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Abstract Microsoft’s STRIDE is a popular threat mod-

eling technique commonly used to discover the security

weaknesses of a software system. In turn, discovered

weaknesses are a major driver for incepting security

requirements. Despite its successful adoption, to date no

empirical study has been carried out to quantify the cost

and effectiveness of STRIDE. The contribution of this

paper is the evaluation of STRIDE via a descriptive study

that involved 57 students in their last master year in

computer science. The study addresses three research

questions. First, it assesses how many valid threats per hour

are produced on average. Second, it evaluates the correct-

ness of the analysis results by looking at the average

number of false positives, i.e., the incorrect threats. Finally,

it determines the completeness of the analysis results by

looking at the average number of false negatives, i.e., the

overlooked threats.

Keywords Secure software � Empirical study �
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1 Introduction

Threat modeling is recognized as one of the most important

activities in software security [26]. A threat modeling

technique guides the security analyst to the discovery of the

actions that a malicious agent (insider or outsider) might

perform in order to misuse a software system. Threats are

often referred to as anti-requirements and are an important

driver for the definition of the security requirements of a

system [31, 42, 47].

Threat modeling is based on the identification of the

system’s valuable assets, such as sensitive information or

the availability of certain processing facilities. Therefore,

threat modeling can be applied at several levels of

abstraction, depending on the type of assets considered.

From a requirements engineering perspective, the assets

become more tangible when some design decisions are

made and an initial decomposition of the system func-

tionality is chosen. Therefore, early threat elicitation is best

performed as soon as an initial architectural model of the

system is available. For instance, a solution strategy that

opts for data centralization is affected by different security

issues than a system where the data is fully distributed.

Moreover, threats depend on the security assumptions

underlying a given decomposition, as the use of public

networks to interconnect the subsystems. These assump-

tions are only precisely understood when the high-level

decomposition of the system becomes more concrete.

Threat modeling can be used to analyze the soundness of

(initial) software architectures and to spot flaws early on.

The discovered flaws represent an opportunity to elaborate

upon the security requirements of the system and, conse-

quently, revisit the design choices or refine the architec-

tural model. A popular technique for threat modeling is

Microsoft’s STRIDE [46], which is routinely used on all of

Microsoft’s products [13]. It is endorsed by the most rec-

ognized secure software processes, such as Touchpoints

[26], OWASP’s CLASP [4] and Microsoft’s SDL [19]. It is

also taught in certification programs such as CSSLP (http://

www.isc2.org) and used in the industry [20].

STRIDE is also the subject of ongoing research. For

instance, the technique is being augmented by OWASP in

order to become applicable to the domain of mobile
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applications [34]. Further, it has been extended for the

purpose of privacy analysis [6]. Finally, researchers are

adapting STRIDE to different types of system models [21,

38].

Despite its successful adoption, to date no empirical

study has been carried out to quantify the costs and

effectiveness of STRIDE. Presently, the productivity of an

analyst using STRIDE is unknown, as is the average per-

centage of erroneous threats produced, or the share of

threats that are overlooked. Without such a knowledge, it is

difficult to estimate how much time has to be budgeted for

the security analysis of a given software system. Similarly,

it is hard to understand whether the results of the analysis

are trustworthy.

The contribution of this paper is a descriptive study

evaluating STRIDE by means of quantitative observations

that have been performed in controlled, laboratory condi-

tions in the context of a university course. The study has

involved 57 students in their last year of the master in

computer science. Contrary to controlled experiments, in a

descriptive study a phenomenon is characterized and no

attempt is made to analyze the effects of variables on the

phenomenon itself. This type of study is instrumental in

order to understand a technique and eventually formulate

research hypotheses to be further investigated by means of

comparative experiments. Incisively, Grimes and Schulz

portray descriptive studies as ‘‘the first scientific toe in the

water in new areas of inquiry’’ [10]. As STRIDE has never

been studied before, the authors are indeed venturing in a

new area of inquiry, and at this stage, a descriptive study

appears to be the most appropriate means of investigation.

As remarked by Tichy [45], exploratory studies like ours

are particularly suited for the enrollment of university

students. Further, students are ideal for investigating the

issues related to a technology’s learning curve, as remarked

by Carver et al. [3]. The authors have paid particular

attention to the advice offered by Carver et al. in order to

successfully embed a study in the context of a university

course. In particular, the study has been harmonized with

respect to the teaching goals of the course, and the students

have been given adequate incentives. These are important

safeguards in order to obtain realistic results. The partici-

pants of the study have been asked to perform the threat

analysis of a medium-sized distributed system. The main

goal of the study was to evaluate STRIDE by providing an

answer to the following research questions:

• RQ1: productivity How many valid threats per hour are

produced?

• RQ2: correctness Is the number of incorrect threats

small?

• RQ3: completeness Is the number of overlooked threats

small?

The study has been conducted in three subsequent

installments of the above-mentioned university course. In

the first 2 years, we observed the work of the participants

while they were identifying the threats in an early phase of

the software development life cycle, namely when the

elaboration of the security requirements (and of the cor-

responding controls) had just begun. In the third year, we

observed the participants in a scenario where the security

engineering process had progressed further. They identified

the threats for a system where some security controls have

been put into place to satisfy the authorization and

authentication requirements, which are fundamental for

security. The variation in the third year is meant to provide

evidence that the results obtained in the previous 2 years

can be generalized and could apply to systems with dif-

ferent degrees of elaboration of security mechanisms.

In summary, this study concludes that STRIDE is not

difficult to learn and execute, although it is relatively time-

consuming. Further, many threats go undetected during the

analysis.

The rest of this paper is organized as follows. Section 2

contextualizes this study in the domain of requirements

engineering. Section 3 provides the necessary background

information on STRIDE. Section 4 describes the planning

of the study and states the test hypotheses. Section 5

describes the execution of the study and the measurement

procedure. The results are presented in Sects. 6 and 7 and

summarized in Sect. 8. Section 9 lists the threats to the

validity of this study. Section 10 discusses the impact of

STRIDE on security requirements elicitation. Finally, Sect.

11 discusses the related work, and Sect. 12 gives the

concluding remarks.

2 Requirements, architecture and threat analysis

As formulated by Haley et al. [11], the essence of security

goals is to protect assets from harm. At the beginning of

the requirements engineering process, these assets are high

level and often abstract, for instance, information about

customers’ credit cards. Harm is caused by the violation of

the security concerns, such as confidentiality, integrity,

availability and accountability. An example of a confi-

dentiality concern is that the credit card information is

shared with the seller only. In this example, a threat could

be that the credit card information is stolen by a third-party

and the corresponding security goal would be that the IT

system of the seller should protect the credit card infor-

mation from being stolen. The naı̈ve example above

illustrates how threat analysis is applied on high-level

assets and yields to high-level security goals.

From these high-level protection goals, concrete secu-

rity requirements are to be derived by operationalization.
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As security requirements are constraints on the functional

requirements, one has to determine which security goals

‘‘apply’’ to which functional requirements [11]. Next, one

has to assess what weaknesses in the functionality should be

avoided by means of the constraints. That is, the operation-

alization of a security goal requires that the concept of harm

(i.e., the attacker’s goal) is operationalized as well. There-

fore, there is the need for a finer-grained round of threat

analysis. This exercise requires the identification of how the

abstract assets, such as information, translate to tangible

entities in the software architecture, like data and software

components, and how the functionality meshes with those

entities by means of coordination and communication flows.

