
ORIGINAL ARTICLE

Reuse of requirements reduced time to market at one industrial
shop: a case study

Leah Goldin • Daniel M. Berry

Received: 27 December 2011 / Accepted: 20 August 2013 / Published online: 27 September 2013

� Springer-Verlag London 2013

Abstract Many a computer-based system (CBS) devel-

oped in one division of the Israel Aerospace Industries, is a

derivation of formerly delivered CBSs. Sometimes, a CBS

that was developed over decades needs to be redesigned for

a new customer or for new technology. In addition, the

requirements management process in the division has to

deal with an extensive system of systems, a matrix orga-

nizational structure, and many subcontractors in order to

develop any fully operational CBS. It has become obvious

that any generic building block in any product developed

by any project in a project family stands a chance to be

reused to build new products in other projects of the same

project family. Moreover, this reuse is best if it begins with

the consideration of the reuse of a requirements specifica-

tion of the building block, in order to save the time and

money of the block’s development. The reused artifact can

be the contract description of the building block, from very

early in the lifecycle. Alternatively, the reused artifact can

be detailed hardware and software specifications for the

building block, from later in the lifecycle. With which

specification reuse begins depends on the purpose of the

reuse. No matter when a reuse began, it led to some sig-

nificant reduction in the product’s time to market, i.e., its

time to delivery. This paper is a case study of several

instances in an industrial setting of building-block reuse

within a large-scale system being developed in the division.

It reports how these reuses were discovered and carried out.

Among the contributions of this paper is a description of

the division’s multilevel requirements hierarchy that is

based on the multilevel architecture of the CBS to be

developed. Also contributed the division’s idea of project-

family-based reuse, as opposed to product-line-based reuse.

The paper shows how basing reuse on a project family

made proactive reuse possible. The paper then analyzes

data from the division’s requirements-management tool

about these reuses to assess the impact of requirements

reuse on time to market. Finally, it confirms this quanti-

tative assessment by a qualitative assessment garnered

from quotations gathered from interviews of four key

people two-and-a-half years after the end of the period of

the case study.

Keywords Large-scale system � Management �
Project family � Process � Requirements �
Requirements management � Reusable software �
Reuse � Specifications � Tools

1 Introduction

The goal of this paper is to show how reuse of managed

requirements artifacts measurably helped reduce the time

to produce a very large software-intensive system at one

industrial organization. The paper achieves this goal by

presenting an after-the-fact case study, including gathered

metrics, of one development project at the organization.

This paper is an enhancement of a paper titled ‘‘Reuse of

Requirements Reduces Time to Market’’ [1]. The conference paper

has been extended by more detailed explanations of the company’s

project structure, of the studied project, of the data, and by lessons

learned from interviews of key personnel.

L. Goldin

Department of Software Engineering, Afeka—Tel Aviv

Academic College of Engineering, Tel Aviv 69107, Israel

e-mail: l_goldin@computer.org

D. M. Berry (&)

Cheriton School of Computer Science, University of Waterloo,

Waterloo, ON N2L 3G1, Canada

e-mail: dberry@uwaterloo.ca

123

Requirements Eng (2015) 20:23–44

DOI 10.1007/s00766-013-0182-7



The paper estimates the amount of reuse in this project

using data gathered after the fact from this project and from

two other related projects that serve as a comparison

baseline. It reports also quotations from interviews of key

requirements-management (RM) personnel from the orga-

nization conducted two-and-a-half years after the period of

the case study. These quotations qualitatively confirm the

quantitative conclusions.

The paper shows also that the tool-based RM process

enacted in the organization plus storage of all relevant

requirements and development artifacts both enabled and

encouraged requirements reuse. When coupled with the

anticipation of potential reductions in time to market as a

result of proactive, rather than opportunistic, requirements

reuse, requirements reuse began to consistently happen,

and the anticipated time reductions materialized. Basically,

any product is developed in a single project, using building

blocks from multiple product lines. Each project acts

selfishly, focusing on developing its own high-quality

product as rapidly as possible. It both (1) makes high-

quality building blocks for its own use and (2) actively

seeks to reuse high-quality building blocks from other

projects to reduce its own duration. If all projects behave

this way, and each project’s lead engineers are proactively

searching for building blocks to reuse, the two aspects of a

project’s behavior feed on each other to make proactive

reuse work, and work well. There is no need for any project

to develop building blocks specifically for reuse. Moreover,

the reuse options in a new development project are iden-

tified in the very early stage of requirements analysis,

leading to a clear savings in development costs.

The paper shows also how the organization has adopted

a project-family organizational structure as opposed to the

more typical product-line organizational structure. This

new organizational structure turns out to help the proactive

reuse described in the previous paragraph happen.

1.1 Requirements management

Requirements management for computer-based systems

(CBSs) includes storing, updating, and linking all

requirements artifacts for the purpose of tracing between

them and other artifacts. RM is done in order to support

requirements change control and impact analysis [63].

When requirements are managed correctly, they facili-

tate the effective analysis, design, implementation, and

testing of the CBS under development. When requirements

are not managed correctly, the resulting bad requirements

proliferate through multiple branches of the development

process, leading to a low-quality CBS [16].

Poor RM is generally considered one of the major

causes for product failure [30, 46]. After all, if we do a

poor job of understanding our customer’s needs, if we do a

poor job of deciding the right CBS to build to meet those

needs, and if we do a poor job of specifying what we think

the customer wants from the CBS, how can we possibly

expect a successful project to develop the CBS [15]?

Implementing a formal RM process, such as that man-

dated for CMMI Maturity Levels 2 and higher [63], for the

development of a CBS enables an organization to find

defects in the requirements specifications early in the

CBS’s development lifecycle, to keep the requirements

specifications up to date, and to communicate requirements

changes to the entire team implementing the CBS.

1.2 Reuse

Reuse is a major component of many software productivity

improvement effort, because reuse, when practiced care-

fully, can result in higher quality software systems at a

lower cost [5] and with a shorter delivery time [29]. One

way to succeed at reuse is to adopt a product-line approach

[6, 11].

The granularity of reuse can vary from reusing a single

artifact, such as a component, document, or test case, to

reusing a whole product. Reuse can take place during any

phase of a CBS’s development, including during proposal

consideration and marketing analysis,1 requirements elici-

tation, requirements analysis, architecture design, code

implementation, and testing. Reuse at any lifecycle phase

may imply reuse at all subsequent phases. Thus, reusing

requirements can be most beneficial, because if it leads to

off-the-shelf reuse of the required product, it results in the

greatest reduction of development effort and time to

market.

1.3 The industrial organization

The studied organization is the Mabat Missiles Division

(MMD) and is one division of the Systems, Missiles and

Space Group of Israel Aerospace Industries (IAI) [26–28,

72]. MMD ‘‘specializes in the design and production of

various Missile Systems, Naval Attack Missiles, Loitering

Weapon Systems and Precision Guidance Munitions. The

Division also offers integrated Naval Combat suites for

new ships and as upgrades to existing ships. [MMD] … is

also a leader in advanced Air Defense and Anti-Missile

systems, both naval and ground based’’ [26]. Each product

1 Even though the studied organization develops only bespoke CBSs

and does not develop CBSs for the mass market, the department that

responds to requests for proposals from external potential customers

is called the ‘‘Marketing Department’’. Thus, what this department is

doing are marketing and marketing analysis. Consequently, in the

organization, a CBS’s time to delivery is called the CBS’s ‘‘time to

market’’. This paper uses this terminology when it talks about time to

delivery.

24 Requirements Eng (2015) 20:23–44

123



of MMD, developed for potentially a different customer, is

an embedded system that controls and senses hardware

similar to the way embedded systems that control aircraft,

i.e., avionics systems, do. These embedded systems are

classified as very large software systems [70], built of

dozens of subsystems, some of which are products in their

own right and some of which are products supplied by

other organizations, within or outside of IAI. A typical

such product could have 120 requirement documents,

comprising thousands of requirements.

1.4 Research questions

The main research question is:

RQ1: In the development of large-scale systems, does

institutionalized, proactive requirements reuse payoff?

This main question leads to three subquestions:

RQ1.1: What are the quantitative and qualitative

evidence of this payoff?

RQ1.2: How much does proactive requirements reuse

save in the subsequent CBS development?

RQ1.3: What is necessary behaviorally and technolog-

ically in an organization for it to be able to institution-

alize proactive requirements reuse that payoff?

The rest of this paper is devoted to answering these four

research questions.

1.5 Case study

According to Robson’s [58] classification of research, the

case study of this paper is at once

• descriptive—portraying, in Sect. 6, a situation or

phenomenon, namely proactive requirements reuse,

• explanatory—seeking and appearing to find in Sects.

6.3, 6.4, and 7, an explanation of a situation or problem,

mostly but not necessarily in the form of a causal

relationship, namely to see if the proactive require-

ments reuse accounts for the observed cost reduction,

• qualitative—studying, in Sects. 4–7, a situation in its

natural setting using, in Sects. 7 and 8, quantitative and

qualitative data,

• holistic—studying, in Sect. 6, a single instance of the

phenomenon of interest at a global level for its overall

effect, and

• flexible—in which the parameters of the study are

defined during the study and can change, as is reported

in Sects. 7 and 8.

Because some of the data gathered for the study are

qualitative, there is a need for triangulation, i.e., ascer-

taining that the qualitative data are consistent. If different

people are making similar observations about what was

happening during the proactive requirements reuse, then

the qualitative observations can be said to be triangulated.

Moreover, it should be that the qualitative data as a whole

triangulate the quantitative data.

For a holistic case study, there are problems general-

izing from the study. However, since all the resources of

the study are applied to a single instance, and that instance

can be explored thoroughly to understand all the variables

that come to play in the outcome better than would be

possible if more instances were studied. This more thor-

ough study provides a better basis for other studies

building on the current study. Also, as Robson [58]

observes on Page 139, an extreme case study that is

studying an instance that had a successful outcome

despite all that was mitigating against its success, pro-

vides results that can be understood in the sense of ‘‘if it

can work here it will work anywhere’’.

Finally, the case study of this paper is an after-the-fact

case study. That is, the work had been done with no

notion that it would be the subject of research. It was

done in the normal course of MMD’s conducting its

industrial, profit-making business. Only after the work

was done, and the dramatic reduction in time to market

was noted, did the authors realize that the work should be

the subject of a case study. The studied project was

chosen after the fact precisely because it had done pro-

active requirements reuse, that reuse clearly saved a lot

of development time, and the data to quantify the savings

could be collected from the project’s RM tool that keeps

all project artifacts. Thus, the case study plan given

below is an after-the-fact description of the study rather

than a true plan laying out work to be done. While the

benefits of having a planned case study are gone, there is

less chance for the results to be biased by the research-

ers’ desired outcome and there is no chance for a Haw-

thorne effect.

