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Abstract Secure software engineering is a new research

area that has been proposed to address security issues

during the development of software systems. This new area

of research advocates that security characteristics should be

considered from the early stages of the software develop-

ment life cycle and should not be added as another layer in

the system on an ad-hoc basis after the system is built. In

this paper, we describe a UML-based Static Verification

Framework (USVF) to support the design and verification

of secure software systems in early stages of the software

development life-cycle taking into consideration security

and general requirements of the software system. USVF

performs static verification on UML models consisting of

UML class and state machine diagrams extended by an

action language. We present an operational semantics of

UML models, define a property specification language

designed to reason about temporal and general properties

of UML state machines using the semantic domains of the

former, and implement the model checking process by

translating models and properties into Promela, the input

language of the SPIN model checker. We show that the

methodology can be applied to the verification of security

properties by representing the main aspects of security,

namely availability, integrity and confidentiality, in the

USVF property specification language.

Keywords UML � Security requirements �
Model checking � SPIN

1 Introduction

Secure software engineering is a new research area that has

been proposed to address security issues during the devel-

opment of software systems [1]. This new area of research

advocates that security characteristics should be considered

from the early stages of the software development life cycle

and should not be added as another layer in the system on an

ad-hoc basis after the system is built. More specifically,

security software engineering attempts to fulfill the lack (a)

in existing approaches, techniques, and methodologies in

the area of software engineering to provide support for the

analysis and design of security requirements and properties,

and (b) in existing approaches for security engineering

which concentrate on security issues and consider limited

aspects of the software system as a whole.

Approaches to secure software engineering can be cat-

egorized in three groups depending on the part of the

software development cycle they concentrate in, namely

(a) security requirements engineering and analysis, (b)

security modeling and development, and (c) secure soft-

ware code analysis and testing. The area of secure

requirements engineering is concerned with the question of

addressing security concerns at the requirements phase.

Several techniques has been proposed, including abuse and

misuse cases [2], the Common Criteria [3] and attack trees

[4]. In this paper, we are concerned with the specification

of security requirements generated in (a) in a way suitable

for automatic verification while considering the software

system as a whole, i.e. formal verification of requirements

against a high-level specification of the system.
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In the last few years, various approaches to support

formal verification techniques for security protocols [5–7]

have been proposed. However, existing formal verification

techniques for security are (i) limited, as they focus on the

verification of mainly interaction protocol designs, (ii)

cannot guarantee security properties of protocol imple-

mentations, (iii) do not consider the system as a whole, and

(iv) use disjoint security and system design models that are

typically expressed in different languages [8]. As suggested

in [9–11], security should be considered from the early

stages and through all the stages of software development.

Therefore, it is necessary to develop verification approa-

ches supporting the specification and analysis of security

aspects during early stages of the development life-cycle,

and in a way that takes into account the entire system

design rather than as a separate layer added to the system as

an afterthought in the form of security protocols.

In this paper, we describe a UML-based Static Verifi-

cation Framework (USVF) to support the design and

verification of secure software systems in early stages of

the software development life-cycle taking into consid-

eration security and general requirements of the software

system. The development of USVF has been driven by

requirements and scenarios identified by industrial part-

ners in the areas of media and security in a European

project called PEPERS focusing on mobile security [12].

USVF uses UML models represented as class and state

machine diagrams, and a specific action language based

on guards and effects to allow designers of the software

system to express extra behavior specifications. The

framework incorporates a property language that allows

the user to specify properties that need to be satisfied by

the system in linear temporal logic. The main novelty of

the property language of USVF arises from the

enhancement of the basic underlying linear temporal logic

with object oriented modeling constructs, namely attri-

butes, events and actions. The properties that can be

expressed in this language refer to events and actions

affecting the state of system objects and the reasoning

underpinning the checks for the satisfaction of the prop-

erties takes into account behavioral system models

expressed as state machines. This reasoning is based on

model checking that is performed using SPIN after

translating the properties and the model of a system into

PROMELA (i.e. the specification language of SPIN).

Furthermore, USVF translates the results of simulation

runs and model checks performed by SPIN into execution

traces of the UML state machines to make them legible

for system developers.

The main contribution of this paper is the definition of

the property specification language that deals directly with

UML models and can be used to express - explicitly in

UML-properties about the execution of UML models and

state machines. The property language of USVF enables

the specification of the basic security properties of confi-

dentiality, integrity and availability [13]. More generally,

however, it can express properties concerned with the order

of execution of transitions, invocation of actions, and their

effects onto the state of the system. Considerable amount

of research (Sect. 6) has been dedicated to the development

of formal operational semantics of UML and the verifica-

tion of UML models using model checking techniques.

However, less effort has been dedicated to the development

of property specification methodologies suited to model

checking of UML (both syntax and semantics). An initial

verification property language, l-UCTL, that considers the

semantics of UML has been proposed in [14]. USVF,

however, provides a property specification language with a

richer object oriented syntax and corresponding operational

semantics enabling the expression of a richer set of pred-

icates involving object fields, class fields and action events.

The work presented in this paper has two goals: (1) to

bridge the gap between UML semantics and property

specification of UML models, and (2) to show that the

methodology can be applied to the verification of security

properties. In order to achieve the first goal, we define a

property specification language designed to reason about

temporal and general properties of UML state machines

using the semantic domains of the former, and implement

the model checking process by translating models and

properties into Promela, the input language of the SPIN

model checker. Finally, we show that the developed

framework can be applied to the verification of security

properties by demonstrating how the basic security prop-

erties, namely availability, integrity and confidentiality,

can be expressed in the USVF property specification

language.

1.1 Static verification framework overview

The general architecture of USVF is shown in Fig. 1. As

shown in the figure, USVF consists the following compo-

nents: Design Model Constructor, Property Editor, Verifi-

ers, Translator, and Results Visualization. The components

and the interactions between them can be seen in Fig. 1.

The Design Model Constructor component is responsi-

ble for the construction of abstract design models of the

system. We use UML models [15] for the specification of

the structural and behavioral elements of the systems to be

verified. We integrate an existing UML case tool to assist

with the construction of such design models.

The Property Editor allows the user to build the prop-

erties to the verified by the USVF. These properties are

specified using an extended and user-friendly version of

linear temporal logic (LTL) [16] tailored to reason about

objects and state machines.
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We have chosen to use model checking as our main

verification technique and, in particular, the Verifiers

component uses SPIN [17], a generic model checking tool

that has been applied to the verification of several control

and software systems. SPIN’s specification language, Pro-

mela, is similar to C and supports message passing chan-

nels, essential for the modeling of distributed systems.

Furthermore, SPIN uses an on-the-fly model checker thus

avoiding the need to construct a global state graph and,

consequently, the state-explosion problem. The mix of

flexibility and efficiency, together with its ability to specify

properties as LTL formulas and automata, makes SPIN an

ideal target system.

In order to present the results of the verification process,

the framework contains a Result Visualization Component

that shows the parts of the design models involved in a

property violation. This is achieved by displaying a step-

by-step execution trace of simulations and error trails.

Finally, the framework contains Translators to support

the mappings from UML design models into Promela

models, and from properties expressed in the extended LTL

property language into the specification language used by

the verifiers.

1.2 Motivating example

In order to illustrate the key concepts of our approach, let us

consider an example of a peer-to-peer system designed to

support the exchange tasks and data between journalists and

photographers working in a media company. This example

has been extracted (and adapted) from scenarios specified

by the industrial partners of the PEPERS project [12].

Our example is composed of two peers running on

mobile devices of journalists and a peer system used by

their manager. The journalists and the manager in the

scenario participate in the news coverage of an event. Once

an event has been identified, the manager starts the news

coverage process by assigning specific event coverage roles

(e.g. reporting journalists, photographer) to each of the

peers currently logged-in and sending them information

related to the event. Peers can be assigned one of two roles,

journalist or photographer.

After logging into a peer group, a peer should wait for

the manager to send the event coverage role and informa-

tion related to the task to be performed. After this infor-

mation has been sent by the manager, the peer can proceed

with actions related to event coverage. Table 1 shows a list

of requirements for this system, including requirements

related to security.

For example, role assignment should always be per-

formed by the manager and peers cannot modify their roles

once they have been assigned. Furthermore, in order to

ensure independent coverage of the event, the journalist

and photographer covering the event should not exchange

information about the event during the execution of the

assigned task unless previous authorization has been

granted.

