 Model for youth counseling showing evaluation results for using a Cyber Café/Portal/Chat Room (initial forward labels in green/darker

gray) (adapted from [28, 30])
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study experience has led us to believe that a highly specific

methodology for creating and analyzing agent-goal models

may be too restrictive, due to a high variance in application

domains and available modelers. We advocate this meth-

odology as only a general guide, or a series of suggestions.

Although the suggested methodology is described in many

steps in sequence, the method is meant to be iterative and

flexible. If the methodology is followed without the direct

participation of stakeholders, each stage may result in

questions which should be answered by domain experts.

This knowledge should be incorporated back into the

model at every stage.

The methodology is divided into three parts: purpose

and elicitation, model creation, and analysis. Ideally, this

approach would be applied in cooperation with domain

representatives. This allows representatives to have a sense

of ownership over the model and the decisions made as a

result of the modeling process, as described in [47].

However, it may be difficult to acquire stakeholder buy-in

to the modeling process, and in these cases, analysts can

undertake the modeling process using other sources,

including interviews, documents and observations.

Earlier versions of the model creation section of the

methodology were presented in [28, 30], while an initial

version of the suggested analysis steps appeared in [35].

Here, the description is combined and summarized, adding

illustrations using the counseling service example. We

summarize our methodology in Fig. 6.

4.1 Stage 1: Purpose and elicitation

Identify scope and purpose of the modeling process. In the

social service example, the purpose of the first phase of the

study was to identify and evaluate the effectiveness of

various technical alternatives for online youth counseling.

As such, the models focused on the organization’s use of

technology interfacing with the internet, and on those

individuals in the organization who used or directed such

systems.

Identify modeling participants and/or model sources. In

the example, stakeholders were generally unfamiliar with

modeling as a tool for analysis and had difficulty com-

mitting significant amounts of time. As a result, models

were developed by the analysts using stakeholder inter-

views and information gained through site visits. Snippets

of the models, or tabular information derived from the

models, were presented back to the stakeholders for veri-

fication and discussion.

4.2 Stage 2: Model creation

We can divide model creation into five iterative steps as

shown in the middle of Fig. 6. A subset of the actors,

dependencies, intentions, and relationships identified in the

case study have been shown in Fig. 1.

4.3 Stage 3: Analysis

Apply the evaluation procedures introduced in Sect. 3 to

the model. The first two sections of each analysis type are

meant to act as ‘‘sanity checks’’ in the model, checking that

it produced sensible answers for a variety of questions,

while the last section is intended to support analysis of

questions from the domain.

4.3.1 Alternative effects (forward analysis)

Forward analysis begins by identifying leaf intentions in

the model.

Implement as much as possible. As a baseline analysis

alternative, analyze the effects of choosing (satisfying) as

many leaf intentions as possible. Such a baseline helps to

provide comparable results for additional analysis alterna-

tives. In the counseling service model, this would equate to

satisfying both alternatives, Text and Chat. In this case,

many of the model elements are at least partially denied.

Implement as little as possible. As an additional baseline

analysis alternative, analyze the effects of not choosing

(denying) as many intentions as possible. In the counseling

service model, this would equate to denying both alterna-

tives, Text and Chat. In the model, this baseline is more

positive than implementing both alternatives, giving an

indication that the modeled alternatives are not viable.

Reasonable analysis alternatives. Select analysis alter-

natives which seem likely or promising in the domain. In

the counseling service model, reasonable alternatives are to

implement one or the other or both of Text and Chat. We

Fig. 6 Visual summary of suggested modeling and analysis usage

methodology
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have explored one of these scenarios in Sect. 3, we may

continue by exploring the other two.

4.3.2 Achievement possibilities (backward analysis)

Backward analysis begins by identifying root intentions in

the model.

Maximum targets. Assign target levels of satisfaction

to the top intentions in the model which reflect the

maximum desired level of satisfaction. Typically, this

will involve all top intentions being fully satisfied;

however, this can be relaxed if it is already known that

full satisfaction is not possible for all top goals. In Fig.

1, the modeler may start by assigning each of the four

root intentions a label of fully satisfied. Currently, this

set of targets is not achievable in the model; thus, targets

must be gradually relaxed.

Minimum permissible targets. Assign target levels of

satisfaction or denial to root intentions in the model

which reflect the minimum level of satisfaction/denial

that may be permissible. What is the modeler willing to

give up? What must be (at least partially) satisfied? If an

intention does not have to be at least partially satisfied,

no target label should be placed. Note that there may be

more than one combination of minimum targets, i.e., if

the modeler gives up one intention, we must have

another intention instead. Minimal targets for Fig. 1 are

partially satisfied for the root softgoals and fully satisfied

for the two hard goals. As this particular model is

strongly connected with many softgoals, even this min-

imum target is not achievable via backward analysis.

Minimal targets were achievable over the model subset

in our Sect. 3.7 example.

Iteration over minimum targets. The previous step has

identified a minimum level of satisfaction for target

intentions. If an alternative which achieved this minimum

target was found, try gradually increasing the satisfaction

level of top goals, each time checking feasibility within the

model. As the previous minimum target was not achiev-

able, we skip this step in our example model.

4.3.3 Domain-driven analysis

Once initial baseline analysis questions have been asked

over the model, we can use the model to answer other

relevant domain questions. For example,

• Which design options are the most viable?

• Will a particular option work? For whom?

• Will the goals of a certain stakeholder be satisfied?

• Will a particular goal be satisfied?

• Can a set of particular goals be satisfied at the same

time?

In the example model, questions could include the

following:

• Which of the two alternatives (Text and Chat) is more

viable? Why?

• Why is it not possible to achieve minimum target labels

in backward analysis?

• As the model does not contain viable alternatives, ask:

• Is the model missing an important concept or

relationship? Can this be added?

• What further alternatives can be considered?

5 Implementation

In this section, we describe the implementation of our

framework in the OpenOME tool. We provide an overview

of the tool, show a summary of the metamodel used for

implementation, describe the implementation of forward

then backward analysis, including algorithm complexity,

provide details on available analysis visualization tech-

niques included with the tool, discuss implementation

choices, and report scalability results.

5.1 OpenOME Tool

The analysis framework has been implemented in Ope-

nOME, an open-source requirements modeling tool. The

tool supports modeling of the social and intentional view-

point of a system, allowing users to capture the motivations

behind system development in a graphical form. Ope-

nOME is an eclipse-based application, making use of the

eclipse and graphical modeling frameworks (EMF and

GMF). OpenOME has been developed by various

researchers and students, with support for forward and

backward interactive analysis added after initial tool

development. OpenOME supports several other analysis-

related features such as the storage of analysis results and

human judgments and preliminary consistency checks over

human judgment, as outlined in [33]. The layout of Ope-

nOME features can be seen in Fig. 7 screenshot. Windows,

Linux, and Mac releases of OpenOME can be downloaded

from Sourceforge, while documentation and tutorials are

available on the OpenOME Trac Wiki page [2].