The after-the-fact plan for this case study would be [58]

Objective: determining if proactive reuse at the require-

ments level saves resources in the subsequent system

development,

The case: studying the system artifacts, the data about

time allocated to system development steps, and devel-

oper reactions,

Theory: using the prevailing folklore and the research

described in Sects. 2 and 3 that show that reuse in

general and reuse of requirements saves development,

Research question: asking research questions RQ1,

RQ1.1, RQ1.2, RQ1.3,

Methods: analyzing the system artifacts, the data about

time allocated to system development steps, and devel-

oper reactions, and

Requirements Eng (2015) 20:23–44 25

123



Selection strategy: the first author’s noticing, after the

fact, that the MMD project that she was helping to

institute proactive reuse at the requirements level had

cost much less than normal and then gathering data to

see exactly how much was saved.

1.6 Plan for the rest of the paper

Consequently, Sect. 2 summarizes past work to quantify

the effectiveness of requirements reuse to reduce time to

market, and Sect. 3 summarizes past work to study RM

empirically. Section 4 describes system development at

MMD, in particular the organization of its projects. Section

5 describes RM and reuse at MMD. Section 6 describes (1)

the MMD project during which the old opportunistic reuse

evolved to systematic reuse and requirements-specifica-

tion-based reuse and (2) the steps taken to achieve the

evolution. Section 7 evaluates the effectiveness of the reuse

in this MMD project, and Sect. 8 provides triangulation for

the evaluation in the form of quotations from interviews of

four participants in the studied project. Section 9 considers

the threats to the validity of the conclusions from the case

study, and Sect. 10 concludes the paper.

2 Past and related work, including empirical,

on general and requirements reuse

There has been a lot of work since before the late 1980s on

reuse in general software engineering and the closely

related concept of product lines, to the point that there are

survey reports describing methods for achieving reuse [32,

57], textbooks about setting up reuse programs in practice

[11, 29, 54, 55], articles about reuse directed at practitio-

ners [5, 6], a bibliography of literature on reuse in software

engineering [40], and a nearly annual conference devoted

to reuse in software engineering [25] (and a discontinued

bi-annual symposium on the subject [64]).

There have been a number of empirical studies, mostly

case studies, of reuse in software engineering exposing the

benefits and drawbacks of, the impediments against, les-

sons learned from doing, and the costs and payoffs of

general reuse [19, 23, 36, 37, 42, 49, 54, 59, 62, 65]. These

studies show that in fact, there are many software reuse

success stories in which the economic benefits are evident

and substantial. For example, substantial costs were saved

due to implementation of software reuse in the STARS

demonstration project [42]. The first CBS that was devel-

oped with active reuse cost 43 % of a reference baseline

and the second cost only 10 % [42] of the same baseline.

Another example is the experience at Hewlett Packard

described by Lim [37], where, by applying software reuse,

the number of defects in a CBS development project was

15 % less than in past projects, and productivity was 57 %

more than in the same past projects. Schach showed that

under reasonable assumptions, the cost savings during

maintenance as a result of reuse during development are

nearly twice the corresponding savings during develop-

ment. He is able to generalize his results to show that for an

arbitrary software system development, these cost savings

happen when maintenance accounts for more than 51 % of

the total development budget and that the cost savings

grow as the maintenance portion of the development bud-

get grows [59]. What has been learned in these studies has

been incorporated into a tool-supported method for pre-

dicting how much reuse will help [18] that is based on

COSYSMO [69] that is in turn based on COCOMO [7].

Nevertheless, reuse is difficult to put into practice. As

indicated by the textbooks, reuse must be carefully planned

for [11, 29]. There is a certain amount of opportunism in

conducting reuse, because reuse cannot happen unless there

are artifacts with the correct functionality to reuse [60].

Careful planning is needed to make sure that the reusable

artifacts exist and that they are written to be reusable [11, 29].

Why is reuse so difficult to achieve? First of all, it may

be difficult to find a reusable artifact or pick among pos-

sible candidate artifacts [21, 43]. A mismatch between the

architectures of the reused code and the using code can

make the reuse more difficult and more expensive than just

writing a new version of the reused code with the correct

architecture [20]. In general, any time reused code is not

exactly right for the new purpose, it may cost more to fix

the reused code than it does to develop new code [67].

A large subset of the reuse work is concerned specifi-

cally with reusing requirements or some of their artifacts

[12, 17, 34, 41, 43, 45, 48, 51, 61]. There is some work on

requirements reuse from an unexpected quarter. As

observed by Meth and Brhel [47], one possible purpose,

sometimes stated explicitly, of tools for full or partial

automatic requirements elicitation is to allow the elicited

requirements to be easily reused [3, 10, 31, 66]. As with

general software reuse, requirements reuse is more difficult

than it may appear at first sight [43]. From observation of

the practice of reuse in software engineering, Fortune et al.

[18] conclude that even though requirements reuse is per-

formed only occasionally, it has the largest potential payoff

in terms of saved effort.

Requirements reuse suffers the same difficulties that

make general reuse difficult. In addition, there may be too

many degrees of freedom [14, 44]. One can consider

adjusting the assets based on the requirements of the sys-

tem to be developed. On the other hand, he or she can

consider adjusting the requirements of the system to be

developed based on the available reusable assets. Essen-

tially, reuse of requirements is a wicked problem [56].

26 Requirements Eng (2015) 20:23–44

123



While there is a substantial body of work empirically

evaluating general software reuse, there is not a whole lot

of work that is evaluating requirements reuse. Daneva [14]

describes what should be measured in order to determine

how effective requirements reuse is in at least the ERP

domain. Toval et al. [66] developed SIREN, a tool-sup-

ported method, for requirements engineering (RE) based on

requirements reuse. In the concept-proving case study of

the application of SIREN to an application with security

requirements, 75.6 % of the final set of the application’s

requirements were reused from a requirements repository.

Chernak [9] conducted a survey of mostly business analysts

in IT organizations around the world. The respondents

confirmed, among other things, that the main benefits of

requirements reuse are reductions in time to market and

development costs, when reusing requirements for releases,

the average reported reuse rate was 45 %, with 16 % of the

respondents reporting reuse rates of 80–100 %.

The STARS program report [42] made it clear that the

organizational challenges of software reuse outweigh the

technical ones. Among these organizational challenges is a

reluctance of management to risk the used of new,

unproved methods for software development. As a result,

metrics are needed [5] in order to make ‘‘business decisions

possible by quantifying and justifying the investment

necessary to make reuse happen’’ [54]. Therefore, a main

goal of this paper is to provide data that show how effective

the requirements reuse in this project was in reducing time

to market and saving money in the project. Thus, this paper

adds to the small but growing body of empirical evidence

of the value of requirements reuse in reducing time to

market.

3 Past and related empirical work about requirements

management

While the empirical work concerning requirement reuse

may be sparse, there are lots of empirical studies of RM,

some of it very specific, but much of it in the context of

empirical studies of RE in general.

There are good summaries of empirical studies to vali-

date the effectiveness of RE, its methods, and its tools,

including those for RM, in general and in specific projects.

These include ‘‘An Analysis of Empirical Requirements

Engineering Survey Data’’ by Paech et al. [52] and the Past

Related Work section of ‘‘Quantifying the Impact of

Requirements Definition and Management Process Matu-

rity on Project Outcome in Business Application Devel-

opment’’ by Ellis and Berry [16].

Among the work described by Paech et al. are studies of

RE methods and tools that comprise RM, i.e., those dealing

with requirements volatility, requirements specifications,

and reviews and inspections of requirements artifacts. Pa-

ech et al. [52, p. 34] conclude from the reviewed work that

‘‘It has been established that RE makes a difference for

project success’’.

Ellis and Berry summarize (1) empirical studies in RE,

(2) empirical studies in CBS development process

improvement and maturity, and (3) empirical studies of RE

effectiveness based on frameworks for estimation. The

second group of these studies focuses mainly on CBS

development process maturity, e.g., Capability Maturity

Model (CMM) [53] and CMM Integrated (CMMI) [63].

One of CMMI’s key process areas (a.k.a. KPAs) is RM.

For a CBS development organization to be considered

mature, it must have in place a consistently applied RM

process, preferably assisted by tools. One of the points in

the third group of studies is empirical evidence of the

importance of RM to the projects that use them. For

example, Boehm et al.’s [7] cost model weights the com-

ponents of an RM process heavily in contribution to project

cost reduction. Ellis and Berry [16] themselves show that

for organizations developing large CBSs, high RM matu-

rity is correlated positively with successful CBS develop-

ment projects.

Quite a few of the empirical studies specifically con-

cerning RM are focused on proving that particular RM

measures are good predictors of stability and low volatility

of requirements and reduced change requests [33, 38, 39].

Moser et al. [50] empirically evaluate an ontology-based

method and tool for RM and find that the method and tool

were more effective in identifying conflicts and in cate-

gorizing requirements with less effort than doing so

manually.

Almefelt et al. [2] conducted an in-depth case study of

RM for the design of a passenger-car cockpit in an orga-

nization in the automobile industry. The interviewed

members of the organization found RM to be helpful and

appreciate the benefits that they draw from it, in spite of its

heaviness. Interestingly, the study explored how the orga-

nization dealt with what the authors call ‘‘commonality

requirements’’, requirements that the cockpit under design

shared with other organizations’ cockpits, i.e., reuse of

common requirements. ‘‘Comparing the actual cockpit

configuration of the three first cars (three brands) on the

platform, it appears that commonality at component level

has not been fully adopted in the development project. This

might be explained by the fact that the collaborative plat-

form work took place late, i.e. after the actual concept

development work. On the other hand, a view supported by

information from the interviews is that the actual level of

component commonality is well balanced considering the

car brands’ different driving factors and cost frames.’’ That

is, there is not as much requirements reuse as there might

have been because (1) they started late and (2) in any case,

Requirements Eng (2015) 20:23–44 27

123



the necessity to maintain brand distinctions precludes much

reuse.

Damian and Chisan [13] report on the results of an

extensive 30-month, three-stage, explanatory case study,

using questionnaires, interviews, and document inspection,

of the RE process at the Australian Center for Unisys

Software. During the case study, the Center was undergo-

ing a concerted RE process improvement following the

CMM, which requires RM. They note that the RE process

improvement with RM improved the Center’s CBS

development. In terms of the effect of RM itself, they noted

that2

• ‘‘Feature decomposition, sizing, and change manage-

ment led to more accurate estimates’’;

• ‘‘Upfront test scenario definition, requirements vali-

dation, and peer-reviews led to improved feature

coverage’’;

• ‘‘Enhanced feature understanding, change manage-

ment, and project tracking led to managed require-

ments creep’’;

• ‘‘Change management and feature sizing led to

effective project scope negotiation’’;

• ‘‘Traceability links, peer-reviews, and requirements

validation led to fewer defects’’; and

• ‘‘Feature decomposition, specification conformance,

and team reorganization led to reduced rework’’

Harter et al. [22] conducted a longitudinal study of the

related CBS development projects of one organization that

was undergoing CMM-based software process improve-

ment and determined that ‘‘higher levels of software pro-

cess improvement significantly reduce the likelihood of

high severity defects’’. They found that process improve-

ment is more beneficial for large or complex CBSs than for

smaller CBSs. However, the benefit is reduced when the

requirements for the CBS are ambiguous, unclear, or incom-

plete. Here again, to the extent that process improvement

includes RM, RM contributed to the reported benefits.

