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Abstract With the popularity of model-driven method-

ologies and the abundance of modelling languages, a major

question for a requirements engineer is: which language is

suitable for modelling a system under study? We address

this question from a semantic point-of-view for big-step

modelling languages (BSMLs). BSMLs are a class of

popular behavioural modelling languages in which a model

can respond to an input by executing multiple transitions,

possibly concurrently. We deconstruct the operational

semantics of a large class of BSMLs into eight high-level,

mostly orthogonal semantic aspects and their common

semantic options. We analyse the characteristics of each

semantic option. We use feature diagrams to present the

design space of BSML semantics that arises from our

deconstruction, as well as to taxonomize the syntactic

features of BSMLs that exhibit semantic variations. We

enumerate the dependencies between syntactic and

semantic features. We also discuss the effects of certain

combinations of semantic options when used together in a

BSML semantics. Our goal is to empower a requirements

engineer to compare and choose an appropriate BSML

from the plethora of existing BSMLs, or to articulate the

semantic features of a new desired BSML when such a

BSML does not exist.

Keywords Big-step modelling languages � Semantics

of modelling languages � Model-driven development �
Domain-specific modelling languages � Statecharts �
UML StateMachines

1 Introduction

With the popularity of model-driven methodologies and the

abundance of modelling languages (and domain-specific

languages), a major question for a requirements engineer

is: which language is suitable for modelling a system under

study (SUS)? We introduce the term big-step modelling

languages (BSMLs) to characterize a class of popular

behavioural modelling languages in which a model can

respond to an environmental input by executing a big step,

which consists of a sequence of small steps, each of which

may contain multiple, possibly concurrent, transitions.

Numerous BSMLs have been introduced (e.g., statecharts

[17] and its variants [49], synchronous languages [16], and

UML StateMachines [38]), many of which have similar

syntaxes but subtly different and complicated semantics.

The choice of a BSML for an SUS depends on many

factors, including the domain of the SUS, the expertise of

the requirements engineer in a class of notations, etc. In

this paper, we present the semantic criteria that a require-

ments engineer should consider when choosing a BSML

for modelling an SUS. One can write equivalent behaviours

in different semantics by modifying a model (all BSMLs

can be reduced to their meaning in primitive modelling

languages such as Kripke structures, Büchi automata,

labelled transition systems). However, it can be
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significantly more convenient (e.g., more succinct, more

understandable) to model some behaviours in one seman-

tics than in another. We envision a world where the choice

of the features of a language, including its semantic fea-

tures, is made on a model-by-model basis.

Our first contribution is a novel deconstruction of the

operational semantics of a large class of BSMLs into eight

high-level, mostly orthogonal, semantic aspects, and an

enumeration of the common semantic options found in

existing BSMLs for each of these aspects. While it is

impossible to claim that our options are complete, they

cover a wide range of existing BSMLs, as well as new

semantics that arise through the enumeration of semantic

options. Our second contribution is the identification of the

characteristics of each semantic option to provide rationale

for a requirements engineer to choose one option over

another. Our third contribution is a set of carefully con-

structed examples that succinctly illustrate many of the

differences between the semantic options.

Our deconstruction arises from surveying existing

BSMLs viewed from the perspective of the big step as a

whole. We separate the operation of a big step into

orthogonal aspects where existing languages have shown

variations. We believe these eight aspects capture the

essential semantic differences in most existing BSMLs and

thereby empower requirements engineers to compare and

choose the most suitable BSML for an SUS. Choosing a set

of semantic options involves making trade-offs among

considerations such as simplicity, determinism, causality,

orderedness, modularity. We envision our work to be used

in three ways: (a) as a semantic catalog to compare the

semantics of existing BSMLs and choose an appropriate

BSML; (b) as a semantic scale to assess the semantic

properties of a BSML; and (c) as a semantic menu to help

design a BSML from scratch.

Our deconstruction is more concise and systematic than

previous comparative studies of different subsets of

BSMLs (e.g., [7, 16, 26, 46, 47, 49]) because it recognizes

a big step as a whole rather than only considering its

constituent transitions operationally. In our previous work

on template semantics [37], we created a formal framework

for comparing the semantics of many BSMLs by instanti-

ating a template of 22 parameters and choosing a set of

composition operators that together define a small step. The

eight semantic aspects we present here capture cross-cut-

ting dependencies found in the template parameters, cre-

ating a deconstruction that defines a big step directly. This

higher level of abstraction isolates the semantic differences

between languages more clearly.

Compared to our previous work presenting this

deconstruction [14], here, (a) we address several addi-

tional semantic concerns, namely, external events and

variables, interface events and variables, and combo-step

maximality; (b) we present a more systematic treatment

of the notion of a combo step; (c) we provide a taxonomy

for the syntactic features of BSMLs that exhibit semantic

variations; (d) we use two feature diagrams to present our

semantic deconstruction and the taxonomy of the syntax

of BSMLs; (e) we present the dependencies between the

features of the two feature diagrams; (f) we accompany

our presentation of the semantic aspects with more

examples; and lastly, (g) we extend our discussion of the

dependencies between semantic options when used toge-

ther in a BSML.

The remainder of the paper is organized as follows. In

Sect. 2, we describe the common syntax and common basic

semantics that we use throughout the paper. In Sect. 3, we

present the deconstruction of the semantics of BSMLs into

eight semantic aspects and their options, together with their

syntactic requirements. We describe separately each

semantic option and its characteristics, accompanied by

modelling examples that exhibit the differences between

the semantic options. In Sect. 4, we describe a few subtle

side effects that result when certain semantic options are

used together in a BSML. Section 5 compares our work

with the related work, including our previous work on

template semantics [37]. Finally, in Sect. 6, we conclude

our paper and discuss future work.

2 Normal-form syntax and basic semantics

In this section, we present the terminology that we use

throughout the paper. In Sect. 2.1, we present our normal-

form syntax and the possible syntactic features that can be

chosen when designing a BSML. In Sect. 2.2, we describe

the common basic semantics, which can be refined by

semantic options. In Sect. 2.3, we describe how the syntax

of BSMLs can be represented in our normal-form syntax.

We adopt a few syntactic definitions from Pnueli and

Shalev’s work [42].

2.1 Syntax

There is a plethora of BSMLs, including those with

graphical syntax (e.g., statecharts variants [49], Argos

[33]), those with textual syntax (e.g., reactive modules [3],

Esterel [6]), and those with tabular/equational syntax (e.g.,

SCR [22, 23]). As is usual when studying a class of related

notations, we use a syntactic ‘‘normal form’’ that is suffi-

ciently expressive to represent the syntax of other notations

[25]. Our normal-form syntax is the composed hierarchical

transition system (CHTS) syntax [37]. A model is a CHTS

and consists of: (a) a composition tree whose nodes are

distinct control statesd and (b) a set of transitions between

the control states.
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Control States: A control state (e.g., DialDigits in Fig. 1)

is a named artifact that a modeller uses to represent a note-

worthy moment in the execution of a model. Such a moment

is an abstraction that groups together the past behaviours

(consisting of inputs received by the model and the model’s

past reactions to these inputs) that have a common set of

future behaviours. By using a control state, a modeller can

describe future behaviour in terms of the current control state

and the current environmental inputs.

A control state has a type, which is either Basic, Or, or

And. A leaf node of a composition tree is a Basic control

state. An Or or an And control state is hierarchical and has

children, each of which can be of any type. For example, in

Fig. 1, control state Dialing is an And control state and has

two Or control states, Dialer and Redialer. We use the

relations parent, ancestor, child, and descendant with their

usual meanings. In Fig. 1, control state DialDigits is a child

of Dialer and a descendant of Dialing. Two control states

overlap if they are the same or one is an ancestor of the other.

In Fig. 1, control states Dialer and Redialler are not over-

lapping. The least common ancestor of two control states is

the lowest control state (closest to the leaves of the compo-

sition tree) in the hierarchy of the composition tree that is an

ancestor of both. In Fig. 1, the least common ancestor of

DialDigits and RedialDigits is Dialing. Two control states

are orthogonal if neither is an ancestor of the other and their

least common ancestor is an And control state. In Fig. 1,

DialDigits and RedialDigits are orthogonal. An Or control

state has a default control state, which is its child and is

identified by an incoming arrow that has no source control

state. In Fig. 1, WaitForDial is the default control state of

Dialer. The arena of a transition t is the lowest Or control

state in the hierarchy of the composition tree that is the

ancestor of both the source and destination control states of

the transition. In Fig. 1, the arena of transition t1 is the Or

control state Dialer. A model may have no And control states.

The root of the composition tree must be an Or control state,

so that the arena of every transition is guaranteed to exist, but

otherwise may consist of only Basic control states.

Transitions: A transition (e.g., t1 in Fig. 1) has both

source and destination control states, and consists of four

optional parts: (a) an event trigger, which is a conjunction

of event literals, some of which may be negated (a negated

event being prefixed by a ‘‘:’’); (b) a guard condition (GC)

(enclosed by ‘‘[ ]’’), which is a boolean expression over the

set of variables of the model; (c) a sequence of assignments

(prefixed by a ‘‘/’’); and (d) a set of generated events

(prefixed by a ‘‘ b ’’).

A generated event may have a parameter that can be

modelled by associating a variable with it. An assignment

consists of a left-hand side variable (LHS) and a right-hand

side expression (RHS). The types of variables are not rel-

evant. We assume all variable expressions and assignments

of models are well-typed. Variables and events are global;

local variables and scoped events can be modelled by a

renaming that makes them globally unique.

Figure 2 is a feature diagram [28] that represents the

combination of syntactic constructs of BSMLs that are of

interest for our semantic aspects. Each feature in the dia-

gram is labelled with the sections that describe its role and

semantics. A leaf node of the feature diagram represents a

primitive syntactic feature of BSMLs. For example, the

Negated Events node is the syntactic feature that allows

the negation of an internal event to be used in the event

trigger of a transition. A non-leaf node represents a syn-

tactic feature that has additional syntactic sub-features in

its children nodes. For example, the Event Triggers node

is the syntactic feature that has syntactic sub-features

Environmental Input Events, Interface Events, and

Negated Events. In the feature diagram in Fig. 2, we use

only ‘‘and’’ branches for sub-features of a feature: if a

feature is chosen, then all of its child sub-features are also

chosen, except for the sub-features that are connected to a

small circle, which are ‘‘optional’’ sub-features. An

optional feature, as opposed to a ‘‘mandatory’’ feature,

need not be chosen if its parent feature is chosen. All of the

features in the diagram in Fig. 2 are optional features. For

example, the Event Triggers syntactic feature has three

sub-features, all of which are optional sub-features.

The syntax of a BSML must have a notion of transition

to specify the behaviour of a system, but all other syntactic

features in the feature diagram of Fig. 2 are optional. In

practice, the syntax of most useful BSMLs support at least

events or variables.

2.2 Common basic semantics

Initially, a model resides in the default control state of each

of its Or control states, no events are present, and its

variables have their initial values. The operational seman-

tics of a BSML describes how a model reacts to an envi-

ronmental input via a big step. An environmental input is a

Fig. 1 Dialer/redialer model
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Fig. 2 Feature diagram for the

syntactic variation points of

interest to our semantic aspects
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set of events and variable assignments that are received

from the environment. Figure 3 depicts a big step T, which

is a reaction of a model to environmental input I. A big step

is an alternating sequence of small steps and snapshots,

where a small step is the execution of a set of transitions

(ti’s), and a snapshot is a tuple that stores information.1 The

Ti’s (1 B i B n) are small steps of T, and sp, sp0, and spi’s

(1 B i \ n) are its snapshots. Throughout the paper, we

often represent a big step as the sequence of its small steps;

e.g., T is represented as hT1, T2, …, Tni. Some BSMLs,

such as RSML [30] and Statemate [19], introduce an

intermediate grouping of a sequence of small steps, which

we call a combo step. The small steps of a combo step hide

some of their effects, e.g., the effect of their assignments,

from one another. Sections 3.3, 3.4, and 3.8, describe when

combo steps are useful.

Snapshots: A snapshot is a tuple that consists of at least:

(1) a configuration, which is a set of control states; (2) a

variable evaluation, which is a set of hvariable name,

valuei pairs; and (3) a set of events. Each of a big step, a

small step, or a combo step has a source and destination

snapshot (e.g., sp and sp0 are the source and destination

snapshots of T).

Enabledness: In each small step, a set of enabled

transitions is chosen to be executed. A transition is enabled

if its event trigger and guard condition are satisfied, and its

source control state is in the source configuration of the

small step. Different semantic options use different snap-

shots of a big step to define enabledness.

Execution: The effects of the execution of the transitions

of a small step create its destination snapshot. When a tran-

sition is executed, it leaves its source control state (and its

descendants) and enters a destination control state (and its

descendants). When entering an Or control state, a transition

enters its default control state, and when entering an And

control state, it enters all of its children. Thus, if the source

(destination) control state of a transition is an And control

state, the execution of the transition includes exiting

(entering) the children of the source (destination) control

state.