Security properties address three very important aspects

of system behavior [18], namely, confidentiality, integrity

and availability:

– Confidentiality, also known as secrecy or privacy,

ensures that data is only made available to authorized

parties (R6, R7).

– Integrity ensures that data can only be modified by

authorized parties or only in authorized ways (R5).

– Availability ensures that data and functionality are

available to authorized parties at appropriate times. It’s

opposite is sometimes called denial of service (R4).

In the rest of this paper, we will show how USVF can be

used to support the specification and checking of the sat-

isfiability of the previous types of security properties and in

reference to a design model of the aforementioned system

Fig. 1 UML static verification framework

Table 1 System requirements

Requirements

R1 Manager starts process by assigning roles and task to

logged-in peers

R2 A peer can adopt a journalist or photographer role

R3 Functionality should be provided to allow peers to

exchange messages between each other

R4 All peers should report completion of task to the

manager

R5 A peer cannot change roles

R6 Roles and tasks should always (and only) be

assigned by the manager

R7 Peers should not exchange information, unless

authorized, during the execution of the assigned

task
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that is expressed in UML. Figure 2 shows classes in the

design of this system that represent peers and Fig. 3 the

state machines defining the behavior of these peers.

Before doing this, however, we present the general

architecture of USVF to enable an understanding of the

overall context of its functionalities.

1.3 Outline

The rest of this paper is structured as follows. Section 2

defines the structure of UML models considered by USVF

and formalizes operational semantics of state machines.

Section 3 presents the syntax of the property specification

language in USVF and the semantics of UML model

checking. Section 4 describes how to translate UML

models and properties into Promela models and SPIN LTL,

respectively. Section 5 presents implementation aspects.

Section 6 compares the framework with related work in the

field. Finally, Sect. 7 discusses the contributions and lim-

itations of the framework, and possibilities for future work.

2 UML models and semantics

2.1 Model definition

The structure of the UML models considered in this paper

is defined in Fig. 4. These models are graphically repre-

sented by two types of UML diagrams: class diagrams,

which define the structure of the model, and state chart

diagrams, which specify the behavior of each of the defined

classes. A valid UML model, made of a single class

diagram and a single state chart diagram per class, must be

a correctly typed element of Model.

The UML subset used by the USVF is expressive

enough to allow the user to model standard object-oriented

elements such as classes, objects with static and non-static

fields (attributes), as well as complex object behavior

(including state updates, iterations, conditional transitions,

and hierarchical state machine diagrams.) The subset of

UML assumed by USVF allows also the specification of

interactions between state machines via message-passing.

Formally, a model U is made of a set of class and object

declarations. Class declarations (c) correspond to the

classes defined by the class diagram, while object decla-

rations bind object names ðoÞ to class names ðcÞ and pro-

vide a set of field initializations.

A class c is composed of a class’ name c; field (attribute)

declarations, method (operation) declarations, and a single

state machine l. The type of a field can be a basic UML

type (Integer, Boolean or String) or a reference type, i.e.

another class defined in the diagram. Fields can be static or

non-static, as indicated by the value of a boolean flag static.

In addition, static fields can be assigned default values. An

operation m is defined by its name ðmÞ and list of parameter

declarations xi:si denoting the parameter’s name and type,

respectively.

The class diagram of Fig. 2 consists of two classes:

Peer and Manager. Peer declares the fields peer,

manager, share and role of type Peer, Manager,

Boolean and Integer, respectively, and two opera-

tions, getRole and sendMsg. The operation getRole

declares parameters r, s and p, of types Integer,

Boolean and Peer, respectively, whereas sendMsg

requires a single parameter, m of type String. Static

fields are represented by over-lining the field’s name and

can optionally be assigned a default value. For example,

the integer static fields J and P in class Manager are

initialized with values 1 and 2, respectively.

The state machine l of a class is composed of an initial

state (s0), a final state (sf), and two finite sets of states and

transitions. A state s (s [ State) can be simple or com-

posite. A composite state is made of substates grouped into

Fig. 2 Example: UML class diagram

Fig. 3 Peer/manager state machines
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regions. A composite state can be simple (Scomposite), if it

contains a single region, or orthogonal (Ocomposite), if it

is subdivided into more than one region. All states and

regions are labeled.

Figure 3 shows the state chart diagrams associated to the

Peer and Manager classes of our example. The state

machine diagram of class Peer is composed of the initial

state P0, final state Pf and eight intermediate states. Initial

states are represented by a full circle, final states by two

concentric circles, whereas intermediate states e.g.

Branch, are represented by an oval surrounding the

state’s name. All state machines must have an initial and

final state.

A transition ð�t; s1; s2; tr; g; aÞ is composed by its name �t;

source state s1 and target state s2. A transition is graphically

represented by an arrow joining its source and target states,

together (optional) with a label indicating the transition’s

name. Additionally, a transition may carry annotations of

the form tr [b]/a to indicate the presence of trigger (tr),

guard (g) and effect (a) elements. A trigger defines the

event, i.e. an operation in the restricted form of UML that

we assume in this paper, which triggers the execution of

the transition. The guard defines the condition that must be

satisfied in order for the transition to be executed. The

effect specifies the action that is executed together with the

change of state defined by the transition.

Guards and actions are left unspecified by UML in order

to allow the user to adopt the notation that best suits the

problem in hand. In USVF, we fill this gap by adopting a

specific notation for specifying guards and actions. This

notation is introduced in the bottom part of Fig. 4 (see last

5 definitions).

In particular, both guard expressions and actions contain

references r to UML elements declared in the class diagram

such as non-static fields (f and r.f), static fields (c.f) and

operation parameter names x. The special variable this

denotes the current object (also referred as self) e.g. f is

equivalent to writing this.f. A guard g is a boolean

expression that combines classic logical operators and

constants with boolean predicates b, including the special

timeout predicate tmðnÞ used to control the amount time

spent by the machine in a particular transition. A transition

annotated with a guard will only be executed if the guard is

true. For example, a state machine of class Peer will only

change from state Photo to P3 if the value of field

share is false.

An action a can be a sequence of actions, an assignment,

a call action or a conditional. Actions are executed every

time the associated transition is triggered. For example, the

transition that joins states R0 and R1 in the state machine

of class Manager does not contain a trigger or guard and,

therefore, is executed always regardless of the local state of

the machine. The change of state, from R0 to R1, is

accompanied by the execution of the call action associ-

ated to the transition, which sends a getRole message to

the object stored by peer1. The message contains as

parameters the values of static field J, non-static fields

share and peer2, and the reference to self, this.

Now let us consider the transition joining states P0 and

Branch in the state machine of class Peer. The transition

contains the trigger geRole and, therefore, will only be

executed when the state machine receives a message con-

taining the getRole operation. When this happens, the

values included in the message are bound to the formal

parameters of getRole i.e. r, s, p and m, and the action

associated to the transition is executed together with the

change of state from P0 to Branch. In this case, the action

is a sequence of assignments that updates the state

machine’s fields, e.g. manager=m updates the value of

manager to the value mapped to m sent in the message.

A model is completed, or closed, by adding a set of

object declarations to the class and state machine diagrams.

An object declaration o : c f a g; indicates that the system

will be instantiated with an object o of class c: Given the

absence of object constructors, the action a is used to ini-

tialize the fields of the object. If a field is left uninitialized,

the system assigns the default value specified in the class

diagram or the default value associated to its type, in that

order. In our example, we need to instantiate one

Fig. 4 UML model and action language
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Manager object and two Peer objects with initial values

that satisfy certain constraints.

Peer a1;

Peer a2;

Manager manager f
peer1 ¼ a1; peer2 ¼ a2; share ¼ false;g;

The object initialization shown earlier is used to

instantiate a ‘‘valid’’ initial configuration (Sect. 2.3.4) of

the model. The manager object must know in advance, as

specified by the system, the locations of the other two

objects. Therefore, the values of a1 and a2 must be

assigned to the fields peer1 and peer2 right after object

creation. The system also requires another input, namely,

the value of the share field, which indicates if the peers

can exchange information during the execution of their

tasks. The USVF does not support a way of making these

constraints explicit.

2.2 States and state hierarchy

The definition of composite states (Fig. 4) is, essentially, a

tree structure with nodes made of composite states and

regions (composite states branch into regions and regions

branch into substates) and leafs made of simple states.