This paper adds to the growing body of empirical studies of

reuse in software engineering in general, of RM in general,

and of requirements reuse in the specific. Of course, no case

study, the current one included, is generalizable. However,

when multiple case studies tell consistent stories of pay off, the

pay off can begin to be believed in general.

4 System development at the organization

As mentioned, MMD is developing large-scale defense

systems [26] each of which may incorporate hardware or

software products that were produced by earlier projects.

Sometimes, a new product is built out of products devel-

oped over decades all the while consuming thousands of

person-years, or it was upgraded from an earlier product as

technology was improved.

A defense system, as a CBS, normally requires

5–10 years of development to deliver in full. During that

development time, many experiments are conducted both

in laboratories and in the customer’s environment in order

to test the performance and the compliance with require-

ments of parts of the CBS already developed.

4.1 Project families

During the last decade, MMD has grouped its projects into

families. Each project is developing a product, which is

described by the project’s product tree that contains as

nodes the project’s artifacts for the product. A project

family is an ever-changing collection of completed and

current projects whose product trees have a significant

number of artifacts in common, enough in common that

reuse at some level is feasible. When a project P1 in a

project family reuses from another project P2 in the same

family, then P1’s product tree shares at least one artifact

with P2’s product tree. The purpose of this grouping of

projects into families is to encourage reuse of artifacts in

order to reduce time to market and to save money in the

development of new products.

4.2 Organizational project family structure

Fundamentally, MMD’s organizational structure is built

around project families. Within a project family, there is a

great deal of similarity between the products developed by

the family’s projects and between the customer require-

ments that drive the products’ developments. When a

customer comes to request a new product, the first step is to

identify the project family whose products meet the most of

the new requirements. Thus, any new product is based on

other products produced by projects in its identified project

family. Thus, reuse is highly encouraged by the project

family structure.

As shown by the class diagram in Fig. 1, work in MMD

is organized as a collection of families, each of which

consists of a collection of projects, each of which produces

one product that is a solution to a problem that a customer

has.

In greater detail, as shown in Fig. 2, each project has a

customer who wants one of its problems solved. So, the

customer and MMD agree on a contract that directs MMD

to form a project to develop and deliver a product that is a

solution to the problem that the customer wants solved and

that is required by the contract. This project is put in the

2 In each quotation, the sans-seriffed items (the sans-seriffing not part

of the original quotation) are those that are considered parts of RM.

28 Requirements Eng (2015) 20:23–44

123



project family whose products have the most requirements

in common with those of the new product to be developed.

Each project has a project manager who leads a project

team in producing the desired product. If the product were

to already exist, production could involve immediate

delivery, but in practice, immediate delivery never hap-

pens. If the product does not already exist, then production

involves development.

If a project develops a product, then the project’s system

engineer will decompose the product into a system of

systems, using the DOD standard multi-level architecture

framework of system, subsystems, and components. The

class diagram in Fig. 3 shows that a product is implemented

by a system, S, that consists of some number of products or

of some number of systems that are called S’s subsystems.

Each of these subsystems is decomposed in the same way.

Any instantiation of this class thus is a tree in which the

root and each nonterminal node is a system and each ter-

minal node is a product. Thus, at the lowest level, each

product is built of other, smaller, products, each of which is

a mixture of hardware and software. The diagram in Fig. 2

shows in the product box a product tree, which is an object

of the class product that is a solution described in Fig. 3.

Figure 2 shows that at any level of the product tree, some

but not all artifacts in the tree may be reused, and the place

from which the reused artifacts come is a shelf of reusable

artifacts belonging to the project family in which the pro-

ject to develop the product resides. Thus, the reused arti-

facts are said to be off the family shelf.

As is shown in the class diagram of Fig. 4, the specifi-

cation of a system of systems is itself a hierarchy in which

• the product that is a solution is specified by customer

requirements specification (CRS) in the form of a

contract,

• the highest level system is specified by a system/

subsystem specification (SSS),

• each nonhighest level system is specified by a system/

subsystem design description (SSDD), and

• each product is specified by a hardware specification

(HWS) and a software requirements specification

(SRS).

Thus, associated with any product tree is a specification

tree, consisting of one SSS, a number of SSDDs, and a

number of HWSs and SRSs. Each item in product tree or a

1

*

*

*

1

1

1

produces

MMD

family

project

product

1

*

*

Fig. 1 Project family

Fig. 2 A project

Requirements Eng (2015) 20:23–44 29

123



specification tree is what this paper has been calling an

artifact.

4.3 Project management and system engineering

stakeholders

In MMD, a product development project’s team are the

product’s stakeholders. These stakeholders include the

project manager, mentioned before; the program manager;

the system engineer; software and hardware developers;

and testers both in labs and simulations. Many a system

engineer, hardware engineer, or software engineer works

on the development of multiple projects in the same project

family.

A project manager is responsible to review the contract

for the project’s product and to estimate the project’s cost,

effort, and schedule. A system engineer is responsible for

writing the project’s system and subsystems specifications

and for keeping track of their implementations. Each

software engineer or hardware engineer is responsible for

implementing his or her own component’s specifications.

5 RM and reuse at the organization

In the past, each development project at MMD maintained

its own requirements documents using its own tool, usually

only MS Word and in a manner that was potentially dif-

ferent from that of other projects. Reuse at MMD was

confined to the lowest, code level, i.e., to using libraries of

functions and data structures. MMD hired the first author as

a consultant to help them initiate RM and requirements

reuse and to do the training necessary so that RM and

requirements reuse become the standard practice on MMD

development projects. The result is what is described in

this paper.

This section describes the context and the infrastructure

at MMD supporting RM and reuse and the history of this

infrastructure. It shows how the RM process, together with

its supporting tool that provides a database in which to

store all requirements and development artifacts, enabled

requirements reuse.

5.1 Requirements management

Requirements management [35, 71] is particularly impor-

tant to MMD for a number of business reasons:

• The main goal of all quality improvement efforts in IAI

is to improve customer satisfaction.

• Achieving CMMI Maturity Level 5 is a key business

goal for MMD. Thus, what is called ‘‘RM’’ in this paper

is mandatory in all projects [63].

5.1.1 The beginnings of the requirements management

process

When MMD began to consider implementing its RM process,

it sought to implement a complete RM process far beyond just

producing documents. The RM process would change the way

stakeholders talk about CBS development, reviews, work-

flows, and in fact, would change the whole project culture.

The benefits of such an RM process would be to be able

to

1

system

product
that is a
solution

1

*
*

product

1

1

1

*

implemented
by

is

Fig. 3 Structure of a system of systems

1

1

1

system

product
that is a
solution

1

*
*

product

1

*

implemented
by

is

1

1

1

*

1 1

* *

*

specifies

specifies

specifies

specifiesspecifies

CRS

SSS

SSDD

HWS SRS

Fig. 4 Structure of requirements specifications of a system of

systems

30 Requirements Eng (2015) 20:23–44

123



• use requirements as the backbone of all CBS

developments,

• reduce development and delivery time for all CBSs,

• develop generic CBSs for multiple customers,

• resell existing CBSs to new customers, with a minimum

of additional development, and

• reuse requirements of generic building blocks as the

basis for reuse among products of a project family.

5.1.2 The RM process needs an RM tool

Motivated by a desire to achieve CMMI Maturity Level 5,

MMD decided to deploy an RM tool. At the time, two

projects were ongoing with two different customers to

provide two large-scale defense CBSs, A and B, with minor

requirements differences between them. In addition, MMD

was negotiating a contract for developing another large-scale

defense CBS, C that was a derivative of A and B but that would

be operating in a different operational environment.

Thus, it was clear to one project family’s system engi-

neering group at MMD that an RM infrastructure is

required and that a way to reuse contract requirements,

requirements specifications, and all other requirements

artifacts, as well as actual components, is essential for

achieving the goal of saving project time, money, and

personnel.

The expectations for the RM tool were that the tool

would enable

1. easy capturing of requirements into the tool’s database,

2. simultaneous work by many employees, including the

one system engineering group that would lead all the

projects, and

3. most importantly, easy reuse of requirements in any

project without creating duplicates that would have to

be carefully updated together.

The initial plan was to migrate only the contract

requirements and the system requirements to the RM tool.

However, after a while, it became clear that all require-

ments artifacts needed to be managed in the RM tool. It

seems that software developers who had initially opposed

the introduction of any RM tool began to appreciate the

benefits of RM from the relative stability created by having

the contract requirements and the system requirements in

the RM tool.

The deployment of the RM process and tool happened in

the four phases shown in Fig. 5:

1. The DOORS RM Tool (DRMT) was introduced as

MMD’s RM tool.

2. The RM process was defined, and the RM tool was

customized with the consulting help of the first author.

3. The RM process and the RM tool were used in a new

project, and they were found to promote reuse.

4. MMD assigned a Requirements Engineering Manager

to be responsible for RM in MMD, as part of MMD’s

aim to improve its RE processes to be able to achieve

CMMI Maturity Level 5.

The history of RM adoption at MMD thus amounted to a

simultaneous and evolutionary adoption of an RM tool, an

RM process, requirements reuse, and RE as a whole.

5.1.3 RM tool deployment and artifact migration

By 2006, IAI decided to use the DRMT from Telelogic,

now IBM [24], as its RM tool. The system engineering

group of one project family (the project family called PF in

Sect. 6) in MMD had taken the lead and started managing,

with the DRMT, project requirements specifications and

related artifacts, including CRSs, SSSs, SSDDs, HWSs,

SRSs, and algorithm design descriptions (ADDs). Since

Fig. 5 Phases of the deployment of the RM process and tool

Requirements Eng (2015) 20:23–44 31

123



MMD, as part of IAI, was already committed to the MIL-

STD-498 [68], specification templates already existed in

the MMD installation of Microsoft (MS) Word for all of

these artifacts, and all existing artifacts were available as

MS Word documents. Equivalents for these templates were

defined in the DRMT notation, and the pieces of the ori-

ginal MS Word artifacts were captured into the right places

in artifact templates in the DRMT database. Fortunately,

the DRMT is able to generate from its database contents all

of the artifacts in MS Word format, because these artifacts

needed to be provided as MS Word documents as part of

the normal project deliverables.

Because of MMD’s project family structure and the fact

that each MMD employee may work on multiple product

projects, the RM tool at MMD has to deal with multiple pro-

ject families; multiple product projects within a family; mul-

tiple systems of systems; multiple sets of artifacts; multiple

stakeholders; multiple subcontractors, including external

consultants, and other IAI plants; multiple off-the-shelf pro-

ducts; and a matrix organizational structure of employees

assigned to projects, in order to develop any fully operational

large-scale CBS.