This can be realistically carried out if a decomposition of the

system has emerged and cues are available about the distri-

bution of the responsibilities as well as the layout of the

information flows. Only then, in fact, it is feasible to assess

the potential weaknesses that might threaten the system. In

short, some design decisions need to be taken at this stage,

and an initial structure of the system needs to be shaped in

order to enable the elicitation of realistic threats and, con-

sequently, sound security requirements. We are not talking

about a full-blown software architecture but rather about an

initial step in the solution domain that sketches the overall

organization of the system. This is a pivotal idea that

shoulders this study and is substantiated by the Twin Peaks

model of Nuseibeh [32] and its extension for security by

Heyman et al. [14]. The Twin Peaks model has its origin in

the requirements engineering community and describes how

no sharp separation exists between the definition (and evo-

lution) of requirements and architecture. The creation of

these two artifacts progresses in parallel and is heavily

intertwined. Not only do requirements provide the rationale

for design decisions, but the latter are made while require-

ments are elaborated and, in turn, shape the way such elab-

oration proceeds. This idea is nowadays accepted by the

majority of the research community, both requirements

engineers and software architects [1].

To recap, the security requirements are derived by

means of threat modeling, which requires the manifestation

of an initial sketch of the solution, which, in turn, is either

implicitly or explicitly available at that point of the

requirements engineering process because of the effect of

the Twin Peaks. Hence, this study deals with the threat

modeling of an initial architecture like the one pictured in

Fig. 2. However, the context of the threat modeling tech-

nique is the elicitation of the security requirements that will

eventually drive the refinement of the initial design solu-

tion into a fully fledged software architecture. Incidentally,

threat modeling could be used once again in order to assess

the soundness of the resulting, more refined software

architecture, although other techniques might also be pre-

ferred, for instance, ATAM [5].

3 Background on threat modeling with STRIDE

STRIDE is a model-based threat modeling technique

developed by Microsoft [19]. The methodology guides the

security analyst through several activities, which will be

briefly discussed in the remainder of this section.

Step 1 Model the system by means of a data flow dia-

gram (DFD). The initial activities define the scope of the

analysis and produce a model of the system under review.

The DFD is built during this step and is instrumental for the

elicitation of the threats later on. An example of a DFD is

given in Fig. 1, which is a representation of the system

used in this study (see also Fig. 2). Starting from the

context diagram showing the users and the third parties of

the system, a more detailed decomposition, called level 1

DFD, is derived by refinement. The level 1 DFD shows the

way the information travels in the system through data

flows (DF) from external entities (EE) like system users to

processing nodes (PN) like active software components and

data storage points (DS) like database components. The

hierarchical refinement can continue further down if nec-

essary. As reported by Dhillon, this is only required in

more complex systems and often a level 1 DFD is sufficient

for the sake of the analysis [7].

(a)

(b)

Fig. 1 A sample DFD for the digital publishing system. a Level 0

(context diagram). b Level 1
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During the scoping and modeling step, the analyst must

also list the security assumptions explicitly. Examples of

assumptions are the presence of an authentication mecha-

nism, or the possibility for a threat agent (a.k.a. attacker) to

eavesdrop on the communication channels. The assump-

tions are used later on, during the threat elicitation step.

Step 2 Map the DFD elements to threat categories.

In STRIDE, threats are organized according to six

categories:

• Spoofing (S) refers to a rogue person or program

successfully impersonating another legitimate user or

program.

• Tampering (T) refers to a threat agent illegitimately

modifying application resources, such as in memory

data.

• Repudiation (R) refers to a user (legitimate or

malicious) able to deny the execution of an action

within the system.

• Information disclosure (I) refers to a threat agent

obtaining private information she is not supposed to

access.

• Denial of service (D) refers to a threat agent making a

system resource unavailable to its intended users.

• Elevation of privilege (E) refers to a threat agent

obtaining privileged access to resources that are

normally protected.

Each element type of the DFD is susceptible to one or more

of the above categories, according to the schema illustrated

in Table 1. For instance, the consumer (EE) in Fig. 1 is

prone to spoofing and repudiation, while the internal

service (PN) is susceptible to all types of threats.

Step 3 Elicit the threats. For each mapping between a

generic threat category and a DFD element type, STRIDE

provides a ‘‘checklist’’ of concrete threats that need to be

considered. As shown in Fig. 3, the checklist comes in the

shape of a tree containing a hierarchy of template threats

that can be instantiated in the context of the system under

review. In the reference book describing STRIDE [19], a

catalog of 12 threat trees is provided. A tree can sometimes

refer to others. In the picture, for instance, the ‘‘spoofing’’

tree is referenced from the ‘‘tampering with a data flow’’

tree. The tree-based structure is intended to ease the nav-

igation and to provide a better overview of the rationale

behind each threat.

The applicability of a threat depends on the assumptions

stated in step 1. With reference to Fig. 3, for instance, the

threat concerning a man-in-the-middle is relevant only if

channel-level security (e.g., SSL) is used and should be

discarded otherwise.

Step 4 Document the threats STRIDE does not mandate

a specific format for this step. Misuse cases are commonly

used in security to document threats [42]. Therefore, we

have used the structured textual format that has been

defined for misuse cases by Sindre and Opdahl [43]. The

template is very similar to those used for use cases and

includes some extra security-specific information such as

the so-called capture points section. This section contains

the description of how the misuse may be prevented (or

detected) and represents an opportunity to identify the

security requirements.

Fig. 2 The digital publishing system

Table 1 The mapping of DFD elements to threat categories

DFD elements Applicable threat categories

S T R I D E

EE 4 4

DF 4 4 4

DS 4 4 4

PN 4 4 4 4 4 4

Fig. 3 A sample tree of template threats
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3.1 Tool support

When the study started, Microsoft was providing a pro-

totype tool. The prototype allowed the user to draw the

DFD and generated a very long list of threats (organized by

the six threat categories) that the user had to prune in light

of the assumptions made for the system under analysis.

Meanwhile, the prototype has been replaced by the SDL

threat modeling tool, also released by Microsoft [41]. The

tool still provides a graphical DFD editor but does not

generate the list of threats anymore. It only generates the

mappings between DFD elements and threat categories

(step 2).

To avoid additional confounding factors, this work did

not employ any tool. Given the evolution of the tool sup-

port, this choice proved to be successful, as our results

would have been specific to the use of a prototype not

available anymore.

4 Planning the study

This section presents the design of an empirical study that

observed and evaluated how the participants apply the

STRIDE technique to perform the security analysis of a

distributed system. In order to enable replication of this

study, all the experimental material mentioned here is also

available online at [37].

As mentioned earlier, this study has been executed over

three consecutive installments. The core part of the study

has taken place during the first 2 years, when the partici-

pants (41 in total) have been asked to analyze a distributed

system that is in the early phase of specification and that

does not contain security mechanisms yet. In the third year,

the participants (16 in total) have analyzed a similar sys-

tem, which, however, contains security controls for

authorization and authentication. This change has been

introduced to investigate the potential for generalization of

the results obtained during the previous 2 years. That is, if

the results are confirmed in the third year, their applica-

bility could go beyond the specific type of system used in

the experimentation. For instance, the results could apply

to systems with different degrees of elaboration of the

security mechanisms.

In this and the following sections, we start describing

the planning, execution and results of the core part of the

study, i.e., the first 2 years. The description of the third

year is deferred to Sect. 7.