5.1.1 Framework metamodel

The metamodel used in the OpenOME tool contains the

concepts and relationships needed to draw i* models as

described in Sect. 2. Additional concepts are added to

support interactive analysis. A simplified view of the

OpenOME metamodel is shown in Fig. 8. We examine
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the concepts and relationships in the metamodel by

dividing it into categories: ‘‘core’’ i* concepts (white),

specialized i* types (gray border), and concepts needed

for interactive analysis (green/gray). Core i* types,

include the Model itself, concepts which are Dependable,

i.e., can be part of a dependency link, Actors which are

Containers (can contain other objects), Intentions, and

Associations which are Links. We can decompose the

core concepts into more specific types, for example,

Intentions are specialized into Goal, Resource, Softgoal,

and Task. We include classes which implement interac-

tive analysis in green (gray), including EvaluationLabel,

Alternatives, HumanJudgments, LabelBag (holding labels

waiting for judgment).

Fig. 7 Screenshot of the OpenOME tool identifying feature layout

Fig. 8 Subset of the OpenOME metamodel with ‘‘Core’’ i* concepts (white, black border), specializations (gray border) and concepts needed for

interactive analysis (green/gray fill)
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5.2 Forward analysis implementation

The linear-time forward algorithm is implemented in the

OpenOME tool, using Java. The forward algorithm adopts

the structure outlined in the NFR procedure [10], by

including iteration over two steps: propagation and label

resolution. In the first step, all present labels are propagated

through all outgoing links using the rules described in Sect.

3.5. In the second step, the resulting evaluation labels for

softgoals are determined, using either the automatic cases

in Table 3, or human judgment. Once the labels for all

intentions have been determined in the second step of the

algorithm, the cycle starts again. The labels to be propa-

gated are kept track of using a queue of intentions to which

the labels are assigned, LQ, starting with the initial labels,

and adding each final label produced in step 1 and 2. The

algorithm terminates when all labels have been propagated

and this queue is empty.

Simplified pseudocode describing the forward analysis

algorithm is shown in Algorithm 1. As our implementation

is object-oriented, we use a system of objects and attributes

to describe the intentions, relations, and analysis labels in

the pseudocode. For example, we use i:v to indicate the

analysis label for an intention, i, indicating that the label is

stored as an attribute of an intention (v is used to avoid i:l,

which may be difficult to read). The type of each intention

in the set intention type is referenced by an attribute, i.type.

The algorithm stores a list of all the human judgments

made in the HJ list.

The algorithm starts with the set of all intentions, I,

relations, R, and the set of initial labels, IL (line 0). It iter-

ates over steps 1 and 2 until the label queue is empty (lines

2-5). An init function initializes the label queue with ana-

lysis labels already in the model (initial labels) (lines 7-10).

In step one, each label to propagate is removed from the

label queue and the resulting propagated label is calculated

(findResultLabel) (12-17). The algorithm uses meth-

ods ContRules, MERule, and DecompRule, referring

to the propagation rules described in Sect. 3 (43-54). If the

label to propagate has as softgoal destination, the resulting

label is stored in that intention (20). Otherwise the label is

added directly to the model and the label queue (21-24). In

step 2, each unresolved label bag is resolved, either using

automatic cases or human judgment (promptUser) (27-

41). The results are added to the label queue (41).

As the procedure allows the placement of initial labels,

vði1Þ. . .vðinÞ 2 V , on non-leaf nodes, it is necessary to

define how these labels are affected by subsequent propa-

gation. In the case of hard intentions (non-softgoals),

subsequent propagation overrides the initial label, as it is

important for users to see whether the model contradicts

initial assumptions. In the case of softgoals, initial labels

are placed in the bag of labels, leaving conflicts between

initial and propagated labels to human judgment. Similarly,

the forward procedure assigns specific semantics to a

mixture of link types; for example, an intention which is a

depender intention and is the parent of a decomposition
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link. In this case, the min label propagated from each type

of relation would be assigned. For simplicity, we omit the

treatment of non-leaf initial labels and mixture of link

types from Algorithm 1. More details on each can be found

in [24, 30].

5.2.1 Model cycles, termination, and computational

complexity

Goal models often contain cycles, labels which indirectly

contribute to themselves. Often these situations will con-

verge to a particular label, but in some situations they may

fluctuate between labels indefinitely. To avoid this, we

implement the relatively shallow solution of storing a count

of each of the combinations intentions and labels that have

been placed in the label queue. Once the count as reached a

fixed number, r, the same combination cannot be placed in

the label queue again. This solution allows for a certain

number of label fluctuations for non-looping situations, but

will put a cap on the number of iterations which can occur.

In our current implementation, if there are n intentions

in the model, supporting a total of 6 analysis labels and a

cap of r times in the label queue, the label queue has a

maximum lifetime size of 6rn, and the algorithm must

terminate. The running time of the algorithm is linear,

OðnÞ, where n is the size of the model.

5.3 Backward analysis implementation

The backward implementation uses a SAT solver to find

satisfying assignments of labels given propagation rules as

constraints. The approach encodes the model in CNF, and

then iteratively runs the SAT solver, prompting the user for

input regarding intentions which required human judgment

after each run. When human judgment is no longer needed

and a satisfying assignment is found, the procedure ends,

providing an answer. If a satisfying assignment is not

found, the procedure tries to backtrack over human judg-

ments. If a satisfying assignment is not found and no fur-

ther human input can be given, the procedure ends,

informing the user that the target is not possible.

5.3.1 Background: SAT

SAT solvers are algorithms which accept a Boolean formula

in CNF, composed of a conjunction of clauses. The algorithm

searches for a truth assignment of the formula’s clauses to

make the formula true. It does so by making a series of

decisions concerning the labels of variables, backtracking if a

decision proves to be not viable. If a solver can find a satis-

fying assignment, it returns only one such assignment, saying

nothing about the presence of other permissible answers.

Although the SAT problem is NP-Complete, algorithms and

tools that can solve many SAT problems in a reasonable

amount of time have been developed, for example, the zChaff

tool [43], used in this work.

5.3.2 Expressing qualitative, interactive propagation

in CNF

To express the problem of assigning evaluation labels to an

agent-goal model in terms of a CNF SAT formula, we

follow the formalization in [20], adopting their classifica-

tion of the components of the formula as follows:

• The target labels for the procedure, /Target

• Axioms describing forward propagation, /Forward

• Axioms describing backward propagation, /Backward

• Axioms describing invariant properties of evaluation

labels, /Invariant

• Any additional constraints on propagation,

/Constraints

The SAT formula is constructed as follows:

/ ¼ /Target ^ /Forward ^ /Backward

^/Invariant ^ /Constraints:
ð8Þ

Target. The target for an evaluation is simply a con-

junction of the desired labels for each target intention. We

could constrain the target further by saying that the target

should only have that label; for example, if our target is

PSðiÞ, we add :CðiÞ and :UðiÞ and :PDðiÞ, but we want to
allow for targets to have conflicting labels, making them

candidates for human intervention.

Invariant. As invariant axioms, we include the partial

order in Eq. 2, more specifically we include the following

axioms:

8i 2 I : SðiÞ ! PSðiÞ
DðiÞ ! PDðiÞ

ð9Þ

Constraints. When using the analysis procedure, the user

could add any additional constraints into the SAT formula,

following the approach of [20]. In our example, we con-

strain leaf intentions which are hard (non-softgoals) such

that they must be assigned at least one of the six evaluation

labels, and their assignment must not be conflicting (Def-

inition 8). Restricting the model formalization in this way

ensures that the answer provided by the SAT solver applies

a single analysis label to all connected hard intentions. In

our example, we would add these constraints for our two

leaf intentions, Chat and Text.