In a few, non-common cases, transition execution can be

more involved; e.g., when the least common ancestor of the

source and destination control states of a transition is an

And control state. A discussion of these cases is included in

Sect. 3.2.

The semantics of event generation and variable assign-

ment differ between BSMLs. The execution of a small step

is atomic: the variable assignments and event generation of

one transition cannot be seen by another transition (except

for the ‘‘PRESENT IN SAME’’ event lifeline option [cf., Sect.

3.3]). Because of atomicity, a sequence of assignments on a

transition can be converted to a set of assignments [29, 31].

Environmental inputs: When choosing a BSML for

modelling an SUS, the domain of the SUS must satisfy the

assumptions of the BSML regarding the model’s ability to

take multiple transitions in response to an environmental

input and not miss other inputs. There are three types of

assumptions:

– Fast computation: This assumption, which is usually

referred to as the ‘‘synchrony hypothesis’’ or the ‘‘zero-

time assumption’’ [6, 16], postulates that the system is

fast enough, and thus never misses an input. The

domain of systems that are modelled using this

paradigm is called ‘‘reactive systems’’ [6, 16, 20]. A

reactive system is usually a mission-critical system that

is meant to react to environmental inputs in a timely

manner, at the rate produced by the environment; e.g.,

the controller system of a nuclear reactor. No environ-

mental inputs are missed.

– Helpful environment:2 This assumption postulates that

the environment is helpful by issuing an input only when

the system is ready [16]. The domain of systems that are

modelled using this paradigm is called ‘‘interactive

systems’’ [16]. An interactive system is different from a

reactive system in that the rate of environmental inputs is

dictated by the system, rather than by the environment.

An example of an interactive system is an automated

banking machine, which interacts with its environment

(i.e., a customer) at its own rate when it is ready, rather

than at the rate the customer would like to provide inputs

for it. An environmental input might be missed by the

system when the system is busy processing a previous

environmental input.

– Asynchronous communication: This assumption postu-

lates that the system has a buffering mechanism to store

Fig. 3 Steps

1 Big steps and small steps are often called macro steps and micro

steps, respectively. We adopt new terms to avoid association with the

fixed semantics of the languages that use those terms. The big-step/

small-step terminology has been used in the study of the operational

semantics of programming languages in a similar spirit as we use

them here [40].

2 We have adopted the term ‘‘helpful environment’’ from a similar

notion in Interface Automata [11].
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the environmental inputs, and thus never misses an

environmental input.

In this paper, we consider only the BSMLs with the first

two assumptions, which are mutually exclusive with the

third one. The BSMLs that adhere to the first two

assumptions share many semantic options. As such,

sometimes it is difficult and unnecessary to label a BSML

conclusively as following one or the other assumption.

2.3 Representing BSMLs in the normal-form syntax

It is straightforward to represent the syntax of many

BSMLs in our normal-form syntax. In our previous work

[37], we described the mapping of the syntax of many

BSMLs to the CHTS syntax. In this section, we describe a

few, less obvious, syntactic representations in our normal-

form syntax.

Control states: A BSML may not include the notion of

control states. If a model’s reaction to an environmental

input is always independent of its past behaviours, then the

notion of control state is not useful for the model. One way

to represent the syntax of a BSML that does not have

control states in our normal-form syntax is to create a

single control state that serves as the source and destination

control states of all transitions. The notion of the hierarchy

of control states might still be useful in such a BSML for

specifying priority between transitions (cf., Sect. 3.7 for

priority semantics).

A BSML with a textual syntax without explicit control

states, such as Esterel [6], realizes a line of a program as a

control state. For example, in Esterel [6], an exit state-

ment within a parallel command of a model moves the flow

of control from within the parallel command to the next

command outside the scope of the parallel command. The

parallel command and the command after it can be con-

ceptually considered as control states with the parallel

command being an And control state. The exit statement

can be considered as a transition that connects the two

control states.

SCR [22, 23] is a BSML that uses a tabular format. The

notions of ‘‘modes’’ and ‘‘transitions between modes’’ in its

syntax can be represented by the notions of control states

and transitions between control states, respectively.

Transitions: In our syntax for transitions, we do not

include event triggers with disjunctions, because an event

trigger that has disjuncts can be split into multiple transi-

tions, each with only one of the disjuncts of the original

event trigger and exactly the same other elements as the

original; such a transformation yields a model that is

semantically the same as the original model [42].

Transitions with multiple-source and/or multiple-desti-

nation can be split into multiple single-source, single-des-

tination transitions. However, we would need to extend the

semantic options for the concurrency and consistency

aspect (in Sect. 3.2) and the hierarchical-priority aspect (in

Sect. 3.7) to accommodate the execution semantics of a

group of transitions that represent a single multiple-source

and/or multiple-destination transition. We defer the treat-

ment of the semantics of multiple-source and/or multiple-

destination transitions to our future work.

3 Semantic aspects

We deconstruct the operation of a big step into the stages

described in Fig. 4. This systematic deconstruction is based

Fig. 4 Operation of a big step
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on: (a) conceptual sequentiality in the process of creating a

small step (partly based on the syntactic elements of the

model), (b) orthogonal concerns in the operation of a big

step, and (c) semantic variation points in existing BSMLs.

Each stage of the diagram is associated with one of our

semantic aspects and is labelled with the corresponding

section of the paper that describes it. A semantic aspect

may be decomposed into some semantic sub-aspects. A

semantic aspect or sub-aspect may have a number of

semantic options, each of which is a semantic choice for

carrying out a stage.

There are eight semantic aspects, as shown by the fea-

ture diagram in Fig. 5. Semantic aspects are represented

by shaded boxes and the Sans Serif font, and semantic

options are represented by clear boxes and the SMALL CAP

font. An arced branch in the diagram represents an

‘‘exclusive or’’: if a feature is chosen, then exactly one of

its sub-features is chosen. For example, if the Big-Step

Maximality semantic aspect is chosen, then exactly one of

its options, SYNTACTIC, TAKE ONE, or TAKE MANY should be

chosen. For the sake of brevity, we group a set of recurring

semantic options for event-related semantic sub-aspects as

‘‘Event Options’’, and reference them via this label in the

diagram.

Next, we briefly describe the role of each semantic

aspect. The Big-Step Maximality semantic aspect specifies

when a big step ends, at which point a new big step starts

by sensing new environmental inputs. The Combo-Step

Maximality semantic aspect specifies when a combo step

ends. The source snapshot at the beginning of a combo step

reflects the effects of the execution of the small steps of the

previous combo step. The Event Lifeline semantic aspect

specifies how far within a big step a generated event can be

sensed to trigger a transition. We consider separate sub-

aspects for the semantics of internal events, which are not

meant to be observed by the environment of a model,

external events, which are used to communicate with the

environment, and interface events, which are used by a

model to specify communications among its different

components. The Enabledness Memory Protocol semantic

aspect specifies the snapshot from which the values of

variables are read to enable the guard condition of a tran-

sition. The Order of Small Steps semantic aspect describes

options for the order of transitions that execute within a big

step. From the set of transitions enabled by events, vari-

ables, and ordering constraints, the Concurrency and Con-

sistency semantic aspect determines the set of potential

small steps: first, it specifies whether more than one tran-

sition can be taken in a small step; and second, if more than

one transition can be taken, it specifies the consistency

criteria for including multiple transitions in a small step.

The Priority semantic aspect chooses a small step from the

set of potential small steps. The Assignment Memory

Protocol semantic aspect specifies the snapshot from which

the value of a variable in the right-hand side of an

assignment is read. Similar to events, we distinguish

between the semantics of internal variables, external

variables, and interface variables.

A BSML semantics must subscribe to a Big-step Maxi-

mality semantics, as shown by the corresponding manda-

tory feature in the diagram in Fig. 5. The other aspects are

optional and depend on the syntactic features included in

the BSML. A BSML semantics might have more than one

priority semantic option, which together constitute its pri-

ority semantics (cf., Sect. 3.7).

Dependencies between Features: A semantic aspect or a

semantic option might be relevant to the semantics of a

BSML only if a certain syntactic construct is allowed in the

BSML. Figure 6 enumerates the dependencies between the

syntactic and semantic features. To describe these depen-

dencies, we use the names of syntactic features in Fig. 2

and the names of semantic aspects and options in Fig. 5 as

propositions, which indicate the choice of the feature in its

corresponding feature diagram. We use standard logical

operators to describe the dependencies. The ‘‘p) q ’’

operator is logical implication: if p is true then q must be

true. The ‘‘p, q ’’ operator is logical equivalence: either p

and q are both true, or both are false. The ‘‘p _ q ’’ operator

is logical or: either p, q, or both are true. The ‘‘p ^ q ’’

operator is logical and: both p and q are true.

The last three dependencies in Fig. 6 are between

semantic features, as opposed to between syntactic and

semantic features. These dependencies will be explained in

the sections on the semantic aspects.

In the feature diagram in Fig. 5, a semantic (sub-)aspect,

or its parent, is labelled with the section in which it is

described. We have chosen to order these sections in a

manner that minimizes the required forward referencing to

other semantics aspects (although some forward referenc-

ing cannot be avoided). In each section, we summarize the

semantic options for each aspect in a table that includes a

brief description of each semantic option, a list of its

characteristics, and a list of representative BSMLs for each

option. We identify each characteristic as a relative

advantage or disadvantage, signified by a ‘‘ ? ’’ or ‘‘ - ’’,

respectively, based on our understanding of the conven-

tional wisdom on this characteristic. Such wisdom may not

always be appropriate for a model depending on the

domain of the SUS, the preference of the modeller, etc.

These options cover the variations found in most existing

BSMLs. As in Fig. 5, we use the SMALL CAP font to express

the names of semantic options. Throughout the section, we

present many examples that are meant to demonstrate the

differences between semantic options (but not to endorse

one over another). The model snippets in our examples are

not complete. Finally in Sect. 3.9, we present a table
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Fig. 5 A feature diagram for BSML semantics
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summarizing the semantic options chosen by a number of

BSMLs.

3.1 Big-step maximality

The big-step maximality semantics of a BSML specifies

when the sequence of small steps of a big step concludes.

Table 1 lists the three possible semantic options. In the

SYNTACTIC option, a BSML allows a modeller to designate

syntactically a basic control state of a model as a stable

control state. During a big step, once a transition t that

enters a stable control state is executed, no other transition

whose arena overlaps with the arena of t can be executed.

In the TAKE ONE option, once a transition t is executed

during a big step, no other transition whose arena overlaps

with the arena of t can be executed. As such, each Or

control state can contribute a maximum of one transition to

a big step. Lastly, the TAKE MANY option allows a sequence

of small steps to continue until there are no more enabled

transitions to be executed.

Scope of a big step: In the TAKE ONE and the TAKE

MANY options, the destination snapshot of a big step is not

obvious, which can be complicated for a modeller. In the

SYNTACTIC option, the end of a big step can be traced

syntactically, which can be helpful for constructing and

understanding a model.

Sequential transitions vs. non-terminating big steps:

In the SYNTACTIC and TAKE MANY options, it is possible to

specify a computation as a big step that consists of multiple

sequential transitions within an Or control state. But, in

these two semantics, it is also possible for a big step to

never terminate because the execution of the big step never

reaches a snapshot in which there are no more transitions to

be executed. In the SYNTACTIC maximality semantics,

additionally, a big step may never terminate because the

model never reaches a syntactically designated stable

control state. Some BSMLs with the SYNTACTIC semantics

require the non-stable control states of a model to have

‘‘else’’ transitions so that a big step can always reach a

stable configuration (e.g., [18, 38]). In the TAKE ONE

semantics, a sequence of transitions in an Or control state

cannot be included in a big step, but a big step always

terminates.

Stable control states can be used to model the semantics

of the pause command in Esterel [6, 47]. During a big

step, once all non-overlapping control states of the model’s

configuration have executed the pause command, the big

step ends. As such, if the pause command is executed

outside of a parallel command, then the big step terminates.

But if the pause command is executed inside a branch of

a parallel command, then the big step terminates when

every branch of the parallel command has executed the

pause command. Stable control states can also be used to

model the semantics of ‘‘compound transitions’’ in Rhap-

sody [18] and UML StateMachines [38]: the ‘‘pseudo

states’’ of a model are modelled as non-stable control

Fig. 6 Dependencies between syntactic and semantic features.

(Bold: syntactic features, Sans Serif: semantic aspects, and SMALL

CAP: semantic options)

Table 1 Big-step maximality semantic options

Options Definition Characteristics Examples

SYNTACTIC No two transitions with

overlapping arenas that enter

designated ‘‘stable’’ control

states can be taken in the same

big step

(?) Syntactical scope for big steps Esterel [6] (pause command),

Rhapsody [18] and UML

StateMachines [38] ‘‘run to

completion’’

(?) Sequential Or transitions

(-) Non-terminating big steps

TAKE ONE No two transitions with

overlapping arenas can be taken

in the same big step

(?) Terminating big steps Statecharts [17, 21, 42], reactive

modules [3], and Argos [33](-) Unclear, non-syntactical scope for big steps

TAKE MANY Small steps continue until there are

no more enabled transitions

(?) Sequential Or transitions Statemate [19] and RSML [30]

(-) Unclear, non-syntactical scope for big steps

(-) Non-terminating big steps
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states, and ‘‘states’’ are modelled as stable control states.

