
BEST PAPERS OF RE’10: REQUIREMENTS ENGINEERING IN A MULTI-FACETED WORLD

Representing and reasoning about preferences
in requirements engineering

Sotirios Liaskos • Sheila A. McIlraith •

Shirin Sohrabi • John Mylopoulos

Received: 11 January 2011 / Accepted: 23 July 2011 / Published online: 12 August 2011

� Springer-Verlag London Limited 2011

Abstract The priorities that stakeholders associate with

requirements may vary from stakeholder to stakeholder and

from one situation to the next. Differing priorities, in turn,

imply different design decisions for the system to be.

While elicitation of requirement priorities is a well-studied

activity, modeling and reasoning with prioritization has not

enjoyed equal attention. In this paper, we address this

problem by extending a state-of-the-art goal modeling

notation to support the representation of preference (‘‘nice-

to-have’’) requirements. In our extension, preference goals

are distinguished from mandatory ones. Then, quantitative

prioritizations of the former are constructed and used as

criteria for evaluating alternative ways to achieve the latter.

To generate solutions, an existing preference-based planner

is utilized to efficiently search for alternatives that best

satisfy a given set of mandatory and preferred require-

ments. With such a planning tool, analysts can acquire a

better understanding of the impact of high-level stake-

holder preferences on low-level design decisions.

Keywords Requirements engineering � Goal modeling �
Preference specification

1 Introduction

In requirements engineering (RE), goal-oriented techniques

[1] have enjoyed significant attention due to their ability

to bridge the gap between what stakeholders want (goals)

and the means (actions/tasks/plans) by which these goals

can be achieved. However, current goal-oriented modeling

frameworks [2–4] treat goals as mandatory requirements

that must be fulfilled by any proposed solution. In this

respect, such frameworks cannot accommodate preference

(‘‘nice-to-have’’) requirements that might be posed by

stakeholders.

Consider, for instance, the classic ‘‘Meeting Schedul-

ing’’ problem. While Schedule a Meeting is a mandatory

goal, in that the stakeholders’ main problem is not solved

unless this goal is fulfilled, goals such as Use 5th Floor

Rooms, Send Regular Reminders or Ensure Participation

of Important Participants are all preferences, in that there

might be ways to solve the Schedule a Meeting problem

without meeting several or even any of the preference

goals. Moreover, there is a variety of types of such pref-

erence goals, such as non-functional requirements (e.g.,

Keep Secretary Unburdened), solution details (e.g., Use

Room with Projector) or even more complex temporal

properties of desired solutions (e.g., Confirm Room before

Announcing Meeting). Furthermore, stakeholders are

understood to often prioritize over such goals, when

addressed with a particular situation in a given context. In

Extended version of the paper titled Integrating Preferences into Goal
Models for Requirements Engineering that appears in the Proceedings

of the 18th International Requirements Engineering Conference,

Sydney, Australia, 2010, pp. 135–144 [12].

S. Liaskos (&)

School of Information Technology,

York University, Toronto, Canada

e-mail: liaskos@yorku.ca

S. A. McIlraith � S. Sohrabi � J. Mylopoulos

Department of Computer Science, University of Toronto,

Toronto, Canada

e-mail: sheila@cs.toronto.edu

S. Sohrabi

e-mail: shirin@cs.toronto.edu

J. Mylopoulos

e-mail: jm@cs.toronto.edu

123

Requirements Eng (2011) 16:227–249

DOI 10.1007/s00766-011-0129-9

some situations, for instance, the preference Send Regular

Reminders is not as important as to Keep Secretary

Unburdened while in others the opposite might actually be

true.

In an example such as this, what exactly do preference

requirements and priorities between them mean and how

do they impact our understanding of the requirements

problem? If we are given a set of preference requirements

with priorities defined between them, what constitutes a

valid solution for mandatory goals and how can we obtain

it from a potentially vast set of possibilities? Generally

speaking, the problem of modeling and reasoning about

preferences for stakeholders in the presence of mandatory

goals remains largely unexplored.

The aim of this paper is to address precisely this prob-

lem. We introduce a framework for both specifying pref-

erence requirements and priorities among them, and also

for using them to select specifications that fulfill mandatory

requirements while best satisfying preference requirements

and priorities. Our proposed framework builds on our

previous work on goal-oriented variability modeling and

analysis [5–7]. This work is extended to distinguish

between mandatory and preference goals, and we show

how alternative ways to fulfill mandatory goals determine

the fulfillment or non-fulfillment of preference ones. Then,

by assigning weights of importance to preference goals—

using, for example, a quantitative requirement prioritiza-

tion scheme such as the Analytic Hierarchy Process (AHP

[8])—we obtain a preference function to be optimized. Our

work adopts a powerful preference-based planner [9] to

automatically obtain alternative plans for fulfilling man-

datory goals and also optimize the preference function. The

formal underpinnings for our proposal are based on PDDL

3.0 [10], a widely used formal language for specifying AI

planning problems, extended to support the definition of

hierarchical task networks (HTNs—[11]). This formaliza-

tion both allows us to have clear semantics for preferences

and priorities among them and offers us the benefit of using

powerful HTN- and PDDL-based reasoning tools such as

the one we actually adopt.

The paper extends our earlier publication on the topic

[12] over four directions. Firstly, we provide the complete

semantics of the visual language into HTN and PDDL 3.0

specifications, including the temporal templates that we are

using to allow easier construction of temporal constraints.

Secondly, we show through examples how exploring the

impact of preferences to the selection of alternatives can

facilitate understanding of the domain, validation of our

model thereof, as well as communication of the attitudes

and priorities of the stakeholders. Thirdly, we offer a more

detailed account on how the HTN/PDDL specification that

comes out of the translation procedure can be enriched to

allow for instance-level reasoning about preferences.

Finally, we offer more details and experiences from our

applications as well as experimental results on the perfor-

mance of the reasoning tool and how it is affected by the

size of the goal model.

The rest of the paper is organized as follows. In Sect. 2,

we present the goal language and show how we add tem-

poral semantics to it. Then, in Sect. 3, we show how that

language is extended to support various types of preference

goals and priorities. In Sect. 4, we provide the detailed

semantics of our visual representations in PDDL and HTN,

while in Sect. 5, we show how the planner allows us to

explore alternatives that best satisfy given preferences

while fulfilling mandatory goals. In Sect. 6, we show how

we can further enrich the underlying formal specification,

to which visual goal models are automatically translated, in

order to support more advanced reasoning. Then, in Sect. 7,

we provide reflections from our applications of the

approach in different example domains, and in Sect. 8, we

discuss the performance of the proposed reasoning task.

Finally, in Sect. 9, we take a look at related literature and

conclude in Sect. 10.

2 Goal models

Goal models [2, 13] have been found to be effective in

concisely capturing large numbers of alternative sets of

low-level tasks, operations, and configurations that can

fulfill high-level stakeholder requirements. The capture of a

large space of such alternatives has been shown to be

useful for evaluating alternative designs during the analysis

process [7], for customizing designs to fit individual user

characteristics [6] or even for coping with the large space

of configurations of common desktop applications [14].

In Fig. 1, a (simplified) goal model for a hypothetical

wholesale book seller is depicted. At this point, we would

like to focus on the AND/OR decomposition that consists

of shaded shapes and ignore for the moment the white oval

shapes at the top right and left parts of the diagram. That

decomposition model shows alternative ways by which the

process of fulfilling a book order can be performed,

including handling quotes to customers, placing the nec-

essary order to the supplier, receiving a payment, and

sending a receipt. The model primarily consists of goals

and tasks. Goals—the ovals in the diagram—are generally

defined as states of affairs or conditions that one or more

actors of interest would like to achieve [13]. Thus, Payment

Received is an example of a goal. Tasks, on the other

hand—the hexagonal shapes—describe particular activity

that actors perform in order to fulfill their goals, e.g., Print

Receipt. For the interest of conciseness, in the figure, tasks

have been annotated with a literal of the form tn, e.g., t2 is

the task Provide Quote. In the rest of the paper, we will

228 Requirements Eng (2011) 16:227–249

123

make frequent use of these literals to refer to the tasks of

the figure.

Goals and tasks are connected with each other using

AND- and OR-decompositions. By AND-decomposing a

goal into other goals or tasks, we imply that the satisfaction

of each of its children is necessary for the decomposed goal

to be fulfilled. If the goal is OR-decomposed into other

goals or tasks, then the satisfaction of one of these goals or

tasks suffices for the satisfaction of the parent goal. Fur-

thermore, subgoals of AND-decompositions can be desig-

nated as optional, in a manner very similar to that of the

optional features in feature models [15]. To visually signify

this particular kind of optional goals, we use a small cir-

cular annotation on their top side, a decoration borrowed

exactly from feature modeling. Thus, the refined definition

of the AND-decomposition is that all AND-subgoals that

are not designated as optional need to be fulfilled for the

parent goal to be fulfilled. For example, goal Receipt Sent

can be achieved by the task Send Electronic Receipt (t23)

alone as the goal Printed Receipt Sent is optional. The use

of optional subgoals allows goal analysts to avoid having to

represent optionality through OR-decompositions where

one of the two OR-subgoals expresses non-satisfaction of

the parent goal—a rather awkward modeling practice,

which is however necessary if optional subgoals are absent.

In our work, the order in which goals and tasks are

satisfied and performed, respectively, is relevant. To

express constraints in satisfaction ordering, we use the

precedence link ð�!pre Þ. The precedence link is drawn from

a goal or task to another goal or task, meaning that satis-

faction/performance of the target of the link cannot begin

unless the origin is satisfied or performed. Thus, the pre-

cedence link from Customer Places Order (task t3 in the

diagram) to Payment Received means that unless the for-

mer is performed, none of the tasks below the latter can be

performed. In addition to the (positive) precedence link, the

negative precedence link ð�!npr Þ can be used to denote that

satisfaction/performance of the target of the link cannot

begin if the origin is already satisfied or performed. The

intended use of the precedence links is for representing

indicative constraints, that is constraints that are not the

desire of any stakeholder but rather properties of the

domain. For example, the courier company cannot possibly

deliver an order to a customer unless they first pick it up

from the merchant.

Alternative solutions that satisfy the requirements

problem posed by the root goal come in the form of ordered

sequences of leaf-level tasks, which we call plans. A plan

for the root goal is a sequence of leaf-level tasks that

altogether satisfy the AND/OR structure of the root goal

and possible break and precedence links. For example, the

sequence:

½t1; t2; t3; t4; t5; t6; t7; t8; t11; t10; t13; t14; t15; t16; t20; t21; t22; t23�

is a plan for the root goal, involving credit card payment as

well as printing and separate submission of a receipt.

Notice that it satisfies both the AND/OR structure and the

precedence links. Sequence:

Book Order
Fulfilled

AND

Customer
Requests

Quote

Provide
Quote

AND

Customer
Places
Order

AND
Books

Available

AND

Books Delivered

Deliver
To

Courier

AND
Courier

Delivers To
Customer

AND

AND

Payment
Received

AND

Payment Done
Via Money Order

Payment Done
Via Credit Card

OR
OR

Customer
Issues

Money Order

AND

Customer
Sends Money

Order

Receive
Money
Order

AND
AND

Get CC
Card

Number

Get CC
Authorization Charge

CC

AND

AND
AND

Receipt
Sent

AND

Print
Receipt

Submit
Receipt

Deliver
Receipt

AND

AND AND

Books
Ordered

Books
Acquired

AND
AND

Contact
Supplier

AND

Supplier
Provides

Price

AND

Place
Order to
Supplier

AND

Supplier
Ships
Books

AND

AND

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

pre

++

++

pre

Quote
Given

AND

++

++

Printed
Receipt Sent

Send
Electronic
Receipt

AND

AND

AND

AND

++

AND

AND

Place
Receipt in
Shipment Separate Receipt

Submited

AND

t1

t2

t3

t4

t5
t6

t7

t12

t13

t14

t15

t16

t17

t18

t21

Supplier Provides
Price precedes
Provide Quote

Require Payment
Received before
Books Delivered

Require Printed Receipt
Sent after Payment Via

Credit Card

Handle
Receipt

Separatelly

OR

AND

t22

t11

pre

Receipt
Handled

OR

t10

pre
t23

Never Print
Receipt

LEGEND

...

...

...
task

mandatory
goal

preference
goals

optional
subgoals

pre precedence

npr negative
precedence

++
makes

--
breaks OR

OR

AND AND AND-
decomposition

OR-
decomposition

Happy
Customer

Expedited
Process

Customer
Convenience

Enhance
Company’s

Green Profile

Transaction
Reliability

...

...
...

...