5.3.3 Restrictions on agent-goal model

In order to produce an agent-goal model which can be more

easily translated into CNF form and to ensure the
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convergence and termination of the algorithm, we place the

following restrictions on an i* model:

• Each intention has at most one Decomposition, Depen-

dency or Means-Ends relation which determines its

level of satisfaction or denial, i.e., 8i 2 I, only one of

Rdep : I ! i, Rdec : I � � � � � I ! i, or Rme : I � � � � �
I ! i holds for i.

• The model must have no cycles, i.e., for every path in

the model, r1; . . .; rn 2 R, r1 : i1ð� � � � � IÞ ! i2,

r2 : i2ð� � � � � IÞ ! i3,. . .; rn�1 : in�1ð� � � � � IÞ ! in,

ik must not equal ij, for 1\i; j\n.

The first rule means that models must avoid a mixture of

hard links, i.e., the backward procedure is limited in that it

does not explicitly account for a mixture of dependency

links with Means-Ends or Decomposition links. In this

case, the analysis predicates which are propagated through

each type of link would apply simultaneously, possibly

resulting in an analysis predicate conflict for non-softgoal

intentions. Such cases may prevent the solver from finding

a solution. We plan to expand our backward procedure with

additional rules to handle these cases.

The second rules force modelers to resolve cycles. The

reader may note that these restrictions apply only to

backward and not forward analysis; future work should

expand the backward implementation to remove these

restrictions.

5.3.4 Analysis visualization techniques

It can be challenging to follow analysis through complex

paths in the model. We have implemented visualization

mechanisms to alleviate such difficulties [31]. Specifically,

we highlight model leaves and roots as potential starting

points of analysis (e.g., Fig. 4), highlight intentions

involved in human judgments, and provide conflict visu-

alization as described in Sect. 3.6.3.

To implement conflict visualization as part of backward

analysis, we use a SAT solver which provides an unsatis-

fiable (UNSAT) core, a list of clauses in the CNF which

result in a contradiction. These clauses can be used to form

a resolution proof, showing how the clauses work together

to produce a contradiction, i.e., (a _ :a). Finding a mini-

mal unsat core is a computationally difficult problem, but

many approaches exist for finding a small but not minimum

core (for example [7]). Presenting this information to the

user in a form which is understandable to users presents a

challenge.

Our implementation of conflict highlighting parses

intentions and analysis predicate assignment in the UNSAT

core using a recursive procedure starting at the root clauses

(including analysis targets) of the core, traversing toward

the sources of the contradiction (a ^ :a). Intentions

involved in the contradiction are collected along the

recursion. When a contradiction occurs during backward

analysis, our implementation highlights intentions involved

in the contradiction (orange) and sources of the contra-

diction (red). Users are also presented with a list of the

intentions and analysis labels that would produce the

contradiction. An example is shown in Fig. 4.

5.3.5 Backward analysis algorithm

Simplified pseudocode describing the backward analysis

algorithm is shown in Algorithm 2. The algorithm converts

the model to CNF form (line 8), using the axioms described

in Sects. 3.5 and 3.6. The algorithm loops, terminating

when a solution is found and no judgments are needed (line

18), when a solution is found but judgments cannot be

made (line 33), or when no solution is found and there are

no judgments to backtrack over (line 41).

The algorithm calls zChaff to find a solution for the cnf

(line 12). If a solution is found (line 11), the algorithm finds

intentions needing human judgment (line 14). If none

exists, the procedure ends successfully. If judgments must

be resolved, the procedure finds the top (closest to a root)

intentions which need human judgment (line 19). The

target for each of these intentions is found by running the

solver using only backward rules (line 22) and taking the

maximum label result for each intention, using the ordering

in Eq. 2.

The user is prompted for each top intention requiring

judgment (line 26), and the judgment is added to the cnf as

described in Sect. 3.3 (line 29). If the user provided judg-

ments, the list of top intentions is added to a stack (line 35).

If, in the main loop, zChaff cannot find a solution (line 36),

zMinimal is used to find the UNSAT core and display

conflict information (line 38-39). In this case, or when the

user has no more judgments to add (line 32, 40), the

algorithm backtracks, popping the last set of intentions

needing human judgment from the stack (line 46) and

backtracking over the cnf (removing the judgment axioms

and adding back in the default forward and backward

propagation axioms) (line 47–49). If there are no judg-

ments in the stack for backtracking, the algorithm termi-

nates with a negative result (line 54). Otherwise, control is

returned to the main loop (line 9) where the process starts

again.

As with forward analysis, the procedure allows the

placement of target labels even on non-root intentions.

Analysis may cause other labels for such intentions to

become true, making them a potential source of conflict

(for hard elements) or an area requiring human judgment

(for softgoals).
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5.3.6 Computational complexity and termination

Computational Complexity. In practice, the running time of

SAT approaches would be affected by the number of

Means-Ends (OR) decompositions and multiple incoming

contribution links, as each of these structures provide fur-

ther labeling alternatives, increasing the search space. We

exclude a detailed exploration of the runtime complexity of

zChaff or zMinimal, marking these labels as (zChaff) and

(zMinimal). The main loop in BackwardEvalua-

tion() in Algorithm 2 will loop until hjCount == 0. In

the worst case, each iteration involves a single new judg-

ment for every intention. If a model has n intentions and

the maximum number of incoming relations for each

intention is q, there is a maximum of 6q � n possible

judgments, where q\n. Although the worst case is 6q, in

practice only a small subset of these judgments will be

made in each analysis run.

The complexity of the initial axiom conversion is 6r,

where r is number of relations in the model (jRj). The cost of
adding or backtracking human judgment on the converter is

also r (finding the right axiom by relation). In addition, the

worst case runtime of findtop is 2n, and backtrack is 2rn. If

zChaff returns a satisfying result, the worst case runtime is

either 2rnþ 3nþ (zChaff) or 2rn, else, when the problem is

not satisfiable, it is 2rnþ (zMinimal). Assuming (zMiminal)

� (zChaff), the worst case runtime for BackwardEval-

uation() is 6qnðrn2 þ 3nþ ðzChaffÞÞ þ 6r, or

Oð6qðrn2 þ nðzChaffÞÞÞ. Although this is an exponential

label, q is usually a small number, less than 5 or 6.

Termination. If the user continues to make the same

judgments, the procedure will not terminate. However, the

current implementation provides a list of previous judg-

ments attempted which did not produce a solution. As there

are a finite number of intentions each with a finite number

of sources, there are a finite number of possible human

judgments (6q). If the user does not continually reuse

judgments, the procedure terminates.