5.1.4 RM levels

A major innovation in the definition of the RM process at

MMD was to define RM levels based on the architecture of the

CBS under development. In any CBS that is a system of sys-

tems, there exist a number of SSSs and SSDDs, each on a

different level of the CBS’s architecture. Even the word

‘‘system’’ has to be better identified by its level in the archi-

tecture, since often, the development of one subsystem of one

CBS is managed as a project on its own, in which what the

project develops is referred to as ‘‘the system we are devel-

oping’’ even though it is a subsystem of another CBS. Since

the artifact associated with a component at any architectural

level n is a specification of the component’s requirements or

behavior, the artifact is said to be at RM Level Rn.

The main RM levels in MMD projects are R1 through

R5, as described in Fig. 6.

1. R1 refers to the customer’s requirements specification

(CRS) containing the contract document and all

detailed technical annexes.

2. R2 refers to the system requirements specification in

the form of an SSS.

3. Each of R3 and R4 refers to a system or subsystem

design in the form of an SSDD or an ADD.

4. R5 refers to software and hardware components’ require-

ments specifications in the forms of SRSs and HWSs.

An R3 system requirements specification that describes

a major functionality may have derived functional,

performance, and user-interface requirements expressed

either as a subsystem design specification or as a collection

of algorithm design specifications. Which form is used in

any case is determined by the system engineer’s doing the

derivation according to his knowledge of the structure of

the SSDD and ADD templates and of what must be spec-

ified. An R4 algorithm design specification or subsystem

design specification can be refined at R5 into either a

software component specification or a hardware component

specification, according to how its implementation will

probably be done.

5.1.5 Requirements traceability

Requirements management traceability allows systematic

analysis of requirements compliance, discovering incon-

sistencies between different but related requirements arti-

facts, and missing requirements. The objective of tracing is

to help verify that all requirements in the customer’s

requirements specification, at RM Level 1, are covered by

the other artifacts at RM Levels 2 and beyond, to help find

inconsistencies among all these artifacts, and to help ensure

that the test cases, developed later cover the requirements

in the CRS.

A trace is a many-to-many relationship between build-

ing blocks at adjacent RM levels. These traces, which are

illustrated by the arrows in Fig. 7, form the backbone of the

development processes in any project family’s projects,

starting from customer’s requirements specification of type

CRS, at RM Level 1; through system specifications of type

SSS, at RM Level 2, needed by system engineers for the

system design and architecture; through system and sub-

system design specifications of type SSDD, at RM Levels 3

and 4; and to software and hardware component specifi-

cations of type SRS and HWS, at RM Level 5.

Fig. 6 RM levels

32 Requirements Eng (2015) 20:23–44

123



Using advanced RM tools based on the DRMT database

enabled MMD to create and manage the traditional product

management documentation, i.e., SSSs, SSDDs, and SRSs.

In addition, the RM process schema served as a vehicle to

produce different project management artifacts that did not

exist beforehand such as:

• the difference between projects in terms of their

contract requirements and impact analyses,

• a variety of reports generated automatically from

metadata offered by the DRMT itself, and

• requirements specifications of experiments to be per-

formed with not-yet-delivered parts of the CBS, the

experiments being derived from and traceable to any of

a project’s artifacts, enabling reuse of software com-

ponents during the experiments.

5.2 Reuse of requirements

MMD’s multi-project RM process was the biggest chal-

lenge to deploying the DRMT in MMD. Consider the

project family PF depicted in Fig. 7. The project that was

the first to use the DRMT, namely the project to develop

product A, already had other derivatives for additional

customers. It became clear that generic subsystems of A

will be reused, which meant reuse also of the subsystems’

specifications, but with some changes in the requirements.

The only question was ‘‘In which level of RM will the

reuse occur?’’

As shown in Fig. 7, the contract requirements at Level

R1 had to be specific for each customer, and they were

captured into the DRMT. Each contract manager quickly

learned the benefit of accessible requirements and pre-

ferred to use a copy of a similar contract and then rewrite

it to suit his or her specific customer. This reuse method

enabled the generation of a report of the difference

between the original and new contracts. This difference

report was very valuable in helping the project manager in

planning his or her project’s schedule and budget in the

early stages of the project. When the project manager

found requirements in common among two contracts, he

or she counted on being able to save time and money by

reusing the previously done development that arose from

the common requirements.

6 The project that led to systematic reuse

This section describes the MMD project in which the

engineers learned to improve their opportunistic reuse to

be systematic. The project was in the project family PF,

depicted in Fig. 7, that already had two projects going,

those to develop the products A and B, when a customer

asked MMD to develop a product C. As this project

started, the first author, as consultant, saw opportunities

for more systematic reuse and took steps to implement

that reuse. The section shows how the RM process and the

storage of all the project’s requirements and development

artifacts in the DRMT allowed requirements reuse and

how a change in the behavior of the project’s senior

engineers allowed the requirements reuse to become

systematic.

6.1 Start of the project to develop product C

At the beginning of any project to develop a CBS, the

project’s senior system engineer does an architectural

analysis for the CBS to determine its product tree. During

the architectural analysis for C, as a result of the increased

visibility of the requirements afforded by the DRMT, the

senior system engineer realized that there was a terminol-

ogy difference between components of A and C, as a result

of their different problem domains. That A and C are from

different domains is reflected in two customer-specific

contracts at Level R1, and in the two different system

specifications at Level R2, each of which providing a

solution in the problem domain of its own customer’s

contract.

6.2 Opportunistically identified reuse opportunity

In the older product, A, a major subsystem in Level R3 was

named ‘‘C3S1’’, while for the newer product, C, the same

subsystem was named ‘‘C3S2’’. Fortunately, it was early

enough in the development lifecycle of C, and the seniorFig. 7 Reuse within one project family

Requirements Eng (2015) 20:23–44 33

123



system engineer for C decided to reuse the name ‘‘C3S1’’

from A, as a basic step toward reuse.

The project to build C had very tight deadlines, and any

chance for reuse was appreciated very much. Subsequently,

the ADDs of A were reused in a major way, basically

because the same system engineers worked in both devel-

opment projects and proactively searched for reuse

opportunities in all component specifications relevant to

C3S1. Since all RM artifacts at all requirements levels are

requirement specifications, the search involved examining

artifacts stored in the DRMT.

6.3 Toward systematic reuse with the help of unique

naming of artifacts

One system engineering group normally supports all pro-

jects in one project family. This system engineering group

is composed of at least the senior system engineers of the

projects in the project family. The knowledge shared by the

senior system engineers of the projects in a project family

is clearly valuable in promoting reuse in the project family.

As a result of the opportunistic reuse discovered in the

project to build C, the system engineering group of PF

decided to promote systematic reuse. This system engi-

neering group observed that any subsystem that is generic

enough to be incorporated into more than one product in a

family needs to have the same name in all products that

incorporate it, in order that it be identified as a generic

building block and be reused. Therefore, whenever during

any project, any subsystem is recognized as generic, it is

renamed to something more generic and reuse promoting. Once

a building block is named properly and it is thus announced as

generic, the reuse of its requirements is straightforward, and

that reuse may lead to reuse of the building block’s substructure

including its ADDs and their code.

So, the system engineering group of PF asked that its

members actively collaborate to ensure that any concept

has a unique name within the family. Furthermore, when-

ever in any project new functionality is identified, the

system engineering group’s members were to actively

search for the highest level existing artifact that provided

that identified functionality, even with a bit of tweaking.

Finally, the system engineering group members began to

systematically identify Level R4 and R5 building blocks

that were candidates for being reused and becoming gen-

eric building blocks. Thus, reuse in MMD evolved from

being opportunistic at the code level to being systematic at

the requirements level [65].

6.4 Making a major subsystem generic

Once the system engineering group of PF decided to

institute systematic reuse of requirements for projects of

the family, it became clear that C3S1 was a major sub-

system that could be reused in multiple products in the

family. Indeed, it became clear that C3S1 was a system in

its own right. The system engineering group implemented a

process of trying to reuse all of C3S1’s requirements

artifacts. Eventually, most of C3S1’s components were

reused, incorporating requirements evolution while keep-

ing compatibility between projects in the same project

family.

Noticeably, in the project to develop C, 50 % of the

ADDs of A were reused, enabling 100 % reuse, as-is, of

A’s SRS, thus allowing requirements evolution while

maintaining compatibility between generic products in the

same project family.

7 Evaluation of reuse during RM

This section evaluates the effectiveness of the MMD RM’s

support of requirements reuse for the project to develop C,

using data from the DRMT database for the project family

PF depicted in Fig. 7. The data for the evaluation are taken

directly from the data3 accumulated by the DRMT about

the artifacts under its control. Below, the development time

for any artifact is calculated by using the start and end time

stamps for any work contributing to the development. The

savings from the reuse of any building block is estimated as

the building block’s known past development time, minus

the amount of time spent determining whether or not to do

the reuse.

7.1 The data and their analysis

An evaluation of the projects in PF at the end of 2007

showed that

• the DRMT was used by the projects for three products

in PF; two of the projects, for product A and product B,

were in their production phases, and one project, for

product C, was before contract signing.

• 30 engineers, from the three projects, used the DRMT

for assessing the differences between the products A, B,

and C, aiming for reuse,

• each of A and C happened to have eight major

subsystems, of which five were very similar, suggesting

the possibility of reuse and dictating that C should be in

the same project family as A, and

• more than 70 % of the requirements in the CRS for

these five similar major subsystems of A and C were

identical, making significant reuse a real possibility.

3 These data are confidential, and their actual values cannot be shown

here.

34 Requirements Eng (2015) 20:23–44

123



At the end of 2009, another evaluation was performed.

By this time, in the hopes of promoting reuse, the con-

vention had been adopted to divide specifications at any

level into DRMT modules, each about one and only one

concept4 of the described product tree. That is, each

specification at any level is built out of modules, one for

each concept about the product. By restricting each spec-

ification module to one concept, any module could be

reused verbatim in any product with the same concept.

These one-concept models are clearly candidates for

becoming building blocks. Checking for a reuse opportu-

nity was reduced to identifying concepts in common

between pairs of products. If one of the pair was already

implemented and the other of a pair was yet to be imple-

mented, the identified reuse could potentially save all the

development derived for the concepts in the new product.

In addition, the DRMT had become a production tool,

used by all projects for logging elicited requirements,

creating requirements specifications, reviewing require-

ments changes, generating auxiliary documents, etc., in

short, for all RM. This universal use of the DRMT resulted

in the availability of types of requirements artifacts that

were not available previously, including V&V (verification

and validation) matrices and traceability coverage reports,

which can be generated automatically from other artifacts

in the DRMT.