Payment
Flexibility

Security
Conscious
Customers
Catered for

AND

++
++

Payment
Traceability

AND

--

--

++

npr

Use Robust Legal
Documentation

Obtain
from Stock

Acquired Directly
from Supplier

OR

OR

++

Bulk Order
Discounts

++

Receive
Supplier’s
Shipment

t8

Reduce Storage
Costs

++

Avoid Being
Left with

Unsold Stock

++

t19

Reduce Losses
from Unpaid
Deliveries

Require Get CC
Authorization before
Deliver To Courier

OR

OR
t9

t20

Never Obtain
from Stock

pre

pre

Fig. 1 A goal model

Requirements Eng (2011) 16:227–249 229

123

½t1; t2; t3; t4; t5; t6; t7; t8; t11; t10; t13; t14; t15; t16; t20; t22; t21; t23�

however is not a plan, because submission of the receipt

(t21) is happening after its delivery (t22), which is physi-

cally impossible and therefore violates the corresponding

precedence link. A sequence such as [t1, t2, t3, t11, t10, t13]

is not a plan either because it does not satisfy the AND/OR

decomposition: Neither the books are made available nor

payment and receipt are arranged in any way.

The visual formalism we use for our goal models can be

seen as a subset of a strategic rationale i* diagram [4],

whereby OR-decompositions correspond to alternative

means–ends relationships. Thus, Fig. 1 shows the goals of

the bookseller, in which some of the leaf-level tasks are

subject to delegation to other actors (customer, supplier,

etc)—for simplicity, we have omitted the corresponding i*

actor and dependency elements. Two aspects that are

additional to the core i* constructs are the optional sub-

goals, which, as we saw, can be seen as ‘‘syntactic sugar’’,

as well as the precedence annotations, which have been

attempted before for the purpose of preparing for sub-

sequent formalization processes [16, 17].

In Fig. 1, we have attempted to model some interesting

dilemmas that can be common in merchant transactions.

Some of the dilemmas come in the form of OR-decom-

positions and optional subgoals. For instance, there are

several ways by which the payment can be received, and in

the diagram, we have included the options to use credit

card or money order. Each of these options has a different

quality. Thus, credit cards are faster, more convenient and

allow customers the flexibility to pay at a later time. Money

orders, on the other hand, constitute a more robust legal

document and are preferred by security conscious cus-

tomers. On the other hand, the goal Printed Receipt Sent

has been designated as optional subgoal, which implies

more alternatives for fulfilling the root goal: those that

involve printing of a receipt and e.g., allow for a better

documented transaction and those that do not, which sup-

port a more environmentally friendly transaction. More

alternatives can be added to the diagram that have been

omitted for the interest of space: alternative ways to handle

and pay for the order to the supplier, alternative arrange-

ments for courier pick-up and delivery or more payment

options such as bank transfers are examples of such

alternatives.

In addition to the effect of OR-decompositions and

optional subgoals, variability exists in the diagram from a

temporal point of view. Precedence constraints do not

completely restrict the order by which tasks can be per-

formed. For example, credit card authorization (task t15)

must be performed after the card number is known (task

t14) but it may or may not precede delivery of the shipment

to courier (task t10) or even placement of the order to the

supplier (t6), depending on e.g., the degree of trust of the

bookseller to a particular customer and/or supplier. Simi-

larly, a quote can be provided to the customer before or

after the corresponding price has been given by the sup-

plier, depending on whether the bookseller is willing to

take a risk of not accounting for a higher supplier price or

inability to supply.

The choice that stakeholders will make in all the above

dilemmas will depend on their priorities at a given situation

and context. Such priorities can be over high-level qualities

(such as customer convenience versus maintaining robust

legal documentation) or constraints posing desired

sequences of goal satisfaction (e.g., deliver to courier

before getting credit card authorization). All these types of

desires need both to be modeled and to be combined in a

way that each of them influences the final choice based on

its relevant importance. In the next section, we show how

we can represent such desires as preference structures and

then how we can combine them into objective functions to

be optimized.

3 Preferences and priorities

3.1 Introducing preference goals

The AND/OR goal decomposition model we discussed in

the previous section represents alternative solutions for

fulfilling the root goal. These solutions came in the form of

plans. We consider the root goal—and subsequently the

entire AND/OR decomposition structure—to be manda-

tory, in that no plan is acceptable if that root goal (i.e.,

Book Order Fulfilled) is not satisfied by it. However, there

are also goals whose fulfillment by a particular plan is

desired but whose non-fulfillment does not make the plan

totally unacceptable. In the bookseller example, we may

choose to fulfill the book order through a payment

approach that is inconvenient for the customer—e.g.,

money order—but still accept the solution because, for

example, some other goal may benefit from it, such as to

maintain robust legal documents. Such goals are repre-

sented as preferences or preference goals—below we use

the terms interchangeably.

Preferences are also goals in a sense that stakeholders

may desire their fulfillment—though not always in the

same degree of desirability. In Fig. 1, preferences appear as

white non-shaded elements on the top right and left of the

diagram. Preference goals can be hard goals as in the

mandatory decomposition but they can also be soft goals.

Soft goals, as opposed to hard goals, do not have a clear-cut

criterion to be used in order to decide whether they are

230 Requirements Eng (2011) 16:227–249

123

satisfied or not. Thus, Happy Customer is a typical soft-

goal, as there is no precise and objective way to know

when a customer is actually happy, but argue about its

satisfaction based on e.g., relevant evidence or approxi-

mations [18]. Some preferences, such as Happy Customer,

are AND- and OR-decomposed into other preference goals

forming decomposition trees just like the mandatory

goals—but without precedence links, which cannot be

origins or targets of preferences.

With the exception of preferences that reflect temporal

constraints, which we discuss later, preference goals and

any of their possible subgoals are connected with the

mandatory decomposition through break and make links,

directly adopted from i*. The break link ð�!�� Þ means that

satisfaction of the origin of the link causes denial (non-

satisfaction) of the destination. The make link ð�!þþ Þ means

that satisfaction of the origin implies satisfaction of its

destination. In both cases though, non-satisfaction of the

origin does not imply anything about the destination.

Using break and make links, we can model how certain

alternative subgoals and tasks in the mandatory decompo-

sition affect the satisfaction of the preference goals. Going

back to our example, the preference goal Happy Customer

is AND-decomposed into four other goals: Expedited

Process, Payment Flexibility, Customer Convenience, and

Security Conscious Customers Catered for. These goals

receive, in turn, make, and break links from the mandatory

structure. Thus, Customer Convenience is achieved through

making the payment via credit card, hence the make link.

However, if the payment is sent through money order, this

causes denial of the goal. Nevertheless, payment through

money order may be desired by customers who fear

internet fraud, hence a make link to the preference goal

Security Conscious Customers Catered for. Printing

receipts on the other hand breaks the goal to Enhance

Company’s Green Profile.

3.2 Temporal preferences

In addition to preferences that express quality desires of the

solutions, we can express preference goals that refer to

temporal constraints over the sequences of goals and tasks

of the mandatory decomposition. Again, however, these

constraints are not mandatory in a sense that their satis-

faction is desired without necessarily making unacceptable

plans that do not satisfy them. They are represented as hard

goals since, as temporal constraints over other hard ele-

ments, their satisfaction criterion is precise.

As opposed to other preferences, temporal preferences

are not connected with the mandatory decomposition

through make or break links. The connection with the

mandatory decomposition is instead performed through

being appropriately formalized, as we discuss later.

To maintain simplicity and to ensure that reasoning

about temporal preferences is possible using the infra-

structure we introduce below, we formulate the constraints

using templates. Table 1 depicts seven templates that we

found to be useful for the construction of almost every

temporal property that came up in our applications. In the

table, [X] and [Y] denote goals or tasks of the mandatory

decompositions.

Using templates, construction of simple temporal prop-

erties is possible by users with limited knowledge of

temporal logic. Back in Fig. 1, all preferences that are

temporal constraints are expressed using such templates.

Thus, the preference Supplier Provides Price precedes

Provide Quote means that in a plan in which Provide Quote

and Supplier Provides Price are both performed, we prefer

that the latter has preceded in the same plan. Similarly,

require Printed Receipt Sent after Payment Done Via

Credit Card means that if the goal Payment Done Via

Credit Card has been satisfied in a plan (through perfor-

mance of its subtasks) then we prefer that the goal Printed

Receipt Sent is also satisfied later in the plan.

3.3 Priorities over preferences

Preferences are not always equally desired or important. In

a particular situation or context or for a particular stake-

holder, a subset of preferences can become more relevant

than the others. To see that, let us return to our bookseller

example. If an order is small and from a frequent customer,

the bookseller is mainly interested in keeping them happy,

while ensuring at the same time transaction reliability—

Table 1 Templates for

temporal preferences and their

meaning

Template Intuitive meaning

1. ‘‘sometime [X]’’ [X] must be eventually satisfied

2. ‘‘never [X]’’ [X] must never be satisfied

3. ‘‘[X] precedes [Y]’’ if [X] and [Y] are both satisfied [X]’s satisfaction must precede

4. ‘‘require [X] before [Y]’’ if [Y] is satisfied then [X]’s satisfaction must have preceded

5. ‘‘never [X] before [Y]’’ if [Y] is satisfied then [X]’s satisfaction must not precede

6. ‘‘require [X] after [Y]’’ if [Y] is satisfied then [X]’s satisfaction must follow

7. ‘‘never [X] after [Y]’’ if [Y] is satisfied then [X]’s satisfaction should never follow

Requirements Eng (2011) 16:227–249 231

123

thought this is not as important given that the order is

small. Meanwhile, they also wish to enhance the com-

pany’s ‘‘green’’ profile that is to project an environmentally

friendly image to customers—but again with a lower

priority.

Thus, from the entire set of preferences, these three are

the ones that the stakeholder may be interested to see sat-

isfied when taking an order of this size from the particular

type of customer, while deeming the other preferences less

important or completely irrelevant. Subsequently, these

preferences that are thought of as most relevant are prior-

itized subject to their relevant importance using numerical

weights in the real interval [0, 1]. In the example situation

described above, the weights we assign to our preferences

are seen in Table 2.

The bookseller may also state that certain constraints on

how goal fulfillment is sequenced are relevant for her case.

Thus, she may believe that before a quote is provided to the

customer the supplier must have provided the supply price

to ensure that selling price will be within the desired profit

margin. At the same time, but less importantly for a small

order and a loyal customer, she also thinks that payment

should be received before shipment of the product is per-

formed. She also mentions it would be good but not vital to

print a receipt. Finally, she mentions that stock should

preferably not be used. Again, these preferences can

acquire a weight that expresses their relevant importance as

seen in Table 3.

Through this weighted representation, the relative

desirability of each of the preferences that are deemed

relevant for a particular situation can be modeled and

compared. But where do the numbers come from? Our

proposal is concerned with modeling and automated rea-

soning about preferences without being bound to a partic-

ular method for priority acquisition. As we will see, the

requirements prioritization literature offers a wealth of

approaches for elicitation of quantitative expressions of

priority among higher-level requirements concepts. In

addition to those, our representation and reasoning

framework opens the opportunity for iterative revision of

an initial set of preferences and priorities thereof, through

following repeated cycles of priority specification and

testing against the mandatory decomposition. As we dis-

cuss below, such an exercise can help the acquisition of a

better understanding of the domain and the impact of

stakeholder attitudes to lower-level design decisions.

3.4 Preferred plans

Given a preference specification as discussed above, each

plan of the mandatory decomposition satisfies the prefer-

ence to a different degree. Given a plan, to calculate the

degree by which the plan satisfies the preference, we

simply add up the weights of the preferences that are sat-

isfied by the plan. For example, plan:

½t1; t2; t3; t4; t5; t6; t7; t8; t14; t15; t16; t11; t10; t13; t23�

satisfies two of the three relevant preferences of Table 2,

namely Happy Customer and Enhance Company’s Green

Profile. The former is satisfied through the inclusion of t14,

t15, and t16, which satisfy the goal Payment Done Via Credit

Card, which, in turn, satisfies all non-optional AND-

subgoals of preference Happy Customer through the make

links. The preference Enhance Company’s Green Profile is

satisfied, because the receipt is not printed (task t20); thus,

the negative contribution to that preference goal is avoided,

while at the same time the goal receives a make link from

task t23. However, no positive contribution link points to the

mandatory subgoal of Transaction Reliability. Thus, the

total score of the particular plan is 0.6 ? 0.1 = 0.7.

Should we request printing and submission of a receipt as

in plan:

½t1; t2; t3; t4; t5; t6; t7; t8; t14; t15; t16; t11; t10; t13; t20; t21; t22; t23�

while the preference Enhance Company’s Green Profile is

now hurt and thus not satisfied in the priority specification,

the preference goal Transaction Reliability is now satisfied

exactly due to the fact that a receipt is printed implying a

positive contribution to Use Robust Legal Documentation.