5.4 Analysis implementation choices

Unified versus separate procedures. Although the forward

and backward procedures involve similar concepts and

mechanisms, we have chosen to implement them using

separate procedures. Backward analysis can be thought of

as a type of constraint satisfaction problem, as such we

express the automated part of the procedure as a Satisfi-

ability (SAT) problem. As SAT is a well-studied problem,

we use externally implemented solvers in our

50 Requirements Eng (2016) 21:29–61

123



implementation, taking advantage of the efficient algo-

rithms and optimizations available in solvers such as

zChaff [43]. We enable human judgment by wrapping SAT

calls in iterative Java code. We could use the same

implementation to implement forward analysis, as the

forward axioms are encoded as part of the backward pro-

cedure; however, constraint satisfiability problems are

theoretically NP complete, whereas forward analysis can

be implemented in a linear algorithm. Thus, we encode the

forward algorithm, without using SAT, in Java.

Alternatives to SAT. In the early stages of this work, we

considered encoding agent-goal model propagation as a

constraint satisfaction problem (CSP) or satisfiability

modulo theories (SMT) problem. However, in order to

capture the presence of analysis predicate conflicts (Defi-

nition 8) and the subsequent need for human judgment,

each intention would have to be assigned multiple vari-

ables, one for each analysis label, making the encoding

roughly as complex as our SAT encoding. Consideration

was also given to the use of an incremental SAT solver,

reusing the state-space when clauses are added to the

encoding. However, as our algorithm not only adds, but

removes and re-adds clauses, these types of algorithms

were not easily applicable. See [5] for a more detailed

discussion of choices in formalizations and use of existing

solvers when implementing goal model analysis.

Explicit backward axioms. When developing a proce-

dure for backward propagation, we have several choices

concerning the encoding. We could use the forward axioms

in Sect. 3.5.1 as constraints, passed to the solver. These

constraints, along with the target values, and the constraint

that non-softgoal leaves must be assigned a non-conflicting

label (Sect. 5.3.2), could be used to find a solution, if one

exists – a set of analysis predicates which satisfies these

constraints. Such a solution may still require human

judgment, if particular intentions have conflicting labels

(Definition 8). However, using only the forward propaga-

tion axioms, it would be difficult to determine derived or

indirect targets, as required for human judgment. For

example, in Fig. 3, all backward targets are entered directly

by the user, either as an initial value or as a result of human

judgment. Imagine the situation where the Anonymity

softgoal connected to Get Effective Help indirectly, via an

intermediate softgoal X. The target value for X would be

acquired from the backward judgment for Get Effective

Help, but the target value for Anonymity must be inferred

automatically. If only forward axioms are used, one or

more analysis predicates would hold for this intention, but

it would be difficult to tell which predicate is desired as an

indirect target. Thus, to find such indirect targets, we

explicitly encode backward propagation, as is done in [20,

21]. Although this approach allows an explicit and more

intuitive propagation in the backward direction, the

additional axioms may affect performance. Future work

should evaluate how this and other alternative implemen-

tation choices affect efficiency.

5.5 Performance

In this section, we analyze the computational performance

of the forward and backward algorithm implementations.

We test their operation on models of a variety of sizes and

argue for a maximum practical model size for interactive

early RE modeling.

Model size in practice. As we have argued in the

Introduction, early RE models are highly qualitative, social

models, and as such are difficult or impossible to generate

automatically. This means that early RE models must be

created by hand. Manual creation of early RE models

places cognitive constraints on their size and complexity.

Beyond a certain level, the models are too complicated to

understand, modify, or analyze effectively.

We believe that we have hit this level of complexity

manually creating large i*models in our past case studies. The

largest model created for the counseling service case study

contained approximately 525 relations and350 intentions, 230

ofwhich represent quality criteria and systemgoals, the rest of

which represent specific tasks in the current system [23].

Workingwith such a largemodelwas cognitively difficult and

impractical in practice. Only the model author was able to

(with difficulty) navigate or analyze the model.

Considering this model, and other similar examples, we

argue that the optimal model size for domain understanding

and analysis is much smaller than the size of this model

(\200 elements). The exact ‘‘optimal’’ size is difficult to

measure precisely and depends on factors within the

domain and the experience of the modelers. In fact, the

bottleneck in interactive analysis is not so much the com-

putational complexity of the procedure, but the number of

human judgments asked over a model.

Scalability tests. We test the speed of the analysis

implementations over several realistically sized models

created as part of case studies. We run two forward and two

backward analysis questions over each model, capturing

running times. We differentiate between the actual com-

putation time, and the time taken for users to read and act

on various input windows, including human judgment

windows and messages about conflicts in backward ana-

lysis. Tests are run on a PC with a 1.8GHz Intel(r) CoreTM

Duo Processor T2400 CPU and 2.5 GB of RAM.

We select three models which we judge to be of small,

medium, and large size, relative to our experiences in case

studies and examples. The first model is a small model of

an application, of a similar size to the counseling subset in

Fig. 3. The second model captures conference greening and

is partially shown in Fig. 7. The third model is the result of
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a group case study for the inflo modeling tool described in

Sect. 6.2. We summarize model sizes in Table 5. Although

the last model is smaller than our estimated ‘‘max’’ model

size, this model is the largest we have encoded in our

OpenOME tool (previous, larger models were created in

Microsoft Visio before OpenOME was available).

When selecting analysis alternatives for each model, we

selected a mix of initial labels describing both sanity

checks and interesting domain questions. As alternatives

are evaluated by the first author, timings for human judg-

ments are not necessarily realistic or reflective of the

interactive and collaborative aims of the procedure.

Tables 6 and 7 provide the timing results from the analysis

runs from the forward and backward tests, respectively.

Some of the backward analysis alternatives did not find

viable alternatives, either the implementation reported that

there was no solution (alternative 2 in Model 1) or the user

gave up after several rounds of judgment (alternative 1 in

Model 2 and alternative 2 inModel 3). In the latter cases, the

implementation always reported an answer, but after several

rounds of relaxing constraints for the required target, it

became clear the targets could not be reasonably attained.

Examining the running times, we see that the compu-

tation time (the total time the user is waiting for an answer)

for forward analysis is small (\4 s), even for larger models.

As expected, the bottleneck in forward analysis is human

judgments. In the backward analysis, computational time is

longer but still manageable. Over the larger models, it can

take up to 30 seconds for the tool to produce an answer. In

some cases, the computation time for backward analysis

exceeds the judgment time, making implementation effi-

ciency a point of future work.

6 Evaluation

In this section, we summarize studies applying our ana-

lysis framework. As these studies were conducted as the

framework was under various stages of development, they

test evolving components of the framework, both using and

not using systematic analysis and the OpenOME tool. We

summarize the studies conducted, the framework compo-

nents applied, the study designs, tool support used, hypoth-

eses, major conclusions, and reference to further detail in

Table 8 (note that studies 3, 4 and 5 share the same hypoth-

eses). In this section, we provide a brief summary of each

study, assessing the findings and threats to validity as awhole.

6.1 Studies using manual forward analysis

Initial examples. Earlier work has applied an initial version

of the forward analysis described in Sect. 4 to a variety of

settings, including a study of trusted computing technology

([23, 36]).

Counseling service. Manual forward analysis was

applied to the counseling service study used as an example

in earlier sections. This multi-year strategic analysis pro-

ject underwent several stages with different areas of focus

[13]. The first stage focused on modeling, analyzing, and

understanding the organization as a whole, with an

emphasis on the role of online counseling. The second

stage of the project focused on increasing the efficiency of

the existing online counseling system, while the final stage

focused on analyzing the knowledge management needs of

the organization.