4.1 Experimental object

The digital publishing system is a medium-scale distributed

system developed in the context of an industry-oriented

research project carried out in partnership with major news

publishers in European countries [24]. The complete

description of the system is available in a technical report

[48]. The main stakeholder of the system is a news pub-

lisher (like a company publishing newspapers) transition-

ing to Internet-based distribution channels. The main

purpose of the system is (1) to support the journalists and

the editors during the creation and the updating of a digital

edition and (2) to provide subscribed consumers online

access to the editions, e.g., via e-paper terminals. A major

source of revenue is represented by the ads inserted by

advertisers into each edition. In order to be competitive, the

system has to be flexible with respect to the needs of the

advertisers. Therefore, the system integrates the advertisers

into its own core business processes and provides means to

personalize the ads to the consumer’s interests.

A pictorial representation of the system is given in

Fig. 2. At the bottom of the figure, the Data Server node is

the storage for the published edition and for the raw

material used in the creation process (see the content

management system), like news articles created by the desk

journalists and the field reporters, as well as the ads pro-

vided by the advertisers. This node also contains infor-

mation concerning the subscribed consumers (see the user

management system). The internal service node is the hub

of the system and provides a front-end to the consumers via

the newspaper service, to the stakeholders involved in the

production of the editions via the input management sys-

tem and to the advertisers via the media advertising system.

The core business of producing the editions is orchestrated

by the publishing platform node (top part of the figure),

which provides access to both journalists and managers.

We have provided the participants with sufficient doc-

umentation for understanding the system. The system

documentation is a document of about 50 pages containing

(1) the description of the business goals behind the system,

(2) the domain model describing the main concepts, (3) the

description of the stakeholders and actors (i.e., users) of the

system, (4) the functional requirements as a list of 30 use

cases and (5) the UML diagrams of the software archi-

tecture. The documentation is available online [37].

4.2 Participants

The participants of this study are the students of a course

on ‘‘design and analysis of software systems’’ taught by the

experimenters, which is positioned in the first semester of

the second year of the master in computer science at KU

Leuven in Belgium.

In the first 2 years, we have observed 41 students

organized in ten teams of about four students. The students

have been allowed to assemble the teams themselves,

which is the state of practice in most project-oriented
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courses at our university. The team sizes are given in the

second column of Table 2. In the first year, we had 23

students divided into six teams. In the second year, we had

18 students divided into four teams.

The course is optional in the curriculum, and hence, the

students tend to be very motivated, as they selected the

course because of a specific interest in the subject. This is

also indicated by the average grade of 14 out of 20 points

obtained by the teams that participated in this study in the

first 2 years.

Concerning the background of the participants, they can

be regarded as a rather homogeneous group. Although we

have not administered a specific questionnaire to validate

this assumption, we know from the demographics that the

participants have the same age, nationality and study

background. Regarding the latter, the course that hosted the

study is available for selection to one master program only.

This program requires the students to acquire 120 credits in

order to graduate, and they are free to choose specializing

courses for a maximum of 19 credits only, which is a

negligible variation. Prior to the enrollment in the study,

the students have followed a course on software require-

ments (focusing on domain models and use cases) and a

prerequisite course on the design of software architectures.

Also, the students have followed an introductory course on

system and network security. Some have followed a course

on software security.

4.3 Task

The participants have been requested to perform the

STRIDE analysis of the digital publishing system accord-

ing to the four steps described in Sect. 3. They had to use

the catalog of threat trees contained in [19]. They had to

consider both insider threats (e.g., from legitimate users)

and outsider threats (e.g., from a competitor). As part of the

process of documenting the threats as misuse cases, the

participants have been asked to define some ‘‘capture

points,’’ i.e., security requirements that are meant to pre-

vent (or monitor) the occurrence of a threat. The identifi-

cation of these requirements was instrumental for a later

stage of the course. As this study focuses on STRIDE and

the identification of anti-requirements, the analysis of the

security requirements is not in scope. However, a

description of the identified security requirements is given

in Sect. 10.

The digital publishing system is used throughout the

course, also outside the scope of the study reported here.

Therefore, its size is intentionally meant to be challenging

for the students. However, the size of the STRIDE analysis

grows rapidly with the size of the system under analysis.

Therefore, we advised the participants to select a smaller

subset of the whole system to focus on. As a guideline, they

have been told to take the viewpoint of a group of system

users and pick a coherent subset containing a sufficient

number of key use cases that are relevant to that group. The

individual choices of the teams are reported in the third

column of Table 2 and fall into one of the following

options:

• Consumer and advertiser This is a slice of the system

containing the use cases that are relevant to the external

users.

• Journalist and manager This is the slice representing

the perspective of the internal users.

• Whole system Some participants opted for a broader

analysis.

As the system under analysis in the first 2 years does not

contain security controls, the participants had to keep in

mind the following standard assumptions: (a) There are no

authentication and authorization mechanisms in place,

(b) no logging is implemented, and (c) the communication

links are unencrypted. These assumptions are important to

judge whether a potential threat is indeed applicable to the

system under analysis. For instance, all threats related to

weaknesses in the crypto-protocols become irrelevant

under the above assumptions and must be discarded.

The participants were allowed to make additional

assumptions, provided that these were properly docu-

mented. It happened only in two cases. One team assumed

that the storage capacity of the data store is unlimited,

which further reduces the number of applicable threats

(e.g., for denial of service). Another team assumed that the

data storage infrastructure was shared with other systems

and hence more threats had to be considered (for infor-

mation disclosure). As risk assessment is not a part of the

course, the teams have not been judged on the nature of

their assumptions as long as they could properly justify

their choices by showing that they were reasonable.

Concerning the creation of the level 1 data flow diagram,

during the STRIDE lecture, the participants have been taught

Table 2 Teams and selected subsets of the system

Team Size Subset

1 4 Journalist and manager

2 4 Journalist and manager

3 4 Whole system

4 4 Whole system

5 3 Consumer and advertiser

6 4 Consumer and advertiser

7 4 Whole system

8 5 Journalist and manager

9 5 Consumer and advertiser

10 4 Journalist and manager

168 Requirements Eng (2015) 20:163–180

123



to use the deployment diagram (exemplified in Fig. 2) as a

guideline. This diagram is central as the distribution of the

system over several networked nodes is a key aspect from a

security perspective. The participants have been taught to

map nodes of the deployment diagram to processing nodes

(PN) in the DFD and actors to external entities (EE).

According to their choice, the teams marked the obtained

DFD with a closed line identifying the slice of the system

they intended to analyze. Some teams made a distinction

between production data (news and ads) and consumer

information. Consequently, they included two different data

stores in the DFD (as in Fig. 1).

4.4 Design of the study

The teams carried out the same task (described above) on

the same experimental object (the digital publishing

system).

4.5 Hypotheses

Research question 1 Concerning the productivity, we do

not formulate a test hypothesis as we have no a priory

expectations about what the outcome should look like. We

define the productivity as the number of correct results

(i.e., the true positives) per unit of time. Note that we do

not include incorrect results in the definition intentionally.

As mentioned in Table 3, we define a true positive (TP)

as a discovered threat that meets the following three criteria:

a. It is relevant because it can be clearly related to a leaf

of a threat tree,

b. It is applicable in light of the security assumptions, and

c. Its description, as given by the team, is realistic from a

security perspective.

In summary, the true positives represent the amount of

work (effort) correctly carried out by a team.

To further characterize the STRIDE technique, we also

measure its difficulty as it is perceived by the participants.

This has been done by means of a questionnaire.

Research question 2 Concerning the correctness, as

alternative hypothesis we are interested in knowing

whether, on average, the number of correct results is pre-

dominant (more than 80 %) w.r.t. the overall number of

results produced (both correct and incorrect). As mentioned

before, the true positives represent the correct results.