Thus, the score for this plan, based on the weights of

Table 2, would be 0.6 ? 0.3 = 0.9, making it more pre-

ferred than the previous one.

For the priority specification of Table 3, the order by

which tasks appear in the plan is critical in caclulating its

score. Thus, plan:

½t1; t2; t3; t4; t5; t6; t7; t8; t11; t17; t18; t19; t10; t13; t23�

satisfies only the first and the last of the four components of

the priority specification as the payment is received (t19)

before book delivery is complete (at t13), and, as desired,

the stock is also not used. However, neither the supplier

provides price (t5) before the quote is given to the customer

Table 2 Prioritizing preferences

Happy Customer 0.6

Transaction Reliability 0.3

Enhance Company’s Green Profile 0.1

Table 3 Prioritizing temporal preferences

Require Payment Received before Books Delivered 0.3

Supplier Provides Price precedes Provide Quote 0.4

Sometime Print Receipt 0.2

Never Obtain from Stock 0.1

232 Requirements Eng (2011) 16:227–249

123

(t2) nor is a receipt printed (t20). Thus, the score is 0.4.

Should we ensure proper ordering of the tasks Provide

Quote (t2) and Supplier Provides Price (t5) as in:

½t1; t4; t5; t2; t3; t6; t7; t8; t11; t17; t18; t19; t10; t13; t23�

the second component of the priority specification of

Table 3 is also satisfied yielding score 0.1 ? 0.3 ?

0.4 = 0.8.

As we discussed earlier, different stakeholders in dif-

ferent contexts and situations have an interest in satisfying

a different subset of preferences, to which they also give

different priorities. The bookseller example of Table 2

reflects the desires of a hypothetical order, where the

customer is frequent and the order is small; thus, the cor-

responding preferred plans may involve choices which

presume trust and strongly aim at customer satisfaction. In

a different situation, a new and unknown customer may

place a very large order. In this case, the book seller’s

priorities are to establish Transaction Reliability and, to a

lesser extent, to maintain Happy Customer. Depending on

the specific weightings, the plans may involve payment

through money order or also printed receipts, depending on

the relevant importance of the goal to maintain a green

profile. In addition, such an order case may require certain

temporal constraints, such as ensuring that the payment is

received before the product is shipped.

As we will see, quality and temporal preferences can be

combined in a priority specification through an iterative

process of automated optimal plan calculation and refine-

ment. Calculating such optimal plans of the mandatory

decomposition that best satisfy a given priority specifica-

tion is possible through the reasoning mechanisms we

present below. These mechanisms presume formalization

of the visual goal models and the preference specifications

into a planning problem specification. In the next section,

we discuss this in detail.

4 Formalizing preference goals and priorities

We define the semantics of our diagrammatic language as

well as the preference and priority specification via trans-

lation to a hierarchical task network (HTN) [11] and

PDDL3.0 [10], two popular languages for specifying

planning problems. The HTN task decomposition formal-

ism presents a superset of the AND/OR goal models we

discussed above. As such, in our translation, the part that

corresponds to the mandatory goal decomposition is

translated to an HTN specification, while the part that

corresponds to the preference goals and priorities is

translated into PDDL3.0. As we will see, by choosing these

languages as the basis of our semantics definition, we avail

ourselves to the use of a powerful planner to perform

efficient reasoning about solutions that best satisfy given

priority specifications. In the rest of the section, we intro-

duce the subsets of the languages we will be interested in,

followed by the details of the translation.

4.1 HTN and PDDL basics

The core of an HTN description consists of a set of oper-

ators o 2 O; a set of HTN tasks a 2 A; a set of methods

m 2 M as well as a set of domain predicates v 2 V:

Operators model primitive low-level actions that can be

performed in the domain. For each operator o, we define a

precondition formula pre-o, which shows what needs to be

true, so that performance of the operator is possible, as well

as an effect formula eff-o which shows what becomes true

or false upon performance of the action that is modeled by

the operator. Those formulae are logical expressions over

domain predicates in V. Furthermore, HTN tasks constitute

characterizations of higher-level activity. Note that HTN

tasks are different from tasks in the goal model and we will

distinguish them by referring to them as ‘‘HTN tasks’’

rather than just ‘‘tasks’’. HTN tasks cannot be ‘‘performed’’

but recursively reduced into other tasks and/or operators.

Different reduction possibilities are modeled through

methods. For a method m, we define a parent task for the

method tsk-m as well as a set of child tasks dec-m. Thus,

the method shows how the performance of an HTN task

tsk-m = a can be reduced to (i.e., substituted by) the per-

formance of a sequence dec-m ¼ a1; a2; . . . of other lower-

level tasks or operators. Methods also have preconditions

pre-m, which mean that the method cannot be used unless

that precondition is satisfied.

The HTN domain, which consists of a set of operators

and methods describing possible agent actions and allow-

able combinations thereof, is complemented with an HTN

problem specification, which allows the description of a

particular problem instance. The problem specification

consists of a list of predicates I that are initially (before the

performance of any operator) true as well as a list G of

high-level HTN tasks that need to be satisfied. The HTN

planner reads the domain and problem specifications, and

through recursively trying different substitutions of the

HTN tasks into subtasks, it searches for allowable

sequences of operators that starting from the initial con-

dition I lead to the achievement of all HTN tasks in G.

These sequences are HTN plans.

From the PDDL3.0 constructs, we use only the ones that

relate to the specification of PDDL preferences. While

PDDL preferences can take many forms, in our work we

are interested in PDDL preferences that appear as temporal

constraint formulae over the sequence of operators that

comprise a plan. Those are of the form is-violatedðuÞ,
where u is a logical formula enriched with temporal

Requirements Eng (2011) 16:227–249 233

123

operators such as always(/), sometime(/), sometime-

before(/1, /2), and sometime-after(/1, /2), with semantics

based on Linear Temporal Logic [10]. The synergy

between HTN and PDDL is achieved through the fact that

these formulae /, /1, /2, etc can be grounded on HTN

domain predicates of V. In this way, PDDL preferences can

be used to express evaluation conditions of plans from

domains written in HTN. The details about how this syn-

ergy is achieved can be found in [9].

Expressions of priorities among PDDL preferences

is possible through the definition of PDDL metrics.

Metrics are functions whereby different PDDL preference

constraints can be combined and assigned a weight.

The simplest way of doing so, which we adopt here,

is by constructing a linear combination of the form

f ¼w1� is-violatedðu1Þþw2� is-violatedðu2Þþ �� �þwn�
is-violatedðunÞ, where f is the metric function, ui are

PDDL preference formulae, wi are numerical weights, and

is-violatedð�Þ is a function that returns 0.0 if u is satisfied

and 1.0 otherwise—thus it is an expression of penalty.

Given a plan, the more of the constituent PDDL prefer-

ences are satisfied by the plan, the lower the value of the

metric f will be, to a degree that depends on the weights wi

of the individual preferences. Thus, specification of PDDL

preferences and metrics thereof are included as part of the

planning problem specification, in order to instruct the

planner to find solutions that achieve the specified goals

starting from the given initial condition while, at the same

time, optimizing the given metric.

4.2 Translating to HTN and PDDL

We now show how our visual representations of goals and

priorities can be translated into HTN and PDDL 3.0.

Roughly, the mandatory decomposition is translated into a

set of HTN operators, tasks, and methods, while the set of

preference goals as well as the priorities are translated into

PDDL 3.0 preference constraints and metrics. To facilitate

comprehension of the rules, we will use the small trans-

lation examples of Fig. 2.

4.2.1 Eliminating optional subgoals

To translate the mandatory decomposition, we first trans-

form the goal model in order to eliminate the optional

subgoals. As seen in frame (A) of Fig. 2, for each subgoal

go that is designated as optional in the goal model, we

introduce one new goal gp and one new task td. The goal gp

is then OR-decomposed into the original go and td and

takes the place of go in the original tree. Possible �!pre
and

�!npr
links stay connected with go. The newly introduced

task td is a ‘‘dummy’’ task that is removed from the plans

that the planner returns—in the rest of our presentation, we

will assume that this post-processing step has preceded

when presenting example plans. The mandatory decom-

position is now ready to be translated into an HTN

specification.

4.2.2 Translating the mandatory decomposition

To construct the HTN specification, we work as follows:

– For each leaf-level task t:

Substitution of optional
subgoals

1g
AND

AND

t 3
2g

t 1 t 2

OROR

g

AND
AND

t 1 t 2

AND

t 3

preg2
npr

g

go t

ANDAND

g

gp

t

AND

AND

pre npr

pre
npr

td

Operators for tasks:

pre

2g

g

OR
OR

1t
2t

OR t 3

nprg2
npr

pre

g 2

......

...

...

OR

go

pre
npr

pre
npr

......

...

...

OR

g1

g1

g1
AND

g2

OROR

g3 g4

g5

AND

++

--

1mg

2mg t 2

++

--

--++

++

--

g3
0.6
0.4

t2 before gm2

gm1 after t2

Preference Specification

gm1 after t2

Attainment Formulae for goals:

HTN tasks for goals:

(A)

(B)

(C)

(D)

(E)

Fig. 2 Translation rules by example

234 Requirements Eng (2011) 16:227–249

123

– Introduce an HTN domain predicate vt. Call this the

task performance predicate.

– Introduce an HTN operator ot.

– Set the effect of ot to be eff-ot = vt

– Set the operator precondition pre-ot ¼ upre
t ; where

upre
t is the precondition formula for task t, which

we will define below.

Intuitively the task performance predicate vt represents

the fact that the task t has been performed, hence its

position as an effect.

– For each hard goal g of the goal model:

– Introduce an HTN task ag.

– Introduce the attainment formula /g of g, grounded

on task performance predicates vt and reflecting the

structure of the subtree rooted on g. To construct /g

work as follows. Depending on whether g is OR- or

AND-decomposed into mandatory subgoals g1; g2;

. . . replace g with ðg1Þ _ ðg2Þ _ � � � or ðg1Þ ^ ðg2Þ ^
� � � ; respectively. Recursively repeat replacement

each gi with the conjunction or disjunction of gi’s

children, depending on decomposition type. At any

point in the recursion, if a child of the goal in

consideration is a task use the task performance

predicate vt in the replacement. Terminate the

recursion when all individuals in the formula are

task performance predicates—and no more replace-

ments are possible. The above steps for generating

operators, task performance predicates, HTN tasks

and attainment formulae can be seen in the example

of frame (B) of Fig. 2.

– Depending on g’s decomposition type, introduce one or

more HTN methods. More specifically:

• If g is AND-decomposed into goals g1; g2; . . . and

tasks t1; t2; . . .; introduce one method mg with:

� tsk-mg = ag,

� pre-mg ¼ upre
g ; and

� dec-mg ¼ fag1; ag2; . . .; ot1; ot2; . . .g;

where ag1; ag2; . . . and ot1; ot2; . . . are the HTN tasks

and operators that correspond to goals g1; g2; . . .

and tasks t1; t2; . . .; respectively. Formula upre
g is the

precondition formula for goal g which we introduce

below.

• If g is OR-decomposed into n goals or tasks

h1; h2; . . .; hi; . . .; hn introduce n methods mg
i , each

corresponding to each child hi and with:

� tsk-mg
i = ag,

� pre-mg
i = ug

pre, and

� dec-mg
i = ahi

, if hi is a goal or dec-mg
i =ohi

if hi

is a task. In the above, ug
pre is again the

precondition formula, which we introduce below.

Notice that, this time, each HTN task is decom-

posed into exactly one HTN task or operator.

In frames (C) and (D) of Fig. 2, the above

translation of decompositions into HTN methods

is exemplified.

– As we saw above, a precondition formula uh
pre is

defined and used as an operator precondition pre-oh if h

is a task or as method precondition(s) if h is a goal. For

every goal or task h, we construct this precondition

formula uh
pre as follows. Let N be the set of all goals

and tasks he for which he�!
npr

h;P the set of all goals and

tasks hp for which hp�!
pre

h: The precondition formula

uh
pre for goal or task h is then defined as:

upre
h ¼

^

hp2P

/hp
^

^

he2N

:/he

 !

where /hp
; /he

are attainment formulae or task perfor-

mance predicates associated with hp, he depending on

whether they are goals or leaf-level tasks, respectively.

4.2.3 Translating preferences and priorities

Let us now see how preferences and priorities thereof at the

goal level are translated into PDDL preferences and met-

rics. An example can be seen in frame (E) of Fig. 2. Recall

that a priority specification is a set of elements h1;

h2; . . .; hi; . . . each with an assigned weight wh1
;wh2

; . . .