The first four results of the universal use of the DRMT

are about normal usage of the DRMT for RM, and the

remaining five are about requirements reuse with the help

of the DRMT.

1. The DRMT was being used by most of the projects in

PF, each at its own stage of development.

2. More than 120 modules had been written with the help

of the DRMT for the projects in PF and other projects

during 2008–2009.

3. 160 engineers were assigned to PF and were using the

DRMT,

4. Approximately 30 % of all specification artifacts

released during the year were directly generated by

the DRMT from the engineer-supplied specifications.

5. The projects for four products, A, B, C, and D, in PF

are reusing Level R1 CRS requirements modules.

6. Each of products A and B has a major subsystem,

C3S1 at Level R3. The Level R3 specification of A’s

C3S1 has 1,365 requirements and shares 840 of these

with the Level R3 specification of C’s C3S1, which

has 932 requirements. Thus, about 62 % of the

requirements for A’s C3S1 are reused by another

product in PF, and about 90 % of the requirements C’s

C3S1 are reused from another product in PF. This

reuse is the first identified reuse discussed in the

previous section in connection with Fig. 7. These

details can be summarized by saying that A’s C3S1

shares many requirements with C’s C3S1 and that this

sharing results in about 62 % of the requirements of

A’s C3S1 and about 90 % of the requirements of C’s

C3S1 being reused in PF. This summary, in turn, can

be abstracted by saying only that about 62 % of the

requirements of A’s C3S1 and about 90 % of the

requirements of C’s C3S1 are reused in PF. In terms

of Chernak’s reuse rate5 [9], the reuse rate of A’s

C3S1 is 62 % and the reuse rate of C’s C3S1 is 90 %.

7. About 30 % of the Level R4 ADDs of A’s C3S1 and

about 55 % of the ADDs of C’s C3S1 are reused in

PF.

8. One hundred percent of the Level R5 SRSs of C were

reused in PF, leading to the wholesale reuse of

existing code of software components.

9. On average, about 70 % of each reused Level R5 SRS

was reused as-is, i.e., with no change.

The amount of reuse of ADDs is amazing because in

general, reuse of ADDs is very challenging since there are

always details in one implementation of an algorithm that

do not fit in other uses of the same algorithm.

Figure 8 shows a bar graph giving for each requirements

level, for each product A, B, and C in project family PF,

the reuse rate of the product’s artifacts at the requirement

level. The reuse rates for A and C are from the data cal-

culated in this paper. The reuse rates for B are only esti-

mated, by calibrating what was remembered about B

against the available data for A and C. Note that, while the

requirements reuse for C was systematic, the requirements

reuse for B was only opportunistic until its system engineer

decided late in the project to take advantage of the sys-

tematic reuse being done in the project to build C. Thus,

B’s reuse jumped from the purely opportunistically

obtained rate of 50 % in Levels R1 through R4 to 90 % in

Level R5.

7.2 Deeper analysis of the data

There has been a marked improvement in MMD’s RM

process over time. In 2007, projects for only three products

were using the DRMT, mainly for assessing requirements

differences between contracts. However, by the end of

2009, the projects for eight products were following the

RM process, using the DRMT as the operational RM tool.

Thus, the number of projects using the DRMT-driven RM

process increased 260 % in about 2 years. The number of

4 The one-concept-per-module calls to mind ontological approaches

to RE [8, 50], which are just not used at MMD.

5 The reuse rate of a requirements specification is the ratio between

the number of existing requirements in the artifact reused from

previous releases and the total number of requirements in the artifact.

Requirements Eng (2015) 20:23–44 35

123



engineers using the DRMT increased over the same period

from 30 to 160. This 530 % increase confirms that the

DRMT-driven RM process and its infrastructure had

become operational in MMD projects. According to the

interviews described in Sect. 8, the number of engineers

using the DRMT had increased to over 400 by the end of

the summer of 2012, for a total increase, from the begin-

ning, of 1,300 %!

By the end of 2009, as is required for CMMI Maturity

Level 5, the projects for four products in PF were reusing

requirements artifacts. On average, each one of the four

reusing projects saved its development effort an amount of

work equal to that of 45 % of work spent by the project

developing the reused artifacts.

Managing the ADDs at the correct RM level, Level R4,

enabled the reuse of more than 50 % of the ADDs of A’s

C3S1, resulting in 100 % reuse of C3S1’s SRSs. Note

that, one ADD may be implemented by more than one

hardware or software component.

Determining the differences between the CRS for A and

the draft CRS for C required about two days. The report of

the differences provided information for schedule and

budget estimation that was critical for the negotiation of

the contract to construct product C.

In MMD, the development to full delivery of the typical

CBS requires from 5 to 10 years, of which about 75 % is

implementation of software from SRSs. We have found

that the software implementation time of a reusing product

was about 33 % of the estimated time. We have found also

that in the PF project family, in which a typical product

requires 5 years for development to full delivery, reuse of

requirements from the product A reduced the time to

market of each of its reusing products to 60 % of the

estimated time to market. These data are consistent. If one

adds to the 25 % of the development time that is not

implementation time, about 10 % to account for searching

for reuse opportunities and then adds 33 % of 75 %; the

total is 60 %.

8 Qualitative triangulation

About two-and-a-half years after the period covered in the

analysis in Sect. 7, we interviewed four MMD personnel who

had been involved with RM and requirements reuse from the

beginning, in order to confirm the conclusions of Sect. 7, to

see if RM and requirements reuse were still being carried out,

to see what the long-term benefits are, and to learn whatever

else the interviewees wanted us to learn.

We conducted interviews by telephone in Hebrew with a

system engineer specializing in algorithms, a program

manager and system engineer, a head of a system engi-

neering group, and an RM manager. In order to preserve

promised anonymity while allowing the reader to be able to

see which quotations are from the same person, in the lists

below, these people are called ‘‘P1’’, ‘‘P2’’, ‘‘P3’’, and

‘‘P4’’, although not in the order of the list of their roles in

the previous sentence.

The semi-structured interviews were guided by the five

questions:

Q1. What do you think about requirements management

and requirements reuse now?

Q2. Would you go back to the old way?

Q3. Is reuse worth the trouble?

Q4. How much do you feel that reuse has saved?

Q5. Any complaints?

A first draft translation into English was done by the first

author, who is native in Hebrew and speaks English as a

second language. The first draft translation was improved

by the second author, who is native in English and speaks

Hebrew as a second language. The improved translation

was polished by the second author’s older daughter, who is

native in both English and Hebrew. The anonymized ori-

ginal Hebrew quotations and their final English translations

can be found at http://se.uwaterloo.ca/*dberry/FTP_SITE/

tech.reports/originalQuotations.pdf.

In these quotations, any text enclosed in square brackets

is the interviewer’s assessment, from the context of what

the interviewee is saying, what a pronoun or missing word

refers to in the quoted text. Sometimes, without the

bracketed text, the quotation might not be intelligible to the

reader who does not work at MMD. Each quotation is

marked with zero or more ‘‘Qn’’s to indicate which ques-

tions the quotation addresses. This marking was achieved

by merging with discussion each author’s own marking.

Some quotations address more than one question, and two

address none. Some of the quotations address additional

beneficial capabilities (ABCs) that have been discovered

for RM and requirements reuse at MMD and that are being

exploited. These quotations are marked with ‘‘ABC’’

Finally, note that in these quotations, because the topic of

the interview was understood by all, it is clear that

Fig. 8 Artifact reuse rates per product per requirements level

36 Requirements Eng (2015) 20:23–44

123

http://se.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/originalQuotations.pdf
http://se.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/originalQuotations.pdf


‘‘process’’ refers to the whole requirements-management-

plus-requirements-reuse process.

The text below gives for each interview question all the

quotations that address the question. The quotations that

address more than one question show up more than once.

The quotations for a question are grouped by interviewee.

Q1. What do you think about requirements management

and requirements reuse now?

P1:

1. The requirements management system is up

and running and is working!

2. It’s obvious that we need [RM and reuse].

4. They continue to do reuse in [some] family of

projects.

5. They now trace the [R4] algorithms to the [R3]

system level. [This is what was at levels R4–R5].

6. The algorithms are now traced to shared tests

[shared within a family], and they now want

shared tests at the system level.

8. People complain loudly that they aren’t given

access to DOORS in time.

9. In a new project, a new guy came and

immediately adjusted to working with the

requirements management method on DOORS.

10. The new guy performs reviews on DOORS

through discussion and asks for sharable editing.

13. In a huge project, they made a mess at the

requirements levels. After the mess maker left, we

saw all the problems in the [traceability of the]

requirements, but they could fix them because of

their distribution at the requirements levels.

14. Now, hardware requirements are entered [to

DOORS], and you can trace them, because you

can see the levels clearly.

15. The [RM] process document that we wrote was

accepted [by senior management].

16. It’s possible to summarize that the process is

obvious!

17. Anyone who wants to know what’s happening

in the projects looks at DOORS.

18. Software engineers continue to manage

requirements on their own.

19. Today, there are 400 users of DOORS and

about 400 modules on DOORS [not 1-1].

20. There are six projects doing full requirements

management with DOORS, and all sorts of

project initiations too.

P2:

1. The requirements management and reuse have

spread to all of the IAI and have become the

standard at the IAI.

2. We started in the first project with require-

ments management, and we moved to the

second project with reuse and then returned

to the first project and improved the

requirements.

P3:

1. Six years ago, the tool CORE was a pain.

Then, I decided that in the project, we needed a

tool that focuses on requirements management,

and I chose DOORS. Today, in retrospect, this

was the best choice I ever made in my entire

career, that of the tool and of the way [RM

process] to use it.

2. It [the switch to DOORS] wasn’t easy, but today,

people don’t move without DOORS. DOORS

serves as the source of the requirements, and all

requirements changes must pass through it.

5. In the end, the tool was adopted formally by

the entire plant [of IAI].

7. Requirements reuse of the same module hap-

pened in several projects, thanks to the attri-

butes. There are 150 requirements in a module,

and maybe 15 requirements differ between two

projects. Sometimes, this [difference] is only in

the parameters.

8. There is also reuse of tests, and that permits

flexibility and order.

P4:

1. We did a good process that proved itself.

3. We are in the third project with requirements

reuse.

5. We do test reuse by linking to the require-

ments, and that saves. It’s not always possible

to do test reuse because the conditions [of the

tests] change.

Q2. Would you go back to the old way?

P1:

3. [Chief System Engineer of the Missiles Division]

changed his perception, and now he’s reviewing

previous projects, and he’s asking, ‘‘Why not work

with DOORS and do requirements management?’’

18. Software engineers continue to manage

requirements on their own.

P2:

2. We started in the first project with require-

ments management, and we moved to the

second project with reuse and then returned to

the first project and improved the requirements.

Requirements Eng (2015) 20:23–44 37

123



P3:

1. Six years ago, the tool CORE was a pain. Then, I

decided that in the project, we needed a tool that

focuses on requirements management, and I

chose DOORS. Today, in retrospect, this was the

best choice I ever made in my entire career, that

of the tool and of the way [RM process] to use it.