In the first two stages, models were created based on

transcripts of interviews with several roles in the organi-

zation. In the third stage, models were created on-the-fly?

during stakeholder interviews. Forward analysis was

applied to explore the effectiveness of options for online

counseling and knowledge management. The results of the

models and analysis were presented to the organization,

using reports, tables, and presentation slides containing

small excerpts of the model. The analysis was well-

received by the organization, bringing to light several

issues and provoking interesting discussion. Final out-

comes included a requirements specification document and

a knowledge management report. Resulting i* models were

used in several studies, exploring viewpoints [12], applying

patterns [49], and modeling knowledge transfer effective-

ness [48].

These studies have provided experiential evidence that

such analysis increases model iteration, prompts further

elicitation, and improves domain knowledge. Unfortu-

nately, our experience concerning model iteration resulting

from interactive analysis is only anecdotal for the first two

stages of the study (the effects were observed, but not

carefully recorded). In the third stage, we began to collect

measures of such iteration. One model focusing on com-

munication contained 181 links and 166 elements before

evaluation, while after evaluation the same model had 222

Table 5 Sample agent-goal model sizes

Model Content Concept Count

Model 1 Simple application Actors 1

Intentions 6

Relations 7

Model 2 Conference greening Actors 8

Intentions 56

Relations 74

Model 3 Inflo tool Actors 12

Intentions 103

Relations 145
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links and 178 elements, a difference of 41 and 12,

respectively. In another model, the link count rose from 59

to 96 and the element count rose from 59 to 76. These

numbers do not take into account changes such as moving

links or changing element names. Models in this stage of

the study were created by three individuals, with evaluation

performed by two individuals, indicating that this effect is

not specific to a particular modeler or evaluator.

Exploratory experiment. Based on experience applying

forward analysis in practice, a small exploratory experiment

was conducted in order to more precisely test the perceived

benefits of the forward procedure, summarized by hypothe-

ses H1-H4 in column 6 (row 3) of Table 8 (more details

available in [24, 30]). Results did not provide strong evidence

to support claimed benefits, showing that benefits, when they

occur, can occur both with systematic and ad hoc model

analysis. The last two hypothesis, concerning elicitation and

domain knowledge proved to be difficult to test empirically.

Althoughwe believe that the interactive, iterative procedures

designed in thisworkwill have a positive effect on prompting

elicitation and increasing domain knowledge; future studies

focused on more measurable effects, such as increasing

model completeness and accuracy.

6.2 Studies using forward and backward analysis

in OpenOME

Motivated by our practical and experimental experiences,

individual and group case studies were designed and

administered to further test the hypothesized benefits of

interactive analysis (H1-H4). Study design aimed to find a

balance between the rich (but difficult to measure) expe-

riences of our industrial study and the controlled (but

somewhat artificial) environment of our experiment.

Individual case studies. The studies were administered

in two rounds, using at total of 10 participants (students

with some i* experience). In both rounds, half of the

subjects used the systematic analysis procedure in Ope-

nOME while the other half answered questions using ad

hoc analysis (over models in OpenOME). The subjects

using systematic i* analysis received an additional round of

training for the forward and backward procedures (15

minutes). The study involved a think-aloud? protocol, with

the first author present to observe the progress and answer

questions. Participants were encouraged to ask questions

about the model whether they had them. Every participant

was asked a series of follow-up questions concerning their

Table 6 Running time

(seconds) and statistics for

forward analysis runs

Measurements Model 1 Model 2 Model 3

Alt 1 Alt 2 Alt 1 Alt 2 Alt 1 Alt 2

Num judgments in analysis 2 2 15 15 23 22

Num intentions receiving judgments 2 2 9 9 16 16

Max judgment time 4.109 4.875 5.813 6.390 19.734 15.078

Min judgment time 2.750 4.297 2.531 2.141 2.718 2.969

Average judgment time 3.429 4.586 4.328 3.930 8.048 6.296

Total judgment time 6.859 9.172 64.922 58.954 185.106 138.517

Total computation time 0.25 0.156 1.547 3.499 3.347 3.436

Total analysis time 7.109 9.328 66.469 62.453 188.453 141.953

Table 7 Running time

(seconds) and statistics for

backward analysis runs

Measurements Model 1 Model 2 Model 3

Alt 1 Alt 2 Alt 1 Alt 2 Alt 1 Alt 2

Num judgments in analysis 5 3 4 2 1 5

Num intentions receiving judgments 2 2 1 2 1 2

Max judgment time 9.594 13.078 145.453 36.219 9.766 40.547

Min judgment time 3.047 2.062 2.032 12.813 9.766 4.438

Average judgment time 7.187 25.906 55.523 24.516 9.766 18.162

Total judgment time 35.937 8.635 222.094 49.032 9.766 90.814

Num non-judgment messages 2 2 4 1 1 4

Total time for non-judgment messages 4.796 9.077 72.220 2.265 3.437 49.984

Total computation time 0.579 17.616 30.905 1.047 2.391 150.765

Total analysis time 41.312 35.328 325.219 52.344 15.594 291.563
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experience. The total time for each study in both rounds

was two hours or less.

The first round, involving 6 participants, used models

from the conference greening domain, reducing the envi-

ronmental footprint of the conference. The three models

contained between 36 and 79 intentions, 50 and 130 links,

and 5 and 15 actors. Analysis questions were aimed to

represent interesting questions over the domain. For

example ‘‘If every task of the Sustainability Chair and

Local Chair is performed, will goals related to sustain-

ability be sufficiently satisfied?’’

The results of the first round of the study performed with

six participants showed minimal model changes or elici-

tation questions, as well as participant difficulties in

understanding the models, due to their large size and the

participants unfamiliarity with the domain. The decision

was made to revise the study and instead allow participants

to make their own models over a domain they were familiar

with—student life. In the second round, the four partici-

pants were provided with some leading questions (e.g.,

Who is involved? What do the actors want to achieve?),

then spent 25 min creating smaller models describing their

student experiences. Initial results motivated the develop-

ment of the suggested modeling and analysis methodology

described in Sect. 4. As such, Round 2 participants were

asked to use this methodology to analyze their student life

model.

Results. Quantitative and qualitative data (audio, video,

models, observer notes) were collected and coded for both

rounds of the study. Results for hypothesis H1 (Analysis

Results) were mixed, some participants gave explicit

answers to the questions, some referred to analysis labels in

the model as answers to the question, while yet others had

difficultly producing answers to the questions. Only some

participants were able to interpret question results in the

context of the domain. Similarly, participants often had

difficulty in translating questions into initial labels in the

model. Difficulties were experienced both with and without

systematic analysis.

Regarding H2 (Model Iteration), participants made

only a few changes to the models when conducting ana-

lysis. There were slightly more changes made with ad hoc

than systematic analysis, and there is no notable differ-

ence between participants analyzing their own or other’s

models. We also see no significant differences between

results given and not given the suggested modeling and

analysis methodology. Results for H3 (Elicitation) showed

that participants asked very few domain-related questions,

with no interesting differences between groups. Seven out

of ten participants indicated they had a better under-

standing of the domain after the study (H3). In this case,

analysis was helpful using both systematic and ad hoc

approaches.