(e.g., Table 2). Items hi can be either (a) simple preference

goals or (b) preferences expressed as temporal constraints

over goals or tasks of the mandatory decomposition. We

discuss how we translate each h into a PDDL preference /h

in each of these cases below:

– If h is a simple preference goal, then let /h = at-

end(Ph)—where the temporal operator at-endð�Þ is true if

the operant is true in the final state. Ph is calculated as

follows. Let P and N be the sets of all elements hp and he

of the mandatory decomposition such that hp�!
þþ

h and

he�!
��

h; respectively. Then, Ph is constructed as follows—

with Pch being explained below:

Ph ¼
_

hp2P

/hp
_ Pch

0
@

1
A ^

^

he2N

:/he

The term Pch is calculated recursively as follows. If h is

OR-decomposed into subgoals h1; h2; . . . then Pch ¼ Ph1
_

Ph2
_ � � � : Similarly, if h is AND-decomposed into sub-

goals h1; h2; . . . then Pch ¼ Ph1
^ Ph2

^ � � �—excluding

subgoals with the optional subgoal designation. The terms

Phi
are the corresponding preference subformulae for each

Requirements Eng (2011) 16:227–249 235

123

subgoal hi. If h is not decomposed, the term Pch is false.

Thus, recursive construction of Pch can be performed

starting from the leaf level and moving toward the root.

Note also that possible temporal constraints that could

appear at the leaf of these preference hierarchies are

excluded from this calculation and added manually as

separate prioritization elements—this to avoid nesting of

temporal operators.

– If h is a temporal constraint over elements h1; h2; . . . of

the mandatory decomposition then translation depends on

the template that is being used. The intuitive meaning of

the seven templates we introduced in Table 1 in terms of

PDDL preferences can be seen in Table 4.

On the table, /h1
and /h2

are, as above, HTN attainment

formulae for goals or HTN performance predicates for

tasks. In reading the above, one must keep in mind that

attainment formulae are satisfied one at a time and in a

monotonic way, i.e., once true they do not become false

within the context of a plan.

4.2.4 Constructing the metric

The PDDL metric is constructed by first reading the pri-

ority table (e.g., Tables 2, 3) and formulating it as a linear

combination, where each constituent preference goal is

translated into the appropriate PDDL 3.0 preference for-

mula as described above.

Recall that a PDDL metric is of the form: w1�
is-violatedðu1Þ þ w2 � is-violatedðu2Þ þ � � � þ wn � is-vio

latedðunÞ, where ui are PDDL preference formulae and wi

numerical weights. Note that the function is-violatedðuÞ
(which, again, equals to 0.0 if u is satisfied and 1.0

otherwise) must be used to comply with PDDL metric

formation rules. Thus, given the preference table contain-

ing preference elements h1; h2; . . .; hn; the corresponding

PDDL metric is:

f ¼ RiðwiÞ � Riðwi � is-violated ð/hi
ÞÞ

where each Phi
is the PDDL preference formula that cor-

responds to preference element hi.

To see the rationale behind the first term, notice that the

PDDL metric construction rule that all constituent terms

must be in the form is-violatedðuÞ implies that the metric

yields a penalty rather than a reward value. To reverse that,

in the above formula, we subtracted the linear combination

from the sum of all weights. This way, the more constituent

preferences are satisfied the higher the score.

4.2.5 The planning problem

The last step of the translation is the identification of the

planning problem. As we saw, the HTN planning problem

consists of a set I of domain predicates in V that are true in

the initial state, as well as a list G of high-level tasks that

need to be satisfied. In our case, we set empty initial

conditions I = { }, while the HTN goal is set to the root

goal of the mandatory decomposition, that is G ¼ agr

� �

where agr
is the HTN task representing the root goal gr.

5 Reasoning about preferences

5.1 Integrating the planner

By translating the goal formalisms to HTN and PDDL—

scripts have been developed and extensively used for the

purpose—it is possible to use an HTN preference-based

planner to identify plans that optimize for the priorities

among preference goals. To this end, we employ HTNPlan-

P [9], an extension of the popular SHOP2 HTN planner [11]

that supports the optimization of PDDL-based preferences.

The input to the planner is an HTN domain specification and

a set of PDDL preferences and metrics, as well as a problem

specification which, as we saw, includes the definition of

initial conditions for the domain predicates and the planning

goal, which is normally a top-level HTN task.

The HTNPlan-P planner searches through recursive

reductions of the top-level HTN task into subtasks or

operators, with the objective of finding a sequence of

ground operators (actions) that satisfies the various pre-

conditions and effect constraints while optimizing the

metric function that encodes the prioritized PDDL prefer-

ences. The search for a suitable plan can be understood as a

variant of a sequential plan optimization problem with the

task decomposition serving to constrain the legal action

sequences that the planner should consider. The optimiza-

tion of preferences is achieved by branch-and-bound heu-

ristic search through this induced search space. HTNPlan-P

employs several heuristics that have been tailored to this

task. In particular, in order to deal with temporally extended

preferences using heuristic search, preferences using LTL

temporal modalities are transformed into final-state

Table 4 Template Semantics

Template PDDL 3.0 preference

‘‘sometime h1’’ sometime (/h1
)

‘‘never h1’’ alwaysð:/h1
Þ

‘‘h1 precedes h2’’ sometime-beforeð/h1
^ /h2

;/h1
^ :/h2

Þ
‘‘require h1 before h2’’ sometime-before (/h2

, /h1
)

‘‘never h1 before h2’’ (cf. ‘‘h2 precedes h1’’)

‘‘require h1 after h2’’ sometime-after (/h2
, /h1

)

‘‘never h1 after h2’’ (cf. ‘‘h1 precedes h2’’)

236 Requirements Eng (2011) 16:227–249

123

preferences by exploiting a correspondence between LTL

and finite state automata. The planner performs an incre-

mental, best-first search guided by an inadmissible heuris-

tic. Partial plans that have no prospect of being better than

the current best plan are pruned. In this way, the search

space can be pruned and searched in its entirety, leading to a

proof of optimality of the result. The combination of the

expressiveness supported by HTNPlan-P and the effec-

tiveness and sophistication of the plan generation approach

make this tool very amenable to our purposes.

In our context, the planner is given as input the trans-

lated domain theory and priority specification in HTN and

PDDL, respectively. The planner returns a sequence of

operators that suffice for the performance of the top-level

HTN task that corresponds to the root goal, as described

above. Each operator can be directly mapped to a task of

the goal model, meaning that the plan that the planner

returns directly corresponds to a plan of the goal model.

It is interesting to understand why we use a planner and

when it may be necessary in rendering solutions to goal

requirements problems. Solutions in goal models are typ-

ically specified as configurations of tasks with no explicit

temporal dependencies. In such systems, stakeholder

requirements can be modeled without specification of

system dynamics, and solutions to requirements can be

determined using automated constraint solvers. Giorgini

et al., for example, employ such a system for statically

reasoning about partial goal satisfaction [3]. Here, we

argue that some requirements are inherently temporal and

require specification of certain aspects of system dynamics.

Indeed, several efforts for modeling such temporal rela-

tions in goal models can be found in the literature [2, 16,

17]. In simple cases where goal or task orderings do not

rely on any notion of state or can be modeled without

explicit pre- and post-conditions, a constraint solver can be

argued to be adequate to efficiently compute a solution.

However, in our case, both the expressiveness needs and

the requirement for satisfaction or optimization of temporal

constraints over goals and tasks necessitate the use of a

planner. By having defined the semantics of our preference

language in PDDL, we are able to use HTNPlan-P as

described above, as well as any efficient PDDL-compliant

HTN planners that will emerge in the future.

5.2 Finding preferred plans

Returning to our bookseller example, given the preference

specification of Table 2, the planner returns the plan:

½t1; t2; t3; t14; t15; t16; t23; t20; t21; t22; t9; t11; t10; t13�

as optimal, with score 0.9. The above satisfies the goal to

have Happy Customer, which is achieved through the

convenience of using credit cards. Transaction reliability is

also met by submitting printed receipt. The latter, though,

causes the preference Enhance Company’s Green Profile to

be compromised. If we reverse the weights of that last goal

with the goal Transaction Reliability, the result does not

contain a printed receipt:

½t1; t2; t3; t14; t15; t16; t23; t9; t11; t10; t13�

Similarly, the priority specification over temporal

preferences of Table 3 gives the following plan with

maximum score 1.0:

½t1; t4; t5; t2; t6; t7; t8; t3; t14; t15; t16; t23; t20; t21; t22; t11; t10; t13�

Observe how the payment is received (at t16) before the

books are delivered (at t13), the price is provided by the

supplier (t5) before a quote is given to the customer (t2),

stock is not used (t9), and eventually a receipt is printed

(t20).

But what if would like to combine quality and temporal

preferences in one unique priority specification? The

example of the next section shows how this can be done

through a process of gradual refinement and trial using the

tool.

5.3 Gradual specification and refinement

The visualization that the planner gives us of how prefer-

ence specifications are interpreted into operational designs

can be used for iterative refinement and validation of both

the preferences and the goal model. Thus, after looking at

an initial result, the stakeholders may wish to revise their

specification by adding new constraints or relaxing the

existing ones. This may lead to a new preference specifi-

cation, which will, in turn, yield more plans for further

investigation and revision of the preferences or even the

goal model. Such an exercise can be useful in the early

requirements stage, when stakeholders need to explore and

understand different solutions for their goals under differ-

ent envisioned circumstances which, in turn, affect their

priorities in different ways.

To see an example of this process, assume that the

bookseller wants to find a good plan for serving a local

customer. At first, they do not specify any preferences

other than that they would like to increase Customer

Convenience and that they do not want to use any stock as

they do not have infrastructure for that. This results in a

preference with two components. The planner returns the

following plan for this preference:

½t1; t2; t3; t14; t15; t16; t23; t4; t5; t6; t7; t8; t11; t10; t13�

After looking at the output, the bookseller asks whether

it is necessary that shipment (t10) must happen after

charging the credit card (t16). For the particular kind of

customer, she is ready to ship the product once the credit

Requirements Eng (2011) 16:227–249 237

123

card authorization has been performed. So she asks

whether a scenario where the product is shipped before

charging the credit card and after acquiring credit card

authorization is possible and at what utility cost. In that

case, to the original components of the preference

specification, we add two more components that require

delivery to courier to be performed before charging the

credit card (t10 precedes t16) but after acquiring an

authorization (t15 precedes t10). We distribute weights

equally among the four preference components. The

planner is indeed able to find a plan that satisfies all

components:

½t1; t2; t3; t14; t15; t4; t5; t6; t7; t8; t11; t10; t16; t13; t23�

The bookseller is now asking whether, in addition, a

printed receipt can be inserted in the shipment. To see what

this would entail, we add one more component to the

preference specification, namely an existential property on

task Place Receipt in Shipment (sometime t12). This time,

the planner cannot satisfy all components and returns this

plan:

½t1; t2; t3; t14; t15; t4; t5; t6; t7; t8; t16; t23; t20; t12; t10; t13�

The plan does involve placing a receipt inside the

shipment (t12) but it does not allow delivery to courier (t10)

before the credit card is charged (t16). Clearly, by looking

at the model, the business rule that no receipt can be

considered unless full receipt of payment is performed

(expressed as a precedence link between the corresponding

high-level goals) makes the desire to ship before charging

the credit card and the desire to place a receipt inside the

shipment to conflict. ‘‘So how can I avail a printed receipt

to my customer without violating our previous temporal

desires?’’ the bookseller may ask. We can express this

query by replacing the lastly added existential preference

for t12 with one that requires that just a receipt is printed

(sometime t20). The planner returns the following plan

with maximum score (i.e., all components are satisfied):

½t1; t2; t3; t14; t15; t4; t5; t6; t7; t8; t11; t10; t16; t13; t23; t20; t21; t22�

Thus, the printed receipt can be sent separately if the

precedences are to be satisfied. From here, the bookseller

may reject this solution as expensive by adding an absence

component to the tasks that refer to submission of separate

receipt (t21, t22) and observing what the planner returns

then. If she did that however, she would realize that the

planner would not find an optimal solution, meaning that

she will need to weight the importance of shipping before

fully charging the credit card, sending an included receipt

and not sending a separate receipt. Or she would need to

reconsider the rule that no receipt is provided before the

customer is charged, which, as we saw, is expressed as a

precedence in the mandatory decomposition.

Thus, by following this progressive refinement of the

preference specification, we can support an iterative pro-

cess for preference acquisition, whereby the result of an

initial preference specification is used to trigger introduc-

tion of additional or removal of existing constraints. As we

discuss later, this practice of iteratively specifying prefer-

ences led to (a) improvement in the representation and

correction of modeling errors and (b) acquisition of a better

understanding of the domain we were investigating. Model

improvement came in the form of, for example, correcting

invalid precedences or adjusting preference versus man-

datory characterizations. In terms of domain understand-

ing, we felt that this gradual refinement and reasoning

exercise triggered deeper and more detailed thinking about

the domain. We return to these experiences later in the

paper.