The set S in l = (s0, sf, S, T) contains only the states

present at the top level of the state machine, each defining a

separate tree of states. In order to work with a single well-

formed tree, we complete the tree structure induced by

state machine l by introducing a fresh root state that

branches to all top-level states.

Definition 1 (State Machine Tree) Given state machi-

ne l = (s0, sf, S, T) and operations substates, parent and

parentR, the state machine tree of l is generated by adding

the special sroot element such that:

substatesðrootÞ ¼ S [ fs0; sf g
substatesðsÞ ¼ /; s 2 Simple

substatesð½sðrg; SÞ�Þ ¼ S

substatesð½s;R��Þ ¼
[

ðrname;SÞ2R�

S

parentðsÞ ¼ s0; s 2 substatesðs0Þ
parentRðsÞ ¼ R; s 2 R ^ R 2 parentðsÞ

where operators substates, parent and parentR extract a

state’s substates, parent state (superstate) and parent

region, respectively.

All states in a state machine tree are reachable from

root. Thus, the complete sets of states in l can be obtained

by traversing the whole tree (starting from root) and col-

lecting all the visited states.

Definition 2 (Substates of a State Machine) The complete

set of states of state machine l = (s0, sf, S, T) is defined by:

statesðlÞ ¼ fs0; sf g [ statesðrootÞ
statesðsÞ ¼

[

s2substatesðsÞ
[fsg

Definition 3 (State and Transition Ordering) The tree

structure in state machine l defines the partial order

ðstatesðlÞ;�l;?Þ where ? ¼ root and �l defined as

follows:

s �l s0 , s0 2 statesðsÞ

where �l is the non-reflexive version of �l : We extend

the order relation to transitions. Let s and s0 be the source

states of transitions t and t0, respectively. We write t � t0 if

and only if s � s0:

The definition mentioned earlier entails the following:

– root � s; for all s [ states(l).

– For all states s0 2 tpathðsÞ; root � s0 � s:

– A state s is reachable from s0 if and only if s0 � s:

– The greatest lower bound of a set of states SðuSÞ
defines the point where all paths tpath(s), s [ S, join.

States are uniquely identified by their fully qualified

names (Qsname). The fully qualified name of s-name(s)-

has two parts: a prefix, made of the concatenation of the

names of the states and regions needed to traverse in order

to get from root to s i.e. in tpath(s), and the state’s name s:

name : state! Qsname

nameðsÞ ¼ prefixðsÞs
prefixðrootÞ ¼ �

prefixðsÞ ¼
prefixðs0Þ:s0 s0 2 Scomposite

prefixðs0Þ:s0:rg0 s0 2 Ocomposite

�

where s0 ¼ parentðsÞ ^ ðrg0;�Þ ¼ parentRðsÞ

Region names are required only when accessing a substate

in a composite orthogonal state, whereas region names

inside simple composite states are omitted.

2.3 UML semantics

In this section, we define the operational semantics of UML

models used in USVF. More specifically, we define the exe-

cution of UML models as a two-level operational semantics.

Execution of the UML models considered in this paper is

determined by two behavioral components: state machines

and actions. The top-level semantics defines the execution of

state machines and the interaction between the objects of the

model. The low-level or action semantics defines the execu-

tion of the actions associated to machine transitions.
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To define this semantics, in Sect. 2.3.1, we introduce the

set of values used by our semantics and define how

expressions are evaluated. We continue in Sect. 2.3.2 by

defining the semantics of action execution. Finally, in Sect.

2.3.4, we introduce the concepts of state machine and

model configurations and provide the rules that define the

execution of UML models.

2.3.1 Values and expressions

Our execution model deals with two types of values, prim-

itive values and object references (Fig. 5). Primitive values

correspond to primitive types and, therefore, can be integers,

boolean constants {0, 1}, and strings. Object references ô

denote locations pointing to objects (o) in the heap H. The

heap or global store is a mapping from static fields to values,

and object references to objects. An object is a mapping from

(non-static) fields and time variables (timer) to values

instantiated by functions new, defined as follows:

newðH; cÞ ¼ ðH½ô 7!o�; ôÞ where

c ¼ ðc; f �;�;�Þ ^ ô ¼ c ^
o ¼ fðf ; vÞ j ð0; f ; s; vÞ 2 f �g
[ fðf ; defaultðsÞÞ j ð0; f ; s;?Þ 2 f �g

where

defaultðsÞ ¼
null s 2 Reference

� s ¼ String

0 s 2 fInteger; Booleang

8
<

:

Function new assigns new location ô to newly allocated

object o. Fields are initialized to default values. In

particular, fields of reference type are set to the special

null reference. Similarly, the mapping of static fields of a

class is initialized as follows:

staticðcÞ ¼fðc; f ; vÞ j ð1; f ; s; vÞ 2 f �g[
fðc; f ; defaultðsÞÞ j ð1; f ; s;?Þ 2 f �g
where c ¼ ðc; f �;�;�Þ

An environment r ¼ hH; ô; qi keeps track of all the

variable bindings valid at a particular program point,

including global variables and static fields stored in H and

the non-static fields of the current object ô: The local

environment q contains the binding generated by the exe-

cution of a transition, e.g. parameters contained in the

trigger. Environment look-up, denoted by Lðr; rÞ; where

r ¼ hH; ô; qi is performed as follows:

Lðr; c:f Þ ¼ Hðc:f Þ Lðr; f Þ ¼ HðôÞðf Þ
Lðr; x:f Þ ¼ Lðr; xÞðf Þ Lðr; xÞ ¼ qðxÞ
Lðr; thisÞ ¼ ô

Boolean (g [ Guard) and arithmetical (e [ AExp)

expressions evaluate to values. Expression evaluation is

denoted by r; e + v; where the evaluation function + takes

expression e and environment r and returns value v.

Let r; gi + vi and r; ei + vi: The evaluation of boolean

expressions is defined as follows:

r; true + 1 r; ðnot gÞ + ð:vÞ
r; false + 0 r; ðg1 and g2Þ + ðv1 ^ v2Þ
r; null + null r; ðg1 or g2Þ + ðv1 _ v2Þ
r; ðe1 opb e2Þ + opbk kðv1; v2Þ

where |opb| is the predicate associated to operator opb.

Similarly, evaluation of arithmetical expressions is defined

by:

r; n + n r; r + Lðr; rÞ r; ðe1 opa e2Þ + opak kðv1; v2Þ

Our semantics is equipped with a set of time variables

(timers) used to keep track of the number of steps executed

by the model. We define a global clock tm and a set timers

tmðo; sÞ -one for each state in every object declared in the

model—together with the following operations:

tm 2 Globals; tmðo; sÞ 2 Globals; 8o; s 2 U

H
p
¼ H½tm 7!x�; x ¼ HðtmÞ þ 1

H
p

o;s� ¼ H½tm 7!x�½tmðo; sÞ7!x�s2s;

where H
p

increments the global clock by one and H
p

o;s�

increments the clock and sets the timers of each state in s*

to the new clock value.

The tmsðnÞ guard checks if the time elapsed since state s

was entered is greater or equal then n:

hH; ô; qi; tmsðnÞ + ðHðtmÞ � Hðtmðname; sÞÞÞ� n

where s is the source state of the transition labeled by tmðnÞ

2.3.2 Action semantics and events

Figure 6 defines the semantic domains and runtime struc-

tures involved in the execution of UML models. More

specifically, it defines the domain of the execution relations

�!a;q and �!a used to model the execution of actions (low-

level semantics) and UML state machines (top-level

semantics), respectively.Fig. 5 Values and expression evaluation
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State machine actions (Sect. 2.1; Fig. 4) modify an

object’s state (fields) and generate events captured by the

top-level semantics. An action is executed when the

transition associated with it is scheduled by the top-level

semantics. Action execution generates two kinds of

events:

– sendðo1; o2;mðv1; . . .; vnÞÞ; generated by the execution

of a call action.

– writeðo; c; f Þ; generated by the execution of an

assignment. It reports the modification of field f on

object o of class c.

The rest of the events i.e. recv; msg and trans; are

generated by the top-level semantics as explained in Sect.

2.3.4.

Definition 4 (Action Semantics) Action execution is

defined as the smallest relation �! that satisfies the rules

in Fig. 7. We write r; a�!a;q r0 to denote the execution of

action a under environment r, where a denotes the set of

generated events, q the queue of messages to be sent, and r0

reflects the changes made to r after the execution of a.

Rule (7.1) shows the execution of the empty action ?;
used to express the absence of an action in a transition.