In addition to findings relating to our initial hypotheses,

our qualitative analysis produced other findings revealing

potential benefits of interactive analysis. Specifically,

results showed that systematic analysis increased the con-

sistency of model interpretation by providing a precise

semantics, increased the coverage of analysis across the

model, and helped to reveal model incompleteness. Study

results provide evidence that modelers made inconsistent

human judgments, e.g., giving an intention a fully satisfied

label when the incoming evidence was one partially satis-

fied label and one partially denied label. We outline future

work which may warn users against such inconsistencies in

Sect. 8.3.

Group case study. A second study was conducted

involving a group of four graduate students and a professor

who were in the process of designing and implementing a

tool (Inflo) to support modeling and discussion of ‘‘back of

the envelope’’ calculations. Three two-hour modeling and

analysis sessions were devoted to constructing and dis-

cussing a large i* model representing the tool, its users, and

their goals. During each session, time was devoted to

applying both the forward and backward analysis proce-

dures, letting the participants make decisions over the

human judgments posed by the procedures. The first

author/facilitator played a participatory role, drawing the

model and administering the analysis with constant feed-

back and input from the participants. The final model is

used in the procedure scalability tests in Sect. 5.5.

Results. In the Inflo case, the modelers did not have any

driving domain questions, as the purpose of their partici-

pation was to better understand the system under devel-

opment, not to solve problems which were not yet

apparent; therefore, the analysis questions asked were

somewhat artificial (H1). Some analysis alternatives did

help to find sanity issues in the model; for example, if the

inflo system was built, the trolls (malicious users) win,

according to the model. Analysis did prompt some changes

in the inflo case, for example, removing links, but the

changes were not extensive (H2). In this case, the modelers

and the stakeholders were the same, so any questions raised

by the modeling or analysis process were discussed and

resolved immediately (H3). Feedback through surveys for

the inflo group revealed that analysis helped clarify trade-

offs, and the meanings of intentions (H4), although several

usability issues with the procedure were found, several of

which were addressed by further rounds of implementation.

As with the individual studies, analysis of results for the

group study reveals analysis benefits beyond the initial

hypotheses. Application of systematic evaluation in a

group setting did produce several situations where human

judgment caused discussion among participants. For

example, the participants discussed whether getting feed-

back was really necessary in order to make models
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trustworthy after this contribution appeared in a backward

judgment situation. In other examples, the group had dis-

cussions about the exact meaning of goals appearing in

judgments situations, for example ‘‘what is meant by

flexibility?’’ In the study, the participants felt that analysis

was not useful until the model reached a sufficient level of

completeness. This was echoed by one participant in the

individual studies. Future work should investigate the

qualities of a model that make it sufficiently complete for

analysis.

Follow-up visualization studies. In order to test the

practical utility of the visualizations described in Sect.

5.3.4, we performed five follow-up studies using partici-

pants from the initial eleven studies described in the pre-

vious section. Each session lasted 30 minutes to an hour.

Participants were specifically asked to comment on the new

interventions: Do the leaves/roots highlighted in the model

make sense? Can you understand why there is a conflict?

Reaction to root and leaf highlighting was positive, with

participants understanding the results of the automatic

highlighting. Once leaves and roots were identified by the

application, participants had an easier time selecting initial

labels for analysis when compared to the previous study

rounds. In the Inflo case, when leaves or roots were iden-

tified, this prompted changes, adding more incoming con-

tributions to some sparsely connected roots, producing

richer, more complete results over the model.

Results concerning conflict highlighting show that this

intervention is helpful in understanding model conflicts;

however, a considerable knowledge of i* modeling and

analysis is needed to completely understand the causes of

the conflict. Despite the need for i* knowledge, high-

lighting of conflict intentions made it much easier for the

facilitator to understand and explain conflicts in the model,

and all participants indicated that conflict highlighting was

helpful.

6.3 Threats to validity

We summarize several threats to the validity of our studies.

In our individual and group studies, we collected several

measures to test our hypotheses (analysis results, model

changes, questions raised). It is difficult to know whether

these are effective measures of our respective hypotheses,

for example, is increased understanding due to analysis or

only modeling? Would participants be able to use analysis

results to draw conclusions in the domain? Although we

have measured model changes in several studies, it is hard

to know whether these changes are always beneficial,

improving model quality.

Participants in the group and individual studies were

students (and one Professor), threatening external validity.

However, participants had a wide variety of backgrounds

and education levels, increasing confidence in the gener-

alizability of our results.

Case studies applying analysis to realistic domains were

facilitated by analysts who had some knowledge of i* and

interactive analysis; thus, we may have introduced bias to

the results. However, several analysts were new to i* and

analysis and still noted benefits of analysis. Likewise, the

individual and group studies were facilitated by an i* and

analysis expert.

The nature of the domains may have some effect on

results. In the individual studies, participants found the

domains to be either too unfamiliar or too familiar. The

counseling service study is a very social-oriented domain;

some of the benefits of interactive analysis may not be as

applicable in a more technical domain with less human

interaction.

7 Related work

In this section, we summarize existing techniques for goal

model analysis, evaluating them in light of the contribu-

tions of the proposed framework. In previous work, we

have presented a literature review of goal model analysis

techniques, including an analysis of the objectives of goal

model analysis and guidelines for selecting between

existing procedures [32]. Here, we include a summarized

and updated version of this review. We focus on proce-

dures which provide satisfaction analysis, answering

questions similar to the analysis procedures introduced in

this framework. We then briefly summarize other proce-

dures which answer different types of analysis questions

over goal models.

Satisfaction analysis. We identified a number of proce-

dures which analyze the satisfaction or denial of goals in a

model, similar to the procedures introduced in this frame-

work. These procedures use model links to propagate initial

labels in either the forward [4, 10, 20, 40, 41, 44, 50] or

backward [20, 21, 41] direction, answering ‘‘what if?’’ and

‘‘are certain goals achievable?’’

Some satisfaction analysis procedures present results in

terms of qualitative labels representing satisfaction or

denial, similar to the labels used in this work [4, 10, 20,

21]. Several procedures offer quantitative analysis, using

numbers to represent the probability of a goal being sat-

isfied or denied [21, 41, 50] or to represent the degree of

satisfaction/denial [4, 40].

Other procedures produce binary results, where goals

have only one of two labels, typically satisfied or not [14,

38, 44]. For example, the Techne approach uses quality

constraints to approximate all softgoals, as such, model

analysis does not consider partial labels, and all elements

are either satisfied or not [38].
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Recent work has applied goal modeling and quantitative

satisfaction analysis to facilitate business intelligence,

taking input labels from data via atomic and composite

data indicators and mapping them to quantitative or qual-

itative analysis results [25, 45].

One of the primary features distinguishing between

these approaches is their means of resolving multiple

contribution incoming labels. Some procedures separate

negative and positive evidence, making it unnecessary to

resolve conflicts in order to find solutions over the model

[20, 21]. Other procedures make use of predefined quali-

tative or quantitative rules to combine multiple sources of

evidence [4, 40]. Further procedures, including the ones in

this framework and analysis in the NFR framework [10],

are interactive, using human intervention to resolve partial

or conflicting evidence.