P4:

6. We will not go back [to without RM]. There is

a struggle to keep [requirements reuse] also on

levels R3 and R4, because that’s important for

system engineering to understand the impact

on the higher levels [R1 and R2].

P2.2 indicates that RM and requirements reuse helped to

improve requirements specification and not just reduce costs.

P1.3 indicates that senior managers even revisit projects

done the old way to enforce the new RM process in order to

gain the benefits of the new RM and requirements reuse, and

improved requirements specifications and reduced costs.

Q3. Is reuse worth the trouble?

P1:

P2:

3. Definitely, it [RM] was worth the trouble.

P3:

1. Six years ago, the tool CORE was a pain. Then, I

decided that in the project, we needed a tool that

focuses on requirements management, and I chose

DOORS. Today, in retrospect, this was the best

choice I ever made in my entire career, that of the

tool and of the way [RM process] to use it.

2. It [the switch to DOORS] wasn’t easy, but today,

people don’t move without DOORS. DOORS

serves as the source of the requirements, and all

requirements changes must pass through it.

P4:

3. We are in the third project with requirements

reuse.

Q4. How much do you feel that reuse has saved?

P1:

11. Those who follow the method with DOORS

don’t talk about savings; it is obvious.

P2:

4. I don’t know how to estimate how much we

saved [with RM and reuse], but they brought

order! Now, we know what are the require-

ments, what is up to date, what is in the current

version, and what was in the previous version.

6. The measurements that I report in system engi-

neering include: the number of TBDs and the

number of requirement changes. In my opinion,

the number of requirement changes in system

engineering is not meaningful to me, because we

are developing something new, and there will

always be changes until we arrive at the solution.

P3:

3. It’s hard to say what are the savings. There’re

savings in the order we now have, that is, no

chaos. How can we measure how much we

save because of the order and the lack of chaos.

It’s obvious that there’s a substantial savings!

All the [requirements] modules are there in one

place, and it’s possible to freeze them.

4. The tests are linked to the requirements. So I

know that all requirements are covered [by

tests], or at the time of linking of the tests, we

identify requirements that I overlooked, and

then, we know what we missed in the tests, and

that’s worth a lot.

7. Requirements reuse of the same module hap-

pened in several projects, thanks to the attri-

butes. There are 150 requirements in a module,

and maybe 15 requirements differ between two

projects. Sometimes, this [difference] is only in

the parameters.

8. There is also reuse of tests, and that permits

flexibility and order.

P4:

4. The process saved a lot! It’s difficult to assess. In

fact, without the process, it’s like doing the

project from scratch. That is, so far, it’s possible

to say that we have saved three years of work.

5. We do test reuse by linking to the require-

ments, and that saves. It’s not always possible

to do test reuse because the conditions [of the

tests] change.

These quotations about the difficulty of estimating the

savings accrue from requirements reuse. Savings from

one project compound into even bigger overall savings

in later projects, in which the same requirements are

reused again and again. Therefore, the estimate of sav-

ings given in Sect. 7 is actually very conservative, as the

savings concern only one project in which some artifacts

are reused. This estimate takes no account of later reuse

of the same artifacts.

38 Requirements Eng (2015) 20:23–44

123



Q5. Any complaints?

P1:

7. There are complaints of deficiencies [missing

requirements] in System SSDD required for

traceability of system tests.

8. People complain loudly that they aren’t given

access to DOORS in time.

P2:

5. Requirements change control is heavy.

P3:

6. Missing is a modeling tool that’s connected to

the tests, in order to check for completeness

and consistency.

P4:

2. Negative Lesson: It did not give us a method to

distinguish between the systems in things that

are not expressed in the requirements. Things

that are not in the scope of the first system, but

are required in the second system, we did not

succeed to expose. We found defects.

5. We do test reuse by linking to the require-

ments, and that saves. It’s not always possible

to do test reuse because the conditions [of the

tests] change.

6. We will not go back [to without RM]. There is

a struggle to keep [requirements reuse] also on

levels R3 and R4, because that’s important for

system engineering to understand the impact

on the higher levels [R1 and R2].

7. The development people are not interested in

needing all [requirements] levels.

8. There are change committees for requirements

changes. It’s difficult to manage this with DOORS.

Whenever people complain that they do not get quick

enough access to a tool, as with P1.8, or that they need

more capabilities in a tool, as with P2.5, P4.2, and P4.8

or more process, as with P4.6, these people are giving a

sign that they actually like the tools and processes, and they

wish that the tools and processes could do more. The

complaint about deficiencies in traceability, as with P4.6,

indicates that the engineers may have actually learned to

like traceability from what it does at the lower level and

now wish that it could be extended to the higher levels.

The first author, who was present at MMD during the

case study and knows who was doing what, observes

that only P2, with Quotation 5, and P4, with Quotation

8, complain about the heaviness of the change process

with the DRMT. Neither P1 nor P3 make the same

complaint, probably because they interact with the

change control board (CCB) frequently and know what

the CCB requires. P1 and P3 know that the tool helps

them prepare submissions to the CCB that get approved

the first time, because their submissions show that they

have done their homework to determine the full impact

of proposed changes. The DRMT makes that homework

considerably more straightforward.

In spite of the complaints, the engineers at MMD nev-

ertheless continue to practice serious RM and require-

ments reuse, probably because the engineers themselves

benefit from the RM and requirements reuse in reduced

work overall [4].

ABC. Below are the quotations that point out ABCs that

arose as a result of the initiation and routinization of

RM and requirements reuse.

P1:

6. The algorithms are now traced to shared tests

[shared within a family], and they now want

shared tests at the system level.

9. In a new project, a new guy came and

immediately adjusted to working with the

requirements management method on DOORS.

10. The new guy performs reviews on DOORS

through discussion and asks for sharable

editing.

13. In a huge project, they made a mess at the

requirements levels. After the mess maker left,

we saw all the problems in the [traceability of

the] requirements, but they could fix them

because of their distribution at the require-

ments levels.

14. Now, hardware requirements are entered [to

DOORS], and you can trace them, because you

can see the levels clearly.

16. It’s possible to summarize that the process is

obvious!

17. Anyone who wants to know what’s happening

in the projects looks at DOORS.

P2:

P3:

4. The tests are linked to the requirements. So I

know that all requirements are covered [by

tests], or at the time of linking of the tests, we

identify requirements that I overlooked, and

then, we know what we missed in the tests, and

that’s worth a lot.

Requirements Eng (2015) 20:23–44 39

123



P4:

These ABCs include (1) improved traceability, (2)

improved testing, (3) improved visibility of artifacts and

process, (4) easier recovery from damage caused by an

departed employee’s bungling, and (5) easier and quicker

learning of the ropes by new employees. None of these had

been anticipated, and they evidently happened to the

pleasant surprise of the personnel.

With regard to the improved testing, writing test cases

faces the same difficulties as writing specifications. Each

can be written at the wrong level or at mixed levels. The

result is that system tests often contain unit tests, and unit

tests often contain system tests. The existence of clear

requirement levels helps focus tests to the correct

requirements levels and thus to the correct testing levels. In

addition, the existence of the requirements levels and the

tracing links between them helps using traces to determine

test coverage. Both a requirement that is not tested and a

test case that tests no requirement are easily noticed.

Two quotations were not classifiable, but are neverthe-

less very telling.

• P3: 9. It was great to work with you [Leah Goldin, the

former consultant and current interviewer]. You under-

stood quickly our needs and gave us the right answers

in the form of an requirements management process.

It’s not easy to get into people’s heads.

• P1: 12. What’s my next [RE] project?

In the first quotation, P3 congratulates the first author

for her successful technology transfer effort in getting

serious, sustained RM and requirements going at MMD.

P3 has been in the system development business for a

while and knows how technology transfer efforts usually

go! The second quotation shows the real enthusiasm

toward RM that P1 had developed as a result of the

successful introduction of RM and requirements reuse at

MMD.

The interviews were focused on answering the following

questions:

Q1. What do you think about requirements management

and requirements reuse now?

Q2. Would you go back to the old way?

Q3. Is reuse worth the trouble?

Q4. How much do you feel that reuse has saved?

Q5. Any complaints?

Generally, people at MMD are happy with and continue

to use RM and requirements reuse now. They would defi-

nitely not go back to the old ways particularly because of

the benefits that they perceive RM and requirements reuse

give to them. They feel that RM and requirements reuse

are worth the trouble. While they cannot quantify the

savings exactly, they know that they are saving ever-

increasing amounts of effort as reuse compounds with each

additional project. They do have complaints, but not

enough to want to go back to the old ways. In fact, some of

the complaints are in fact signs that people like RM and

requirements reuse and that things are working better than

they used to.

Thus, it appears that the impressions of P1, P2, P3, and

P4 confirm the conclusions of the analysis of the case study

data, even though they are hard put to quantify the savings.

Moreover, the process improvements that began with the

case-studied project have been sustained for the two-and-a-

half years since the first author finished her consulting with

MMD. The process improvements continue to benefit

MMD. Nevertheless, there is a clear recognition that some

problems remain unsolved and that some other problems

may even be revealed by the new processes.

9 Threats

The threats to the validity of the conclusions are the same

as in any other case study.

Construct validity: The speaker’s intent in any quotation

is understood accurately by the analyst and that the data

used to analyze the savings in development costs, i.e.,

code size, money and time spent, and number of

personnel involved, are correct for the purpose. Threats

against construct validity are mitigated by the conver-

sation of the interview and by general agreement among

project managers that the data used are the right data for

the purpose. Threats against construct validity are

mitigated also by triangulation.

Internal validity: The assumptions of causality are

correct, i.e., that the observed savings in development

costs is caused by the increased reuse. Since reusing an

artifact means that its development does not have to be

done again, and its development time can be avoided in

the reusing project. On the reasonable assumption that

each reused artifact is big enough that its development

time is more than the time to decide whether and how to

reuse it, it is clear that at least some of any observed

reduction in total development costs can be attributed to

increased reuse. It is possible the mere act of trying a

new approach could contribute to the developers’

increased enthusiasm and increased productivity. How-

ever, the cost savings have been sustained over two

years, well beyond when novelty would wear off.

External validity: The collection of interviewed users is

representative of all users and what they say represents

their behavior and that the studied projects are typical of

all projects. This threat is specifically not mitigated, and

40 Requirements Eng (2015) 20:23–44

123



the conclusions are claimed to be true only for the

described projects in the described organization. Each

reader will have to determine him or herself whether the

context of the study is similar enough to his or her own

context that the conclusions seem applicable.

Reliability: The data being analyzed by a different

analysts will not give different a set of conclusions.

Threats against reliability are mitigated by feedback

from the other authors of a previous version of this paper

and the new coauthor for the current paper. Threats

against reliability are mitigated also by the similarity

between the conclusions and the conclusions of past,

related work.