Some of the BSMLs that support the TAKE ONE semantics,

such as reactive modules [3] and Argos [33], are influenced

by the principles of synchronous hardware, which assumes

that, during a big step, a non-concurrent part of a model can

take only one transition (equivalently, each hardware

component reacts once during a clock tick). The TAKE

MANY semantic option is usually used by the BSMLs that

support the notion of combo step (e.g., Statemate [19] and

RSML [30]). The Statemate tool suite can be configured to

use either the TAKE ONE semantic option, whose big steps

are referred to as ‘‘steps’’, or the TAKE MANY semantic

option together with combo steps, whose big steps are

referred to as ‘‘super steps’’ [19].

Example 1 The model in Fig. 7 collects a dialed digit of a

phone device (environmental input event dial(d)) and

transmits the dialed digit d to the IP network via generated

event out(d). Variable c allows a maximum of 10 digits to

be collected, at which point the central IP system would

connect the caller to the dialed callee (we do not model the

connection functionality of the system). The ‘‘??’’ oper-

ator denotes increment by one.

Consider a semantics that if event dial(d) is received

from the environment, it persists until the end of the big

step. Also, consider the snapshot where c is zero and

dial(d) is received from the environment. If the TAKE MANY

big-step semantics is chosen, then transition t1 is executed

10 times in succession, sending the same digit 10 times. If

the TAKE ONE big-step maximality semantics is chosen, or

the SYNTACTIC semantics is chosen and control state D is

designated as stable, then the model behaves correctly.

Example 2 The model in Fig. 8 is for a two-bit counter.3

Control states Bit1 and Bit2 model the least and most sig-

nificant bits of the counter, respectively. Each time the

environmental input event tk0, which represents a clock

tick, is received, the counter increments by one. Consider a

semantics where environmental inputs persist throughout

the big step. After an even number of ticks, Bit1 sends

event tk1 thereby instructs Bit2 to toggle its status. After

counting four clock ticks, the Counter generates the done

event. Consider the snapshot where the model resides in

control states Bit11 and Bit21 and a semantics where each

small step comprises the execution of exactly one

transition. If the TAKE ONE big-step semantics is chosen,

then the model behaves correctly. The first tk0 input event

produces the big step h{t1}i, the second tk0 input event

produces the big step h{t2}, {t3}i, the third tk0 input event

again produces the big step h{t1}i, and lastly, the fourth tk0

input event produces the big step h{t2}, {t4}i, which gen-

erates event done. If the TAKE MANY big-step semantics is

chosen, then the model behaves incorrectly by creating

non-terminating big steps; for example, upon receiving the

first tk0 input event, the model can engage in the following

non-terminating big step: h{t1}, {t2}, {t1}, {t2}, …i.

3.2 Concurrency and consistency

BSMLs vary in how the enabled transitions of a model

execute together in a small step. Table 2 lists the three

concurrency and consistency semantic sub-aspects that

specify: (a) concurrency: whether more than one transition

can be taken in a small step, and if so, (b) small-step

consistency: which transitions can be taken together, con-

sidering the composition tree of a model, and (c) pre-

emption: whether the execution of one transition in a small

step can preempt the execution of another transition or not.

3.2.1 Concurrency

There is a dichotomy in hardware and software about how

to model the execution of a system: single-transition vs.

many-transition [35, 43, 45, 48]. Similarly, in BSMLs,

there are two options: (1) a small step can execute only one

transition in a small step (the SINGLE option) and (2) all

enabled transitions that can be taken together are taken in a

small step (the MANY option). The SINGLE option is simple

because it does not have to deal with the complexities of

executing multiple transitions (e.g., race conditions), but it

can cause undesired non-determinism because two enabled

transitions can execute in different orders.

Fig. 7 Dialer system

Fig. 8 A two-bit counter

3 This example is adopted from [33], where a more elaborate version

of it is used as the running example of the paper.
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Race conditions: A model has a race condition when

more than one transition in a small step assign values to a

variable. Typically, one of the assignments is chosen non-

deterministically [37], but there are other options [13].

Example 3 Figure 9 shows the model for describing the

behaviour of a simple traffic light system at an intersec-

tion.4 The model consists of And control state TrafficLight,

which itself consists of two Or control states: the NS

control state controls the traffic in the north-south direction

and the EW control state controls the traffic in the east-west

direction. We assume that the environment provides the

sequence of environmental input events: end, change, end,

change, …, in a timely manner according to the schedule of

the traffic light. Environmental input event end designates

the end of green light for a direction by changing its green

lights to yellow. Environmental input event change chan-

ges the direction of traffic by switching the red lights to

green lights, and the yellow lights to red lights. The system

is initialized so that the lights for north-south direction are

green, and the lights for east-west direction are red. Con-

sider the snapshot where the model resides in control states

EW_Red and NS_Yellow, and environmental input event

change is received. If we choose the TAKE ONE big-step

maximality semantics and the SINGLE concurrency seman-

tics, then the model can choose to execute the big step

consisting of the sequence of transitions h{t2}, {t4}i, or the

sequence of transitions h{t4}, {t2}i, non-deterministically.

However, executing the latter sequence of transitions per-

mits the model to arrive at snapshot EW_Green and

NS_Yellow, which is not a desirable behaviour. If the MANY

concurrency semantics is chosen, then model executes big

Table 2 Concurrency and consistency semantic options

Options Definition Characteristics Examples

Concurrency

SINGLE A small step consists of the execution of

exactly one transition

(?) Simplicity statecharts [17, 21, 42], Stateflow

[9], and reactive modules [3](-) Non-determinism

MANY A small step may consist of the execution

of more than one transition

(?) Low chance for non-

determinism

Argos [33] and Esterel [6]

(-) Race conditions

Small-step consistency

ARENA ORTHOGONAL The arenas of two distinct transitions of a

small step are orthogonal

(?) Simplicity Argos [33] and Esterel [6]

(-) High chance for non-

determinism

SOURCE/DESTINATION

ORTHOGONAL

The source control states and destination

control states of two distinct transitions

of a small step are pairwise orthogonal

(?) Low chance for non-

determinism

N/A

(-) Complex

Preemption

NON-PREEMPTIVE Two transitions that one is an ‘‘interrupt

for’’ another can be taken in a small step

(?) Support for ‘‘last wishes’’ Argos [33], and semantics of

exit and trap statements in

Esterel [6]
(-) Counterintuitive flow of

control

PREEMPTIVE Two transitions that one is an ‘‘interrupt

for’’ another cannot be taken in a small

step

(?) Simple flow of control N/A

(-) No support for ‘‘last wishes’’

Fig. 9 Traffic light system

4 This example is adopted from [27].
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step h{t2, t4}i, arriving at control states EW_Green and

NS_Red.

Next, we consider two semantic sub-aspects that specify

the set of transitions that can be taken together in a small

step when the MANY semantics is chosen. The small-step

consistency sub-aspect deals with transitions that do not

preempt each other. The preemption sub-aspect deals with

transitions that do preempt each other. The two sub-aspects

deal with disjoint sets of transitions of a model.

3.2.2 Small-step consistency

In the SOURCE/DESTINATION ORTHOGONAL semantic option,

transitions whose source control states and destination con-

trol states are pairwise orthogonal can be taken together in a

small step. The ARENA ORTHOGONAL option is more restrictive

in that two transitions can be included in the same small step

only if their arenas are orthogonal (where the arena of a

transition is the lowest Or control state in the hierarchy of the

composition tree that is the ancestor of the source and des-

tination control states of the transition). In comparison, the

ARENA ORTHOGONAL option is simpler than the SOURCE/DES-

TINATION ORTHOGONAL option, but it can introduce undesired

non-determinism by not taking all of the enabled transitions

that the SOURCE/DESTINATION ORTHOGONAL option takes. The

ARENA ORTHOGONAL semantic option and the TAKE ONE big-

step maximality semantics are conceptually analogous: the

former semantic option disallows two transitions whose

arenas are the same or ancestrally related to be included in a

small step, while the latter disallows the two transitions to be

included in a big step.

Example 4 The model in Fig. 10 is similar to the model

in Example 2, but has an extra Or control state that spec-

ifies whether the counter is in the process of counting, or it

has already counted four ticks and should be reset. Con-

sider the snapshot where the model resides in control states,

Bit12, Bit22, and Counting, and the fourth tk0 event is

received. We choose the MANY concurrency semantics.

Also, we choose the PRESENT IN SAME event communication

mechanism (explained in Sect. 3.3), in which a generated

event can enable a transition in the same small step. If we

choose the ARENA ORTHOGONAL semantics, then only {t2}

can be taken, but not {t4}, because the arena of t4 is a

parent of the arena of t2. If we choose the SOURCE/DESTI-

NATION ORTHOGONAL semantics, then h{t2, t4}i can be taken,

and the model behaves correctly. (The execution of t4
involves exiting the Or control state Bit2 and reentering its

default control state Bit21. The destination configuration of

the small step is Bit11, Bit21, and Max.)

3.2.3 Preemption

The notion of preemption [5] is relevant to a pair of tran-

sitions when one is an interrupt for the other. A transition t

is an interrupt for transition t0 when the sources of the

transitions are orthogonal and one of the following condi-

tions holds: (a) the destination of t0 is orthogonal with the

source of t, and the destination of t is not orthogonal with

the sources of either transition (Fig. 11a); or (b) the des-

tination of neither transition is orthogonal with the sources

of the two transitions, but the destination of t is a

descendant of the destination of t0 (Fig. 11b). The NON-

PREEMPTIVE option allows such a t and t0 to be executed

together in the same small step, whereas the PREEMPTIVE

option does not. In the NON-PREEMPTIVE option, the effect of

executing such a small step {t, t0} includes the variable

assignments and event generations of both transitions, but

the destination configuration of the small step is

Fig. 10 The revised two-bit

counter

(a) (b)

Fig. 11 Interrupting transitions
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determined as if only t has been executed (i.e., the desti-

nation of t0 is not relevant). As such, executing {t, t0} in

Fig. 11a moves the model to control state S0, and executing

{t, t0} in Fig. 11b moves the model to control states S011 and

S021: While complex, due to its counterintuitive flow of

control, the NON-PREEMPTIVE option satisfies the ‘‘last

wishes’’ of the children of an And control state that is

interrupted.

The NON-PREEMPTIVE semantics can be used to model the

‘‘weak preemption’’ semantics of exit and trap state-

ments in Esterel [6, 16]. The concurrent execution of an

exit command with a non-exit command complies with

the condition (1) above of the interrupt for relation. The

concurrent execution of two exit commands complies

with the condition (2) above of the interrupt for relation. In

Argos [33], a different notion of hierarchical control state

than ours is used. A transition with a source of a non-Basic

control state S is an interrupt for a transition whose arena is

S or a descendent of S. We can translate this notion of

control state and interrupt to our framework by turning S

into an And control state with two children: one repre-

senting S without the interrupt transition, and another

having only one transition that models the interrupt tran-

sition. In Esterel [6, 16], in addition to the NON-PREEMPTIVE

semantics, there is a syntax to specify PREEMPTIVE behav-

iour through the ‘‘strong preemption’’ semantics of

watching statements. In a ‘‘do \statements[
watching(e)’’ statement, the execution of ‘‘\state-
ments[’’ is immediately aborted when event e occurs,

without satisfying the ‘‘last wish’’ of ‘‘\statements[’’.

Such a watching statement can be translated into our

normal-form syntax by creating a transition whose source

is an And or Or control state that represents the

‘‘\statements[’’, and it is triggered with event e. The

additional transition in the aforementioned translation is

not an interrupt for any transition.

Example 5 The model in Fig. 12 is an extension of the

model in Fig. 1. A control state that is labelled with a

represents a stable control state. This model is a model of a

dialer system that receives the dialed digits of a phone,

through event dial(d), and transmits these digits via output

events out(d), to establish the connection with a destination

phone number. Compared to the model in Fig. 1, the model

in Fig. 12 additionally controls the total number of calls

that can be established at each point of time. If the maxi-

mum number of concurrent calls is reached, which is

determined by the boolean environmental input variable

limit, the dialing process is aborted via transition t. Con-

sider the snapshot where environmental input variable limit

is true, the model resides in control states WaitforDial and

WaitforRedial, the value of variable c, which is the number

of dialed digits so far, is nine, and the environmental input

dial(d) is received, i.e., the caller dials the last digit of a

phone number. We choose the SYNTACTIC concurrency and

the MANY concurrency semantics. If we choose the PRE-

EMPTIVE option, the system may abort the dialing process by

executing h{t}i, and not h{t1}i. But if we choose the NON-

PREEMPTIVE option, then the call would go through by

executing h{t1, t}i. (The execution of small step h{t1, t}i
involves exiting the And control state Dialing and reen-

tering the default control state of its children Dialer and

Redialer. The destination configuration of the small step is

Max.)