Our previous work has aimed to compare approaches for

goal model satisfaction analysis in order to determine

whether these differences between procedures make a

significant difference in the analysis results [24, 34]. Seven

forward analysis procedures (described in [4, 10, 20]),

including the procedure described in this work, were

applied to three example goal models (taken from [4, 21,

28]. The results were compared using a mapping between

qualitative and quantitative scales. The analysis showed

that results differed between procedures, especially for

‘‘softer’’ models with many softgoals or dependencies,

leading to the conclusion that goal model satisfaction

procedures are better used as heuristics, emphasizing the

benefits of these procedures beyond the provision of ana-

lysis results, e.g., prompting model iteration, and facili-

tating communication.

We have adapted several of the concepts used in our

forward analysis procedure from the pre-existing, interac-

tive NFR analysis procedure [10]. Our approach goes

beyond this work in several ways, e.g., by providing formal

semantics to analysis, adding the capability for backward

analysis, and providing visualizations. Several of the for-

mal aspects presented in our framework were inspired by

existing procedures for backward reasoning with goal

models ([20, 21]). However, our approach is novel in that it

axiomatizes propagation in the i* framework (including

dependency and unknown links), combines evidence for

each intention into a single analysis label (including con-

flict and unknown), includes iterative human intervention

(resolving conflicting or partial evidence), and provides

information on model conflicts when a solution cannot be

found.

By focusing on the contributions of our framework, as

listed in the introduction, we can identify further points

which distinguish our framework from existing satisfaction

approaches, making it more appropriate for Early RE.

Although existing analysis approaches support ‘‘what if?’’

and ‘‘are these goals achievable?’’ analysis questions, to

our knowledge, we are the only approach which supports

analysis over sources of contradictions (‘‘if is not possible,

why not?’’). Existing work has not taken into account the

coverage of model analysis results, while our validation

studies have shown that root and leaf visualizations help to

make model analysis more complete.

Our work provides a suggested methodology for model

creation and analysis, while several techniques for goal

model analysis do not provide an explicit methodology

beyond the analysis algorithm (e.g., [37]). Others focus on

technical aspects concerning how to apply the analysis

procedure, but do not describe iteration over the model and

analysis results (e.g., [10, 41]).

Our framework aims to increase the completeness and

correctness of the model. Most available analysis proce-

dures proceed with the assumption that the model is

complete and correct. Although some procedures include

interaction as part of the analysis process, e.g., [8, 10, 15,

18, 44], these approaches aim less at encouraging iteration

and more on using stakeholder expertise to initiate analysis

or judge analysis output. Other analysis procedures men-

tion iteration over analysis inputs in order to find the most

satisfactory solution (e.g., [1, 19]). Some approaches con-

sider the possibility of iteration over the model, e.g., [17],

but treat such changes as a side effect of errors or inade-

quacies and not as a desired outcome of the analysis pro-

cess. Work by Liaskos et al. addresses model iteration as a

positive benefit of iteratively applying planning and ana-

lysis, but focuses on iteration over model preferences [42].

We have aimed to create analysis procedures which are

simple from the user’s perspective, validating usability

through cases studies, while existing goal model proce-

dures do not explicitly aim for simplicity. Although some

approaches use realistic case studies to validate the

usability of their work, the focus of such studies is not on

usability from the point of view of stakeholders, with

model analysis usually performed by researchers. Such

approaches do not explicitly consider or evaluate the ability

of stakeholders to comprehend analysis results over either

simple or complex models.

Other goal-oriented analysis approaches. Several

approaches aim to measure qualities over the domain, such

as security, vulnerability, and efficiency, using metrics over

constructs in the model. These procedures can answer

questions like ‘‘how secure is the system represented by the

model?’’ or ‘‘how risky is a particular alternative for a

particular stakeholder?’’ (e.g., [15]). Methods have applied

AI-type planning to find satisfactory sequences of actions

or design alternatives in goal models. These procedures can

be used to answer questions such as ‘‘what actions must be

taken to satisfy goals?’’ or ‘‘what is the best plan of action

according to certain criteria?’’ (e.g.[8]). Several approaches

Requirements Eng (2016) 21:29–61 57

123



have added temporal information to goal models to allow

for simulation over the network represented by model

constructs. In these approaches, a particular scenario is

simulated, and the results are checked for interesting or

unexpected properties. These procedures can answer

questions like ‘‘what happens when a particular alternative

is selected?’’ (e.g., [18]). Several approaches provide ways

to perform checks over the models supplemented with

additional information, allowing users to ask questions like

‘‘is it possible to achieve a particular goal?’’ or ‘‘is the

model consistent?’’ (e.g., [17]).

Non-goal approaches. We could also examine related

approaches outside of goal modeling, such as approaches

for trade-off analysis in RE, or approaches for modeling

and decision making in business. Although, these approa-

ches may offer useful ideas, they do not allow for the high-

level modeling and analysis facilitated by goal models,

well-suited for early RE. Thus, we focus our review of

related approaches to those using goal orientation.

8 Conclusions

8.1 Contributions

Our framework has made several contributions. We have

provided analysis power, supporting ‘‘what if?’’-type

questions, including ‘‘what are the effects of a particular

analysis alternative?’’, ‘‘are goals sufficiently satisfied?’’,

and ‘‘whose goals are satisfied?’’ In addition, we allow

users to ask ‘‘is it possible to achieve certain goal(s)?’’, ‘‘if

so how?’’, ‘‘who must do what?’’, and ‘‘if is not possible,

why not?’’ Our validation studies showed that for forward

analysis in realistic studies such as the counseling service

study, analysis was very helpful in comparing and assess-

ing technical alternatives and knowledge transfer mecha-

nisms, including allowing for ‘‘as-is’’ to ‘‘to-be’’

comparisons. The inflo study revealed that backward ana-

lysis was useful in answering basic analysis questions

which tested the sanity of the model.

We have provided a methodology for the creation and

analysis of agent-goal models, with an emphasis on inter-

action and iteration. Our framework allows the user to

resolve partial or conflicting evidence via human judg-

ments, supplementing high-level models with their domain

knowledge, involving stakeholders in the analysis process,

and encouraging beneficial model changes.

Experience in realistic case studies indicates that inter-

active analysis reveals unknown information and causes

beneficial model iteration. However, when using the pro-

cedure in more artificial environments, without the pre-

sence of driving domain questions, far fewer discoveries

and changes are made. Similarly, experimental results

show that both interactive and ad hoc analysis raise ques-

tions and provoke model changes. Overall, we claim that in

the appropriate situation—knowledgeable modelers moti-

vated by driving questions in a real domain—interactive

analysis can reveal gaps in knowledge and provoke bene-

ficial iteration.

Our framework supports high-level analysis by delib-

erately avoided requiring additional information beyond

what is typically required by i* models, with a focus on

high-level, early analysis. Our formal definition of i*

considered common deviations in order to effectively bal-

ance the need to provide a precise model interpretation

with the need for inexpressiveness to represent imprecise

early RE concepts. Case study experience has demon-

strated the ability of the analysis to reason over concepts

such as security, confidentiality, and quality of counseling,

drawing conclusions over intentions which are hard to

define formally. Validation study results show that sys-

tematic analysis increases the consistency of model inter-

pretations, e.g., propagation through contribution links.