Rule (7.2) implements sequencing, that is, the composition

of the execution of actions a1 and a2.

Message passing, defined by rule (7.3), is started by the

execution of action call r:mðe1; . . .; enÞ: The execution of

call creates a message containing the current object’s

location ô; the target ô0 obtained from reference r, the

method’s name and the evaluated arguments. The message,

ðô; ô0;mðv1; . . .; vnÞÞ; is used to generate a new send event

and placed into the action’s message queue.

Rules (7.4) and (7.5) implement variable assignment.

They contemplate two cases: the first case updates the

value of static fields and local variables, while the second

case deals with field update. Field update modifies the heap

by updating the target object and generates a write event

indicating the field modified by the action.

2.3.3 State trees and tree rewrite

One of the main consequences of having composite states

is that at any point during execution of the model, state

machines may have more than one active (current) state.

Not only does the existence of orthogonal composite states

spawn a set of concurrent active states. Given leaf state s,

the set of all states in tpath(s) also become active, i.e. a

transition leaving any superstate of s can potentially be

fired.

Thus, the set of active states form also a tree structure

ŝ 2 dState: We call ŝ a state tree and represent it by listing

all its leaf states. In this way, tree trimming and extension

can be implemented with set operations.

State trees are initialized by the start function:

startðsÞ ¼ fsg; s 2 Simple

startð½s;R�Þ ¼ finitialRg ðScompositeÞ
startð½s;R��Þ ¼ finitialR j R 2 R�g ðOcompositeÞ

State trees are transformed by the execution of transitions.

Such transformation, state tree rewrite, is defined by ŝ 
t

ŝ0:

Definition 5 (State Tree Rewrite) Given state tree

ŝ ¼ fs1; . . .; sng and transition t = (-, s, s0, -, -), we

define ŝ 
t

ŝ0ðŝ is transformed into ŝ0 by applying t) as

follows:

Fig. 6 UML model—semantic domains

Fig. 7 Action semantics
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ŝ 
t

ŝ0 , t ¼ ð�; s; s0;�;�Þ
ŝ ¼ S [ S0 ^ ŝ0 ¼ S0 [ startðs0Þ

sx ¼ s u s0

S ¼ fsl 2 ŝ j sl 2 sxg

2.3.4 UML operational semantics

The operational semantics of UML models is defined as a

small step semantics [19] on program configurations. A

program configuration C = hH, {c1,…, cn}i represents the

state of execution, at any given time, of a UML model. It is

made of the heap H and the set of machine configurations

keeping runtime information for each of the objects

declared in the model. A machine configuration c ¼
hô; l; ŝ; iq; oqi is made of the object’s location ô; the state

machine l declared for the object’s class, the machine’s

current state s, and the input and output queues, iq and oq,

respectively.

Definition 6 (Initial Program Configuration) Let U =

(c*, O *). An initial program configuration of model U is

the configuration obtained after the initialization of all the

objects declared in O*. We say that C is an initial con-

figuration of U = (c*, O*), and write U ‘I C; if initiali-

zation takes place as follows:

ðc�;O�Þ ‘I hH; fc1; . . .; cngi ,
H ¼ Hn ^ O� ¼ fO1; . . .;Ong ^
i 2 f1; . . .; ng :

ci ¼ hôi; li; startðsiÞ; �; �i ^ ci ¼ ð�;�;�; liÞ
Oi ¼ oi : ci f ai g :

hHi�1; ôi; qi; ai�!
/;� hHi; ôi; qi

where

q ¼ ½oi 7!ôi�i2f1;...;ng ^ H0 ¼ H0mc� ¼ fci; . . .; cmg
j 2 f1; . . .;mg : ðH0j ; ôjÞ ¼ newðHj�1; cjÞ

H00 ¼
[

cj2c�
staticðcjÞ

 !
[ GlobalsðUÞ

In other words, initialization takes place in the following

order:

– All static fields and global variables (clock and timers)

are initialized and placed in the initial heap H0

0
.

– All objects declared in O* are allocated and initialized

with default values (new function defined in 2.3.1),

generating heap Hm

0
and local environment q.

– All initialization actions ai are executed, resulting in

final heap H = Hn.

– A state machine configuration ci is generated per declared

object Oi, where start(si) is the initial state tree of li.

– The resulting heap is paired with the set of machine

configurations i.e. hH, {c1,…, cn}i.

State machine execution is driven by transition execu-

tion. We say that a transition is enabled if its source state is

part of the current state of the machine configuration and its

firing conditions are satisfied. Only one enabled transition

will be executed at the time.

We separate transitions into two groups, completion (no

trigger) and triggered transitions. Transition firing condi-

tions are checked by the completion(H, c, s) and trig-

gered(H, c, s), which return the set of enabled completion

and triggered transitions, respectively, leaving source state s.

A completion transition is enabled if its guard evaluates

to true:

completionðH; ho;l; ŝ; iq; oqi; sÞ
¼ ft 2 transðlÞ: t ¼ ðs;�;?; g;�Þ ^ hH; o;?i; g + 1g

Triggered transitions are enabled only if the required

trigger (operation) is found at the front of the object’s input

queue and its guard evaluates to true:

triggeredðH; ho; l; ŝ;msg : iq; oqi; sÞ ¼ ft 2 transðlÞ:
t ¼ ðs;�;m; g;�Þ ^ msg ¼ ð�; o;mðv1; . . .; vnÞÞ ^
M ¼ mðx1; . . .; xnÞ ^ q ¼ ½xi 7!vi� ^
hH; o; qi; g + 1 g

Given current (leaf) state s, a transition is enabled if its firing

conditions are satisfied and s is reachable (substate) from the

transition’s source state s0, i.e. s0 � s: It may be the case that

the set of enabled transitions contains conflicting transitions,

that is, transitions t and t0 where the source state of one of them

is a substate of the other, e.g. t � t0: If that is the case then

transtions with higher order (states deeper in the tree) should

be given priority e.g. t0. Furthermore, completion states should

be given priority against triggered transitions when calculating

the set of enabled transitions leaving the same state.

The set enabled(H, c, s) of enabled transitions associ-

ated to a current single state s is defined as follows:

enabledðH; c; sÞ

¼
/ s ¼ root

enabledLðH; c; sÞ enabledLðH; c; sÞ 6¼ /

enabledðH; c; parentðsÞÞ otherwise

8
><

>:

enabledLðH; c; sÞ

¼
completionðH; c; sÞ completionðH; c; sÞ 6¼ /

triggeredðH; c; sÞ otherwise

�

Finally, the set of enabled transitions associated to a

state machine configuration c ¼ ho; l; ŝ; iq; oqi is defined

as follows:

enabledðH; cÞ ¼
[

s2ŝ

enabledðH; c; sÞ
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We are now ready to define the operational semantics of

state machines.

Definition 7 (UML Small Step Semantics) Let �! be the

smallest relation that satisfies the rules in Fig. 8. We write

U ‘ C�!a C0 to denote the execution of one computational

step from program configuration C to C0. The change of

configuration may generate a set of runtime events, denoted

by a.

The rules in Fig. 8 are mainly concerned with message

passing and the execution of transitions. Message passing

is realized in three steps. First, the sender executes a

call action that places the message in the sender’s

output queue. Second, when the message reaches the

front of the queue, the scheduler removes it and places it

at the back of the receiver’s input queue. Third, the

message is removed from the top of the receiver’s input

queue when, and if, there are only triggered transitions to

execute.

Rule (8.1) describes the role of the scheduler. It removes

the message from the output queue of o1 in state machine

configuration c1, matches the recipient identity with o2 and

places the message in the recipient’s input queue. This step

generates event msgðmsgÞ:
Rule (8.2) describes the execution of completion tran-

sitions. The execution of this rule generates a trans event,

together with the events a0 generated by the execution of

the action a attached to the transition.

Rule (8.3) describes the execution of a triggered tran-

sition in state machine configuration c. If the message msg

in front of the input queue of c matches the trigger of the

transition (and the guard evaluates to true), the associated

action is executed and the state machine configuration

changes its current state. Note that the evaluation of the

guard and the execution of the action (and the evaluation of

the guard, performed by enabled) uses the values passed as

arguments in the message by creating a new local envi-

ronment q ¼ ½xi 7!vi�: This rule generates recv and

trans events, as well as the ones generated by the action

a associated to the transition.