6 Adding expressiveness

To this point, we have presented an approach to specifying

goal models and preferences in a high-level graphical way,

usable by requirements analysts who have no knowledge of

the underlying HTN- and PDDL-based representation and

reasoning mechanism. However, in doing so, we are not

availing ourselves of the full modeling and reasoning

capabilities afforded by HTN, PDDL3.0, and HTNPlan-P.

Some of these further capabilities can be exploited by

appropriately extending the result of the automated trans-

lation of the goal models into the HTN and PDDL speci-

fications. In this section, we describe how a basic object

model can be created within HTN/PDDL, how action

parameters and domain predicates can be used to allow for

richer representation of the domain and its states, and how

preferences can be consequently enriched to support more

expressive reasoning at an instance level.

6.1 Representing types

In many requirements engineering applications, it is useful

to distinguish types of objects and to specify goals and

preferences over individuals within these types. Returning

to our bookseller example, we may, for instance define

Customers, Orders, Employees or Delivery Companies as

distinct types, different instances of which can then be

declared in HTN problem definitions.

In particular, we use domain predicates such as isCus-

tomer(o) or isEmployee(o) in order to represent that o is an

object of the corresponding type. Hierarchies of such

types can be constructed using HTN axioms. In the simplest

case, axioms come in the form a(u where a is an n-ary

domain predicate and u a logical expression of such

predicates. In the frame (A) of Fig. 3, such axioms are

238 Requirements Eng (2011) 16:227–249

123

shown. Thus, axioms such as isCompanyðXÞ (
isSupplierðXÞ introduce a specialization relationship, while

the use of more complex logical formulae on the right-hand

side allows for more elaborate type definitions. Note that

the type and object structures we define in HTN must also

be defined in PDDL, which actually happens in a very

similar way.

6.2 Adding operator and method parameters

At a second stage, HTN/PDDL operators and HTN meth-

ods can be redefined to include parameters of the specified

types. Thus, the action deliverToCourier, derived from task

t10 of the goal model can be extended to specify whose

company’s order it is, which courier company should be

used and what the quantity is, resulting in an operator of

the form deliverToCourier(Company, Courier, Quantity).

In frame (B) of Fig. 3, the operator with its pre- and post-

conditions (effects) can be seen. Obviously, the parameters

of the operator are bound to the parameters of the pre- and

post-conditions. Thus, the operator deliverToCourier(the-

Cube, hDL, large) will require that reserved(theCube,

large) is already true and that the 3-ary domain predicate

deliveredToCourier(theCube, hDL, large) will become true

right afterward, where theCube, hDl and large are concrete

objects whose definition we describe below.

Higher-level methods can also contain parameters and

can, moreover, serve as ways by which parameters of

operators or other methods can be synchronized (i.e.,

bound to the same objects). For instance, the HTN task

quoteGiven, derived from the corresponding goal in the

goal model, can be parameterized to also specify the cus-

tomer to which this is done by writing quoteGiven(Cus-

tomer). Through defining the appropriate method, as seen

in frame (B) of Fig. 3, this HTN task is further decomposed

into customerRequestsQuote(Customer) and provide-

Quote(Customer) which are HTN operators. Use of the

method implies that the task and the operators are bound to

the same Customer object. Methods also have parameter-

specific preconditions—in the previous example, the

method is considered only if goodCustomer(Customer) is

satisfied.

Alternatively, the planner itself may search for bindings

that satisfy given conditions. Consider the method that

decomposes the task booksDelivered (Customer, Quantity)

into the operators/tasks deliverToCourier(Customer, Cou-

rier, Quantity), courierDeliversToCustomer(Customer,

Courier, Quantity), and handleReceipt (Customer) as seen

in Fig. 3. While HTN will assume that the parameters

Customer and Quantity of the parent task and each of the

subtasks will be bound to the same objects, the parameter

Courier does not match with any of the parameters of the

parent task. However, the precondition defines that

safeCourier(Courier) must be satisfied. Thus, the planner,

when substituting the task with the subtasks/operators, will

try different parameter instances of Courier that satisfy the

precondition based on what instances have been defined in

the initial conditions.

6.3 Instance-level preference analysis

Typing and parameterization in the construction of the

domain theory allows us to perform instance-level rea-

soning about goal and preference satisfaction for a par-

ticular domain. In our bookseller example, we can specify

a scenario in which the bookseller co-operates with

two different bookstores, called, say, ‘‘The Cube’’ and

‘‘Orange Books’’. We can also assume that there might be

a selection of suppliers, say, ‘‘Johnson’’ and ‘‘Laurier’’ or

courier companies such as ‘‘DLH’’ and ‘‘USP’’ and that

the warehouse stock for a particular book is low. These

type instances and problem parameters are defined as

initial conditions of the planning problem as seen in frame

(C) of Fig. 3. The bookstores ‘‘The Cube’’ and ‘‘Orange

...

...

Domain Axioms

Methods & Operators

Planning Problem

(A)

(B)

(C)

Fig. 3 Adding expressiveness to the HTN output

Requirements Eng (2011) 16:227–249 239

123

Books’’ may both need to have an order fulfilled for a

specific book and of a specific quantity. This implies

that the goal specification is now a list of two high-level

HTN tasks to be resolved as seen again in frame (C) of

Fig. 3.

When the planning domain and problem have been

constructed this way, different assumptions about qualities

of each of the involved domain objects (customers, couriers

etc.) may force us to consider different ways for achieving

the root goals. PDDL preferences can be formulated in a

way that they are sensitive to these qualities. In our

bookseller example, we may want to say that ‘‘Orange

Books’’ should never be served by ‘‘DLH’’—because they

have requested so for some reason. The PDDL preference

to express this would be:

always ð:courierDeliveredToCustomer

ðorangeBooks; dLHÞÞ ð1Þ

At the same time, it might be the bookseller’s preference

that ‘‘large orders are not to be handled by ‘‘USP’’, due to

e.g., cost considerations. This would in turn be expressed

as follows:

always ð8X:isCustomerðXÞ
ð:deliveredToCourierðX; uSP; largeÞÞÞ ð2Þ

In the above example, we are making use of universal

quantification to generalize for all instances of a type. In a

similar manner, we may want to pose that if there is an

order from The Cube, then Johnson Inc (a supplier) must

supply and, moreover, no quote must be given to The Cube

unless Johnson has provided their price.

sometime-beforeðquoteProvidedðtheCubeÞ;
supplierProvidesPriceðjohnsonIncÞÞ

ð3Þ

The presence of multiple instances of the root level goal

with different parameters brings up an issue of priority and

synchronization, potentially in the presence of commonly

accessed resources. In the bookseller example, we may

wish that ‘‘if the stock is low do not ship for Orange Books

unless you have shipped for The Cube’’ which is

represented using the following formula:

alwaysð8S:isCourierCompanyðSÞ;8Q:isQuantityðQÞ
ðstockðlowÞ)
ðdeliveredToCourierðorangeBooks;S;QÞ)

deliveredToCourierðtheCube;S;QÞÞÞÞ ð4Þ

At the same time, different general policies regarding

use of stock can be expressed, depending again on its level.

Thus, to prevent use of the stock when the levels are low,

we can construct the following:

always ð8X:isCustomerðXÞ; 8Q:isQuantityðQÞ
ðstockðlowÞ) :useStockðX;QÞÞ

To the above, though, we may want to add an exception

for Orange Books and ship to them before contacting any

supplier:

sometime-before ð8S:isSupplierðSÞ
supplierContactedðSÞ^

customerPlacedOrderðorangeBooksÞ;
8C:isCourierCompanyðCÞ;8Q:isQuantityðQÞ
deliveredToCourierðorangeBooks;C;QÞÞ

When aggregated, offering more weight to the latter

preference will effectively allow the planner to override the

previous rule in favor of the more specific one. If the size

of the order, however, cannot be afforded due to very low

stock, then the planner, having failed to satisfy the

exception, will opt for satisfying the general rule.

Note that the rationale behind the above preferences can

be traced back to the goal model, by looking at the con-

tributions among hard elements and/or quality preferences,

which have both been refined here into more expressive

formulae. For example, the fact that use of stock allows for

quicker turnaround or that preventing use of stock alto-

gether allows for zero storage costs is already presented in

Fig. 1 through contribution links from the hard goal to the

corresponding preference soft goals. Here, more detail is

given regarding preferred use of stock, possibly referring to

particular instances. While precise optimization of stock

management falls in the scope of specialized quantitative

methods (which our framework does not intend to replace),

through preference analysis, we are able to understand

early in the requirements phase how preferred strategies

and tactical rules affect the resulting process.

To perform analysis in the expressive case, we also need

to customize both the initial conditions and the planning

goal. Thus, let us assume a scenario where both The Cube

and Orange Books have placed a small and a large order,

respectively, for a book whose stock is low (cf. frame (C)

of Fig. 3). Also, let us combine the first four among these

preferences (1)–(4) into a preference specification with

weights 0.2, 0.1, 0.4, and 0.3, respectively. Given these

inputs, we get the result of Table 5—most of the tasks have

been pruned for simplicity. The plan has a score 0.9,

meaning that preference (2) has not been satisfied. Indeed,

a closer look at preferences (1) and (2) reveals that they are

conflicting for large orders placed by The Cube, given that

there are only two courier companies.

Through the above expressive modeling and reasoning

exercise, stakeholders are able to envision concrete

240 Requirements Eng (2011) 16:227–249

123

scenarios and explore preferred ways to go about fulfilling

their goals. This level of formalization approaches the one

that frameworks such as KAOS [2] or Formal Tropos [16]

employ. Our exploration of HTN at this level of expres-

siveness showed its appropriateness for formalizing and

reasoning about requirements, both because it readily

allows combined representation of important requirement

views such as goal and type hierarchies and because it is

backed by powerful reasoners that allow for meaningful

interaction with the constructed model. We intent to

explore more uses of HTNs and preferences to address

requirement analysis problems.

7 In practice

In addition to the bookseller example which we have been

discussing so far, we have also experimented with our

framework in three other domains: the health care domain,

involving nursing processes, the ATM domain, exploring

different behavioral designs for an automated teller machine,

and the classic meeting scheduler domain, investigating

different ways to schedule meetings. The models for these

domains were built only for the purpose of this exploration,

and the analysis process did not involve external participants.

However, all applications, particularly the first and the third,

were partially supported by real-world data.

We present here some experiences from those applica-

tions, focusing on examples that show how the need to

express preferences and priorities emerged and how our

specification and reasoning process supported understand-

ing of those priorities and improvement in the models

themselves.

7.1 On the presence of goal-level priorities

Our first concern is whether preferences and priorities

thereof are concepts relevant to goal analysis and worth

being modeled and analyzed. In our applications, interest-

ing design dilemmas emerged which indeed necessitated

preference and priority specification. In the meeting

scheduler case, for example, we modeled different ways by

which a meeting can be organized—assuming an academic

context of which we are more familiar. In this case, one of

the examples of dilemmas of temporal nature was the

question of when to announce a meeting with respect to

when the meeting room has been confirmed: should the

meeting initiator wait for room availability confirmation,

risking a late meeting announcement? Or should she

announce a meeting before room availability has been

confirmed, risking retracting the original announcement

should the room turn out to be unavailable? Our under-

standing based on our experience in our workplaces is that

different kinds of meetings (e.g., formal thesis defense vs.

informal reading group), number and kind of participants

as well as general perception of the meeting room demand

(of which no real data are normally available) influence the

decision and thus the preference. The value of reasoning

about this at requirements level is that it exactly triggers

this discussion and necessitates further elaboration of

influencing factors and design measures. Thus, in an

automated meeting scheduler, for example, modules that

measure room demand or meeting formality classifications

and subsequent announcing types and constraints might

need to be introduced to enforce one or the other priority.

In the ATM case, where different behavioral designs for

performing transactions on an automated teller machine

were explored, the influence of priorities over temporal

preferences to design was more direct. When in the process

should the user give their password? When should they get

their card back (e.g., before or after receiving their

receipt?). What if the ATM is adjusted not to provide

printed receipt—should a warning be displayed and when?

Here, the priority specification was used to specify differ-

ent scenarios of ATMs based on e.g., their maintainability

and traffic. Thus, for an ATM in a busy mall, efficiency is

the prime preference implying disabling of most ATM

functions other than withdrawal and balance viewing—

withdrawal options are also restricted to small predefined

amounts. If the ATM is inside the owning bank, such

restrictions have less priority. In general, in the ATM

example, preferences did not compete within one priority

specification. Rather, different ATM scenarios yielded

different selections from the space of preferences, which

were then combined in the priority specification, in a

manner similar to the one presented in Sect. 5.