Incorrect results are the false positives (FP), i.e., the threats

that are reported by the team and do not meet the criteria

listed above. Consequently, we defined the following null

hypothesis:

HP
0 : l P,TP=ðTP + FPÞ

� �
� 0:80

The quantity used in the null hypothesis is commonly

known as precision in information retrieval terminol-

ogy. Although the choice of a 80 % threshold is

somewhat arbitrary, this is often regarded as a good

reference for precision, e.g., in the information retrieval

community.

Research question 3 Concerning completeness, as

alternative hypothesis we were interested in knowing

whether, on average, the number of correct results covers

enough (more than 80 %) of the space of actual threats

(both correct and overlooked). Overlooked threats are the

false negatives (FN), i.e., the number of threats that the

team failed to identify although they are relevant in the

system under analysis. Therefore, we defined the following

null hypothesis:

HR
0 : l R,TP / (TP + FN)

� �
� 0:80

The quantity used in the null hypothesis corresponds to the

so-called recall. The 80 % threshold is chosen according to

the same rationale as before.

5 Operation of the study

5.1 Preparation of the participants

The participants received their training as part of the

course. The course syllabus, material and structure did not

change over the years. Furthermore, the course was taught

by the same lecturers and teaching assistants.

The course focuses on the analysis of software archi-

tectures. It is organized into three parts: (a) specification of

the system’s security anti-requirements as a set of misuse

cases and identification of the corresponding security

requirements, (b) system refinement by selecting architec-

ture-level security solutions and (c) validation of the

overall system vis-a-vis a larger set of quality requirements

by means of trade-off analysis. Each part comprises a set of

theoretical lectures followed by a practical laboratory

session where the students work in teams.

The study is located in the context of the first part of the

course, which comprises three lectures of 2.5 h and one

laboratory session of 4 h.

Table 3 Terminology

Term Meaning

True positive (TP) Correct threat

False negative (FN) Overlooked threat

False positive (FP) Incorrect threat

Precision (P) Percentage of the produced threats that

are correct (the higher the better)

Recall (R) Percentage of the existing threats that

are discovered (the higher the better)
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At the beginning of the three lectures, the students get a

brief recap about use cases and software architecture.

Afterward, the lectures move on to the definition of

security requirements and the security analysis of a software

system. The STRIDE methodology is covered in depth and

extensively illustrated by means of a complete and realistic

example from the e-health application domain. In the lec-

tures, the experimental object used in the laboratory session

is also introduced. The class material is available online

[37]. The amount of training is higher than the standard at

Microsoft, where it is reported that ‘‘most practitioners have

at most 2 h of threat modeling training’’ [40].

The students are very motivated to execute the projects

duly, as their final grade is heavily based on these (about 50

%). The amount of work required to complete the project is

intentionally more than what the teams can achieve during

the laboratory time. Indeed, the assigned task is of a rather

realistic size and certainly not a ‘‘toy example’’. Therefore,

the students are expected to get started during the four

laboratory hours and then complete the assignment (and

compile the report) as homework. As the teams also work

outside the supervised laboratory hours, we have asked

them to track the time they spend on the project. The

authors are confident that the teams reported the time

earnestly, which is confirmed by the congruence between

the declared time and the work described in their reports.

5.2 Execution of the study

The teams started working on the task during the first

laboratory of the course and then had about ten days to

complete the task at home and to turn in their report by a

given deadline.

The laboratory hours have been supervised by a teaching

assistant and a lecturer. During the laboratory hours, each

team had access to an Internet-connected personal com-

puter with a graphical modeling tool to draw the data flow

diagrams and an office suite for editing the misuse cases.

However, the teams were allowed to work on paper if they

preferred. Indeed, the teams mostly worked on paper dur-

ing the brainstorming in the laboratory and produced a

digital report later on.

As mentioned earlier, the digital publishing system has

been previously introduced during the lectures. The

detailed documentation has been made available a few days

before the laboratory session, so that the participants could

further familiarize themselves with the experimental

object. The participants have been advised to download and

read the documentation before coming to the laboratory.

The assignment, containing the detailed description of the

task was made available at the beginning of the laboratory

session. It is now available online at [37].

Each report contained a picture representing the ana-

lyzed level 1 DFD (and the slice they selected), a list

containing the assumptions made (with comments about

the rationale), a table for the mappings between DFD

elements and threat categories, and the misuse cases

(organized by threat category) documenting the identified

threats.

The teams also had to turn in a sheet reporting the effort

time (in h) spent on each step of the task. The time sheets

have been kept on a teamwise basis, i.e., each group

reported the person hours jointly spent by the team on each

step.

Further, at the end of the study, all participants had to fill

in a short questionnaire containing four questions. Each

question asks to rate the difficulty of one of the four steps

mentioned in Sect. 3, on a scale from 1 (very easy) to 5

(very hard). The questionnaire does not identify the par-

ticipant except for her team membership.

5.3 Measurement procedure

The effort time is collected from the time sheets, which

have been informally checked (sometimes also during the

examination) for congruence with respect to the amount of

work visible in the reports. From the questionnaires, we

collected the opinion of the participants about the per-

ceived difficulty of the activities.

The reports turned in by the teams have been assessed

by two security experts (the first and the second author)

independently. First, the experts met to decide which

threats (of the catalog) were applicable given the nature of

the system under analysis and the assumptions mentioned

in Sect. 4.3. Then they processed the reports. In particular,

the experts counted the number of correct threats (true

positives) and incorrect threats (false positives) according

to the definitions given in Sect. 4.5. The experts compared

their results, and in case of mismatches, they discussed

until a consensus was reached. This happened in a very

small number of cases (\4 % of the 260 threats reviewed).

The experts also measured the size of the DFD used by

each team by looking at the corresponding picture included

in the report. They counted the number of instances in each

element type (process nodes, data flows and so on).

Given the set of threats in the catalog (as decided ear-

lier) and the DFD, the experts computed the total number

of applicable threats per each team. This number (called

the baseline) represents an idealistic result that could be

obtained by exhaustively analyzing each element in the

DFD. In this sense, it represents an upper bound. However,

in order to avoid a repetitive listing, all teams leveraged a

technique called reduction, which is suggested in the

documentation of STRIDE:
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You can apply a process called reduction to reduce

the number of entities you will analyze. In short, if

you have two or more DFD elements of the same type

[…] you can model the elements as one entity […]. In

other words, when you analyze the threats to one of

the elements, that same analysis applies to the other

element also [19].

For instance, if a team mentioned that a certain data flow

was subject to an eavesdropping threat, the same threat was

not repeated anymore for the rest of the data flows. In a

nutshell, via reduction the teams set out to exemplify all the

different threats that were applicable in the system under

analysis, rather than providing an exhaustive list. This

attitude has been endorsed by the instructors of the course,

and it is also accounted for in the measurement procedure.

In fact, in light of reduction, the baseline is not a faithful

representative of the size of the task that the teams set out

to accomplish. Consequently, it cannot be used as a yard-

stick to measure the overlooked threats. Therefore, the

experts counted the false negatives as the number of

applicable leaf nodes in the catalog of threat trees that have

not been exemplified in each report.1 This is more in line

with the way the teams executed the task. As before, the

counting of the false negatives has been done indepen-

dently by the experts and the few issues resolved by

consensus.

6 Results

In this section, we first present some descriptive statistics

and then address the three research questions. All mea-

surements used in this paper are available online at [37].