If there are no enabled transitions but there are triggered

transitions (with source state in ŝ0s path) waiting for mes-

sages, then rule (8.4) is executed. This means that deferred

events are not considered, i.e. events that do not trigger any

transitions are discarded. In rule (8.4), if no enabled tran-

sitions t can be found and hasTriggers(H, c) is not empty,

message msg is removed from the front of the input queue

of state machine configuration c.

If any of the conditions required by the rules mentioned

earlier are satisfied, i.e. no transitions are enabled and all

output queues are empty, then rule (8.5) is fired.

All the rules increment the global clock tm by one by

executing the
p

operation on the resulting configuration. If

there is a change of state—rules (8.2)–(8.3)—the timers of

the new states are set to the new clock value:

hH; c�i
p
¼ hH

p
; c�i

hH; c�i
p

o ¼ hH
p

o;ŝi where ho; l; ŝ;�;�i 2 c�

2.3.5 The example

Let us go back to the model defined by the class and state

chart diagrams shown in Figs. 2 and 3. The model defines

two classes, Peer and Manager. A Manager object

requires as input two peer objects, which must be assigned

to fields peer1 and peer2. Therefore, a correct instan-

tiation of the model should contain a Manager object and

Fig. 8 UML operational

semantics
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two Peer objects with the correct initializations. As noted

in Sect. 2.1, we complete our model by writing:

Peer a1;

Peer a2;

Manager managerf
peer1 ¼ a1; peer2 ¼ a2; share ¼ false;g;

After all initializations and object allocations are fin-

ished, the program configuration contains three state

machine configurations, all set to the machines’ initial

states. We now describe the steps taken by each of the

objects.

A Peer object always starts by blocking on its initial

state, waiting for the arrival of message getRole.

Execution will proceed only when a getRole message

reaches the front of the input queue. When this happens,

the arguments sent with the message are assigned to

variables p, m, r and s, respectively, and the action

peer=p;... is executed. Once the information regard-

ing the assigned task (manager, role, shared and

peer) is stored in the respective fields, a peer branches

depending on its role. If the value of field shared is

true, the Journalist object sends a sendMsg operation to

its sibling and the Photographer object blocks and waits

for the sendMsg operation to reach the front of the

input queue. Once the message is dequeued, the Pho-

tographer proceeds to state Join. If the value of

shared is false, both peers go straight to state Join.

At this point, a peer reports the completion of the

assigned task by sending an endTask message to the

manager, sends a sendMsg to its sibling peer and

waits until the a similar message arrives from its sibling

peer.

The Manager object executes four transitions. The

first transition contains an action which, when executed,

sends a getRole message to peer1 containing the

peer’s role (Manager.J), information indicating if the

peers can communicate during the execution of the

assigned task (shared), the location of its sibling

(peer2) and its own location (this). The second tran-

sition does the same for peer2 and role Manager.P.

Finally, the manager waits for the arrival of two end-

Task messages from the peers indicating the completion

of the news coverage event.

In this example, the internal execution of each state

machine is deterministic. However, the execution of the

whole system is not. Transition execution and message

passing can interleave thus generating several execution

traces or paths. The following section formalizes the notion

of execution path and defines a language used to verify

properties against all possible execution traces. We will

find that, for our example, not all execution traces fit the

intended behavior.

3 Property specification and verification

3.1 The USVF Property Specification Language

Linear temporal logic is a popular formalism well suited

not only for the verification of general system require-

ments, but also for the specification of security properties.

However, in order to be useful in the context of UML

models, LTL has to be able to explicitly reason about

transition execution, states, class values and messages. In

the following, we introduce the USVF property specifica-

tion languages an extension of LTL that tackles these

problems and in Sect. 3.4 we formally define its semantics.

Linear temporal logic reasons about the validity of

predicates over all execution traces of a model. The syntax

of the formulae U used to specify properties of the exe-

cution of UML models is defined by the grammar shown in

Fig. 9. According to this grammar, a formula U in the

USVF property specification language is made of binary

and unary temporal and logical operators applied recur-

sively on local predicates P. The LTL operators used by

USVF are always, eventually and until. For

example, we can write

P1 alwaysðo1:value\100Þ
P2 eventuallyðo2:balance[ ¼ Account:LimitÞ
P3 ðo3:balance\500Þuntilðo3:overdraft ¼ trueÞ

where P1 is true if the field value of object o1 is less than

100 on every execution state, P2 is true if the field bal-

ance of object o2 becomes, at some point, equal to the

value of static field Account.Limit, and P3 is true if

the value of field balance in object o3 does not exceed

500 in the states previous to field overdraft becoming

true.

A predicate P can either be state predicate Pb, which

expresses properties about the state of the system (e.g.

objects, static and non-static fields), and a machine predi-

cate Pe, which expresses properties about the effects and

events generated by the execution of state machines (e.g.

actions, transitions and message passing). In Pb, we re-use

the set of predicates b used in the specification of UML

Fig. 9 Property specification language
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models (Fig. 4) and add the predicate state where

state(o,s) checks if the current state of object o is s.

– Pe can be one of the special predicates send, recv,

msg, write and trans specific to UML state

machines:

– send (o1,o2,m) checks if object o1 has made a

call to operation m in object o2.

– recv (o1,o2,m) checks if object o2 has received,

i.e. removed from the input queue, a message from o1

containing operation m.

– msg (o1,o2,o3) checks if the message has been

sent by the scheduler.

– write (o,f) checks if fieldf has been modified in

object o.

– trans(o,t) checks if transition t has been executed

in object o.

For example, given the following formulas:

P4 eventuallystateðo1;S2Þ
P5 always ðsend ðo1;o2;getValueÞimplies
ðeventuallysendðo2;o1;receiveValueÞÞ

P6 always ðstate ðo2;R1Þimplies ðo1:result[100ÞÞ
P7 alwaysstate ðo1;initialÞimplies

eventuallytransðo2;R2Þ

P4 checks if the state machine of o1 eventually reaches

state S2, P5 checks that all calls to getValue are mat-

ched by a call to receiveValue, P6 is true if the value

of result in object o1 is always greater than 100 every

time o2 reaches state R1, and P7 will check that transition

R2 in o2 is always executed after (at some point in the

future) o1 reaches state initial.

Of particular interest is the special (optional) scope

construct L added to the machine predicates Pe. By writing

sendðo1; o2; mÞ:andfx\2g the user can reason about the

arguments of operations. Assuming x is declared as argu-

ment of m, the predicate mentioned earlier will be true if

there is a call of m from o1 to o2 and the value of x is less

than 2. Furthermore, the scope construct brings the active

object related to the predicate into scope. For example, all

fields of object o are within the scope of L in sta-

te(o,s) and thus, can write stateðo; sÞ:andff\5g
where f is a field of f.

The scope construct also allows the user to access the

values of special system variables linked to the occurrence of

certain events. These variables are SENDER, RECEIVER

and METHOD, available for predicates send, recv, msg.

For example, if we want to check that no calls are made to

any method in object o from objects o1 or o2 we can write:

always msgð�; o; �Þ:impliesfSENDER! ¼ o1 and

SENDER! ¼ o2g

3.2 Specification of security properties

Availability, integrity and confidentiality are, essentially,

special cases of liveness and safety properties. By extending

LTL to handle explicitly UML elements, we provide a basic

framework to specify security properties of UML models.

Schneider [20] provides a precise characterization of the

class of enforceable security properties, specified by secu-

rity automata. The set of constructs provided the USVF

specification language allows for the specification of such

class of properties. For example, the property stating that

the first call from o1 to o2 must be Read followed by no

calls to Send can be specified by writing:

callðo1; o2; �Þ:impliesfMETHOD! ¼ Readguntil
ðcallðo1; o2; ReadÞand
ðalways callðo1; o2; �Þ:andfMETHOD! ¼ SendgÞÞ

Furthermore, attacker models can be specified by con-

structing state machines that implement malicious behavior.

For example, an impersonation attack can be implemented

by placing a state machine that: (1) simulates the behavior of

the intended recipient - using the recipient’s state machine;

(2) sends part of the messages to the original recipient and (3)

introduces new behavior. A denial of service attack can be

implemented by creating a state machine that reads the

messages from a particular sender and either drops messages

or inundates the original sender with reply messages.