These factors would make analysis results more consistent

or reliable when comparing results over the same model,

potentially with different evaluators.

Our framework addresses usability by providing a

guiding methodology and providing a semiautomated

implementation in OpenOME. The tool hides formal

details from the user, using analysis labels, lists of analysis

results, and color-based visualizations. In validation stud-

ies, participants were able to use the tool to apply both the

forward and backward analysEs with minimal training.

Deficiencies were noted more in their ability to understand

the meaning behind i* syntax than their ability to apply

analysis. Several of usability issues noted in our studies

(e.g., applying initial labels, understanding results) were

addressed in subsequent rounds of implementation and

iterations over the suggested methodology.

We have considered both the computational and inter-

active scalability of our framework, showing that analysis

is scalable to models of a reasonable size. Models larger

than this would be no longer cognitively scalable for

manual creation and analysis comprehension.

8.2 Limitations

Our framework has made significant progress toward

effective analysis of early RE agent-goal models, but still

has several limitations.

Goal modeling limitations. By using agent-goal models

for early RE analysis, we inherit all of the challenges and

limitations inherent to this type of modeling, including the

complexity and scalability of models, as demonstrated by

several of our examples. Although analysis can help to

make sense of models, analysis can only do so much to

58 Requirements Eng (2016) 21:29–61

123



ease the cognitive load of complex goal models. Future

work in agent-goal model scalability, for example, [16],

could be promising as a point of integration with our

approach.

Alternative selection. The procedures in this framework

focus on the evaluation of individual analysis alternatives;

although multiple results are stored in implementation, this

work does not provide specific guidance in how to compare

the results of multiple analysis alternatives. Future work

should investigate techniques which help to guide people in

comparing and selecting between the results of multiple

analysis alternatives.

Generalizability. The procedures introduced in this work

have been designed for and applied to the i* framework.

We argue that these procedures can generalize relatively

easily to similar frameworks (e.g., GRL [3], NFR [10],

Tropos [6]). Applying our procedures to less similar goal

modeling frameworks (e.g., KAOS [11], AGORA [39])

would prove more challenging. Our interactive analysis is

especially applicable to models containing softgoals and

contribution links, creating areas of model contention

requiring human intervention. If other goal modeling

frameworks do not contain such areas, concepts and algo-

rithms introduced in this work are not easily applicable.

Validation results. The results of our validation studies

are mixed. Although we have found evidence to support

iteration over models and elicitation in the domain as a

result of interactive analysis, we have also found cases

where this iteration and elicitation does not present itself

prominently. Future studies should include a comparison

with fully automated analysis.

8.3 Future work

We have identified several areas of potential framework

expansions. We summarize several of these areas here.

Implementation optimizations. Future work should aim

to optimize the backward analysis algorithm described in

Sect. 5.3; for example, zChaff solver results could be stored

in a stack, popping results when backtracking. Explicit

backward axioms for non-contribution links could be

removed from the encoding. The number of human judg-

ment situations could be reduced in both procedures by

reusing judgments across analysis alternatives. However,

automatic reuse of judgments may discourage users from

reconsidering and revising their judgments. Currently our

implementation displays all existing judgments in a sepa-

rate tree view (see Fig. 7).

Judgment consistency checks. Case study experiences

show that when the judgment made by the user differs from

what is suggested by the model, the modeler may be

motivated to revise the model. However, in our studies we

found several occasions where novice modelers made

judgments that were inconsistent with the structure of the

model, and did not use these opportunities to make changes

or additions to the model. Preliminary work has outlined

several consistency checks between the judgment and the

model, and between old and new judgments [33]. Such

checks allow us to embed modeling expertise within the

tool, encouraging the user to resolve inconsistencies when

possible.

Multiple solutions. Currently, backward analysis uses a

solver which provides a single solution, if such a solution

exists. Future improvements to the framework implemen-

tation could make use of a solver which finds multiple

solutions, if they exist, (e.g., [22]) allowing a user to select

a particular solution to pursue. Alternatively, one could

allow the users a ‘‘find next’’ option, asking the solver to

find another solution matching targets and judgment con-

straints, if one exists. In either case, further algorithms and

guidance for selecting between available solutions may be

needed.

Model evolution. As our analysis framework aims to

encourage model iteration, expansions to the framework

should handle continuously evolving models. A change in a

model could prompt an automatic re-evaluation of the

model, propagating as far as possible, and then prompting

the user if new judgments are needed. Or, in an effort to

promote model comprehension, the user could be shown

what parts of the analysis results were affected by their

changes, if any.

Analysis of uncertain models. Recent work has descri-

bed the application of a formal framework representing

modeling uncertainty to goal models in an RE context [46].

Further work has integrated this approach with an auto-

mated version of the forward goal model analysis described

in our framework [27]. Such analysis allows one to ask

questions such as ‘‘given model uncertainties, what ana-

lysis results are possible?’’ and ‘‘what uncertainties must be

resolved to achieve target values?’’ The first author is

currently working with collaborators to extend this work,

integrating analysis over uncertain models approach with

backward analysis. Future work will investigate the chan-

ges necessary to make analysis of uncertain models inter-

active, allowing for human judgment over conflicting or

partial evidence.

From early to late RE. Future work should guide users

in moving from early RE models, and the type of analysis

introduced in this work, into more detailed RE models.

Such are the models introduced and used in many of the

existing goal model analysis approaches, requiring detailed

information such as probability, priority, or temporal

ordering. Recent work aimed at business intelligence

models simultaneously uses early qualitative and later

quantitative analysis [25]. Here, analysis can be qualitative

over less specified areas of the model and quantitative,
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using domain-specific equations, in more specified areas.

Analysis results are mapped together, facilitating complete

model propagation. Our qualitative analysis could fit well

into this approach.

Confidence in analysis results. Future work can aim to

measure the perceived confidence in analysis results based

on several factors such as confidence in the sources of the

model, the structure of the model (e.g., how many soft-

goals), the length of propagation paths, the sources of

initial evaluation labels, and the means of propagation

(e.g., qualitative through propagation links or quantitative

using domain-specific formula). Such confidence measures

can help to guide users in whether or not the analysis

results should be used as a heuristic only, or can be more

trusted, using concrete domain measures.

Varying levels of automation. It would be useful to

allow users to modify the level of automation. Depending

on their confidence in the model (accuracy, completeness),

they could select a level of automation along a sliding

scale, ranging from judgment in all potentially contentious

areas to full automation using set rules to combine evi-

dence, such as in [4]. Future work should investigate sit-

uations where users choose to increase or decrease the level

of automation, and how well this facilitates effective RE

analysis.

Further validation. Further validation should be con-

ducted, testing the methodology and implementation,

including new interventions such as human judgment

checks. Such studies could try to test a variety of types of

analysis (ad hoc, interactive, fully automatic) in realistic

settings; however, challenges in designing effective studies

(realistic vs. easily measurable) must be addressed.
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