3.3 Event lifeline

A generated event of a transition is broadcast to all parts of

a model. An event’s status, which is either present or

absent, can be sensed by the event trigger of a transition.

The event lifeline semantics of a BSML specifies the

snapshots of a big step in which a generated event can be

sensed as present. Table 3 shows the five event lifeline

semantics: (1) in the PRESENT IN WHOLE option, a generated

event is present throughout its big step, from the beginning

of its big step; (2) in the PRESENT IN REMAINDER option, a

generated event is present in the snapshot after it is gen-

erated and persists until the end of its big step; (3) in the

PRESENT IN NEXT COMBO STEP option, a generated event is

present only during the next combo step; (4) in the PRESENT

IN NEXT SMALL STEP option, a generated event is present

only in the next snapshot; and (5) in the PRESENT IN SAME

option, a generated event is present only during the small

step in which it is generated (instantaneous communica-

tion). Figure 13 depicts the event lifeline of the event e

generated in small step T2, according to the different event

lifeline semantics. Each name of an event lifeline

Fig. 12 Interrupting transitions
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semantics is followed by a line that depicts the extent of the

big step in which e is present, according to that semantics.

The PRESENT IN WHOLE semantic option supports the

‘‘perfect synchrony hypothesis’’ [4, 33]. If we consider a

big step as the reaction of a synchronous circuit during a

‘‘tick’’ of the clock, the semantics of the perfect synchrony

hypothesis is similar to the signal rules of synchronous

hardware. In synchronous hardware, a signal is either

present or absent during a tick of a clock, but not both. The

PRESENT IN SAME semantic option is different from the other

semantic options in that the generated events of a small

step cannot affect the enabledness of another small step,

making the small steps of a big step independent of one

another. The PRESENT IN SAME semantic option is inspired

by the semantics of synchronization and rendezvous in

process algebras [15, 24, 36].

Implicit events: Some BSMLs use implicit events in

their syntax, which represent events that are generated in

response to a certain property of the computation of a

model. For example, the implicit event entered(s) [41] is

generated when control state s is entered, and implicit

event @T(cond) [22, 23] is generated when the value of

boolean expression cond changes from false to true.

Implicit events may or may not have the same semantics as

the event lifeline semantics of named events.

Causality: A big step is causal if its small steps can be

sequenced as: T1, T2, …, Tn, such that any event that

triggers a transition in small step Ti (1 B i B n) must be

generated by some earlier small step in T1, T2, …, Ti-1. To

a modeller, the transitions of a non-causal big step may

seem counterintuitive and execute out of the blue. The

PRESENT IN WHOLE and the PRESENT IN SAME semantic

options can create non-causal big steps. To avoid non-

causal big steps, some BSMLs that use the WHOLE event

lifeline semantics introduce a notion of a ‘‘correct’’ model,

which never creates a non-causal big step [6, 7, 47].

Analysis tools can be used to detect ‘‘incorrect’’ models,

conservatively, and reject them at compile time [7, 16]. But

if a BSML supports variables, the detection of incorrect

models is undecidable [16].

Orderedness: The PRESENT IN REMAINDER semantics

lacks a ‘‘rigorous causal ordering’’ [30]: if event e1 is

generated earlier than event e2, it need not be the case that

transitions triggered by e1 are executed earlier than tran-

sitions triggered by e2. The PRESENT IN NEXT COMBO STEP

semantics was devised to alleviate this problem by having a

‘‘rigorous causal ordering’’ between combo steps, while

being insensitive to the order of event generation within a

Table 3 Event lifeline semantics

Options Definition Characteristics Examples

PRESENT IN WHOLE A generated event in a big step is

assumed to be present throughout

the big step

(?) Modularity Argos [33] and Esterel [6]

(?) Global consistency

(-) Non-causality

(-) Counterintuitive behaviour

PRESENT IN REMAINDER A generated event in a big step is

sensed as present after it is

generated

(?) Causality Statecharts [21, 42]

(-) Unorderedness

(-) Global inconsistency

PRESENT IN NEXT COMBO STEP A generated event can be sensed as

present only in the next combo

step after it is generated.

(?) Causality Statemate [19] and RSML [30]

(?) Partial orderedness

(-) Multiple-instance events

PRESENT IN NEXT SMALL STEP A generated event can be sensed as

present only in the next small

step after it is generated

(?) Causality Statecharts [10]

(?) Orderedness

(-) Multiple-instance events

PRESENT IN SAME A generated event can be sensed as

present only in the same small

step it is generated in

(?) Instantaneous communication Used in [37]

(-) Non-causality

(-) Multiple-instance events

Fig. 13 The event lifeline of the generated event e according to

different event lifeline semantic options
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combo step [19, 30]. A disadvantage of the PRESENT IN

NEXT COMBO STEP semantics is that a modeller needs to

keep track of the scope of a combo step in order to consider

its generated events all at once in the next combo step. The

PRESENT IN NEXT SMALL STEP semantics is ordered: a tran-

sition triggered by an internal event e can be executed only

if e is generated by a transition in the previous small step.

Modularity: The PRESENT IN WHOLE option is ‘‘modu-

lar’’ [26] with respect to events: an event generated during

a big step can be conceptually considered the same as an

environmental input event because it is present from the

beginning of the big step. All other event lifeline semantics

are non-modular. In a non-modular event lifeline seman-

tics, concurrent parts of a model cannot play the role of the

environment for each other, because extensions of the

model may change the behaviour in different ways than

the environment does. As a result, a model cannot be

constructed incrementally.

Multiple-instance events: An instance of an event in a

big step is a contiguous segment of the snapshots of a big

step where the event is present. In the PRESENT IN NEXT

COMBO STEP, PRESENT IN NEXT SMALL STEP, and PRESENT IN

SAME event lifeline semantics, multiple instances of the

same event, generated by different small steps, may exist in

the same big step. Thus, the status of an event can change

multiple times in a big step, making it complicated for a

modeller to determine whether an event is present in a

certain snapshot of a big step, or not.

Global inconsistency: When negated events are inclu-

ded in the BSML syntax, the PRESENT IN REMAINDER

semantic option can produce ‘‘globally inconsistent’’ big

steps [41, 42]. A big step is globally inconsistent if it

includes a transition that generates an event and a transition

triggered by the absence of that event. A globally incon-

sistent big step is undesired because an event is sensed both

as absent and as present in the same big step. The PRESENT

IN REMAINDER semantic option can achieve a variation of

the original global consistency semantics [41, 42], by not

taking a transition that generates an event that was sensed

as absent earlier in the big step [32]. The global inconsis-

tency problem is not relevant to other semantic options

because the PRESENT IN REMAINDER semantic option is the

only semantic option that allows maximum one instance of

an event in a big step and yet permits the aforementioned

inconsistency. The other lifeline semantics that permit

multiple instances of an event in the same big step are

globally inconsistent, but by design.

Global consistency vs. causality: Figure 14 shows the

relationship between the big steps of the PRESENT IN

REMAINDER semantics and the PRESENT IN WHOLE semantics.

A big step T that is included according to a globally

consistent PRESENT IN REMAINDER semantics can also be

included by a PRESENT IN WHOLE semantics because T’s

generated events, by the definition of global consistency,

can be assumed to be present from the beginning of the big

step. Conversely, a big step T0 that is included by a causal

PRESENT IN WHOLE semantics can also be included by a

PRESENT IN REMAINDER semantics because, by the definition

of causality, an event is sensed as present by a transition of

T0 only if it is already generated in the big step. Therefore,

if global consistency is guaranteed syntactically (e.g., there

are no negated event triggers), then the set of big steps in

the PRESENT IN REMAINDER semantics is a subset of the big

steps of the PRESENT IN WHOLE semantics.

Events with parameters: An event can have a value

parameter, as in Esterel [6].5 For an event with a value

parameter, the value of its parameter is determined per

instance of the event. When an event instance is generated

by more than one transition, the value of its parameter is

determined by a ‘‘combine function’’ [6]. A combine

function is a commutative, associative function, such as

addition, that ‘‘combines’’ the different values of the

parameter of an event that are generated by a set of tran-

sitions. In the PRESENT IN REMAINDER, PRESENT IN NEXT

COMBO STEP, PRESENT IN NEXT SMALL STEP, and PRESENT IN

SAME semantics, a combine function combines the values

of the parameter of an event generated by transitions in the

previous and current small steps, previous combo step,

previous small step, and current small step, respectively. In

the PRESENT IN WHOLE option, the value of the parameter of

an event instance is fixed during a big step and is deter-

mined by combining all of the values of the parameter of

the event generated during the big step.

Example 6 In Example 2, when considering the TAKE ONE

big-step maximality semantics, the semantics that sub-

scribes to the PRESENT IN WHOLE, PRESENT IN REMAINDER, or

PRESENT IN NEXT SMALL STEP event lifeline semantics all

yield the expected behaviour. If the TAKE ONE big-step

maximality semantics, the MANY concurrency semantics,

the ARENA ORTHOGONAL small-step consistency semantics,

Fig. 14 Global consistency vs. causality

5 In Esterel [1], the value parameter of an event can be of type array,

which means that, in effect, an event can have more than one value

parameter, each of which being an element of a single array.
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the PREEMPTIVE preemption semantics (or the NON-PREEMP-

TIVE preemption semantics) are chosen, then the PRESENT IN

SAME semantics also yields the expected behaviour.

Example 7 The model in Fig. 1 is an extension of the

model in Fig. 7 to support a ‘‘redial’’ functionality. Vari-

able lp stores the last dialed phone number. Upon receiving

the redial environmental input event, Redialer instructs

Dialer, by generating the corresponding dial events, to dial

the digits of lp. (We denote the size of an integer x as |x|

and its nth digit as digit(x,n).) Variable p is necessary

because once redialling starts lp is overwritten. Consider

the snapshot where the environmental input event redial is

received, c is zero, and |lp| is 10. The environmental input

event redial persists throughout the big step. A semantics

that follows the SYNTACTIC big-step maximality semantics

(annotating a stable control state with a ), the MANY

concurrency semantics, the ARENA ORTHOGONAL small-step

consistency semantics, the PREEMPTIVE preemption seman-

tics, the PRESENT IN NEXT SMALL STEP event lifeline

semantics, and uses the up-to-date values of variables, can

produce the big step ht5, {t2, t6}, {t3, t6}, …, {t3, t6},

{t4, t7}i, which transmits the first digit twice and does not

transmit the last digit. If we choose the PRESENT IN SAME

event lifeline semantics, the model produces the correct big

step h{t5, t2}, {t3, t6}, …, {t4, t7}i. In both cases, if the size

of the redialled number is less than 10, the model cannot

stabilize and remains in DialDigits control state.

Example 8 The model in Fig. 15 is a simple model of a

cruise control system of a car. The system regulates the

amount of power transmitted to the wheels of the car by

adjusting the amount of gas that is provided to the

engine, in order to maintain the speed specified by the

cruise control system. If the cruise control system is on,

de-acceleration does not have any effect on the amount of

gas that is provided to the engine. But if the cruise

control system is on and the acceleration event is

received, then the cruise control system is turned off, and

acceleration is processed as usual. The two Or control

states of the And control state FuelControl process the

cruise control and acceleration/de-acceleration function-

alities, respectively. The environmental input events

cruise_on and cruise_off turn the cruise control system on

and off, respectively. The environmental input events

accel and deaccel specify whether the accelerator is

being pressed or de-pressed, respectively. The boolean

environmental input variables over_speed and under_-

speed specify whether the vehicle is moving faster or

slower, respectively, than the target speed set by the

cruise control system. Events increase_gas and decrea-

se_gas slightly increase and decrease the amount of fuel

into the engine, respectively.

Consider the moment when the cruise control system is

on, the system is slightly over speed, and the accelerator is

pressed; i.e., when the system resides in control state On,

over_speed = true, and accel is received from the envi-

ronment. We choose the TAKE ONE big-step maximality

semantics and the SINGLE concurrency semantics. If we

choose the PRESENT IN WHOLE semantic option, then the

only possible big step consists of {t6} and {t2}, which

results in the desired behaviour for the system. If we

choose the PRESENT IN REMAINDER semantic option, then

additionally h{t5}, {t6}i is a valid big step, which both

decreases and increases the amount of gas to the engine.

The latter big step is globally inconsistent, because

increase_gas is sensed as absent by t5 and is generated

by t6. If the variation of global consistency semantics in

[32] is chosen, then h{t5}i is a valid big step; t6 cannot be

taken during the big step since it generates increase_gas.

3.3.1 External events

The model in Fig. 1 uses event dial in two different ways:

(a) as an environmental input event initiated by a human

Fig. 15 Speed control system

for a car
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caller and (b) as an internal event generated by the Redi-

aler. To avoid modelling flaws, many have advocated that

the interface of a system with its environment should be

clearly and explicitly specified [39, 50]. A celebrated way

to achieve this interface, as shown in Fig. 16, is to distin-

guish between the events that the environment can control,

environmental input events, and the events that are gener-

ated by the model, controlled events. A controlled event

may be observable by the environment (i.e., an environ-

mental output event), or not (i.e., an internal event). The

environmental input and output events of a model together

constitute the external events of the model.