3.3 The example

The USVF property specification language can be used to

express desired properties that should be checked for the

example system introduced earlier in the paper. For

example, verification of:

eventually stateða1; BranchÞ

gets us back true. We also get a positive answer when we

check for:

alwaysðstateða1; BranchÞimplies
always a1:role ¼ Manager:JÞ

which means that, after the object reaches the state

Branch, the role field always contains the intended

value. However, if we check:

eventually stateða2; PfÞ

we get back an error. This means that at least one execution

path does not satisfy the property. After close inspection of

the counter-example reported by the model checker, we

find out that the object with role Journalist may get the

sendMsg message before getRole arrives. The seman-

tics instructs the state machine to consume the message and

106 Requirements Eng (2010) 15:95–118

123



wait for getRole, which eventually arrives. The initial

message is lost and the machine will get stuck at state Msg.

We solve the problem by adding a synchronization

variable count implemented as a static field of Peer. The

variable is initialized to 0 and incremented by 1 when

getRole is processed. We must also strengthen the

guards leaving Branch. For example, the transition cor-

responding to the Photographer role should be guarded as

follows:

½role ¼ Manager:P and Peer:count ¼ 2�

Continuing with our example, we may want to check that

all getRole invocations pass as argument the value of the

Manager’s field share:

always sendða1; a2; getRoleÞ:impliesfs ¼ shareg

Similar checks can be performed to ensure that R1 from

Table 1 (‘‘the Manager starts the process by assigning roles

and task to logged-in peers’’) is satisfied. Requirement R2,

i.e. ‘‘A peer can adopt a Journalist or Photographer role’’,

can be verified with the following formula for a1:

alwaysðstateða1;BranchÞimplies
ðalwaysða1:role¼ Manager:Jora1:role¼ Manager:PÞÞ

Note, however, that including only the second half of the

formula will give us an error since roles are assigned at state

Branch. Requirement R3 is easily verified by first checking

(in the class diagram) that the sendMsg operation satisfies

the required signature and that the operation is actually

invoked, e.g. eventually msg(*,a1,sendMsg).

We now proceed to show how the requirements listed in

Table 1 related to the security properties defined in Sect.

1.2, namely availability, integrity and confidentiality, can

be specified using the property specification language.

Availability, which deals with the readiness of a system

to provide timely data and functionality, can be specified in

several ways. For example, a state from the state machine

diagram can be specified as a ready state that must even-

tually be reached by the system. Also, availability of

operations can be specified by forcing an answer after an

operation request. This is the case of requirement R4 where

we want to make sure that all task assignments are matched

by a endTask response:

alwaysðsendðmanager; a2; getRoleÞimplies
ðeventually recvða2; manager; endTaskÞÞÞ

Integrity is concerned with the unauthorized

modification of an object’s state. Integrity can be verified

by ensuring that a particular sequence of operations or

actions does or does not take place—as in [20]—or by

verifying that write operations are not performed in a

particular object during a specific situation. For example, if

we want to check that the value of the role field does not

change after state Branch—requirement R5—we should

write:

alwaysðstateða1; BranchÞimplies
ðalwaysðnotwriteða1; roleÞÞÞÞ

Confidentiality (R6 and R7) is concerned with ensuring

authorized access to data in a system. Requirement R6

stipulates that all role assignments should come from

Manager. Thus, R6 for peer a1 can be specified as follows:

always recvð�; a1; getRoleÞ:implies
fSENDER ¼ managerg

The final requirement, R7, requires that all communication

between the peers during the execution of the task must be

authorized. Such, authorization is determined by the

value of field share. Then, we can check for the

occurrence of invocations to getRole. However, if we

write:

alwaysðsendða1; a2; sendMsgÞ
impliesðmanager:share ¼ trueÞÞ

we will get an error, since the peers do exchange messages

after the completion of the assigned task. The correct way

of specifying the property is to restrict the check to the

states between Branch and End:

alwaysðstateða1; BranchÞimplies
ððsendða1; a2; sendMsgÞimplies
ðmanager:share ¼ trueÞÞ
until stateða1; EndÞÞÞ

3.4 Verification by model checking

The USVF Property Specification Language is an LTL-

based language that deals with UML elements defined by

class and state machine diagrams. In a system of temporal

logic, various temporal logic operators or modalities are

provided to describe and reason about how the truth values

of assertions vary with time. In our system, we want to

reason about the execution of UML models as defined by

the semantics presented in Sect. 2. In this section, we start

by building the notion of UML execution trace using the

definition of the execution relation (Definition 3) and use it

to specify the semantics of the USVF Property Specifica-

tion Language.

We represent the execution of a UML model with the set

of all possible execution paths generated from all possible

initial configurations. An execution path K is a sequence of

states k made of pairs (C, a). Let K = (k0, k1, k2,…). We

write Path(U, K) if K is a valid execution path of U:

PathðU;KÞ , k0 ¼ðC0; a0Þ ^ U ‘I C0

8i [ 0: U ‘ Ci�1�!
a

Ci
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that is, if the first state corresponds to an initial configu-

ration of U and each pair of adjacent states corresponds to a

computational step.

Definition 8 (Execution Paths of a Model) We define

Paths(U) = {K | Path(U, K)} as the set of all execution

traces of model U.

Let K = (k0, k1, k2,…). The following path operations

will be useful:

KðiÞ ¼ ki Ki ¼ ðki; kiþ1; kiþ2; . . .Þ K ¼ Kð0Þ :K1

Note that our execution traces contain information about

the local state of machine configurations as well as the

events generated by execution steps. Therefore, we need to

define a property specification language that takes

advantage of this information. We have defined such a

language in Sect. 3.1. We now define the semantics of a

formula U with respect to execution path K. We write

K�U if formula U is true of execution path K. � is defined

inductively on the structure of U:

K � not U , :ðK � UÞ
K � U1 and U2 , ðK � U1Þ ^ ðK � U2Þ
K � U1 or U2 , ðK � U1Þ _ ðK � U2Þ
K � next U , K1 � U
K � U1 until U2 , 9i� 0:ðKi � U2 ^

80	 j\i:Kj � U1Þ
K � P , Kð0Þ � P

We also introduce the usual abbreviations:

true 
 U or ðnot UÞ
false 
 U and ðnot UÞ
U1 implies U2 
 ðnot U1Þ or U2

eventually U 
 true until U

always U 
 not ðeventually not UÞ

We have divided the definition into two parts. The first

part, presented earlier, deals with the usual temporal logic

modalities and reasons about the truth of properties over

time. The second part only deals with individual states, as

suggested by the definition of K�P: P is true of the

execution path K if and only if P is true of its initial state

K(0). We proceed by defining k�P. We start with boolean

predicates:

ðhH; c�i; aÞ � b, hH;?; q0i; b + 1

where q0 ¼ ½oi 7!ôi�; for all objects oi declared in the

model. Note that b is evaluated with an environment

containing no current object. This is because the predicate

is stated at the top level and the only way to access the

value of fields is by using objects names, that is, the names

used at the top level object declaration. Thus, we create an

environment q0 with such bindings. We can write:

ðalways a1:total\12Þand
ðeventually a2:role ¼ Manager:receiverÞ

Let r ¼ hH;?; q0i: Current states and transitions can be

referred by:

ðhH; c�i; aÞ � stateðr; nameðsÞÞ , r; r + ô ^
9c 2 c�; s0: c ¼ hô;�; ŝ;�;�i ^ s0 2 ŝ ^ s � s0

ðhH; c�i; aÞ � transðr; �tÞ , r; r + ô ^ transðô; �tÞ 2 a

For example, the formula eventually state

(a2,Branch) is true if, at some point in time, object

a2 reaches state Branch. We now define the predicates

that deal with message passing:

ðC; aÞ � cðr1; r2;mÞ ,r; r1 + o1 ^ r; r2 + o2

cðo1; o2;mð�ÞÞ 2 a

where c 2 fsend; recv; msgg

Note that the arguments of the message are not used by the

definition. This is because the scoping rules do not offer a

way of binding a method parameter with the value sent by the

message. Parameters are, therefore, inaccessible. We solve

this by adding the special optional construct L that allows us

to evaluate boolean expression with extra local information

such as method parameters and a ‘current’ object. The

definition of send is extended in the following way:

ðC; aÞ � sendðr1; r2;mÞ:andfgg ,
r; r1 + ô1 ^ r; r2 + ô2

sendðo1; o2;mðv1; . . .; vnÞÞ 2 a

q ¼ q0½xi 7!vi�½SENDER 7!o1�
½RECEIVER 7!o2�½METHOD 7!m�

r0 ¼ hH; ô1; qi ^ r0; g + 1

where c 2 fsend; recv; msgg

Note that the environment r0 contains an object

reference—the sender’s—and the mapping of parameters

to arguments as well as the system variables containing the

values of the sender, receiver and operation name.