6.1 Descriptive statistics

6.1.1 DFD

The DFD produced by the teams was correct. Hence, no

influence in the results can be traced back to any erroneous

or incomplete DFD modeling. The size of the DFD used by

each team is presented in Table 4. The total number of

DFD elements is given, together with a more detailed

breakdown of the number of processes (PN), data stores

(DS), external entities (EE) and data flows (DF). It can be

noted that the teams can be divided into two groups: DFDs

of about 24 elements (models for the whole system) and of

about 10 elements (other subsets). The average size of the

DFDs is 14.3 elements (standard deviation is 6.90), and the

95 % confidence interval is [10, 18.5] elements (one-

sample Wilcoxon test). Note that this DFD size falls within

the range of real-world systems analyzed by practitioners

as reported by Dhillon [7].

The data flows are the biggest contributors to the overall

DFD size (see the means in Table 4). Indeed, there is a

strong correlation between the size of the DFD and the

number of data flows (Spearman q = 0.997, p\ 0.05).

6.1.2 Baseline

We recall that the baseline represents the upper bound to

the number of threats that can be discovered. The average

size of the baseline is 214 threats (standard deviation is 92),

which is extremely large and possibly unmanageable. The

confidence interval is [152.5, 274.5] threats (one-sample

Wilcoxon test).

Figure 4 shows the composition of the baseline over

the six threat categories. The tampering (T), information

disclosure (I) and denial of service (D) threats are, on

average, much higher than the others, and these differ-

ences are statistically significant (paired-samples Wilco-

xon test). Further, the analysis of the correlation

(Spearman, p\ 0.05) between the overall count of threats

in the baseline and its individual components reveals that

the strongest values are obtained for T (q = 0.988),

I (1.0) and D (0.986). This is in line with the fact that the

T–I–D categories are mapped more often to the DFD

elements than the other categories, as visible in Table 1.

More mappings mean more checklists to apply. Addi-

tionally, the checklists for these categories contain more

threats.

In conclusion, it appears that STRIDE has a tendency to

produce a potentially overwhelming number of threats

(unless reduction is used) and to deepen the analysis in

three threat categories.

Table 4 Size of the DFD

Team PN DS EE DF Total

1 2 1 1 7 11

2 2 1 1 6 10

3 2 2 5 17 26

4 2 1 5 15 23

5 1 1 2 6 10

6 2 1 1 6 10

7 3 1 5 14 23

8 3 1 1 8 13

9 1 1 1 4 7

10 2 1 1 6 10

l 2.0 1.1 2.3 8.9 14.3

r 0.67 0.32 1.89 4.61 6.90

1 Of course, the extra assumptions made by the teams have been

considered.
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6.2 Research question 1: productivity and difficulty

6.2.1 Effort time

The average time spent by the teams on the task is 25.1 h

(standard deviation is 6.6), and the confidence interval is

[19, 29] hours (one-sample Wilcoxon test).

In Fig. 5, the time is broken down into different steps of

STRIDE mentioned in Sect. 3: (1) creating the DFD, (2)

mapping the DFD elements to the threat categories, (3)

eliciting the threats and (4) documenting the identified

threats.

It is interesting to note that, on average, the same

amount of time is spent on finding the threats (steps 1–2–3

together) and documenting them as misuse cases (paired-

samples Wilcoxon test).

It is not possible to link the effort time to the size of the

DFD and of the baseline. Therefore, there is no proportion

between the time put into the exercise and the real size of

the chosen subset. This possibly relates to the way of

working of the participants, which used the reduction

technique, as explained in Sect. 5.3.

As shown in Fig. 6, an accurate model can be built

(R2 = 0.88, F statistic =\0.05) to predict the overall time

spent on analyzing the system (steps 1–4 together) from the

observation of the preliminary, smaller work done in the

mapping step (step 2). The model has been built by means

of the LTS robust regression technique. Replica studies

should consider investigating this point further, e.g., by

means of specific questions to the participants.

6.2.2 Effort

In theory, the effort (work done) would be the sum of both

the true positives and the false positives. However, we

want to assess the productivity with respect to the work

correctly done. Therefore, we count only the true positives

in the measure of the effort.

Figure 7 (white box) presents the boxplot for the TPs.

Table 5 reports the raw numbers used to build Fig. 7. The

average number of TPs is 21.1 threats (standard deviation

of 13.8), and the confidence interval is [14.0, 64.5] threats

(one-sample Wilcoxon test). Figure 8 presents the TPs

arranged by threat categories (white bars). The statistical

analysis (paired-samples Wilcoxon test) reveals that there
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are no differences within the categories in the T–I–D group

as well as within the S–R–E group. This can be appreciated

also visually by looking at the white bars in Fig. 8. Further,

there is a statistically significant location shift between the

average number of TPs of any of the T–I–D categories and

any of the S–R–E categories. Therefore, there is more

focus on T-I-D threats and less on S–R–E threats. This is in

line with the findings for the baseline.

The TPs are not correlated with the size of the DFD (nor

of the baseline). More interestingly, the TPs cannot be

linked to the time. This may imply that, for our sample,

investing more time on the analysis does not guarantee an

improvement.

6.2.3 Productivity

Having characterized the effort time and the true positives,

we can eventually provide an answer to the first research

question. Considering only the time spent in identifying

(and not documenting) the threats, an average productivity

of 1.8 threats/h (standard deviation of 1.5) is to be expected

for a system similar to the analyzed one. The confidence

interval is [0.94, 3.25] threats/h (one-sample Wilcoxon

test). That is, it takes an average of 33 min to identify a

correct threat.

Considering the overall time (i.e., including the time

spent documenting the threats as misuse cases), the average

productivity drops to 0.9 threats/h with a confidence

interval of [0.48, 1.33].

Disregarding the time spent building the DFD (which is

a one-time, upfront exercise), and including the time spent

documenting the threats, the average productivity is of 1.2

threats/h with a confidence interval of [0.64, 1.81].

Considering the baselines as an upper bound, at this rate

and with a single analyst, it would take up to seven

working days to complete the analysis of the smallest DFD

in our study, and up to 26 working days for the largest.

These values are obtained by multiplying the average

productivity by the size of the baselines.

6.2.4 Perceived difficulty

The perceived difficulty is obtained by analyzing the

answers to the questionnaire, which contains one question

per step of the STRIDE methodology. The respondent is

asked to rate the difficulty of each step on an ordinal scale

from one (very easy) to five (very difficult). Table 6 pro-

vides the number of respondents, the medians of the

answers and the confidence intervals (Wilcoxon).

On average, the first two steps of the methodology are

perceived as ‘‘easy’’ (2) by the participants, while the last

two are perceived as being of ‘‘normal’’ (3) difficulty. The

location shift between the first two steps and the last two is

statistically significant (paired-samples Wilcoxon test,

significance level of 0.0125 with the Bonferroni correc-

tion). Overall, it is quite remarkable that participants that

have no prior practical experience with applying the

STRIDE methodology find that it is not hard to work with

it. This confidence testifies in favor of the very structured

Table 5 Threats by team: true positives, false negatives and false

positives

Team TP FN FP

1 18 44 3

2 13 47 2

3 15 45 4

4 22 38 6

5 15 45 2

6 38 22 5

7 13 48 4

8 16 44 1

9 53 2 15

10 8 52 7

l 21.1 38.7 4.9

r 13.8 15.3 4.0

CI [14.0, 64.5] [23.5, 48] [2.5, 8.5]
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Table 6 Reported difficulty per step

Step Answers Median

difficulty

CI

1. Model the system and

list the assumptions

39 2 [2, 2.5]

2. Map DFD elements to

threat categories

39 2 [1.5, 2]

3. Elicit threats via threat

tree patterns

39 3 [2.5, 3]

4. Document the threats

as misuse cases

40 3 [3, 3.5]
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approach adopted by STRIDE and the good level of

guidance provided by the existing documentation. In

summary, the participants are not overwhelmed by the

material, following the steps is not difficult, and the threat

trees simplify the life of the novice analysts. Possibly, this

is a common trait of checklist-based threat modeling

approaches. However, more experimentation is needed to

support this point.