More trade-offs appeared in the nursing example, where

alternatives for supporting nursing activities were investi-

gated, partially based on real-world data collected from a

geriatric assessment unit. One question for example was

whether a wearable device for establishing a voice link

between nurses and patients was useful. On the one hand,

this would occasionally save the nurses from walking to a

patient’s room when the patient does not need his help but

Table 5 Example of plan in instance-level analysis

contactSupplier(johnSonBooks),
supplierProvidesPrice(johnSonBooks),. . .

placeOrderToSupplier(johnSonBooks) . . .

provideQuote(orangeBooks),
…, receiveMoneyOrder(orangeBooks), …,

provideQuote(theCube), customerPlacesOrder(theCube),
. . .;

deliverToCourier(theCube,dLH,small),
deliverToCourier(orangeBooks,uSP,large), . . .;

. . .

Requirements Eng (2011) 16:227–249 241

123

just has a question. On the other hand, nurses may reject

the idea of carrying wearable devices or see them as

encouraging unnecessary nurse calls. At a higher level, the

trade-off appears as one between nurse comfort and patient

experience. Subsequent analysis, i.e., exploring different

plans for the nurse to attend to patient calls based on the

particular prioritization, again offers a good illustration of

the implications of the conflict and prompts for design

considerations—e.g., alternative ways to establish voice

connection.

Our understanding from all applications is that prioriti-

zation of preferences of the types we have been discussing

is more likely if a context is given. Thus, in the Meeting

Scheduling example, eliciting the relative importance

between Quick Scheduling and Formality is not possible

unless one is also told what kind of a meeting it is, who

participates or how urgent and important it is. Or, in the

nursing example, the priority of quality preference Increase

Nurse’s Productivity versus preference Nurse Comfort

depends on several factors including the type of institution

and management or the status of employment relations—

the priority cannot be given without explicating these

contextual aspects.

7.2 On iterative refinement and the use of numbers

While the need to specify preferences and priorities thereof

was established in our applications, did the numerical

prioritization approach turn out useful and how? How

burdensome is the iterative process—does it converge?

Also is exhaustive identification of situations where dif-

ferent preferences may be relevant possible?

Let us first observe that the use of numerical weights for

expressing priorities is not uncommon in requirements

engineering. In the Analytic Hierarchy Process (AHP), for

example, pairwise comparisons of high-level expressions

of requirements are performed [8]. In the result, numbers

constitute a measure of relevant benefit associated with the

satisfaction of each requirement. The general AHP litera-

ture shows that priorities over large varieties of concepts

and of various levels of abstraction can effectively be

elicited through pairwise comparisons [19, 20]. Elsewhere,

it is suggested that stakeholders can even assess absolute

importance of features in e.g., a 1–10 scale [21, 22].

Similar quantifications of benefit are widely used in deci-

sion theory through utility measures represented in e.g.,

utility matrices (cf. [23]).

Nevertheless, such quantifications have a specific pur-

pose and use in requirements prioritization, which does not

necessarily assume accuracy of the numeric result. For

example, in Karlsson and Ryan’s application of AHP [8], a

descriptive approach (a plot) allows stakeholders to visu-

ally reason about the costs versus the relative benefits of

individual requirements rather than attempting an exact

interpretation of the numbers. Similarly, in our work, we

use the numbers in order to explore the operational result

(the plans) that preferences might imply, without having to

reason about the actual values. The result is to be used in an

exploratory manner to trigger revisions of both the pref-

erence values and the underlying models (cf. Sect. 5),

achieving thereby a better understanding of the require-

ments problem and the nature of the conflicts among

stakeholders and their preferences.

In our applications, evidence of such improvement

emerged in several forms. In the nursing example, the

conflict between the preferences of the patients and man-

agement and the preferences of the nurses became clear

early. Assigning different priorities to the two, we could

observe different ways by which nurses could go about

their work—some ways more preferred and some ways less

preferred by them. The result triggered thinking about

solutions that might satisfy all parties. Even if a third

solution is absent, we at least become aware of the pre-

ferred solution given the dominance of a certain group of

stakeholders and of the impact of that choice to the less

dominant group. In the ATM example, larger numbers of

desired constraints and qualities were brought together

with various weights in one priority specification with the

expectation that it is maximized. Should it not be maxi-

mized, e.g., due to conflicting precedence preferences, the

loss in score value offered an indication as to which

component was failing. Changing (e.g., swapping) impor-

tance weights and observing the resulting plan offered an

indication of what conflict caused the failure. In all cases,

the absolute value of the weights was not as important as

which was greater than the other. Thus, the incorporation

of numerical weights in our framework did not seem to

obstruct our application in any way, given the particular

way we used and interpreted them.

The answer to the question of burden and convergence,

i.e., whether the iterative process—when chosen and

applied—is costly and whether it leads to a stable con-

clusion seems to strongly depend on the needs of the

application at hand. As we saw, our representation and

reasoning framework can be used in different ways. One

way is to decide that one cycle (possibly followed by a

corrective follow-up one) suffices for concluding to a pri-

oritization profile and the tool is used to calculate the

corresponding preferred plan. To ensure greater accuracy

of the numeric prioritization result, this option may suggest

pairwise comparisons and subsequent approximation of the

eigenvector of the resulting comparison matrix, as pro-

posed in AHP. It also implies confidence that the model has

been correctly elicited and constructed, the domain is well

understood, and AHP yields an accurate prioritization

profile (e.g., with a good consistency ratio). Following this

242 Requirements Eng (2011) 16:227–249

123

approach, our representation and reasoning framework is

used to demonstrate how an established prioritization result

translates into a solution to the requirements problem.

On the other hand, if users of the framework are looking

to improve/enrich their model and better understand an

otherwise unfamiliar domain, they can resort to the itera-

tions we described in Sect. 5.3. In that approach, numbers

may be assessed through straight ad hoc assessment of

priority values (i.e., not pairwise but as in [21]) as accuracy

is expected to emerge though iterations—if such accuracy

is required at all. Yet, for small numbers of involved

preferences, pairwise comparisons are few enough to allow

AHP-style assessment without adding too much burden

(e.g., prioritizing n = 4 preferences requires n(n - 1)/

2 = 6 pairwise comparisons per cycle). It is up to the users,

based on their application circumstances, to decide when

improvement in domain knowledge and representation has

reached a satisfactory level through this process—in our

case, we ended the iterations when the result did not sug-

gest any new updates. The associated burden directly

translates into gain in understanding and representation

accuracy. We feel that avoiding a strongly iterative

approach and using our framework solely as a explanatory

companion to AHP or other prioritization technique misses

many opportunities that our toolset offers (e.g., thanks to its

computational efficiency) and this is why we emphasize

iterations in this paper.

Finally, a similar comment applies to the number of

different situations/scenarios that need to be analyzed—

e.g., in our bookseller example different customers and

orders. Our framework neither depends on nor requires

exhaustive identification of scenarios in which priorities

might be different. Thus, analysis can be detached from

any scenarios as the user may wish to not distinguish

between cases, e.g., a bookseller that wants to treat all

customers the same way. We however feel that relativising

priority and preference to situations and contexts is a very

useful concept. In that case, we expect that the analysts will

use their intuition in order to focus on the most likely,

interesting, or otherwise relevant situations.

7.3 Model quality and improvement

Another question to consider is the correctness of the

preference specification itself as well as of the goal model

and how this is facilitated in our framework. For example

how possible is for the analyst to specify an internally

conflicting preference or establish e.g., cycles of prece-

dence links in the goal model?

As far as temporal preferences are concerned, we did not

have examples of inconsistent temporal preferences in our

applications. We believe this is due to the fact that the

framework encourages the use of either higher-level goals

or tasks within the templates, preventing users from con-

structing arbitrary formulae grounded on tasks. This limits

the inconsistency possibilities to cases such as precedences

between parent goals and their subgoals or between copies

of the same goal, which can generally be detected and

avoided easily. On the other hand, the types of temporal

constraints that were constructed never deviated from the

ones displayed on Table 1, which is actually why we were

later motivated to construct those templates. While, other

than our own experience, we do not have empirical evi-

dence on the comprehensibility of the particular templates,

we are convinced that it is a generally sound approach

considering that the idea of using LTL patterns has been

very influential in the literature (see [24]).

More likely reasons for corrections were cases of

problematic arrangement of makes, breaks, and precedence

links in the goal model, leading e.g., to unsatisfiable quality

preferences or, less often, to goal models with no solution

due to cyclic precedence dependencies. Most of the effort

was actually dedicated to the fine tuning of the makes and

breaks links into meaningful configurations. This process is

an important part of any i* type of modeling. In our work it

is exactly the reasoning exercise that helped us to identify

and address unintuitive modeling decisions—which we

think would otherwise remain undetected. The model of

Fig. 1 is an example of a model that has improved several

times thanks to automated analysis both in terms of makes

and breaks links and (mostly in this model) in terms of

precedences. In the nursing domain, the first reaction after

the identification of a conflict was questioning the contri-

bution links that caused the conflict in terms of their

accuracy and proper justification, before assuming that

such a conflict might indeed exist.

Moreover, in connecting the mandatory decomposition

with the preferences, we often found ourselves tempted to

include both partial contributions (help and hurt in i*) and a

less crisp interpretation of the AND-decompositions of

quality preferences. Both these options can be pursued by

requiring that quality goals yield weighted combinations

rather than crisp formulae over lower-level items (cf.

Frame E of Fig. 2). Thus, back in Fig. 1, instead of

including Happy Customer in the priority specification, we

can include each of its subgoals with a different weight.

Nevertheless, while this is a sound technique, we found

that it may result in longer priority specifications, without

being rewarding it terms of intuitiveness.

A final comment concerns the size and complexity of

the model. Arguably, the more these aspects grow the less

comprehensible the goal model tends to be. Our experience

however did not indicate that this can become an issue for

the models of up to about 50 elements that we tried—larger

models that we tried for measuring performance were

artificial. In the ATM example (28 elements), a developer

Requirements Eng (2011) 16:227–249 243

123

made successful use of a relatively complex precedence

structure of the goal model in order to build a high-vari-

ability ATM prototype that satisfies the behavioral vari-

ability in the goal model—we report on this work

elsewhere [25, 26]. We believe that comprehension of

larger models can be facilitated either through exploration

through the tool or through fragmenting the goal model

into submodels that depict different subtrees. The prece-

dence structure can also be separated from the decompo-

sition structure in a separate view. We found however that

this may obstruct comprehensibility instead of supporting

it, especially if precedence links connect goal elements of

different levels.

8 Performance evaluation

While HTNPlan-P is known to perform remarkably well

for fairly large and complex hierarchical task networks [9],

we performed additional performance evaluation steps in

order to understand the planner’s usability on practical goal

and preference modeling tasks.

Firstly, we performed measurements of the reasoning

times of the four domains we discussed above: the book-

seller (34 mandatory elements in total including 21 tasks

plus 13 quality preferences), the nursing domain (24

mandatory elements 11 of which tasks plus 7 quality

preferences), an extended meeting scheduling example (53

mandatory elements, 32 tasks, 13 quality preferences) as

well as the ATM example (28 mandatory elements, 21

tasks, 4 quality preferences). The results can be seen in

Table 6. The first column (‘‘First Result’’) shows the time it

takes for the planner to return the first plan (which may be

suboptimal) and the second column (‘‘Best Result’’) it

shows the time until the optimal plan is found. Times are in

seconds. From the preferences that we tried for each

domain, the worst cases are reported.

Observe that the running time rarely exceeds one sec-

ond. To further explore up to what size of models can allow

for such performance, we experimented on artificial models

of various sizes. Such models were constructed by ran-

domly combining the models from the four domains we

developed above—i.e., placing one (or parts thereof) as a

subtree of another in different combinations. In this way,

the artificial models retain some structural similarities with

the real ones (e.g., branching factors, precedence concen-

tration and structure, distribution of ANDs and ORs, etc.).

We constructed sets of such models based on their

number of leaf-level tasks. In particular, we created 7 sets,

each containing 8 models with 50, 60, 70, 80, 90, 110, and

130 tasks. For each set, 4 of the models were tested with

priority specifications containing existential and absence

preferences and the remaining 4 were tested with ones

featuring precedence and response preferences. We delib-

erately crafted the priority specifications for each goal

model so that there exists a plan in the model that satisfies

all the preferences mentioned in each priority. In each test,

the planner continues to search and once a plan that better

satisfies the priority is found it is given as output. The

planner terminates if it finds that there is no plan with

better score than the one that was last found—if any.