Similarly, we extend the definition of state:

ðC; aÞ � stateðr; nameðsÞÞ:andfgg ,
9c 2 c�; s0:ðc ¼ hô;�; ŝ;�;�i^

s0 2 ŝ ^ s � s0Þ ) hH; ô; q0i; g + 1

We apply similar extensions to the other predicates.

Definition 9 (Model Checking UML Models) We write U

�U if U is true at all valid execution paths of U, that is:

ðU � UÞ , 8K 2 PathsðUÞ:U � K

4 Translators and visualization

We have implemented the operational semantics and verifi-

cation of UML models (as defined in this paper) as a
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translation into Promela, the specification language used by

the Spin [17] Model Checker. Our translation takes as input a

model U and a formula U, and generates a file made of two

parts: the specification of the UML model written in Promela,

and the Buchi automaton that implements the Spin LTL

formula to be verified. The latter is known as a never clause.

The translation of UML models and properties is closely

related. On the one hand, the translation of UML models

into Promela must implement the UML operational

semantics and provide the infrastructure to facilitate the

verification (and translation of) of properties that reason

about state machines, including the provision of variables

to keep track of UML elements such as states, transitions

and the events described in Sect. 2.3. On the other hand,

property translation must take into account the generated

Promela model, since it generates Spin LTL formulas that

refer to the new Promela variables.

4.1 Translating UML models into SPIN

Promela models are constructed from three basic types of

objects: processes, data objects and message channels.

Processes, instantiations of proctype declarations are used

to define behavior. Given a UML model, the translator

generates a proctype declaration per class and instantiates

one process per object, including field initializations. Class

fields and operation parameters are implemented as data

objects; the transformation declares static and non-static

fields as global variables and global arrays of structures,

respectively, while method arguments are declared as local

variables inside the body of the process type declaration of

the owning class. Promela message channels are used to

model the exchange of data between processes. We use

channels to model the input and output queues of state

machines, essential parts in the implementation of triggers

and method invocation.

Promela models generated by our translation have the

following structure:

\U2P[ ::¼\GlobalDec[
\ClassDec[þ
\CommProcDec[
\InitProcess[

The \GlobalDec[ section declares all global variables

and constants used for communication, state machine

execution, object identification, model checking as well as

the list of static fields of all classes. The translator gener-

ates a \ClassDec[ per class and a special proctype

declaration for Comm that implements message traffic

between objects. Finally, the code generated for

\initProcess[ instantiates all the objects (processes)

that take part of the execution of the system.

We show in Fig. 10 parts of the \GlobalDec[ sec-

tion of the Promela model generated for the example. All

global declarations start by defining the structures and

constants needed for message passing (Sect. 4.1.1). The

NUMOBJECTS constant denotes the number of objects

declared in the model, and the current and transi-

tion arrays store the values of the current state and last

executed transition of each state machine. Each object is

assigned a unique id e.g. a2 is identified by 1, used to

index the global arrays holding object information. Each

static field is denoted by a global variable composed of the

class and field name, e.g. Manager J : Finally, the event

variables section declares variables used solely for model

checking.

A UML class is translated into a global array declaration

of a structure that stores the non-static fields of the class,

and a Promela process that implements the behavior

defined by its state machine. We show below the top level

declarations generated for class Peer:

typedef Peer_Fields {byte peer,manager,share,role;};
Peer_Fields fPeer[2];
/* Class number 1 */
proctype Peer(byte pNum, ocID) { atomic {

<Class-Body>
}}

The global array fPeer holds the values of the fields of

class Peer. We have declared two objects of that class

and, thus, the array has size 2. The Peer process takes two

arguments: pNum and ocID. Argument pNum is used

to index global arrays with information common to all

objects, e.g. current, transition and message

Fig. 10 Peer/manager promela declarations
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channels, while index ocID is used to access the fPeer

array (Sect. 4.1.2). The values of these indexes are assigned

during object instantiation.

init { atomic {
run Peer(0,0);
run Peer(1,1);
fManager[0].peer1=a1;
fManager[0].peer2=a2;
fManager[0].share=false;
run Manager(2,0);
run Comm(3)

}}

The object initialization code \InitProcess[ gen-

erated for our example is shown earlier. All declared objects

are instantiated by executing the run Promela construct on

the respective proctype. Each instantiation is preceded by

the explicit field initializations specified in the model. For

example, manager is instantiated with a call to run

Manager(2,0), preceded by assignments to fields

peer1 and peer2, i.e. fManager[0].peer1=a1;.

4.1.1 Message passing and communication

Communication between processes is performed using

channels. The communication model used by our transfor-

mation uses two channels per object, one for incoming

messages and another for outgoing messages. Object

channels are stored in global arrays inQ and outQ, of type

chan, and size NUMCHAN (see declarations in Fig. 10). All

messages have the same structure, \ operation, sender,

receiver, p0,…,pn [, with p1,…,pn carrying the values

passed as arguments to the method call. The special Pro-

mela datatype mtype is used to define tokens A0, A1 and

A2 that denote operations getRole, sendMsg

and endTask, respectively. The maximum number of

parameters in our example is four and, thus, messages are of

type

{mtype, byte, byte, byte, byte, bye, byte}

Message passing is implemented by writing into the

sending object’s output queue, while incoming messages

(triggers) are read from the receiving object’s incoming

queue. For example, the Spin code generated for sending

and receiving messages, respectively, is:

outQ[pNum]!trigger(sender,receiver,_out1,..._out4);
inQ[pNum]?trigger(sender,receiver,prm0,...,prm3);

The traffic of messages between objects is imple-

mented by a separate process, Comm. This is an approach

similar to the one used in [21]. The current implemen-

tation of Comm defines the process as an infinite loop that,

at each iteration, removes a message from the output

queue of one of the objects of the model and places

it, untouched, in the input queue of the matching receiver.

If all output queues are empty, the communication

process blocks. If more than one input queue has a

pending message, Comm picks one of them non-deter-

ministically.

The implementation of the Comm process for our

example is:

proctype Comm(byte pNum) {
byte trigger,receiver,sender, prm0,prm1;
end3: atomic {
if
:: outQ[0]?trigger(sender,receiver,prm0,...,prm3) ->

inQ[receiver]!trigger(sender,prm0,...,prm3);
// repeat for outQ[1] and outQ[2]
fi;
goto end3;
}}

By following this approach, we provide an alternative—

at the implementation level—to the attack models

suggested in Sect. 3.2. Several types of attacks to the

communication channels can be modeled, e.g. messages

can be dropped, modified or replicated; by manipulating

and creating different version of the code that implements

Comm, as shown with the Dolev–Yao attacker implemented

in [22].

4.1.2 Promela implementation of UML classes

A UML class is translated into a Promela process that

implements the behavior defined by its state machine and

updates the variables used for model checking. In this

section, we describe the implementation of UML classes in

SPIN by showing the main parts of the code generated for

the Peer class, listed in Fig. 11.

On initialization, a new process (object) receives two

values as arguments. The first argument, pNum, is used to

access global data structures that store information com-

mon to all objects such as channels and state machine

variables, e.g. current[pNum] contains the value of the

current state. The second argument, ocID, indexes the

global array of structures containing the non-static fields of

the class, e.g. fPeer[ocID].role denotes the value of

field role of the object.

Local declarations—top part of the generated proc-

type—include local variables used to represent formal

parameters, e.g. variables r and p from method getRole,

and variables used for message passing. An object (process)

starts execution by setting the current variable to the
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value of the state machine’s initial state, and blocks until the

remaining objects have finished initialization. The printf

statement generates trace information used by the result

visualization module described in Sect. 4.3; we have

removed all trace statements from the code shown in

Fig. 11.

Fig. 11 Promela

implementation of class Peer
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The semantics of state machines is implemented by a

loop (LMAIN0) that executes until the final state is

reached. The main loop is made of three parts: (1) com-

pletion transitions, (2) read and (3) triggered transitions.