On the other hand, the questionnaire suggests that the

participants do not have a correct perception of the large

amount of threats that, on average, they let go missing

(FPs). This impression has been confirmed during the

discussion of the results with the students at the final

examinations. However, a replica of this study should

consider asking more direct questions on this matter, e.g.,

by letting the participants rate their perceived level of task

completion. Nevertheless, the results of this study suggest

that the training should particularly stress the issue of the

false negatives (overlooked threats) in order to avoid

overconfidence in the analysis.

We also computed the teamwise median difficulty per

step and investigated the relationships with the other

measures. We found a significantly strong correlation

(Spearman q = 0.81, p\ 0.05) between the median diffi-

culty in step 3 (threats elicitation) and the number of cor-

rect threats (TP) elicited. This could mean that a greater

awareness of the real difficulty of the task leads to better

results.

6.3 Research question 2: correctness of the analysis

results

As shown in Fig. 7 (dark gray box), we observed many

more correct results (TP) than incorrect results (FP) and the

location shift is statistically significant (paired-samples

Wilcoxon test, significance level of 0.025 with the Bon-

ferroni correction). The average for FPs is 4.9 threats, and

the standard deviation is 4.0. The confidence interval is

[2.5, 8.5] threats (one-sample Wilcoxon test).

With reference to the null hypothesis H0
P, the average

precision is 0.81 with a standard deviation of 0.11. This

value is slightly better than the threshold used in the

hypothesis. However, the one-tailed Wilcoxon test asserts

that the null hypothesis cannot be rejected (p[ 0.05).

Therefore, from a statistical perspective, we conclude that

the number of incorrect results is not small with respect to

the results produced. Nonetheless, we remark that the sta-

tistical test would have succeeded with a slightly lower

threshold of 75 %. In summary, the amount of incorrect

results is not particularly concerning.

Considering Fig. 8 (dark gray bars), we can observe that

there are less FPs than TPs in all categories, except for

repudiation (R). In this latter case, there is no statistically

significant difference, and hence, we can conclude that in

the R category there are, on average, as many correct

results as incorrect threats. Further, it also appears that on

average there are more errors in the R category, while the

other categories are about the same. This is confirmed by

the statistical test in most cases (paired-samples Wilcoxon

test). Possibly, our study suggests that the training of

STRIDE analysts should pay particular attention to creat-

ing awareness about the repudiation threats.

We have analyzed the false positives in the reports, in

search for reoccurring mistakes. Our analysis focused on

the repudiation (R) category, which totals the largest

amount of FPs. The most common mistakes are due to the

teams reporting unrealistic threats that are not grounded in

the reality of the system under analysis and whose feasi-

bility is not demonstrated by the course of action described

in the threat scenarios. In fact, often these erroneous threats

are too vague, and their scenario description is not specific

enough in order to assess its correctness according to the

criteria listed in Sect. 4.5. We believe this is a symptom of

the lack of understanding of this threat category on the

participants’ side. Many other errors were due to the failing

at determining that certain items in the threat catalog were

not applicable to the system under analysis (e.g., the threats

related to logging). This was caused by a wrong interpre-

tation of the security assumptions.

6.4 Research question 3: completeness of the analysis

results

The investigation of the false negatives brings out a dif-

ferent story. As shown in Fig. 7 (light gray box), we

observed many more overlooked threats (FN) than correct

results (TP). However, the difference is not statistically

significant (paired-samples Wilcoxon test, significance

level of 0.025 with the Bonferroni correction).

Significance is not achieved due to the presence of

outliers, which are symbolized by small circles in the fig-

ure. In fact, if the outlier with the smallest value is removed

(team 9, 2 false negatives in total), the difference becomes

statistically significant. The average number of FNs is 38.7

threats, and the standard deviation is 15.3. The confidence

interval is [23.5, 48] threats (one-sample Wilcoxon test).

With reference to the null hypothesis H0
R, the average

recall is 0.36 with a standard deviation of 0.25. This value

is uncomfortably low when compared to the expectation of

80 %. The one-tailed Wilcoxon test confirms that the null

hypothesis cannot be rejected (p[ 0.05) and therefore the

number of correct results does not cover adequately the

space of actual threats, as the number of overlooked threats

is too high.
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With reference to Fig. 8 (light gray bars), we can observe

that the false negatives in the repudiation (R) and elevation

of privilege (E) are about the same. All the other averages

are different from each other, as confirmed by the statistical

test (paired-samples Wilcoxon test). The denial of service

category (D) presents the highest number of overlooked

threats, which are almost three times as many as the correct

results in that category. Possibly, this suggests an attention

point for the training of STRIDE analysts.

We have looked into the reports of the teams in order to

identify patterns in the false negatives for two categories:

information disclosure (I) and denial of service (D). These

categories account for the largest number of false nega-

tives. We have not seen any recurring threat that is for-

gotten by the participants. Rather, we got the impression

that the teams were overwhelmed by the sheer amount of

threats that are applicable in these categories. The threat

trees are indeed very reach, with as many as 16 leaf nodes

for information disclosure and 20 for denial of service,

including the references to other trees.

7 Toward a generalization of the results

The results presented so far are obtained for a software

system that includes virtually no security-specific mecha-

nisms, which could represent, for instance, an early stage of

the development where the security requirements have not

been elaborated upon yet. With the aim of generalizing the

results, we replicated the study for a third consecutive year.

This time, the digital publishing system has been extended

by the teams to include security mechanisms for authenti-

cation and authorization. Subsequently, the teams have

applied the STRIDE technique as described before. This

case corresponds, for instance, to a more advanced stage of

the development life cycle where some important security

requirements have already been elicited and consequently

implemented. If confirmed, the results could then apply to

systems with different degrees of elaboration of their

security concerns.

We observed 16 participants organized in four teams of

four students each. Clearly, we have no ambition to draw

statistically significant conclusions given the limited sam-

ple size. As in the previous years, the participants have

shown a good level of motivation and commitment as

corroborated by the average final grade of 15.75 out of 20

obtained by the teams.

Concerning the planning and operation of the third year

of the study, the same procedures described in Sects. 4 and

5 have been applied. This also includes the measurement

protocol described in Sect. 5.3. However, the reports have

been reviewed by only one of the two experts in the third

year.

7.1 Observations

On average, the teams modeled the system with a much

larger DFD compared with the previous years (47.25 ele-

ments vs. 14.3). Also, the median of the reported difficulty

of building the DFD (step 1) is higher (‘‘hard’’ vs. ‘‘easy’’),

and the difference is statistically significant. The median

difficulty for step 2 (mapping) stays ‘‘easy’’. Conversely,

the median difficulty for both the threat elicitation and

documentation steps appears to be easier (‘‘easy’’ vs.

‘‘normal’’). The participants spent on average 73.75 h on

the task (?194 %), and about two thirds of the time is spent

in identifying threats (before, there was a balance between

identifying and documenting threats).

We report that the productivity went down to 0.5 threats/

h (from 1.8), although the difference is not statistically

significant. The precision went slightly down (from 0.81 to

0.76) and recall deteriorated as well (from 0.36 to 0.31).

In summary, the replica of the study on a system having

more security mechanisms confirmed the results obtained

in the previous years as far as the research questions 2

(correctness) and 3 (completeness) are concerned, although

the higher complexity of the analyzed system might have

caused a lower productivity (research question 1).