A BSML may choose distinct event lifeline options for

environmental input events, environmental output events,

and internal events, as shown in the feature diagram of

Fig. 5. Often, the event lifeline semantics of the environ-

mental input events is the PRESENT IN WHOLE semantics, and

the event lifeline semantics of the environmental output

events is the same as the event lifeline semantics of the

internal events.

A BSML may syntactically distinguish environmental

input events and environmental output events from each

other, and from internal events. Alternatively, we call a

BSML non-distinguishing if it does not distinguish syn-

tactically between the external events and the internal

events of a model. In these BSMLs, it is still possible to

consider inputs received at the beginning of the big step as

environmental inputs, and outputs generated in the last

small step or last combo step of a big step as environmental

outputs, each with distinct event lifeline choices. Table 4

lists the possible semantic options for differentiating

environmental input events and internal events. In the

SYNTACTIC INPUT EVENTS option, an environmental input

event is syntactically distinguished. Thus, a BSML that

subscribes to this option is a ‘‘distinguishing’’ BSML. In

the RECEIVED EVENTS AS ENVIRONMENTAL option, an event

that is received at the beginning of a big step is considered

an environmental input event. In the HYBRID INPUT EVENTS

option, an event that is received at the beginning of a big

step is considered an environmental input event only if it is

a genuine input of a model, meaning it is not generated by

any transitions in the model. As shown in Fig. 5, an event

lifeline semantics for the environmental input events can be

chosen, regardless of the choice of the semantic option for

distinguishing the input events. For example, if the

semantics for environmental inputs is the RECEIVED EVENTS

AS ENVIRONMENTAL semantic option together with the

PRESENT IN NEXT SMALL STEP semantic option, then an input

event that is received at the beginning of a big step persists

only for the first small step of the big step. Environmental

output events have similar options; events generated in

either the last small step or last combo step of a big step

could be considered as environmental output events.

Example 9 In Example 7, we assumed the non-distin-

guishing semantics for the model in Fig. 1 because event dial

can be both received from the environment and generated,

possibly in the same big step. Event redial is a genuine input.

Both the RECEIVED EVENTS AS ENVIRONMENTAL and HYBRID

INPUT EVENTS semantic options, together with the PRESENT IN

WHOLE event lifeline semantics, yield a behaviour that

matches the behaviour specified in Example 7.

If we use the single-input assumption [22, 23], which

requires that dial and redial are not both received from the

environment in the same big step, then dial cannot be

received from the environment at the beginning of a big

step and generated in the same big step.

Fig. 16 A taxonomy for events

Table 4 Differentiating environmental input events from internal events

Options Definition Characteristics Examples

SYNTACTIC INPUT EVENTS Only syntactically distinguished

events are treated as

environmental inputs

(?) Separates system from environment Esterel [6]

(-) Usually different semantics for different

event types

RECEIVED EVENTS AS

ENVIRONMENTAL

Any event that is received from the

environment at the beginning of

a big step is treated as an

environmental input

(?) Treats input and internal events uniformly Statecharts [42] and

RSML [30](-) No boundary between system and

environment

HYBRID INPUT EVENTS Only genuine inputs that are

received from the environment at

the beginning of a big step are

treated as environmental inputs

(?) Distinguishes between internal and genuine

input events

N/A

(-) Complex
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3.3.2 Interface events

Some BSMLs structure a model as a set of components,

each of which is a CHTS. The components of a model

communicate with each other through their interface events

according to an inter-component communication mecha-

nism. Figure 17 refines the taxonomy of Fig. 16 by

including interface events as a subset of the controlled

events of a model. We require an interface event to be

generated by one component, which we call its sending

component. A component that accesses an interface event

is its receiving component. As such, the interface events of

a model are partitioned into sets, shown by dashed lines in

Fig. 17, each of which is generated by one component.

Table 5 lists the three possible inter-component com-

munication semantic options for interface events. In the

STRONG SYNCHRONOUS EVENT option, a generated interface

event is sensed as present throughout the big step in which it

is generated, from the beginning of the big step (similar to the

PRESENT IN WHOLE semantic option for internal events). In the

WEAK SYNCHRONOUS EVENT option, a generated interface

event is present in the big step in which it is generated, but

only after it is generated (similar to the PRESENT IN REMAINDER

semantic option for internal events). In the ASYNCHRONOUS

EVENT option, a generated interface event is present in the

next big step, from the beginning of the big step. The STRONG

SYNCHRONOUS EVENT and the WEAK SYNCHRONOUS EVENT

semantic options have similar advantages and disadvantages

as the PRESENT IN WHOLE and PRESENT IN REMAINDER semantic

options, respectively. The ASYNCHRONOUS EVENT semantic

option is unique in that a generated event in a big step can

influence the behaviour of the model in the next big step. This

semantics for interface events can potentially be a source of

complication for a modeller because it is at odds with the

semantics of other kinds of events in a semantics, i.e.,

internal events and environmental input/output events,

whose statuses cannot persist beyond a current big step. In

the ASYNCHRONOUS EVENT semantics, a generated interface

event in a big step acts similar to an environmental input

event in the next big step. As such, the ASYNCHRONOUS EVENT

semantics is modular with respect to interface events,

because an interface event, similar to an environmental input

event, is either present from the beginning of a big step or is

not present at all.

There are several BSMLs that support the notion of inter-

component event communication. The ‘‘hybrid semantics’’

of Huizing and Gerth [26], which distinguishes between

‘‘local’’ and ‘‘global’’ events, treats the ‘‘global’’ events of a

model according to the STRONG SYNCHRONOUS EVENT

semantic option. The semantics of ‘‘output’’ events in RSML

[30] follows the ASYNCHRONOUS EVENT semantics; an ‘‘out-

put’’ event is generated by a component via a ‘‘SEND’’

command, and can be received by a component via a

‘‘RECEIVE’’ event in the next big step. Similarly, the

semantics of ‘‘registered’’ events in Esterel [1] follows the

ASYNCHRONOUS EVENT semantics. In ‘‘globally asynchronous

locally synchronous (GALS)’’ languages [8, 44], the com-

munication of events within ‘‘local’’ components of a system

follows the semantics of the PRESENT IN WHOLE option, and

the ‘‘global’’ communication of events between components

follows the semantics of the ASYNCHRONOUS EVENT option.

Example 10 The model in Fig. 18 shows a door controller

system, which is responsible for unlocking the door to an

industrial area only if the temperature inside the area is not

above 40�C. The system has two components, Lock and

Thermometer, separated by the thick dashed line. The two

components communicate via two interface events,

check_temp and heat. There are three environmental input

Fig. 17 A taxonomy of events for inter-component communication

Table 5 Semantic options for interface events

Options Definition Characteristics Examples

STRONG SYNCHRONOUS

EVENT

A generated interface event of a

big step is sensed as present from

the beginning of the big step

(?) Modularity ‘‘Hybrid Semantics’’ [26]

(?) Unique status for an interface event

during a big step

(-) Non-causality

WEAK SYNCHRONOUS

EVENT

A generated interface event of a

big step is sensed as present in

the snapshot after it is generated

(?) Causality N/A

(-) Unclear status of an interface event

during a big step

ASYNCHRONOUS

EVENT

A generated interface event of a

big step is sensed as present in

the next big step after it is

generated

(?) Modularity ‘‘Output’’ events in RSML [30] and

‘‘GALS’’ [44](-) Previous big step affects current big

step
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events, lock, open, and reset. Event unlock is the envi-

ronmental output event of the model. Consider the snapshot

in which the model resides in its Idle and Measure control

states, temp = 99, and event open is received from the

environment. If we choose the TAKE MANY big-step maxi-

mality semantics, the SINGLE concurrency semantics, and

the STRONG SYNCHRONOUS EVENT semantic option, then the

big step h{t1}, {t6}, {t3}i is the only possible big step,

which, correctly, does not open the door. If we choose the

WEAK SYNCHRONOUS EVENT semantic option, then addi-

tionally, h{t1}, {t2}, {t6}i is a valid big step, which opens

the door although the temperature is 99�C. If we choose the

ASYNCHRONOUS EVENT semantic option, the only possible

big step is h{t1}, {t2}, {t6}i, in which event heat is sensed

in the next big step, after the door has already been opened.

3.4 Enabledness memory protocol

The enabledness memory protocol of a BSML determines

the values of variables that a transition reads for its guard

condition (GC). Table 6 shows the three possible memory

protocols: (a) in the GC BIG STEP option, a read of a var-

iable returns its value from the beginning of the big step;

(b) in the GC SMALL STEP option, a read of a variable

returns its value from the beginning of the small step; and

(c) in the GC COMBO STEP option, a read of a variable

returns its value from the beginning of the current combo

step.6 As such, in the GC BIG STEP, the GC SMALL STEP, and

the GC COMBO STEP semantics, the write of a value to a

variable, via an assignment, becomes the value returned by

a read of that variable in the next big step, next small step,

and next combo step, respectively. (Unless the write is

overwritten by other writes through race condition or the

assignments of subsequent transitions).

Traceability: In the GC BIG STEP semantics, the value

of a variable at a snapshot in a big step is obtained from the

beginning of the big step, but the assignments to the var-

iable need to be traced so that its value is updated for the

next big step. In the GC SMALL STEP semantics, the value of

a variable at a snapshot in a big step is determined by

tracing all of the assignments to the variable since the

beginning of the big step. In the GC COMBO STEP semantics,

the value of a variable at a snapshot in a big step is

determined by tracing all of the assignments from the

beginning of the current combo step. But a big step may

have several combo steps, which, compared to the other

memory protocols, could make the tracing of the value of a

variable complicated.

Modularity with respect to variables: In general, a

semantics is ‘‘modular’’ if it treats the behaviour of a new

concurrent part of the model the same as the behaviour of

the environment [26]. Originally, ‘‘modularity’’ was

defined with respect to events [26], but, in the same spirit,

we extend it for variables. The GC BIG STEP is modular

with respect to variables because even if a new concurrent

part of a model assigns new values to variables, the new

values are visible only at the beginning of the next big step,

just like new environmental values. The other semantic

options are not modular because the behaviour of an

addition to an existing model, unlike the environment,

affects the intermediate snapshots of a big step.

Non-interference vs. sequentiality in small steps: The

GC BIG STEP option is non-interfering: an earlier small step

of a big step does not affect the read value of a later small

step. The GC SMALL STEP option, which is an ‘‘interfering’’

semantics, is useful for specifying a sequence of compu-

tations where each small step reads the values from the

previous small step. The GC COMBO STEP option enjoys

non-interference inside a combo step and sequentiality of

combo steps. In the GC COMBO STEP option, a big step

could consist of multiple combo steps, which a modeller

needs to keep track of each of their scopes.

Variable operators: A BSML may provide a variable

operator that obtains a value of a variable that is different

from its value according to its memory protocol. Table 7 lists

some common operators and specifies whether they are total

or not. As specified in the table, each variable operator is

relevant to certain enabledness memory protocols. A non-

total operator may block until it can be evaluated.

Operator new is different from cur in that it can be

evaluated only if its operand has already been assigned a

Fig. 18 Door controller system: using interface events heat and

check_temp

6 As shown in Table 6, in SCR [22, 23], both the GC BIG STEP and

GC SMALL STEP memory protocols are used, but in different syntactic

constructs of the language, namely in the ‘‘event tables’’ and

‘‘condition tables’’, respectively.
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value during the big step, which means it requires a ‘‘da-

taflow’’ order for the execution of small steps within a big

step (cf., Sect. 3.6).

Operator new_small returns the value of its operand

at the end of the current small step. A variable in the GC of

a transition that is prefixed with the new_small operator

requires an evaluation order between the transitions of the

small step, in order to obtain the newly assigned value of

the variable at the end of the small step. If a variable is not

assigned a value during a small step, then its value when

prefixed with the new_small operator returns the value

of the variable at the source snapshot of the small step.7

Two transitions can create cyclic evaluation order by

using the new_small operator over variables that are

assigned values by one another.

Example 11 In Example 7, we used the GC SMALL STEP

enabledness memory protocol. If we use the semantic options

that led to an incorrect behaviour in that example, but modify

the guard condition of t6 to ‘‘[new_small(c) \ |p|]’’ and its

event generation to ‘‘dial(digit(new_small(c) ? 1,p))’’, then

the model behaves correctly: h{t5}, {t2, t6}, {t3, t6}, …, {t3},

{t4, t7}i.

The operators in Table 7 are not relevant to the GC

COMBO STEP memory protocol, but they can be extended to

be used in the context of GC COMBO STEP memory protocol.

For example, a version of cur operator for the GC COMBO

STEP semantic option would return the current value of a

variable considering all of the assignments to the variable

since the beginning of the current combo step. Similarly, a

new_small operator can be defined for the GC BIG STEP

memory protocol.