10 Conclusions

This paper describes the RM infrastructure at MMD of IAI,

an infrastructure that allows MMD to systematically apply

requirements reuse to a degree that yields real, measurable

savings in development costs and real, measurable reduc-

tions in time to market for its products. The main elements

of this infrastructure are at once technical, organizational,

and behavioral:

1. Each product is developed by a project that resides in a

family of projects that are developing related projects,

for which reuse will be natural and feasible.

2. There is a single system engineering group for each

family, consisting of the senior system engineers for

all of the family’s projects plus some at-large special-

ists who work their specialties for all projects in the

family.

3. All requirements specification artifacts for one project

family are stored in one DRMT for the family.

4. The DRMT for one family organizes the family’s

requirements specification artifacts into five require-

ments levels, each of which consists of all require-

ments specifications at the same level of refinement

from (R1) CRSs through (R2) SSSs and two levels

(R3, R4) of SSDDs, down to (R5) SRSs and HWSs.

5. The system engineering group of a family proactively

looks for reuse opportunities among the requirements

specification artifacts in the family’s DRMT. When the

group’s members hear of a project needing require-

ments at least similar to existing requirements, they

use their combined knowledge of the contents of the

family’s DRMT to find them. They isolate the needed

requirements into a module with its own recognizable

unique name that becomes standard throughout the

family. Sometimes, the module is already there with its

name already standardized. Sometimes, the module is

already there, but its name is not yet standardized; the

name is then standardized, possibly after undergoing a

change to make it more easily recognized. Sometimes,

the module is a part of an existing module; the part is

now recognized and isolated as a building block in its

own right.

6. In any potential reuse situation, the system engineering

group aims for reusing the highest level artifact

possible to gain the maximum amount of reuse and

of savings.

By the analysis in Sects. 7 and 8 of quantitative data

found in MMD’s DRMT, this paper has provided evidence

that for at least the paper’s studied projects, institutional-

ized proactive requirements reuse pays off, thus answering

positively Research Subquestion RQ1.1 from Sect. 1.4.

Futhermore, the analysis of the project data from the

DRMT has allowed calculating the amount of savings, thus

answering Research Subquestion RQ1.2

Research Subquestion RQ1.3 is harder to answer. Nev-

ertheless, it is clear that all of this technical, organizational,

and behavioral infrastructure is necessary to achieve

effective requirements reuse as part of an effective RM

process. The newest concept in this list, and in fact in this

paper, is that of the project family. It appears that most

people associate product lines or product families with

reuse. The second author’s experience in her RE consulting

business is that thinking in terms of product lines or

product families is too limiting, in that it does not expose as

many reuse opportunities as thinking in terms of project

families.

A project can be developed based on one or more

product lines, i.e., integrating reused products, assuming

the products were à priori defined by the product lines. In a

project family, the understanding that a new project

belongs to some family is based on a project manager’s or a

system engineer’s intimate knowledge of the project family

and the new project, without à priori indication of what can

be reused as is. Since each project is budgeted separately,

all of a project’s effort will be spent for the project’s

benefit; none of this effort will be spent providing, or even

declaring the existence of, artifacts that can be reused by

other projects or project families. Nevertheless, when a

project makes its requirements artifacts both high quality

and visible, these artifacts will be discovered and will be

reused by impetus from the reusing project. Thus, RM in

the context of project families promotes, in a natural way,

the visibility of requirements artifacts at all levels of a

product tree, from top to bottom. With such visibility,

opportunities for requirements reuse arise naturally.

MMD’s daily use of its DRMT-driven RM process

enables sharing of requirements artifacts among the engi-

neers working on projects to develop products in a project

family of large-scale defense systems. This sharing makes

Requirements Eng (2015) 20:23–44 41

123



commonality among requirements artifacts readily appar-

ent and exploitable. Moreover, MMD’s engineers have

been learning to exploit this commonality as opportunities

for reuse of all kinds of artifacts. They have learned the

benefits of reusing the highest level artifacts, i.e., those

with the lowest RM level number, because the use of any

high-level artifact implies the reuse of its derived lower-

level artifacts. Over the two years reported in this paper,

MMD was already reaping the benefits of the improved

RM process, of the DRMT infrastructure, and of require-

ments reuse.

As confirmed by the quotations gathered in interviews

two-and-a-half years after the conclusion of the analyzed

project, this reaping continues now and is growing daily.

Senior managers and senior system engineers are now

focusing on full-scale project family deployment, over the

breadth and depth of MMD. MMD is now doing RE in the

fullest sense of the term, and not just RM. The MMD system

development process has achieved CMMI Maturity Level 5.

Requirements specifications and RM have become the back-

bone of the whole development process. Requirements spec-

ifications are now tightly coupled with design and testing.

As a result of the RM process and the supporting

DRMT, requirements reuse opportunities become clear

very early in any development project. Requirements

change control is done online, because the infrastructure is

there to support these activities. MMD is at the point in

which the reuse of requirements specification as an integral

part of RM starts to show a positive return on MMD’s

investment.

In retrospect, it appears that the RM process instituted at

MMD has achieved, at least partially, all of the original

goals listed in Sect. 5.1.1 for introducing an RM process.

• MMD now uses requirements as the backbone of all of

its CBS developments;

• MMD has reduced development and delivery time for

all CBSs in which requirements reuse has been found to

be possible;

• MMD develops generic building blocks that can be

used to help assemble CBSs for multiple customers;

• MMD is able resell existing CBSs to new customers,

with considerably less than a full development project;

and

• MMD does proactively reuse requirements of generic

building blocks as the basis for reuse among products

of a project family.

Therefore, in conclusion, the main research question,

RQ1: Does institutionalized, proactive requirements

reuse pay off?

can be answered positively for at least the studied projects

at MMD.

Acknowledgments Many thanks to the anonymous interviewees.

References

1. Goldin L, Matalon-Beck M, Lapid-Maoz J (2010) Reuse of

requirements reduces time to market. In: Proceedings of the 2010

IEEE international conference on software science, technology &

engineering (SwSTE), pp 55–60

2. Almefelt L, Berglund F, Nilsson P, Malmqvist J (2006)

Requirements management in practice: Findings from an empir-

ical study in the automotive industry. Res Eng Des

17(3):113–134

3. Ambriola V, Gervasi V (2006) On the systematic analysis of

natural language requirements with CIRCE. Autom Softw Eng

13:107–167

4. Arkley P, Riddle S (2005) Overcoming the traceability benefit

problem. In: Proceedings of the 13th IEEE international confer-

ence on requirements engineering (RE), pp 385–389

5. Barnes B, Bollinger T (1991) Making reuse cost-effective. IEEE

Softw 8(1):13–24

6. Boehm B (1999) Managing software productivity and reuse.

Computer 32:111–113

7. Boehm BW, Abts C, Brown AW, Chulani S, Clark BK, Horowitz

E, Madachy R, Reifer DJ, Steece B (2000) Software cost esti-

mation with COCOMO II. Prentice Hall, Upper Saddle River, NJ

8. Breitman KK, Leite JCSdP (2003) Ontology as a requirements

engineering product. In: Proceedings of the 11th IEEE interna-

tional conference on requirements engineering (RE), pp 309–319

9. Chernak Y (2012) Requirements reuse: the state of the practice.

In: Proceedings of the 2012 IEEE international conference on

software science, technology & engineering (SwSTE), pp 46–53

10. Cleland-Huang J, Settimi R, Zou X, Solc P (2007) Automated

classification of non-functional requirements. Requir Eng

12(2):103–120

11. Clements P, Northrop LM (2001) Software product lines: prac-

tices and patterns. Addison-Wesley, Reading, MA

12. Cybulski JL, Reed K (2000) Requirements classification and

reuse: crossing domain boundaries. In: Proceedings of the sixth

international conference on software reuse: advances in software

reusability (ICSR), pp 190–210

13. Damian D, Chisan J (2006) An empirical study of the complex

relationships between requirements engineering processes and

other processes that lead to payoffs in productivity, quality, and

risk management. IEEE Trans Softw Eng 32(7):433–453

14. Daneva M (2000) Reuse measurement in the ERP requirements

engineering process. In: Frakes W (ed) Software reuse: advances

in software reusability (ICSR), LNCS1844. Springer, Berlin,

pp 211–230

15. Davis AM, Yourdon E, Zweig AS (2000) Requirements man-

agement made easy. Technical report, Omni-Vista, Inc. http://

homepages.laas.fr/kader/Davis_et_al.pdf

16. Ellis K, Berry DM (2013) Quantifying the impact of requirements

definition and management process maturity on project outcome

in business application development. Requir Eng J 18(3):223–249

17. Finkelstein A (1988) Re-use of formatted requirements specifi-

cations. Softw Eng J 3(5):186–197

18. Fortune J, Valerdi R, Boehm BW, Settles FS (2009) Estimating

systems engineering reuse. In: Seventh annual conference on

systems engineering research (CSER). http://cser.lboro.ac.uk/

papers/S01-10.pdf

19. Frakes WB, Succi G (2001) An industrial study of reuse, quality,

and productivity. J Syst Softw 57(2):99–106

20. Garlan D, Allen R, Ockerbloom J (1995) Architectural mismatch:

Why reuse is so hard. IEEE Softw 12(6):17–26

42 Requirements Eng (2015) 20:23–44

123

http://homepages.laas.fr/kader/Davis_et_al.pdf
http://homepages.laas.fr/kader/Davis_et_al.pdf
http://cser.lboro.ac.uk/papers/S01-10.pdf
http://cser.lboro.ac.uk/papers/S01-10.pdf


21. Glass RL (1998) Reuse: what‘s wrong with this picture? IEEE

Softw 15(2):57–59

22. Harter DE, Kemerer CF, Slaughter SA (2012) Does software

process improvement reduce the severity of defects? A longitu-

dinal field study. IEEE Trans Softw Eng 38(4):810–827

23. Hoadley CM, Linn MC, Mann LM, Clancy MJ (1996) When,

why, and how do novice programmers reuse code? In: Gray WD,

Boehm-Davis DA (eds) Proceedings of the sixth workshop on

empirical studies of programmers, Ablex Publishing, Norwood,

NJ

24. IBM Rational DOORS (2011) Viewed 10 Aug 2011. http://www-

01.ibm.com/software/awdtools/doors/

25. ICSR. International conference on software reuse. http://www.

informatik.uni-trier.de/ley/db/conf/icsr/index.html

26. Israel Aerospace Industries (2012) MBT missiles division.

Viewed 3 Aug 2012. http://www.iai.co.il/15901-en/System

MissileandSpace_MBTMissiles.aspx

27. Israel Aerospace Industries (2012) MBT space division. Viewed

3 Aug 2012. http://www.iai.co.il/18660-en/SystemMissileand

Space_SpaceDivision.aspx

28. Israel Aerospace Industries (2012) Systems missiles and space group.

Viewed 3 Aug 2012. http://www.iai.co.il/25467-en/Groups.aspx

29. Jacobson I, Griss M, Johnsson P (1997) Software reuse, archi-

tecture process and organization for business success. Addison

Wesley Longman, Harlow

30. Jones C (1995) Patterns of software systems failure and success.

International Thompson Computer Press, Boston, MA

31. Kaindl H, Śmiałek M, Nowakowski W (2010) Case-based reuse

with partial requirements specifications. In: Proceedings of the

2010 eighteenth IEEE international requirements engineering

conference (RE), pp 399–400

32. Kang KC, Cohen SG, Holibaugh R, Perry J, Peterson AS (1992)

A reuse-based software development methodology. Technical

report CMU/SEI-92-SR-004, Software Engineering Institute,

CMU. http://www.sei.cmu.edu/library/abstracts/reports/92sr004.