For each of the 7 sets of models, we measured the

average percentage of preferences of the priorities that the

planner would satisfy within 10 s, 1, 1.5, 5, 15 min, and 1

h. The result can be seen in Table 7. The first column is the

number of leaf-level tasks, the second column is the overall

size of the mandatory decompositions, and the rest of the

columns are the percentages of preferences satisfied. Thus,

for models of 50 tasks, the planner was able to find plans

that satisfy, on average, 97.5% of the preferences of the

given priority specification within 10 seconds. Within 1.5

min, it found the optimal plan in all cases of this set. As the

number of tasks increases, the planner needs more time to

Table 6 Performance results for practical goal models

Model Size First Result (s) Best Result (s)

Nursing 24 0.04 0.1

ATM 28 0.06 0.13

Bookseller 34 0.09 0.14

Mtg. Sched. 53 0.04 2.0

Table 7 Percentage of constraints satisfied over time

Tasks # Elements B10 s (%) B1 min (%) B1.5 min (%) B5 min (%) B15 min (%) B1 h (%)

50 81–89 97.50 98.75 100.0 100.0 100.0 100.0

60 98–106 91.25 96.25 96.25 97.5 98.75 98.75

70 112–119 85.00 93.75 93.75 96.25 96.25 96.25

80 127–134 87.50 91.25 91.25 93.75 96.25 96.25

90 144–146 81.25 87.50 90.00 90.00 91.25 91.25

110 180–182 81.25 86.25 86.25 87.50 87.50 87.50

130 216–218 78.75 80.00 81.25 82.50 83.75 83.75

244 Requirements Eng (2011) 16:227–249

123

find plans that satisfy more preferences. All cases in which

the planner was not able to find the optimal plan within 1 h

were because the planner run out of memory. Note also that

there was no significant difference between existential and

absence versus precedence and response preferences.

The results suggest that the possibility of online analysis

of preferences (e.g., in an interactive tool) is open even for

models with several tens of leaf-level tasks. The results

further constitute dramatic improvement from our earlier

experimentation with non-hierarchical preference-based

planners [27]. It must be stressed, however, that classical

planning remains a hard problem [28] and, as such, the risk

of exponential blow-up is present, particularly when the

modeler attempts the addition of constraints that connect

e.g., low-level nodes across distant sides of the goal tree,

effectively creating interactions between subgoals, which

are known to worsen the performance of planners. A

similar effect may appear when the modeler drastically

reduces the number of constraints, which results to a very

large search space. Clearly, the sizes and structures of

models that are meaningful for preference analysis need to

be identified through developing and working with more

and realistically large real-world examples. Such empirical

evaluation is a priority in our future research agenda.

9 Related work

The need to include stakeholder attitudes and preferences

as well as optionality in requirements modeling has been

demonstrated by Jureta et al. [29] through reference to the

nature of the linguistic matter that serves the communica-

tion between stakeholders and analysts. Requirements have

indeed been traditionally understood as having varying

degrees of importance among stakeholders. Approaches for

eliciting these degrees of importance range from simple

empirical division of requirements into ‘‘must-have’’ and

‘‘nice-to-have’’ [30, 31] to more elaborate quantitative

prioritization techniques, such as the Analytic Hierarchy

Process (AHP) we discussed earlier [8], multi-criteria

analysis methods [32], or more advanced techniques based

on machine learning [33].

However, while those approaches address priority elic-

itation, the problem of modeling and reasoning about pri-

orities and alternative solutions has not received as much

attention. Some efforts that attempt to reason about dif-

ferent requirements priorities (e.g., [34]) focus mostly on

identifying combinations of coarse-grained features of the

end system rather than high-level stakeholder goals or

behavioral characteristics of possible solutions.

Researchers have also proposed different ways to model

and bind variability in business processes. Lapouchnian

et al. use goal models for analyzing alternative business

process configurations [36]. Lu et al. propose the con-

struction of flexible business process templates that lay the

basic constraints that must be met [37]. Elsewhere [38, 39]

variability constructs are added to existing business process

notations. The role of goals in business process design and

analysis has also been investigated. Soffer and Wand, for

example, offer a treatment of soft goals in business pro-

cesses [40]. In particular, the state of the domain is

explicitly modeled, and soft goals are then defined as

preference rankings over such states. The work has been

extended to allow validation of multi-process settings [41].

Our work differs in a number of ways including the fact

that our primary reasoning proposal does not rely on

explicitly modeling state (though this is certainly possible

as well as we saw) and that our framework is strongly

focussed toward efficient automated reasoning (with or

without state modeling) about behavioral designs that

support a given preference specification. Furthermore, Yi

and Johannesson suggest analyzing high-level soft goals

into concrete and verifiable business rules [42]. Very

similarly in [43] patterns are introduced to ensure that the

results of soft-goal analysis are reduced into means and

criteria that are sensible from a business process point of

view. Techne [18], which we discuss below, makes a

similar case for coming up with (potentially ranked)

approximations of soft goals. Although our approach for

specifying priorities does not preclude deeper analysis of

soft goals at the level of concrete criteria and business

rules, it is also suitable for preference specification when

goals are not yet analyzed to testable criteria. This allows

for useful analysis to take place earlier in the requirements

process.

Elsewhere, deontic logic has been proposed for char-

acterizing actions in terms of their performance necessity

under given conditions [44]. The idea has been applied to

also analyze strategic dependency structures [45]. The

use of deontic logic to cope with behavioral variability

for software product lines is also being explored [46].

While deontic logic offers a semantically rich way to

stratify actions into obligatory, recommended, permissi-

ble, etc., traditional deontic characterizations may not be

comparable to notions of preference—e.g., ‘‘obligatory’’

is not necessarily ‘‘preferred’’. Our approach is also dif-

ferent in that it does not require exhaustive definition of

such characterizations and rules thereof and, again,

focuses on offering a very efficient way for automated

reasoning.

It also needs to be emphasized that the addition of a

temporal dimension to goal models in our proposal is not

meant to substitute business process modeling or other

kinds of behavioral modeling. It is simply an effort to

represent an additional aspect in goal modeling: that of

constraining temporal ordering of goal satisfaction.

Requirements Eng (2011) 16:227–249 245

123

Nothing prevents the result from being refined into spe-

cialized frameworks from business process modeling as,

for example, suggested in [36]. Furthermore, the plans that

emerge from ordering leaf-level tasks should not neces-

sarily be understood as processes in a business context but

can model other forms of behavior: Our ATM example, for

instance, describes lower-level interactions between the

user and the system, offering to the goal model a stronger

task analysis [47] flavor—also attempted elsewhere (e.g.,

[6, 48]).

In the requirements engineering literature, a constraint

language for selecting scenario instances from generic use

cases has been proposed by Sutcliffe et al. [49]. In the goal

modeling community, there has been work for analyzing

the temporal dimension of goal satisfaction [16, 17, 50]

often through the use of a planner—e.g., Bryl et al. use

PDDL for exploring minimum cost refinement and dele-

gation [51]. Meanwhile, works such as that by Sebastiani

et al. [52] propose computation of (static) requirements

alternatives through reasoning about partial satisfaction of

quality goals. Many such evaluation techniques have been

proposed as surveyed by Horkoff and Yu [53]. For exam-

ple, preference matrices have been used for measuring

various qualities of a requirements specification [54].

However, these approaches do not focus on how preference

and priority (versus hard constraints) can be modeled, and

they do not put emphasis to both high-level quality goals of

stakeholders and temporal characteristics of goal fulfill-

ment, as well as the connection between the two. Never-

theless, Jureta et al. propose a comprehensive approach for

modeling preference and optionality by introducing a novel

requirements modeling framework called Techne [18],

founded on the CORE ontology [29]. Techne’s graph

structures offer an expressive way to model mandatory and

optional requirements, preferences among them, domain

assumptions, and arguments for/against any part of a

requirements model. The underlying semantics of option-

ality and preference are the same in the two proposals.

However, Techne’s framework is strictly qualitative (no

numerical weights) and does not accommodate temporal

constraints, nor is it offering specific algorithms for finding

solutions to requirement problems. As such, Techne con-

stitutes a general (and rich) framework for goal-oriented

requirements modeling languages, which has yet to be

instantiated. Our proposal, on the other hand, offers a

concrete language and reasoning support for discovering

solutions to requirements problems involving priorities and

preferences.

Our inclusion of preference goals as well as optional

subgoals in the mandatory decomposition triggers a ques-

tion about the relationship between goal models and feature

models [15, 55] in terms of their expressiveness and

semantics. There have been several efforts to relate goal

models to feature models [56]. António et al. [57] intro-

duce a number of heuristics for doing so in the form of

hypotheses, while Uno et al. [58] propose a feature model

derivation process from goal models, through goal model

merging and subsequent feature extraction and variability

analysis. Yu et al. [59] go on to offer a concrete algorithm

for feature model generation from goal models. Moreover,

both Silva et al. and Mussbacher et al. suggest a goal-to-

feature-model connection via aspect orientation ([60] and

[61], respectively). In the former work, a correspondence is

established between feature models and an aspect-oriented

intentional model, appropriately extended to cater to

product lines. The latter effort attempts direct relationship

between GRL tasks and features.

There is a fundamental difference between preferences

and optional requirements. Generally speaking, a set of

consistent preferences P is not a solution in our preference

semantics unless the set is maximal, i.e., there is no other

preference p such that p ^ P is consistent. In our work, this

maximality criterion is applied through the scoring func-

tion. On the other hand, if you have a set of consistent

optional requirements O, any subset of those constitutes a

solution. In this respect, the notion of optional requirement

alone seems insufficient for our purposes, in that if you

have one, you can always choose to ignore it. Moreover,

our preference specification framework does not neces-

sarily relate to product lines and product variability. It is

instead meant to be a tool for exploring the space of

alternative behaviors that users can adopt in order to fulfill

their goals. It may or may not be the choice of the devel-

opers to implement all this behavioral variability in a

product line. Even if one is interested in implementing goal

variability of the type we discuss in this paper, we

hypothesize that feature models may not be the first choice

for effectively describing variability in behavior, that is

orderings of system functions. Some discussion on this

subject based on empirical observations can also be found

in [26] and [25]. A closer investigation on the relationship

between goal variability and system variability also in the

context of the work we survey above is something that we

continue to study.

10 Conclusions

We present a goal-based framework for modeling and

reasoning about preferred and prioritized requirements.

Our main contributions include an approach for modeling

preferences in traditional goal models, as well as tech-

niques for reasoning about mandatory and prioritized pre-

ferred requirements. We begin by introducing in a

traditional goal modeling notation the distinction between

mandatory and preferred goals. The former define a

246 Requirements Eng (2011) 16:227–249

123

requirements problem, while the latter express desired

qualities or temporal ordering constraints. A priority

specification defines priorities among preference goals,

through the assignment of numerical weights, analogously

to popular quantitative priority elicitation techniques. A

state-of-the-art planner is then exploited to identify alter-

native solutions of mandatory goals that best satisfy pre-

ferred goals and priorities among them. The formalization

can further be extended with instance-level details to allow

for more advanced reasoning. In terms of performance, we

show that the planning tool performs very well in several

realistic requirements models that we experimented with.

Our experiments indicate that the task of reasoning

about preferences and alternatives allows better under-

standing of the connection between the stakeholder atti-

tudes and alternative designs. This makes it particularly

useful for exploring alternative designs during early

requirements stages, supporting priority elicitation activi-

ties by directly showing the implication of certain priori-

tizations, improving domain understanding and model

accuracy, or, potentially, supporting the customization of

software systems by connecting the high-level design

descriptions obtained through the tool into configurations

of variation points in the software itself [14, 25].

Our proposal can be seen as an extension of goal

modeling techniques or alternatively as an extension of

requirements prioritization techniques. The practicality of

our proposal rests on the popularity—and some uptake in

industrial practice—of both goals and prioritizations in RE.

However, more formal empirical evaluations of our pro-

posal will be needed to confirm this claim.

Several directions for future work emerge from the

effort presented in this paper. Firstly, we would like to

apply our framework to even larger problems in order to

assess its scalability both in terms of model comprehen-

sibility and in terms of efficiency and meaningfulness of

the reasoning process. Secondly, our empirical explora-

tions must include acquisition of a better understanding of

how the combination of high-level qualities and temporal

constraints in preferences and priorities influences the

priority elicitation process. Finally, by looking closely at

current variability representation techniques [15, 55, 35],

we plan to propose enhancements to our language that

would make it an even stronger variability representation

tool.