3.4.1 External variables

As with events, it is useful to distinguish syntactically

between the variables of the model that can be modified by

the environment and the variables of the model that can be

modified by the system [39, 50]. Figure 16, which depicts a

taxonomy of events, also represents the taxonomy for

distinguishing environmental variables. The environmental

output variables and environmental input variables of a

model are the sets of the variables of the model that can be

read from and written to by the environment, respectively.

The internal variables of a model are those variables that

are not communicated with environment.8 The union of the

Table 6 Enabledness memory protocols

Options Definition Characteristics Examples

GC BIG STEP The value of a variable during a

big step is obtained from the

beginning of the big step

(?) Non-interference Statecharts [21, 42], SCR [22, 23], and reactive

modules [3](?) Modularity

(-) Non-sequentiality in small

steps

GC SMALL

STEP

The value of a variable is its up-to-

date value, obtained from the

beginning of the small step

(?) Sequentiality in small steps Esterel [6] and SCR [22, 23]

(?) Straightforward traceability

(-) Interference

GC COMBO

STEP

The value of a variable during a

combo step is obtained from the

beginning of the combo step

(?) Some non-interference Statemate [19]

(?) Some sequentiality in small

steps

(-) Complicated traceability

Table 7 Variable operators

Operator Obtains value from Memory protocols Total

pre (e.g., [30]) Big-step source snapshot GC SMALL STEP 4

cur (e.g., [21]) Small-step source snapshot GC BIG STEP 4

new (e.g., [3]) Small-step source snapshot GC BIG STEP and GC SMALL STEP ·
new_small (e.g., [41]) Small-step destination snapshot GC SMALL STEP 4

7 It is possible to define a non-total new_small operator that

returns a value for a variable, only if it is assigned a value in the

current small step. Such an operator would be in the spirit of the

‘‘next’’ operator in SMV language [34], which is an input language

for a family of model checkers with the same name. However in the

semantics of SMV, unlike in BSMLs, even if a variable is not

assigned a value during a small step, it is assigned a non-deterministic

value, which, in effect, makes the ‘‘next’’ operator a total operator.

8 Internal variables are often called ‘‘private variables’’. We use the

term ‘‘internal variables’’ to keep the terminology of variables

consistent with that for events.
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set of environmental input variables and the set of envi-

ronmental output variables of a model is its set of external

variables. The union of the set of environmental output

variables and the set of internal variables of a model is its

set of controlled variables, which is the set of variables that

can be written to by the system. Many modelling lan-

guages, including some BSMLs, provide syntax to distin-

guish between different types of variables [3, 22, 23, 39].

Unlike for events, the notion of ‘‘non-distinguishing

BSMLs’’ (cf., Sect. 3.3.1) is not relevant with respect to

variables, because most BSMLs either syntactically dis-

tinguish between environmental input variables and con-

trolled variables, or they do not support the notion of

environmental input variables at all (i.e., variables are not

assigned values by the environment).

When external variables are distinct from the internal

variables, the memory protocol semantic aspects described

in Sects. 3.4 and 3.5 specify the semantics of internal

variables. The notion of memory protocol for environ-

mental input variables is not relevant because they are

never assigned a value by a transition; they keep the same

value throughout the big-step. Normally, an output variable

is not read by the model; therefore, we have not included

options for it in our feature diagram. If it is, the semantics

of environmental output variables can be any of the

memory protocols, but it would not likely be the GC BIG

STEP semantics.

3.4.2 Interface variables in GC

Some BSMLs allow a component of a model, which is

usually a physically distinct part of the model, to com-

municate with another component of the model via inter-

face variables. Figure 17, which depicts the taxonomy of

events including interface events, also illustrates the tax-

onomy of variables including interface variables. As for

interface events, we require the well-formedness constraint

that an interface variable can be written to by only one

component (the sending component), but can be ready by

multiple components (the receiving components). The

semantics of interface variables, similar to memory pro-

tocols for internal variables, specifies when a change to an

interface variable value becomes the value returned by a

read of that variable.

Table 8 lists the possible inter-component communica-

tion semantic options. In the GC STRONG SYNCHRONOUS

VARIABLE option, a write to an interface variable during a

big step can be read by the GC of a transition right from the

beginning of the same big step; i.e., if an interface variable

is assigned a value, only this new value is read during the

big step. In the GC WEAK SYNCHRONOUS VARIABLE option, a

write to an interface variable can be read after the variable

is written to, but the variable can also be read before it is

written to, in which case it returns its value from the pre-

vious big step (similar to the GC SMALL STEP semantic

option). In the GC ASYNCHRONOUS VARIABLE option, a write

to an interface variable can be read by the GC of any

transition in the next big step (similar to the GC BIG STEP

semantic option).

Blocking read vs. communication delay: The GC

STRONG SYNCHRONOUS VARIABLE semantics is compatible

with the ‘‘zero-time computation’’ principle of the syn-

chrony hypothesis [4, 6]: that is, the value of an interface

variable is exchanged between two components in ‘‘zero-

time’’. However, there should exist a ‘‘dataflow order’’ (cf.,

Sect. 3.6) between the small steps of a big step so that the

value of an interface variable is read only after it has been

assigned. A component that is waiting for the new value of

an interface variable is said to be blocking. It is possible for

two transitions to block cyclically on each other. In the GC

WEAK SYNCHRONOUS VARIABLE semantic option, a read

operation on a variable never blocks, but it may return a

stale value of the variable from the previous big step or a

newly assigned value from the current big step. In the GC

Table 8 Semantic options for interface variables

Options Definition Characteristics Examples

GC STRONG SYNCHRONOUS

VARIABLE

Either an interface variable is not

written to during a big step, or all

of its reads happen after it has

been written to and it returns the

newly assigned value

(?) Modularity Composition in reactive modules

[3](-) Blocking read and cyclic dataflow

order

GC WEAK SYNCHRONOUS

VARIABLE

An interface variable can be read

before or after it is written to; in

the latter case, it returns the

newly assigned value

(?) Non-blocking read N/A

(-) Stale values for interface variables

GC ASYNCHRONOUS VARIABLE The value written to an interface

variable during a big step can be

read in the next big step

(?) Non-blocking read ‘‘Output’’ variables in RSML

[30](?) Modularity

(-) Delayed read
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ASYNCHRONOUS VARIABLE semantic option, a read operation

on a variable never blocks, but there is a delay of one big

step between writing a new value to a variable and reading

the new value.

Modularity with respect to interface variables: The

GC STRONG SYNCHRONOUS VARIABLE and GC ASYNCHRONOUS

VARIABLE semantic options are modular with respect to

interface variables because the value of an interface vari-

able in these semantic is the same throughout the big step,

similar to an environmental input variable. In these two

semantics, the behaviour of a component that is added to an

existing model is perceived as that of environment, when it

comes to the interface variables in the GC of transitions of

the existing model. The GC WEAK SYNCHRONOUS VARIABLE

semantic option is not modular with respect to interface

variables because the value of an interface variable may

change during a big step, unlike the value of an environ-

mental input variable.

Example 12 The model in Fig. 19 is similar to the model

in Example 10, but has been modified: (a) to use the

interface variable heat, instead of interface event heat; and

(b) the functionality of Locking the door is separated from

the functionalities of the Controller of the lock and the

Thermometer, to allow for the lock to work with different

controllers.

Consider the snapshot where the model resides in its Idle,

Ready, and Measure control states, the door is closed,

temp = 99, heat = false, and event open is received from

the environment. We choose the SYNTACTIC big-step maxi-

mality semantics, the SINGLE concurrency semantics, the

PRESENT IN REMAINDER event lifeline semantics, the GC (and

RHS) SMALL STEP enabledness (assignment) memory proto-

cols, and the GC STRONG SYNCHRONOUS EVENT interface event

semantics. If we choose the GC STRONG SYNCHRONOUS

VARIABLE semantic option, then the big step h{t1}, {t6}, {t9},

{t8}, {t3}i is the only possible big step, which correctly does

not open the door. If we choose the GC WEAK SYNCHRONOUS

VARIABLE semantic option, then the big step h{t1}, {t6}, {t7},

{t9}, {t2}i is also possible, which opens the door although the

temperature is 99�C. Reversing the order of {t9} and {t2}

yields another big step that opens the door. If we choose the

GC ASYNCHRONOUS VARIABLE semantic option, then the true

value of heat is only sensed in the next big step, and thus the

door is opened.

3.5 Assignment memory protocol

The assignment memory protocol of a BSML determines

the values of variables that a transition reads when evalu-

ating the righthand side (RHS) of its assignment expres-

sions. Exactly the same semantic options as those of the

enabledness memory protocol are identified: RHS BIG STEP,

RHS SMALL STEP, and RHS COMBO STEP. (Their names are

prefixed with ‘‘RHS’’ instead of ‘‘GC’’.) The enabledness

and assignment memory protocols of a BSML need not be

the same (e.g., SCR [22, 23]).9 The same advantages and

disadvantages as the semantic options of the ‘‘enabledness

Fig. 19 Door controller

system: using interface variable

heat and interface event

check_temp

9 In SCR [22, 23], the RHS SMALL STEP assignment memory protocol

is used together with a combination of the GC BIG STEP and GC SMALL

STEP enabledness memory protocols.
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memory protocol’’, in Table 6, apply to the corresponding

semantic options of the ‘‘assignment memory protocol’’

semantic aspect.

Variable operators: The same four variable operators

listed in Table 7 can be used in the RHS of assignments.

However, when using the new_small operator in an

assignment expression, it may be impossible to find an

‘‘evaluation order’’. For example, for two assignments,

a :¼ new smallðbÞ � 1 and b :¼ new smallðaÞ þ 2;

which have a cyclic evaluation order, the value of a and b

cannot be evaluated.

Example 13 The model in Fig. 20, which is adopted from

an example in [25], is meant to specify a computation that

maintains the invariant of a - b remaining the same before

and after the execution of a big step. Consider the snapshot

where the model resides in its control states S1 and S4, a = 7,

and b = 2. We choose the SINGLE concurrency semantics. If

we choose the TAKE MANY big-step maximality semantics

together with the RHS BIG STEP assignment memory proto-

col, then the end result would be a = 21 and b = 16, which

maintains the value of a - b the same before and after the

big step. If we choose the RHS SMALL STEP semantic option,

then the model can create a big step that does not maintain the

invariant; for example, the execution of the big step h{t1},

{t2}, {t3}, {t4}i results in a = 75 and b = 18.

3.5.1 Interface variables in RHS

Similar to using interface variables in the GC of transitions,

as described in Sect. 3.4.2, interface variables can be used in

the RHS of assignments of the transitions of the different

components of a system. Exactly the same semantic options

as those for interface variables in GC of transitions can be

used for the semantics of interface variables in the RHS of

assignments, but their names prefixed with ‘‘RHS’’ instead of

‘‘GC’’: RHS STRONG SYNCHRONOUS VARIABLE, RHS WEAK

SYNCHRONOUS VARIABLE, and RHS ASYNCHRONOUS VARIABLE.

The interface variables in GC semantics of a BSML need not

be the same as its interface variables in RHS semantics.

Similar to the GC STRONG SYNCHRONOUS VARIABLE option, a

cyclic dataflow order might arise when the RHS STRONG

SYNCHRONOUS VARIABLE semantic option is chosen. The same

advantages and disadvantages as the ones for the semantic

options of the inter-component variable communication, in

Table 8, are relevant for the corresponding semantic options

of the interface variables in RHS semantic aspect.

3.6 Order of small steps

At a snapshot, when it is possible to execute more than one

small step based on the enabledness of transitions with

respect to guard conditions and event triggers, some

BSMLs non-deterministically execute one (the NONE

option), while others order their executions either by syn-

tactic means (the EXPLICIT ORDERING option) or by dataflow

orders (the DATAFLOW option), as shown in Table 9.

Stateflow is an example of the EXPLICIT ORDERING option

because the transitions of a model are executed according

to the graphical, clockwise order of their arenas [9]. A

dataflow order allows only those sequences of the execu-

tion of small-steps where a transition that writes to a var-

iable is executed before transitions that read the variable.

The dataflow order of a model can be specified by an

explicit partial order between its variables (e.g., SCR [22,

23]), or via variable operator new, as described in Sect.

3.4, to determine data dependencies (e.g., reactive modules

[3]). In the statecharts semantics of Pnueli and Shalev [42],

the boolean operator assigned is used in the event

trigger of a transition to determine whether a variable is

assigned a value during a big step or not, which in effect

induces dataflow order between small steps of the big

step.10 The EXPLICIT ORDERING and DATAFLOW options can

be used to avert undesired non-determinism by disallowing

the execution of the small steps that do not satisfy the

ordering constraints. In the DATAFLOW semantic option,

each big step of a model might have a different dataflow

order. The EXPLICIT ORDERING option can be difficult to use

because a modeller may introduce an unintended order of

transitions. The DATAFLOW semantics can be difficult to use

because a modeller might create a cyclic dataflow order,

either directly or by transitivity. The DATAFLOW semantics

is compatible with the domain of some synchronous

hardware systems where there is an inherent distinction

Fig. 20 A model for maintaining an invariant between a and b

10 The GC STRONG SYNCHRONOUS VARIABLE and RHS STRONG

SYNCHRONOUS VARIABLE semantic options for interface variables,

described in Sects. 3.4.2 and 3.5.1, respectively, can also introduce

dataflow orders.
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between the value of a variable at the beginning of a big

step, i.e., when the clock ticks, and during a big step when

a value might be assigned to a variable.