8 Summary of the findings

In summary, this study observed that in our sample:

1. The STRIDE technique is not perceived as difficult,

but with an average productivity of 1.8 threats/h at

best, the time cost is relatively large.

2. The average number of incorrect threats is low and

corresponds to the 19–24 % of the total amount of

produced threats.

3. The average number of overlooked threats is very high

and corresponds to the 64–69 % of the total amount of

threats.

Despite the limitations of this study discussed in Sect. 9,

these observations might be of use to software managers

(to budget the effort for a security analysis), to customers

of security consultants (to understand the level of trust that

can be granted to the results) and to instructors (to under-

stand the learning curve and the attention points of the

training).

9 Threats to validity

Concerning the conclusion validity, the time each team

spent on the task is reported by the participants themselves.

To prevent this threat, we kept reminding the participants
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to track the time they were spending on the assignment. We

do not deem this threat harmful to the validity of the study.

In fact, the time sheets appeared congruent with the work

documented by the students in their project reports.

An additional threat is represented by the mistakes that

the experts might have done during the assessments of the

reports. This threat has been mitigated in the first 2 years of

the study by employing two experts. The authors are con-

fident that no major errors have been done in this respect.

Concerning the internal validity, maturation of the par-

ticipants has to be highlighted. Possibly, the participants

could have become tired because of the size of the task.

Another threat to the internal validity is the participants’

increasing understanding of the digital publishing system.

The experimenters tried to minimize this learning effect by

introducing the system during the lectures and by providing

the documentation of the system before the laboratory

started. Also, the participants might have shared their work

between teams, also from 1 year to another. However, we

did not detect any case of plagiarism, and using the same

experimental object across the years was central to this

study, as the sample size is not sufficient to investigate

multiple factors.

Finally, three threats to the external validity need to be

mentioned. The main issue threatening the generalization

of the results concerns the use of master students instead of

professionals. The matter of using students in empirical

studies is still controversial. However, some studies have

shown that students perform comparably to professional in

certain tasks such as requirements selection [44] or lead

time estimation [18]. Some studies have also observed that

master students (like in our study) perform more realisti-

cally than freshmen [36] and that students working in a

project (like in our study) are to be preferred over students

working in a classroom [2]. In any case, the use of students

is advised in exploratory studies like ours [3, 45].

Second, we used teams of three to five students. The

results might not generalize to the case of a single analyst.

However, we remark that letting many analysts sound-

board during the threat modeling of a system is commonly

advised by the state of the art [39]. Third, the results might

be influenced by the experimental object used in this study.

For instance, the results might not apply to other applica-

tion domains or to systems of different size and

complexity.

10 Discussion

As mentioned in Sect. 7, in the third-year installment of the

study, the participants went through two phases. First, they

identified the authentication and authorization require-

ments of the system. This activity has been carried out

using the framework of Haley et al. [11], which is referred

in Sect. 2. These requirements have been used to extend the

system with basic security controls. In a second phase, the

extended system has been analyzed by means of STRIDE

in order to identify the threats, which have been docu-

mented as misuse cases. As mentioned in Sect. 3, the

documentation of the misuse cases contains a section

(called ‘‘capture points’’) that the teams have been

instructed to use as a means to describe the security

requirements that could prevent the corresponding threats.

Therefore, the teams engaged in the identification of

security requirements both before and after the STRIDE

analysis had been performed. This provides the opportunity

to appreciate whether the use of STRIDE influenced the

way the participants addressed the requirements engineer-

ing activity. Clearly, the participants had more knowledge

about the system during the second round of requirements

identification, which could have influenced the results as

well. Note that the requirements identified before the

STRIDE analysis are more limited in scope, as the par-

ticipants looked into authorization and authentication only.

To compensate for this, we restricted the comparison with

the requirements that are clearly related to either authen-

tication or authorization concerns. Given the small number

of teams observed and the loose control of the factors, we

can only draw some preliminary observations and do not

imply that our intuitions have a general applicability.

Nevertheless, the observations in this section are an inter-

esting starting point and call for further investigation.

10.1 Security requirements identified before STRIDE

First and foremost, all teams neglected the authentication

requirements in spite of being explicitly requested to deal

with such concern. The teams simply postulated that some

form of authentication was in place, without going deeper

in that respect. The security requirements they produced

predicate over roles like customers and advertisers, which

correspond to the actors mentioned in the documentation

(e.g., the use cases). However, how the individuals should

be dependably mapped to the system roles is never dis-

cussed. For instance, none of the teams has defined what an

‘‘authenticated customer’’ is. Therefore, a number of issues

related to identity management have been overlooked,

including the life cycle of users’ credentials. In summary,

the teams have been very superficial for what concerns the

authentication requirements.

Concerning authorization, the teams identified the

security constraints as role-based access control rules with

respect to the system assets. They focused mostly on

information assets, like a news story or a newspaper edi-

tion, and much less on resources, like services and service

requests, which can also be the cause of security issues.
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Further, the access control rules often referred to generic

operations such as create, request and update. Incidentally,

the deletion of information was never present in the

authorization requirements, although this is a relevant

concern in the system at hand.

Furthermore, when system functionality was mentioned,

the teams manifested a very idealistic attitude. They did not

consider the possibility that the functionality might be

exploited to circumvent the authorization constraints, for

instance, because of a faulty implementation. Therefore,

the teams did not foresee any ‘‘backup plan’’ for the case of

a failing authorization requirement.

10.2 Security requirements identified after STRIDE

Concerning authentication, the teams adopted a multilat-

eral perspective and often considered the problem of

authenticating the system to the customers, e.g., to avoid

scams. Previously, the teams had only considered the

concern of authenticating the users to the system. The

teams have also been more thorough in their requirements.

They included constraints about the authentication proce-

dures, e.g., requiring the use of hard-to-guess credentials.

They systematically thought about protecting the trans-

mission of credentials-related material by means of secure

channels. They stated time constraints over the authenti-

cation sessions (so that sessions time out eventually) in

order to limit the risk of identity impersonation. They even

came up with the proposal of monitoring the login requests

in order to identify any suspicious activity, like an attacker

trying to guess a user’s credential.

Concerning the authorization requirements, we observed

a more balanced mix of assets, which included information

as well as services and service requests. The teams also

systematically applied the principle of using multiple lay-

ers of security. For instance, they required the presence of

either auditing, to deter the circumvention of the authori-

zation constraints, or input validation, to prevent the mis-

use of faulty functionality. Similarly, some teams required

the use of encryption to protect the stored data, in order to

protect the information assets from the prying eyes of an

insider that bypasses the authorization constraints (e.g., by

means of a side channel).

In conclusion, the teams identified more accurate secu-

rity requirements after having performed the STRIDE

analysis. However, this benefit came at the cost of a per-

spective that is too low level at times. For instance,

sometimes the requirements refer to data stores rather than

information. This appears as a bias due to the use of data

flow diagrams in STRIDE. Similarly, some requirements

are borderline to being design decisions. For instance, the

use of input validation could be considered a rather solu-

tion-oriented technique.

11 Related work

11.1 Evaluation of STRIDE

McGraw has performed a study of the software security

initiatives at 67 well-known companies [27]. The study

resulted in the creation of the so-called BSIMM model of

the most important security activities that are enforced by

the software industry to date. In the author’s words, the

BSIMM model is a ‘‘descriptive model of software secu-

rity.’’ With reference to thread modeling, it has been

observed that 35 firms perform a risk-driven architectural

design review. Although the study does not comment on

STRIDE directly, it provides material evidence about the

relevance of this technique.