References

1. van Lamsweerde A (2001) Goal-oriented requirements engi-

neering: a guided tour. In: Proceedings of the fifth IEEE inter-

national symposium on requirements engineering, RE ’01. IEEE

Computer Society, Washington, DC

2. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed

requirements acquisition. Sci Comput Program 20(1–2):3–50

3. Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R (2002)

Reasoning with goal models. In: Proceedings of the 21st inter-

national conference on conceptual modeling (ER’02). London,

UK, pp 167–181

4. Yu ESK (1997) Towards modelling and reasoning support for

early-phase requirements engineering. In: Proceedings of the 3rd

IEEE international symposium on requirements engineering

(RE’97). Washington, DC

5. Liaskos S, Lapouchnian A, Yu Y, Yu E, Mylopoulos J (2006) On

goal-based variability acquisition and analysis. In: Proceedings of

the 14th IEEE international requirements engineering conference

(RE’06). IEEE Computer Society, Minneapolis, pp 79–88

6. Hui B, Liaskos S, Mylopoulos J (2003) Requirements analysis for

customizable software: a goals-skills-preferences framework. In:

Proceedings of the 11th IEEE international requirements engi-

neering conference (RE’03). Monterey Bay, pp 117–126

7. Mylopoulos J, Chung L, Liao S, Wang H, Yu E (2001) Exploring

alternatives during requirements analysis. IEEE Softw 18(1):

92–96

8. Karlsson J, Ryan K (1997) A cost-value approach for prioritizing

requirements. IEEE Softw 14(5):67–74

9. Sohrabi S, Baier JA, McIlraith S (2009) HTN planning with

preferences. In: Proceedings of the 21st international joint

conference on artificial intelligence (IJCAI’09). Pasadena,

pp 1790–1797

10. Gerevini A, Long D (2005) Plan constraints and preferences in

PDDL3. Technical report. Department of Electronics for Auto-

mation, University of Brescia

11. Nau D, Cao Y, Lotem A, noz Avila HM (1999) SHOP: simple

hierarchical ordered planner. In: Proceedings of the 16th inter-

national joint conference on artificial intelligence (IJCAI-99),

pp 968–973

12. Liaskos S, McIlraith SA, Sohrabi S, Mylopoulos J (2010) Inte-

grating preferences into goal models for requirements engineer-

ing. In: Proceedings of the 10th international requirements

engineering conference (RE’10). Sydney, Australia, pp 135–144

13. Yu ESK, Mylopoulos J (1994) Understanding ‘‘why’’ in software

process modelling, analysis, and design. In: Proceedings of the

16th international conference on software engineering (ICSE’94),

pp 159–168

14. Liaskos S, Lapouchnian A, Wang Y, Yu Y, Easterbrook S (2005)

Configuring common personal software: a requirements-driven

approach. In: Proceedings of the 13th IEEE international

requirements engineering conference (RE’05). Paris, France,

pp 9–18

15. Czarnecki K, Eisenecker UW (2000) Generative programming—

methods, tools, and applications. Addison-Wesley, Reading

16. Fuxman A, Liu L, Mylopoulos J, Pistore M, Roveri M, Traverso

P (2004) Specifying and analyzing early requirements in Tropos.

Requir Eng 9(2):132–150

17. Wang X, Lesperance Y (2001) Agent-oriented requirements

engineering using ConGolog and i*. In: AOIS-2001 Bi-confer-

ence workshop at agents 2001 and CAiSE’01

18. Jureta IJ, Borgida A, Ernst NA, Mylopoulos J (2010) Techne:

towards a new generation of requirements modeling languages

with goals, preferences, and inconsistency handling. In: Pro-

ceedings of the 18th IEEE international requirements engineering

conference (RE’10). Sydney, Australia, pp 115–124

19. Saaty RW (1987) The analytic hierarchy process—what it is and

how it is used. Math Model 9(3-5):161–176

20. Vaidya OS, Kumar S (2006) Analytic hierarchy process: an

overview of applications. Eur J Oper Res 169(1):1–29

21. Wiegers K (1999) First things first: prioritizing requirements.

Softw Develop 7(9)

Requirements Eng (2011) 16:227–249 247

123

22. Azar J, Smith RK, Cordes D (2007) Value-oriented requirements

prioritization in a small development organization. IEEE Softw

24:32–37

23. Hansson SO (2005) Decision theory: a brief introduction. Tech-

nical report, Department of Philosophy and the History of

Technology, Royal Institute of Technology (KTH)

24. Dwyer MB, Avrunin GS, Corbett JC (1999) Patterns in property

specifications for finite-state verification. In: Proceedings of the

21st international conference on software engineering (ICSE

’99). IEEE Computer Society Press, Los Alamitos, pp 411–420

25. Liaskos S, Litoiu M, Jungblut MD, Mylopoulos J (2011) Goal-

based behavioral customization of information systems. In: Pro-

ceedings of the 23rd international conference on advanced

information systems engineering (CAiSE’11). London, UK

26. Liaskos S, Jungblut MD, Mylopoulos J (2010) From goal models

to three-layer web-based systems: an exploratory study. In: Pro-

ceedings of the 1st RE’10 workshop on the web and requirements

engineering (WeRE’10). Sydney, Australia

27. Liaskos S, McIlraith SA, Mylopoulos J (2009) Towards aug-

menting requirements models with preferences. In: Proceedings

of the 24th IEEE/ACM international conference on automated

software engineering (ASE’09), pp 565–569

28. Erol K, Hendler J, Nau D (1996) Complexity results for HTN

planning. Ann Math Artif Intel 18:69–93

29. Jureta I, Mylopoulos J, Faulkner S (2008) Revisiting the core

ontology and problem in requirements engineering. In: Proceed-

ings of the 16th IEEE international requirements engineering

conference (RE’08), pp 71–80

30. Beck K (1999) Extreme programming explained. Addison Wes-

ley, Reading

31. Clegg D, Barker R (1994) Case method fast-track: a RAD

approach. Addison Wesley, Reading

32. In HP, Olson D, Rodgers T (2002) Multi-criteria preference

analysis for systematic requirements negotiation. In: Proceedings

of the 26th annual international computer software and applica-

tions conference (COMPSAC’02), pp 887–892

33. Avesani P, Bazzanella C, Perini A, Susi A, Facing scalability

issues in requirements prioritization with machine learning

techniques. In: Proceedings of the 13th IEEE international

requirements engineering conference (RE’05), pp 297–305

34. Zhang H, Jarzabek S, Yang B (2003) Quality prediction and

assessment for product lines. In: Proceedings of the 15th inter-

national conference on advanced information systems engineer-

ing (CAiSE’03), pp 681–695

35. Halmans G, Pohl K (2003) Communicating the variability of a

software-product family to customers. Softw Syst Model

2(1):15–36

36. Lapouchnian A, Yu Y, Mylopoulos J (2007) Requirements-driven

design and configuration management of business processes. In:

Proceedings of the 5th international conference on business

process management (BPM 2007), pp 246–261

37. Lu R, Sadiq S, Governatori G (2009) On managing business

processes variants. Data Knowl Eng 68(7):642–664

38. Gottschalk F, van der Aalst WM, Jansen-Vullers MH, La Rosa M

(2008) Configurable workflow models. Int J Cooperat Inf Syst

39. Sadiq SW, Orlowska ME, Sadiq W (2005) Specification and

validation of process constraints for flexible workflows. Inf Syst

30(5):349–378

40. Soffer P, Wand Y (2005) On the notion of soft-goals in business

process modeling. Bus Process Manage J 11:663–679

41. Soffer P, Wand Y (2007) Goal-driven multi-process analysis.

J Assoc Inf Syst 8(3):175–203

42. Yi Ch, Johannesson P (1999) Beyond goal representation:

checking goal-satisfaction by temporal reasoning with business

processes. In: Advanced information systems engineering, lecture

notes in computer science, vol 1626, pp 462–466

43. Andersson B, Johannesson P, Zdravkovic J (2009) Aligning goals

and services through goal and business modelling. Inf Syst e-Bus

Manage 7:143–169

44. Krogstie J, Sindre G (1996) Utilizing deontic operators in

information systems specification. Requir Eng 1:210–237

45. Padmanabhan V, Governatori G, Sadiq S, Colomb R, Rotolo A

(2006) Process modelling: the deontic way. In: Proceedings of the

3rd Asia-Pacific conference on conceptual modelling (APCCM

’06). Darlinghurst, Australia, pp 75–84

46. Fantechi A, Asirelli P, ter Beek M, Gnesi S (2009) Deontic logics

for modeling behavioural variability. In: Proceedings of the 3rd

international workshop on variability modelling of software-

intensive systems (VaMoS’09). Sevilla, Spain

47. Diaper D, Stanton NA (2004) The handbook of task analysis for

human-computer interaction. Lawrence Erlbaum Associates,

London

48. Wang Y, McIlraith SA, Yu Y, Mylopoulos J (2007) An auto-

mated approach to monitoring and diagnosing requirements. In:

Proceedings of the 22nd IEEE/ACM international conference on

automated software engineering (ASE ’07), pp 293–302

49. Sutcliffe AG, Maiden NAM, Minocha S, Manuel D (1998)

Supporting scenario-based requirements engineering. IEEE Trans

Softw Eng 24(12):1072–1088

50. Gans G, Jarke M, Lakemeyer G, Vits T (2002) Snet: A modeling

and simulation environment for agent networks based on i* and

ConGolog. In: Proceedings of the 14th international conference

on advanced information systems engineering (CAiSE’02). Tor-

onto, Canada

51. Bryl V, Giorgini P, Mylopoulos J (2006) Designing cooperative

IS: Exploring and evaluating alternatives. In: Proceedings of the

14th international conference on cooperative information systems

(CoopIS’06). Springer, Montpellier, pp 533–550

52. Sebastiani R, Giorgini P, Mylopoulos J (2004) Simple and min-

imum-cost satisfiability for goal models. In: Proceedings of the

16th conference on advanced information systems engineering

(CAiSE’04), pp 20–35

53. Horkoff J, Yu E (2011) Analyzing goal models—different

approaches and how to choose among them. In: Proceedings of

the 26th symposium on applied computing (SAC’11). Taiwan

54. Kaiya H, Horai H, Saeki M (2002) AGORA: attributed goal-

oriented requirements analysis method. In: Proceedings of the

10th anniversary IEEE joint international requirements engi-

neering conference (RE’02), pp 13–22

55. Schobbens PY, Heymans P, Trigaux JC (2006) Feature diagrams:

A survey and a formal semantics. In: Proceedings of the 14th
IEEE international requirements engineering conference (RE’06),

IEEE Computer Society, Los Alamitos, pp 139–148

56. Borba C, Silva C (2009) A comparison of goal-oriented

approaches to model software product lines variability. In: Pro-

ceedings of the ER 2009 workshops on advances in conceptual

modeling—challenging perspectives, pp 244–253

57. António S, Araújo Ja, Silva C (2009) Adapting the i* framework

for software product lines. In: Proceedings of the ER 2009

workshop on requirements, intentions and goals in conceptual

modeling (RIGIM’09), pp 286–295

58. Uno K, Hayashi S, Saeki M (2009) Constructing feature models

using goal-oriented analysis. In: Proceedings of the 9th interna-

tional conference on quality software (QSIC ’09), pp 412–417

59. Yu Y, do Prado Leite JCS, Lapouchnian A, Mylopoulos J (2008)

Configuring features with stakeholder goals. In: Proceedings of

the 2008 ACM symposium on applied computing (SAC ’08),

pp 645–649

60. Silva L, Batista T, Soares S, Santos L (2010) On the role of

features and goals models in the aspect-oriented development of

software product line. Information Sciences and Technologies

Bulletin of the ACM Slovakia, Special Section on Early Aspects 2

248 Requirements Eng (2011) 16:227–249

123

61. Mussbacher G, Amyot D, Araújo Ja, Moreira A (2008) Modeling

software product lines with AoURN. In: Proceedings of the

2008 AOSD workshop on early aspects (EA’08), EA ’08, vol 2,

pp 1–2 (8)

62. van Lamsweerde A (2000) Requirements engineering in the year

00: a research perspective. In: Proceedings of the 22nd interna-

tional conference on software engineering (ICSE’00). ACM, New

York, pp 5–19

Requirements Eng (2011) 16:227–249 249

123

	Representing and reasoning about preferences in requirements engineering
	Abstract
	Introduction
	Goal models
	Preferences and priorities
	Introducing preference goals
	Temporal preferences
	Priorities over preferences
	Preferred plans

	Formalizing preference goals and priorities
	HTN and PDDL basics
	Translating to HTN and PDDL
	Eliminating optional subgoals
	Translating the mandatory decomposition
	Translating preferences and priorities
	Constructing the metric
	The planning problem

	Reasoning about preferences
	Integrating the planner
	Finding preferred plans
	Gradual specification and refinement

	Adding expressiveness
	Representing types
	Adding operator and method parameters
	Instance-level preference analysis

	In practice
	On the presence of goal-level priorities
	On iterative refinement and the use of numbers
	Model quality and improvement

	Performance evaluation
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