Example 14 Consider the semantic options in Example 7

that lead to an incorrect behaviour. One way to fix the

incorrect behaviour is to modify the model by moving the

‘‘p : = lp’’ assignment from t5 to t2, changing the GC of t6 to

‘‘c \ |new(p)| - 1’’, and its event generation to ‘‘dial

(digit(new_small(c) ? 1,p))’’. Such a model then behaves

correctly: h{t5}, {t2}, {t6}, {t3, t6}, …, {t3}, {t4, t7}i,
because the dataflow order does not allow t2 and t6 to be

executed together.

Example 15 In Example 7, we chose the MANY concur-

rency semantics and the PRESENT IN NEXT SMALL STEP event

lifeline semantics, which lead to an incorrect behaviour. If

we choose the SINGLE concurrency semantics, then the

model can create both a correct big step and an incorrect,

non-terminating big step (e.g., h{t5}, {t2}, {t6}, {t6}, …i),
non-deterministically. However, if we use the EXPLICIT

ORDERING order of small-steps semantics according to the

graphical, clockwise order of the arena of transitions, then

the model always behaves correctly: h{t5}, {t2}, {t6}, {t3},

{t6}, {t3}, …, {t7}, {t4}i.

3.7 Priority

At a snapshot of a model, there could exist multiple sets of

transitions that can be chosen non-deterministically to be

executed as its small step. Table 10 shows three common

ways for assigning a priority to a transition to avert non-

determinism. A set of transitions T1 has a higher priority

than a set of transitions T2, if for each pair of transitions

t1 [ T1 and t2 [ T2, either t1 has a higher priority than t2 or

they is not comparable priority wise.

The HIERARCHICAL option is a set of priority semantics

that use the hierarchical structure of the control states of a

model to compare the relative priority of two enabled

transitions. A HIERARCHICAL priority semantics is defined by

its basis, which is one of the three values, SOURCE, DESTI-

NATION, ARENA, and its scheme, which is either PARENT or

CHILD. For example, ARENA-PARENT is a priority semantics

that gives a higher priority to a transition whose arena is the

highest in the hierarchy of a composition tree. The EXPLICIT

PRIORITY priority option explicitly assigns priority to the

transitions of a model (e.g., by assigning numbers to

transitions and giving a greater number a higher priority

[37]). The NEGATION OF TRIGGERS option is not an inde-

pendent way to assign priority, but uses the notion of

Table 9 Order of small steps semantic options

Options Definition Characteristics Examples

NONE Small steps are not ordered (?) Simplicity Statecharts [17, 21]

(-) Non-determinism

EXPLICIT

ORDERING

Execution of small steps is ordered

syntactically

(?) Control over ordering Stateflow [9]

(?) Control over non-determinism

(-) Possible unintended ordering

DATAFLOW Small steps are ordered so that an

assignment to a variable happens

before it is being read

(?) Natural for some domains SCR [42], reactive modules [6], and statecharts [33]

(-) Control over non-determinism

(-) Possible cyclic orders

Table 10 Priority semantic options

Options Definition Characteristics Examples

HIERARCHICAL The source and destination control

states of transitions determine

priority

(?) Simplicity ARENA-PARENT in Statemate [19] and SOURCE-CHILD in

Rhapsody [18]

(-) Incomplete

prioritization

EXPLICIT PRIORITY Each transition is given an explicit,

relative priority

(?) Exhaustive

prioritization

Used in [37]

(-) Tedious to use

NEGATION OF

TRIGGERS

A transition is given higher

priority than another by

strengthening the event trigger

and GC of the second transition

such that is not enabled when the

first transition is enabled

(?) Exhaustive

prioritization

Statecharts [42], Esterel [6], and Argos [33]

(?) No additional syntax

(-) Tedious to use
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‘‘negation’’ to assign priorities: t1 can be assigned a higher

priority than t2 by conjoining the negation of the event

trigger and guard condition of t2 with the ones of t1.

Exhaustiveness vs. simplicity: The HIERARCHICAL

option can be easily understood by a modeller, but may

render many transitions as priority incomparable. The

EXPLICIT PRIORITY option provides great control over spec-

ifying the relative priority of a set of transitions, but can be

tedious to use (e.g., a wrong relative priority for a pair of

transitions can be deduced transitively). In the NEGATION OF

TRIGGERS and EXPLICIT PRIORITY options, it can be difficult

to identify the pair of transitions where it is necessary to

assign a relative priority because whether two transitions

are both enabled or not in a small step depends on the

source snapshot. But in principle, it is possible to specify

a priority scheme for a model exhaustively.

Combination of priority semantics: It is possible to use

more than one priority semantics in the semantics of a

BSML, as shown in the feature diagram in Fig. 5. In such a

BSML, if a pair of transitions are not comparable according

to the first priority semantics, then it is compared according

to the second semantics, and so on. By the definition of

enabledness, if the NEGATION OF TRIGGERS is used in a BSML,

its semantics overrides the other priority semantics.

Example 16 In Example 5, if we choose the SINGLE

concurrency and the ARENA-CHILD priority semantics, then

the model always executes h{t1}i as its big step, allowing

the call to go through.

Example 17 In the model in Fig. 1, t2 is assigned a higher

priority than t1 by conjoining the original event trigger of

t1, dial(d), with the negation of the event trigger of

t2; dialðdÞ ^ redial; resulting in t1 having the event trigger

dialðdÞ ^ :redial: The effect is that t2 will be chosen when

the redial event occurs instead of t1.

Example 18 In Example 10, if transition t6 is given a

higher priority than t2 explicitly, then the choice of the

WEAK SYNCHRONOUS EVENT semantic option always yields a

correct behaviour (i.e., the door is not opened when the

temperature is above 40�C). Similarly, in Example 12, if

transition t9 is given a higher priority than t7 explicitly,

then the choice of the WEAK SYNCHRONOUS VARIABLE

semantic option always yields a correct behaviour.

3.8 Combo-step maximality

The combo-step maximality semantics specifies the extent of

a contiguous segment of a big step where computation is

carried out based on the statuses of events and/or values of

the variables at the beginning of the segment. As specified in

Fig. 6, the combo-step maximality semantics is relevant to a

BSML semantics only if at least one of the combo-step

semantic options, namely, PRESENT IN NEXT COMBO STEP, GC

COMBO STEP, or RHS COMBO STEP, is chosen in the semantics.

These options describe how the statuses of events and values

of variables change (or not) within a combo step. For

example, if a BSML uses the PRESENT IN NEXT COMBO STEP

and GC COMBO STEP options, then during a combo step (other

than the first combo step of the big step) the statuses of events

depend on the generated events of the previous combo step,

and the values of variables in GC of transitions depend on the

assignments performed in the previous combo step.

Table 11 shows the three semantic options for the

combo-step maximality semantic aspect. These options

are similar to the three semantic options for the big-step

maximality semantics, but specify the scope of a combo

step, instead of a big step. In the COMBO SYNTACTIC option,

a BSML allows a modeller to designate a basic control

state of a model as a combo stable control state. During a

combo step, once a transition t that enters a combo stable

control state is executed, no other transition whose arena

overlaps with the arena of t can be taken during that

combo step. In the COMBO TAKE ONE option, once a

transition t is executed during a combo step, no other

transition whose arena overlaps with the arena of t can be

executed during that combo step. As such, each Or con-

trol state can contribute a maximum of one transition to a

Table 11 Combo-step maximality semantic options

Options Definition Characteristics Examples

COMBO SYNTACTIC No two transitions with

overlapping arenas that enter

designated ‘‘combo stable’’

control states can be taken in a

same combo step

(?) Syntactical scope for combo steps N/A

(?) Sequential Or transitions in a combo step

(-) Non-terminating combo steps

COMBO TAKE ONE No two transitions with

overlapping arenas can be taken

in a same combo step

(?) Terminating combo steps RSML [30] and Statemate [19]

(?) Unclear, non-syntactical scope for combo steps

COMBO TAKE MANY No constraint on transitions that

can be taken in a combo step

(?) Sequential Or transitions in a combo step N/A

(-) Unclear, non-syntactical scope for combo steps

(-) Non-terminating combo steps
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combo step. The COMBO TAKE MANY option allows a

sequence of small steps to continue executing until there

are no more enabled transitions to be executed. In prac-

tice, we are only aware of BSMLs that use the COMBO

TAKE ONE option for the combo step maximality seman-

tics and the TAKE MANY option for the big-step maxi-

mality semantics (e.g., RSML [30] and Statemate [19]).

As specified in Fig. 6, the COMBO TAKE MANY combo-step

maximality semantics cannot be chosen together with the

TAKE ONE big-step maximality semantics, because a

combo step cannot include more small steps than its big

step. The same advantages and disadvantages as the ones

for the semantic options of the big-step maximality

semantic aspect are relevant to the corresponding

semantic options of the combo-step maximality semantic

aspect.

Scope of a combo step: In the COMBO SYNTACTIC

semantic option, the end of a combo step can be traced

syntactically, which can be helpful for constructing and

understanding a model. The scope of a combo step when

the COMBO TAKE ONE or the COMBO TAKE MANY is chosen is

more difficult to determine. For example, if the COMBO

TAKE MANY combo-step maximality semantics, along with

the PRESENT IN NEXT COMBO STEP and GC COMBO STEP

semantic options, are chosen, then a combo step of a big

step continues until there are no more transitions that are

enabled with respect to the generated events and the

assignments of the previous combo step. In such a

semantics, it is far from clear what the possible combo

steps, and thus big steps, of a model are, based on mere

review of the syntax of the model.

Example 19 The model in Fig. 21 is meant to swap the

values of variables a and b twice during a big step,

maintaining their original values. We choose the COMBO

TAKE ONE option for the combo step maximality

semantics, the TAKE MANY option for the big-step maxi-

mality semantics, the SINGLE concurrency semantics, and

the semantics that the statuses of events and the values of

variables are fixed during a combo step (i.e., the RHS

COMBO STEP and the PRESENT IN NEXT COMBO STEP

semantic options). Upon receiving the environmental

input event swap_twice, the model executes transitions t1
and t2, at which point the first combo step concludes. The

second combo step starts by first considering the effects

of the transitions of the first combo step, i.e., the effect

of swapping the values of a and b and the effect of

generating events swap_a and swap_b, and then execut-

ing transitions t3 and t4. At the end of the second combo

step the big step concludes and the values of a and b are

the same as their values at the beginning of the big step.

If the effect of the assignments of the transitions is not

hidden from one another during a combo step, the correct

behaviour cannot be achieved. For example, depending

on whether t1 or t2 is executed first, both a and b are

assigned the initial value of b or a, respectively.11

Example 20 The model in Fig. 22 shows a simple model

of a system that controls the operation of a chemical

plant.12 The operation of the plant relies on two chemical

substances A and B. There are two processes, shown as two

Or control states Process_1 and Process_2, which can

independently increase the amounts of substances A and B

by one unit or two units, respectively. The two processes

may simultaneously request for an increase; i.e., environ-

mental input events inc_one and inc_two might be received

at the same big step. Variables a and b represent the

amount of requested increase for substance A and sub-

stance B, respectively. Environmental output event

start_process(a,b) instructs a physical component of the

plant to increase the amounts of substance A and B, by

amounts a and b, respectively. Internal event process is

meant to instruct the Controller to increase the amounts of

the substances. Environmental input event end_process

signifies that the requested amounts of the substances have

been successfully increased by the physical component of

Fig. 21 Swapping a and b twice, using combo steps

11 As pointed out by one of our reviewers, choosing the TAKE MANY

big-step maximality semantics, the MANY concurrency semantics, the

PRESENT IN NEXT COMBO STEP event lifeline semantics (or the PRESENT

IN REMAINDER event lifeline semantics), and the RHS SMALL STEP

assignment memory protocol, also yields the correct behaviour. While

such an equivalence of behaviours holds for some models, it does not

always hold. For example, if there is a possibility for race conditions

(e.g., in Example 20) or if it is important whether a model can reach

certain configuration of control states or not, then it is not possible to

replace the SINGLE concurrency semantics with the MANY concurrency

semantics.
12 This example is inspired by the motivating example in [2], where

sequence diagrams are used for modelling an aspect of the operation

of a nuclear power plant.

260 Requirements Eng (2010) 15:235–265

123



the plant, at which point the system can process new

requests.