cfm

33. Khraiwesh M, El Sheikh A (2009) Empirical validation of

requirements management measures. Int Arab J Inf Technol

6(2):196–203

34. Lam W, McDermid JA, Vickers AJ (1997) Ten steps towards

systematic requirements reuse. In: Proceedings of the third IEEE

international symposium on requirements engineering (RE),

pp 6–15

35. Lauesen S (2002) Software requirements: styles and techniques.

Addison-Wesley, Reading, MA

36. Lee N-Y, Litecky CR (1997) An empirical study of software

reuse with special attention to ada. IEEE Trans Softw Eng

23(9):537–549

37. Lim WC (1996) Reuse economics: a comparison of seventeen

models and directions for future research. In: Proceedings of the

fourth international conference on software reuse (ICSR ’96),

pp 41–51

38. Loconsole A (2004) Empirical studies on requirement manage-

ment measures. In: Proceedings of the twenty-sixth international

conference on software engineering (ICSE), pp 42–44

39. Loconsole A, Börstler J (2005) An industrial case study on

requirements volatility measures. In: Proceedings of the twelfth

Asia-Pacific software engineering conference (APSEC),

pp 249–256

40. LombardHill.com. (2012) World’s largest reuse bibliography.

Viewed 2 Aug 2012. http://www.lombardhill.com/biblio4.html

41. López Villegas O, Ángel Laguna M (2001) Requirements reuse

for software development. In: RE 2001 doctoral symposium.

http://giro.infor.uva.es/Publications/2001/LL01/Doc-Workshop.

pdf

42. Loral Federal Systems and SWSC/SMX (1996) Software tech-

nology for adaptable, reliable systems (STARS), air force/

STARS demonstration project experience report, version 3.1, vol

I. Technical report, USAF Material Command, Electronics Sys-

tems Center

43. Maiden N, Sutcliffe A (1992) Exploiting reusable specifications

through analogy. Commun ACM 35(4):55–64

44. Maiden N, Sutcliffe A (1993) People-oriented software reuse: the

very thought. In: Proceedings advances in software reuse, selec-

ted papers from the second international workshop on software

reusability, pp 176–185

45. Maiden NAM, Mistry P, Sutcliffe AG (1995) How people cate-

gorise requirements for reuse: a natural approach. In: Second

IEEE international symposium on requirements engineering

(RE), pp 148–157

46. McConnell S (1996) Rapid development: taming wild software

schedules. Microsoft Press, Redmond, WA

47. Meth H, Brhel M (2012) Rise of the machines, the state of the art

in automated requirements eliciation. Technical report working

paper, enterprise information systems, University of Mannheim

48. Morais CGB, de Oliveira Basilio J, da Silva LF, de Barbalho TR

(2010) Cognitio: um processo para reuso de requisitos. Holo, 4

(in Portuguese). http://www2.ifrn.edu.br/ojs/index.php/HOLOS/

article/view/488/369

49. Morisio M, Ezran M, Tully C (2002) Success and failure factors

in software reuse. IEEE Trans Softw Eng 28(4):340–357

50. Moser T, Winkler D, Heindl M, Biffl S (2011) Requirements

management with semantic technology: an empirical study on

automated requirements categorization and conflict analysis. In:

Proceedings of the twenty-third international conference on

advanced information systems engineering (CAiSE), pp 3–17

51. na Moros B, Vicente-Chicote C, Toval A (2008) Metamodeling

variability to enable requirements reuse. In: Proceedings of the

thirteeth international workshop on exploring modeling methods

for systems analysis and design (EMMSAD), pp 140–154

52. Paech B, Koenig T, Borner L, Aurum A (2005) An analysis of

empirical requirements engineering survey data. In: Engineering

and managing software requirements, part 3. Springer, Berlin,

pp 427–452

53. Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) Capability

maturity model, version 1.1. IEEE Softw 10(4):18–27

54. Poulin JS (1997) Measuring software reuse. Addison-Wesley,

Reading, MA

55. Reifer DJ (1997) Practical software reuse. Wiley, New York, NY

56. Rittel H, Webber M (1973) Dilemmas in a general theory of

planning. Policy Sci 4:155–169

57. Robertson S (1996) Reuse lifecycle: essentials and implementa-

tions. In: Proceedings of the international workshop on system-

atic reuse

58. Robson C (2011) Real world research, 3rd edn. Wiley–Blackwell,

Chicester, West Sussex

59. Schach SR (1994) The economic impact of software reuse on

maintenance. J Softw Maint Res Pract 6(4):185–196

60. Sen A (1997) The role of opportunism in the software design

reuse process. IEEE Trans Softw Eng 23(7):418–436

61. Shehata MS, Eberlein A, Hoover HJ (2002) Requirements reuse

and feature interaction management. In: Proceedings of the fif-

thteenth international conference on software & systems engi-

neering and their applications (ICSSEA). http://www2.enel.

ucalgary.ca/People/eberlein/publications/FI_ICSSEA2002.pdf

62. Sherif K, Vinze A (2003) Barriers to adoption of software reuse:

a qualitative study. Inf Manag 41(2):159–175

63. Software Engineering Institute (2010) Capability maturity model

integration (CMMI) overview. Viewed 10 Aug 2010. http://www.

sei.cmu.edu/cmmi/

Requirements Eng (2015) 20:23–44 43

123

http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/doors/
http://www.informatik.uni-trier.de/ley/db/conf/icsr/index.html
http://www.informatik.uni-trier.de/ley/db/conf/icsr/index.html
http://www.iai.co.il/15901-en/SystemMissileandSpace_MBTMissiles.aspx
http://www.iai.co.il/15901-en/SystemMissileandSpace_MBTMissiles.aspx
http://www.iai.co.il/18660-en/SystemMissileandSpace_SpaceDivision.aspx
http://www.iai.co.il/18660-en/SystemMissileandSpace_SpaceDivision.aspx
http://www.iai.co.il/25467-en/Groups.aspx
http://www.sei.cmu.edu/library/abstracts/reports/92sr004.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92sr004.cfm
http://www.lombardhill.com/biblio4.html
http://giro.infor.uva.es/Publications/2001/LL01/Doc-Workshop.pdf
http://giro.infor.uva.es/Publications/2001/LL01/Doc-Workshop.pdf
http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/488/369
http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/488/369
http://www2.enel.ucalgary.ca/People/eberlein/publications/FI_ICSSEA2002.pdf
http://www2.enel.ucalgary.ca/People/eberlein/publications/FI_ICSSEA2002.pdf
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/


64. SSR. Symposium on software reusability. http://dl.acm.org/event.

cfm?id=RE121&tab=pubs&CFID=101038456&CFTOKEN=559

15038

65. Tomer A, Goldin L, Kuflik T, Kimchi E, Schach SR (2004)

Evaluating software reuse alternatives: a model and its applica-

tion to an industrial case study. IEEE Trans Softw Eng

30:601–612

66. Toval A, Nicolás J, na Moros B, Garcia O (2001) Requirements

reuse for improving information systems security: a practitioner’s

approach. Requir Eng J 6(4):205–219

67. Tracz W (1995) Confessions of a used program salesman: insti-

tutionalizing software reuse. Addison-Wesley, Reading, MA

68. US DoD (1994) MIL-STD-498, Military Standard: Software

Development and Documentation. http://www.everyspec.com/

MIL-STD/MIL-STD?(0300?-?0499)/download.php?spec=MIL-

STD-498.025500.pdf

69. Valerdi R, Rieff J, Roedler G, Wheaton M, Wang G (2007)

Lessons learned from industrial validation of COSYSMO. In:

Proceedings of the seventeenth INCOSE symposium. http://

web.mit.edu/rvalerdi/www/Lessons%20learned%20from%20indus

trial%20validation%20of%20COSYSMO%20Rev5.pdf

70. Weyuker EJ (1999) Evaluation techniques for improving the

quality of very large software systems in a cost-effective way.

J Syst Softw 47(2–3):97–103

71. Wiegers KE (2003) Software requirements, 2nd edn. Microsoft

Press, Redmond, WA

72. Wikipedia (2012) Israel aerospace industries. Viewed 3 Aug

2012. http://en.wikipedia.org/wiki/Israel_Aerospace_Industries

44 Requirements Eng (2015) 20:23–44

123

http://dl.acm.org/event.cfm?id=RE121&tab=pubs&CFID=101038456&CFTOKEN=55915038
http://dl.acm.org/event.cfm?id=RE121&tab=pubs&CFID=101038456&CFTOKEN=55915038
http://dl.acm.org/event.cfm?id=RE121&tab=pubs&CFID=101038456&CFTOKEN=55915038
http://www.everyspec.com/MIL-STD/MIL-STD%2b(0300%2b-%2b0499)/download.php?spec=MIL-STD-498.025500.pdf
http://www.everyspec.com/MIL-STD/MIL-STD%2b(0300%2b-%2b0499)/download.php?spec=MIL-STD-498.025500.pdf
http://www.everyspec.com/MIL-STD/MIL-STD%2b(0300%2b-%2b0499)/download.php?spec=MIL-STD-498.025500.pdf
http://en.wikipedia.org/wiki/Israel_Aerospace_Industries

	Reuse of requirements reduced time to market at one industrial shop: a case study
	Abstract
	Introduction
	Requirements management
	Reuse
	The industrial organization
	Research questions
	Case study
	Plan for the rest of the paper

	Past and related work, including empirical, on general and requirements reuse
	Past and related empirical work about requirements management
	System development at the organization
	Project families
	Organizational project family structure
	Project management and system engineering stakeholders

	RM and reuse at the organization
	Requirements management
	The beginnings of the requirements management process
	The RM process needs an RM tool
	RM tool deployment and artifact migration
	RM levels
	Requirements traceability

	Reuse of requirements

	The project that led to systematic reuse
	Start of the project to develop product C
	Opportunistically identified reuse opportunity
	Toward systematic reuse with the help of unique naming of artifacts
	Making a major subsystem generic

	Evaluation of reuse during RM
	The data and their analysis
	Deeper analysis of the data

	Qualitative triangulation
	Threats
	Conclusions
	Acknowledgments
	References