Microsoft has never published any figure related to the

effectiveness of STRIDE, although the technique is often

accounted for improving the quality of it products. Sho-

stack, head of the SDL threat modeling unit, has published

an experience report explaining the evolution of the tech-

nique, discussing some issues encountered over the years

and highlighting the directions of future improvement [40].

Dhillon has criticized STRIDE openly and compared it

to an alternative technique that has been developed in-house

[7]. The main remark is about the fact that STRIDE is time-

consuming because it proceeds by analyzing the DFD ele-

ment-by-element. His remarks are in line with the relatively

low productivity observed in this study. The author

describes an alternative technique that also leverages DFD

models. The DFD is annotated with extra information, like

the programming language used to develop the components

or the data flow type (HTTP, SQL and so on). This infor-

mation is used to identify specific patterns of interaction in

the DFD that might lead to weaknesses. Such identification

is driven by a library of 35 DFD patterns. For instance, a

pattern might be a process node that provides a Web

interface. In this case, the cross-site scripting and the cross-

site request forgery threats must be considered. Citing 30

industrial projects, the author reports that this technique is

as effective as STRIDE concerning the identification of the

threats and is more time-efficient. However, no supporting

evidence is provided as the comparison is only anecdotal.

11.2 Evaluation of other threat modeling techniques

Although no empirical evaluation of STRIDE has been

performed so far, some competing threat and risk modeling

techniques have been put to the test of experiments.

Misuse cases are a well-known threat modeling tech-

nique that is based on the description of the system func-

tionality via use cases and involves the brainstorming of

security experts [42]. Differently from STRIDE, the ana-

lysis process does not adopt checklists of potential threats.
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Via creative thinking, the experts analyze each function-

ality in the use case diagram and identify ways of harming

the system by means of misfunctionality.

Threat modeling via misuse cases has been tested in a

series of three experiments. Opdahl and Sindre compared

misuse cases to attack trees, which represent another well-

known technique also involving out-of-the-box thinking

and based on brainstorming by security experts [33]. The

experiment involved 63 students, and the results show that

attack trees might lead to a higher number of identified

threats. However, the study did not assess the correctness

and relevance of the produced threats. The participants did

not show any difference with respect to the preference of

misuse cases over attack trees. Karpati et al. compared

misuse cases to malactivity diagrams, a technique to model

social engineering threats in business processes [23]. The

study involved 75 students and found no significant dif-

ferences between the two techniques, except for a prefer-

ence of misactivity diagrams with respect to the ease of

use. Karpati et al. compared misuse cases to misuse case

maps, a technique that extends the notation of misuse cases

and relates them to the architectural structure of the system

[22]. The study involved 33 students and found that there is

no difference in the amount of identified threats. Further

misuse case maps have been perceived as more difficult to

learn by the participants. However, misuse case maps

helped identifying significantly more mitigations.

Diallo et al. [8] assessed common criteria, misuse cases

and attack trees by means of a comparative evaluation. The

authors applied the three techniques to the same object and

performed an evaluation according to the following

dimensions: ease of learning, usability and quality of the

results. Despite the limitations of this type of setup, the

authors observed that common criteria are hard to learn and

use. Both misuse cases and attack tree are easier in this

respect, with an advantage of attack trees when it comes to

interpreting and analyzing the results.

Meland et al. [28] reported that, in their own experience,

threat modeling based on misuse cases is a time-consuming

and complex task. The authors suggested an improvement of

the technique based on the use of libraries of reusable threat

models. In practice, they proposed to structure the analysis

process by adopting checklists. They set up an experiment

with seven professionals to test the efficacy of two alterna-

tive libraries. One is based on the reuse of complete misuse

case diagrams. The other library is based on the reuse of

misuse case stubs, which are organized according to the

STRIDE categories. The reader will notice that the latter case

bears some similarities to the threat tree patterns used in our

study. The authors observed no difference in either the

amount or the type of threats discovered with the two alter-

natives. Also, the participants were not particularly opin-

ioned about preferring one alternative over the other.

Hogganvik et al. [16, 17] have investigated the role of

graphical models by means of a series user studies. The

objective was to define an optimal representation for the

risk diagrams that are produced by the CORAS risk and

threat analysis technique. In particular, they focused on the

comprehensibility aspects and demonstrated that the CO-

RAS notation provides advantages over UML, because it

uses more intuitive icons and is augmented with text labels.

11.3 Security requirements

Threat modeling plays an important role in the elicitation

of security requirements. Therefore, the technique evalu-

ated in this study is complementary to several other secu-

rity requirements engineering methods. The most relevant

ones are briefly described in this section. For a detailed

comparison of these and other approaches, we refer the

reader to the survey of Fabian et al. [9] and the systematic

literature review of Mellado et al. [29].

KAOS is a goal-oriented methodology that has been

extended to the field of security [47]. Threats are modeled

as antigoals that are pursued by the attackers. High-level

antigoals are obtained by negating the (security) goals of

the goal model. Similar to obstacle analysis, concrete

threats are obtained by refining antigoals. However, in the

case of security, the domain knowledge is extended with

information related to the attacker’s capabilities.

In the domain of goal-oriented requirements engineer-

ing, the concept of threat is also central in the i* family of

security extensions (SI* [25], Secure Tropos [30], STS

[35]). For instance, in STS-ml (the i*-alike modeling lan-

guage of STS), security requirements are modeled as

constraints on the relationships between the actors involved

in a goal model. The language supports the representation

of a rich set of security requirements including confiden-

tiality, integrity, non-repudiation, trust and so on. Threats

are represented as risks associated with goals that cannot be

reached or resources that become unavailable.

Problem frames have also been adapted to the domain of

security [12]. In particular, the methodology provides a

catalog of patterns called security problem frames (SPF)

representing recurring configurations of the problem

domain where security requirements are modeled. A SPF

can be refined by taking into consideration security

mechanisms, such as cryptographic schemes or access

control systems. To this aim, several concretized security

problem frames (CSPF) are provided by the methodology.

12 Conclusion

This paper presented an evaluation of the STRIDE threat

modeling technique by means of a study that spanned 3 years.
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As summarized in Sect. 8, the paper has drawn conclusions on

the process-oriented aspects related to applying the technique.

The paper has also characterized the quality of the analysis

results in terms of correctness and completeness.

The field of empirical secure software engineering is

still in its infancy, and more work is needed to objectively

quantify the cost and performance of many techniques in

the field of software security. This paper contributes to

giving some momentum to the field. However, the authors

want to stress that the challenge is also of a methodological

nature. It is often hard to define a measure for the security

properties. Hence, it is difficult to assess whether the

results of a technique are ‘‘good.’’ We have assessed the

work of the teams by means of false positives and false

negatives, which is a commonplace way of reporting

results in security. To this aim, we started from an opera-

tional definition of true positives, false positives and false

negatives, which is both crisp and easy to apply. These

definitions enable the objective and repeatable assessment

of the artifacts, e.g., the analysis results in our case.

This paper also generates a number of interesting

research questions that could be the subject of future

experimental work. For instance, the false negatives

(incorrect results) could be caused by the misinterpretation

of some template threats in the checklists. Testing the

comparative efficacy of alternative threat trees might

unearth the root cause of the errors made by the partici-

pants of this study. Similarly, the cause of the high number

of false negatives (overlooked threats) is particularly

worthy of investigating. The outcome of such studies

would lead to improvements in the field of threat modeling

that are grounded in actual fact. Ultimately, this would

contribute to the long-term mission of a sounder discipline

of secure software engineering.
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