Consider the snapshot where the model resides in its

default control states, inc_one and inc_two are received, and

a and b are zero. The correct behaviour is to increase the

amount of A and B by three units. We choose the COMBO TAKE

ONE option for the combo step maximality semantics, the

TAKE ONE option for the big-step maximality semantics, and

the SINGLE concurrency semantics. The only pair of semantic

options that yields a correct behaviour is, the PRESENT IN NEXT

COMBO STEP for the event lifeline semantics and the RHS

SMALL STEP semantic option for the assignment memory

protocol semantics, which produce the following two correct

big steps: h{t1}, {t3}, {t5}i and h{t3}, {t1}, {t5}i. If, for

example, we choose the PRESENT IN NEXT COMBO STEP event

lifeline semantics together with the RHS COMBO STEP

assignment memory protocol, the same big steps as before

are produced, but the former big step increases the amounts

of A and B by two units only, where as the latter big step

increases the amounts of A and B by one unit only. If we

choose the PRESENT IN REMAINDER event lifeline semantics

together with the RHS SMALL STEP assignment memory

protocol, which means that we do not need to choose any

semantic option for the combo-step maximality semantic

aspect, the additional big step h{t1}, {t5}, {t3}i is possible,

which ignores the increase requested by Process_2.

Example 21 In Example 6, we described some possible

semantics to make the counter in Example 2 to behave

correctly. Another possible semantics is a semantics that

subscribes to the COMBO TAKE ONE combo-step maximality

semantics, the TAKE ONE big-step maximality semantics,

the SINGLE concurrency semantics, and the PRESENT IN NEXT

COMBO STEP event lifeline semantics.

Example 22 Another way to maintain the invariant in

Example 13 is to choose the COMBO TAKE ONE combo-step

maximality semantics, the TAKE MANY big-step maximality

semantics, and the RHS COMBO STEP assignment memory

protocol. The execution of the first combo step, {t1}, {t3},

results in a = 9 and b = 4, and the execution of the second

combo step, {t2}, {t4}, results in a = 27 and b = 22. The

order of the execution of {t1} and {t3}, and, {t2} and {t4},

does not affect the end result. If we choose the COMBO TAKE

MANY combo-step maximality semantics, then the invariant

would be maintained, but the big step concludes with

a = 21 and b = 16;

3.9 Summary of semantics and notations

In our framework, a BSML is described by, first,

describing how its syntax can be translated to our normal-

form syntax, and then, enumerating its choice of semantic

options. The syntactic translation to our normal-form

syntax is straightforward for most BSMLs, as briefly

discussed in Sect. 2.3. In the light of our semantic

deconstruction, the specification of the semantics of a

BSML is also straightforward. Table 12 shows the spec-

ification of the semantics of some of the BSMLs that we

have considered throughout the paper. For the sake of

brevity, we have not included the External Output Events

semantic aspect. Also, we have merged some aspects

(e.g., the Enabledness Memory Protocol for Internal

Variables in GC merged with Internal Variables in RHS

semantic aspects).

4 Semantic side effects

In this section, we describe the side effects that arise when

a group of semantic options are chosen together and

explain ways to avoid them. The choice of a group of

semantic options has a ‘‘side effect’’ when it causes a

Fig. 22 Controlling the

operation of a chemical plant
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semantic complication that is not due to the original design

of any of the semantic options. A side effect can sometimes

be tolerated because the benefit of having a set of semantic

options in a BSML outweighs their caused complication.

Complicated event lifeline semantics: To achieve an

uncomplicated semantics when choosing the PRESENT IN

WHOLE event lifeline semantics, it is recommended to

choose the TAKE ONE big-step maximality semantics also,

as done in Argos [33]. The TAKE ONE semantic option

introduces less complication compared to the other big-step

maximality semantics, because the status of an event in a

big step can be identified by considering at most one

transition of each of the non-overlapping arenas of a

model. Similarly, it is recommended to choose the TAKE

ONE semantic option, when choosing the STRONG SYN-

CHRONOUS EVENT semantic option for interface events.

Table 12 Example BSMLs and their semantic options

Semantic Aspects Semantic Options [21] [42] [30] [19] [6] [33] [22] [3]

Big-Step Maximality SYNTACTIC 4

TAKE ONE 4 4 4 4 4

TAKE MANY 4 4

Concurrency SINGLE 4 4 4 4 4

MANY 4 4 4

Small-Step Consistency SOURCE/DESTINATION ORTHOGONAL

ARENA ORTHOGONAL 4 4 4

Preemption NON-PREEMPTIVE 4 4

PREEMPTIVE

(Internal) Event Lifeline PRESENT IN WHOLE 4 4

PRESENT IN REMAINDER 4 4

PRESENT IN NEXT COMBO STEP 4 4

PRESENT IN NEXT SMALL STEP

PRESENT IN SAME

Environmental Input Events SYNTACTIC INPUT EVENTS 4 4 4

RECEIVED EVENTS AS ENVIRONMENTAL 4 4 4

HYBRID INPUT EVENT

(Interface) Event Lifeline STRONG SYNCHRONOUS EVENT

WEAK SYNCHRONOUS EVENT

ASYNCHRONOUS EVENT 4

(Internal Variables) Enabledness Memory
Protocol

GC/RHS BIG STEP 4 4

GC/RHS COMBO STEP 4

GC/RHS SMALL STEP 4 4 4 4

(Interface Variables) Memory Protocol GC/RHS STRONG SYNCHRONOUS

VARIABLE

4

GC/RHS WEAK SYNCHRONOUS VARIABLE

GC/RHS ASYNCHRONOUS VARIABLE

Combo-Step Maximality COMBO SYNTACTIC

COMBO TAKE ONE 4 4

COMBO TAKE MANY

Order of Small Steps NONE 4 4 4 4 4

EXPLICIT ORDERING

DATAFLOW 4 4 4

Priority HIERARCHICAL 4

EXPLICIT PRIORITY

NEGATION OF TRIGGERS 4 4 4 4 4 4 4

[21]: Harel statecharts, [42]: Pnueli and Shalev statecharts, [30]: RSML, [19]: Statemate, [6]: Esterel, [33]: Argos, [22]: SCR, and [3]: reactive

modules
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Cyclic evaluation orders: To avoid a ‘‘cyclic evalu-

ation order’’ when using the new_small operator, as

described in Sect. 3.5, a conservative well-formedness

criterion can disallow small steps whose assignments

create cyclic evaluation orders. Such a well-formedness

criterion depends on the choice of the semantic options

for the Small-Step Consistency and Preemption semantic

aspects. For example, consider a BSML that subscribes

to the ARENA ORTHOGONAL small-step consistency

semantics and the PREEMPTIVE preemption semantics. For

such a semantics, a conservative well-formedness con-

dition to avoid a cyclic evaluation order is to require

that, for a pair of orthogonal control states S1 and S2, if

the arena of t is S1, or a descendent of S1, and t uses

new_small(u) in the RHS of its assignment a1

and assigns a value to variable v in assignment a2, then

there is no t0 whose arena is S2, or a descendent of S2,

and uses new_small(v) in the RHS of its assignment

a01; together with assigning a value to u in its assign-

ment a02:
Ambiguous dataflow: An ambiguity arises for a data-

flow order if a variable is prefixed by the new operator, but

it is assigned values more than once during a big step. A

sufficient, but not necessary, condition for an unambiguous

DATAFLOW order of small-steps is to require the TAKE ONE

big-step maximality semantics with each variable assigned

value only by the transitions that have the same arena, as is

done in SCR [22, 23] and reactive modules [3]. Similarly,

the TAKE ONE semantic option can be chosen together with

the GC STRONG SYNCHRONOUS VARIABLE or the RHS STRONG

SYNCHRONOUS VARIABLE semantic options for interface

variables to avoid ambiguity in obtaining the value of an

interface variable.

Complicated explicit ordering: In the EXPLICIT

ORDERING semantic option, when the small steps of a big

step are ordered according to the order of the arenas of the

transitions of the big step, being able to take two transitions

with the same arena in the same big step causes compli-

cation in defining the semantics. For example, if the TAKE

MANY big-step maximality semantics is chosen, compli-

cation arises because a big step may consist of several

rounds of small steps, some of the small steps belonging to

the same arena. To avoid a complicated semantics, the

TAKE ONE big-step maximality semantics could be required

when the EXPLICIT ORDERING order of small steps semantics

is chosen.

Partial explicit ordering: Frequently, the SINGLE con-

currency semantics is chosen with the EXPLICIT ORDERING

order of small-steps semantics when the EXPLICIT ORDERING

ordering permits only one transition to be taken in each

small step. However, if the ordering is partial, or hierar-

chically-based, then the MANY concurrency semantics can

also be used.

Inconsistent preemption and priority semantics:

When the PREEMPTIVE preemption semantics is chosen, the

choice of the priority semantics determines whether the

interrupt transition has higher or lower priority than non-

interrupt transitions. For example, giving the highest pri-

ority to a transition whose destination control state is the

lowest in the composition tree, i.e., the choice of the DES-

TINATION-CHILD semantics, has the effect of giving interrupt

transition t in Fig. 11b a higher priority than t0, which is an

intuitive, desired behaviour. Similarly, the ARENA-PARENT

priority semantics gives transition t in Fig. 11a a higher

priority than transition t0.
Conflicting maximality: The choice of the SYNTACTIC

semantic option for the big-step maximality semantics

together with the choice of the COMBO SYNTACTIC semantic

option for the combo-step maximality semantic aspect

means that a small step may move a model to a snapshot

where the model resides in a pair of orthogonal control

states, one being a Stable control state and the other a

Combo Stable control state. In such a snapshot, it is

unclear whether the current combo step has concluded, or

not. Alternatively, choosing the TAKE MANY semantic

option for the big-step maximality semantic aspect and the

COMBO SYNTACTIC semantic option for the combo-step

maximality semantic aspect avoids this problem.

5 Related work

We cover a more comprehensive class of BSMLs and

range of BSML semantics than found in related work.

Relative to previous comparative studies of different sub-

sets of BSMLs (e.g., statecharts variants [49, 26], Syn-

chronous languages [16], Esterel variants [7, 47], and UML

StateMachines [46]), we isolate the essential semantic

aspects in a language-independent manner and in terms of

the big step as a whole. Huizing and Gerth [26] compare

simple BSMLs that have only events, covering most of the

event lifeline semantic options and the observability of

events among components. In our deconstruction, we are

able to describe these options more concisely and place

them in the context of other semantics aspects for BSMLs.

By considering a big step as a whole, we have raised the

level of abstraction of the semantic variations compared to

our previous work on template semantics [37]. The com-

position operators of template semantics are modelled via

our concurrency and consistency, and event lifeline

semantic aspects. For example, the interleaving and par-

allel composition operators correspond to the SINGLE and

MANY semantic options, respectively; and the rendezvous

composition operator is represented via the PRESENT IN

SAME event lifeline semantics and the MANY concurrency

semantics. The interrupt composition operator is modelled

Requirements Eng (2010) 15:235–265 263

123



via the small-step consistency and preemption semantic

options. By relating parts of the behaviour of composition

operators to the step semantic aspects, we provide a

foundation for understanding the range of possible com-

position operators.

6 Conclusion and future work

We have presented a novel deconstruction of the semantics

of big-step modelling languages into eight high-level,

mostly orthogonal semantic aspects. We analysed the rel-

ative advantages and disadvantages of the characteristics of

the semantic options of each aspect. The design/choice of a

language involves making tradeoffs between different

options. Using our aspects, options, as well as the taxon-

omy of the syntactic constructs of BSMLs, represented

conveniently by two feature diagrams and a set of depen-

dencies between their features, our framework empowers

requirements engineers and language designers to make

such tradeoffs in an informed way. For example, if averting

non-determinism is desirable, semantics that permit race

conditions, unordered execution of small steps, SINGLE

concurrency, non-prioritized transitions, etc. are less suit-

able choices. SCR [22, 23] is an example of a BSML with

simpler semantics than many others because its lack of

hierarchical control states means it does not require the

semantic aspects of small-step consistency, preemption,

and priority.

Our analysis of the side effects between semantic options

allows a requirements engineer to identify the difficulties

that may arise in certain combinations of semantic features.

For example, the semantics in Example 15, which avoids

the undesired non-determinism of the SINGLE concurrency

semantics, is not found in an existing BSML. However, a

user of this semantics is warned about the ‘‘complicated

explicit ordering’’ side effect described in Sect. 4.

We have devised a parametric semantic definition

schema that formalizes a large subset of the BSML

semantics that arise from our deconstruction, while pre-

serving its structure [12]. We believe our work forms a

basis for identifying and formally proving semantic prop-

erties of a set of semantic options when considered toge-

ther, as opposed to when considered in isolation, as we

described in this paper. Such properties would provide the

requirements engineer with a better sense of what are

‘‘good’’ or ‘‘risky’’ combinations of semantic choices to

produce a simple, elegant model for a system under study.

In the future, we plan to create tool suites based on the

formal semantics of BSMLs to support the analysis of

BSML models. We believe that our work can be used to

study how semantic choices affect the simplicity and per-

formance of analysis tools.
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