Transition execution, effects included, must be performed

atomically. This is achieved by inserting the special

Promela atomic statement around the loops that implement

the state machine. This is of particular importance because

it defines the places where verification takes place; model

checking is performed (never automata) after the execution

of every atomic statement. Atomicity is broken when a

process blocks (message waiting) or when the code jumps

out of the scope of the atomic region. We use this fact and

introduce back jumps to LMAIN0 outside the atomic area

in order to make sure that checks are performed by the

verifier after the execution of each transition.

The first part of the main loop implements the execution

of transitions that do not contain triggers, i.e. completion

transitions. This is itself an inner loop that executes until no

completion transition is found. Non-deterministic choice is

applied if more than one transition is available. The

translator maps state transition and operation names to

constants. For example, the branches corresponding to the

Branch and Write states refer to states 1 and 2,

respectively. Transition execution updates the values of

current and transition.

The inner loop ends with a check against the final state

(state 4 in our model). If the current state is not final, the

process reads on its input channel (part 2) and blocks if

the queue is empty. When a message arrives, the process

unblocks and assigns the values of the message’s argu-

ments to the formal parameters’ variables. The last part of

the loop, a conditional that branches depending on the

value of the current state and trigger, implements the

execution of triggered transitions. If the incoming mes-

sage does not match any of the available triggers, the

message is dropped and the value of msgUnread is set

to true.

Translation of actions is almost straightforward with the

exception of the call statement. For example, the code

that implements the execution of the action associated with

the transition that joins states End and Msg is:

/* call peer.sendMsg(’’B’’); */
_oTrigger = A1;
_oSender = pNum; _oReceiver = fPeer[ocID].peer;
_oCall=1; _out0=1; /* ’’B’’ mapped to constant */
outQ[pNum]!_oTrigger(_oSender,_oReceiver,...,_out3);
current[pNum]=4; transition[pNum]=8;

that requires assignments to the message parameters and

model checking variables, and a write to the object’s

output channel.

If the model contains instances of the tm guard, the

translator does the following:

– Marks all source states of transitions that contain tm.

– Generates declarations for a single global clock vari-

able (tmGlobal) and one local timer variable

(tmLocal) for each class with marked states.

– Generates code that:

– Sets the local (class) timer to the global clock value

whenever a transition reaching a marked state is

executed.

– Increments the global clock after each loop iteration

(inside a class process).

– Increments the global clock if the program blocks.

This is done by checking for timeout inside the

Comm process:

:: timeout -> // added to Comm
if
:: (numFinished>=NUMOBJECTS) ->
goto LCOMMEND

:: else ->
tmGlobal++;

fi
fi;

4.2 Translating properties into Spin LTL

Properties written in the property language defined in Sect.

3.4 must be translated into the LTL version used by Spin.

In order to do this, the property translation phase must use

the symbol tables used by the model translation phase and

refer to the global variables and arrays declared in the

generated Promela model. Let us consider the following

property:

alwaysðstateða1; BranchÞimplies
ðalways a1:role ¼ Manager:JÞÞ

The translator generates the following code:

#define pp0 (current[0]==2)
#define pp1 (fPeer[0].role==Manager_J)
!([]((pp0) -> ([](pp1)))) // Spin LTL

Spin LTL formulas can only deal with boolean vari-

ables, e.g. predicates like ðx[ 2Þ are not valid. There-

fore, the transformation has to generate special #define

declarations that name all boolean expressions and plug

the new definitions inside the generated Spin formula. In

the example mentioned earlier, pp0 and pp1 encode the

state predicate and the field comparison, respectively.

Note that operators are translated into their LTL coun-

terparts, e.g. ½ �;\ [ ; U: The transformed formulas are

written using the variables and values used by the
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generated Promela model, e.g. state Branch is denoted

by 2, local fields are accessed using the fPeer array,

static variables are referenced by the global variable

declared in the Promela model, and the global array

current is used to check the value of the current state.

Similarly, the translator takes as input the property

always sendðmanager; a2; getRoleÞ:implies
frole ¼ Manager:Pg

and generates:

#define pp0 ((_oCall==1) && (_oSender==2) &&
(_oReceiver==1) && (_oTrigger==A0))

#define pp1 (_out0 == Manager_P)
!([]((pp0) -> (pp1)))

The generated formula is then transformed into a Büchi

automata (never clause) using one of SPIN utilities and

both, definitions and never clause, are appended to the

model to form the never file.

4.3 Results visualization

SPIN provides its imulation and model checking results as

text, and in reference to the PROMELA-level specification.

This form is unsuitable for software developers as it makes

it difficult for them to identify the parts of models involved

in the reasoning path that demonstrates property violations.

To address this limitation, the translated Promela model

contains a series of printf statements that generate a trace

used later by the SVF. The output of these statements is

mixed with the usual Spin messages. The following steps

are needed:

– Parse the Spin output and identify the SVF trace

messages.

– Parse the messages and translate any Spin specific

representation to the corresponding UML model ele-

ment. For example, state 2 must be transformed into

R1.

– Send the transformed output to the user.

The partial output of an execution trace of our sample

model is shown in Fig. 12. The lines on the right column,

with text marked \t message[ ; are generated by the

printf instructions added during the code generation phase,

e.g. the printf line in Fig. 11. These lines are extracted

from the output text and all references (states, transitions)

are resolved in order to get a final output, shown on the left

column, using the following syntax:

– START o : \Class[ state ¼ S indicates that exe-

cution of object o has started in state S.

– TRANS o : \Class[ gS1� [ S2 indicates that the

transition that goes from state S1 to state S2 in object o

has been executed.

– OUT : o1� [ o2 mð\args[ Þ indicates that mes-

sage

mð\args[ Þ has been sent from object o1 to object

o2.

– IN : o2\� o1 mð\args[ Þ indicates that message

mð\args[ Þ sent by object o1 has been received by

object o2

4.4 Extension to models with composite states

Sections 4.1 and 4.2 describe the translations from UML

models and properties into Promela processes and never

claims that implement the semantics of the execution and

model checking of flat state machines, i.e. machines with

single states. In order to model check state machines that

contain composite states, the USVF must do the

following:

– Applies a flattening algorithm to the initial state

machine.

– Generates extra Promela data structures to implement

the state predicate.

The flattening algorithm takes as input state machi-

ne l = (s0, sf, S, T) and generates a flat state machine

(s0, sf, fStates(l), fTrans(l)), where fStates(l) is the set of

all possible state trees in l and fTrans(l) is the set of new

Fig. 12 Partil trace display and

SPIN ouput
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transitions generated from T by taking into considerations

the new set of flat states.

The flattening algorithm generates a set of states fStates(l)

by traversing the state tree and collecting the leave (single)

states from simple composite states and performing set

product on the flattened states of parallel state machines. The

flattening of states is described in the following paragraphs:

fStates : SM! dState

fStatesðlÞ ¼ fStatesðrootÞ
fStatesðsÞ ¼ fsg; s 2 Simple

fStatesð½s;R�Þ ¼ fStatesðRÞ
fStatesð½s;R��Þ ¼

Y

Ri2R�
Ri

fStatesðRÞ ¼ ffStatesðsÞjs 2 S;R ¼ ðrg; SÞg

The new set of transitions fTrans(l) is calculated such

that:

ð�t; ŝ; ŝ0; tr; g; aÞ 2 fTransðlÞ ,ŝ; ŝ0 2 fStatesðlÞ
ð�t; sI ; sF; tr; g; aÞ 2 T

s0I � sI ^ s0I 2 ŝ

ŝ 
t

ŝ0

For every transition t in l with source state sI, we generate

a new transition t0 for each state ŝ such that s0I 2 ŝ and

s0I � sI : In other words, the flattening algorithm ‘‘copies’’ t

to all flattened substates of SI.

The presence of composite states requires the generation of

an extra structure in order to implement the state predicate

for states other then simple (leaf) states. The verification of

stateðr; sÞ—where s [ Simple—is implemented by com-

paring the current state number with the id of s. However, if s is

a composite state, stateðr; sÞ should evaluate to true if the

current state number matches any of s’s substates id’s. We

implement this case by generating a boolean array per

occurrence of astate(r, s) with the following specifications:

– The array must be global and of size equal to the total

number of flat states in order to be indexed by state id’s.

– All elements of the array are set to false, except those

elements corresponding to states ŝ such that there exists

s0 2 ŝ and s0 � s:

– stateðr; sÞ is implemented by accessing the array with

the current state number.

The boolean arrays are generated for every predicate and

inserted to the Promela code together with the never claim.

5 Implementation

The USVF is packaged as an Eclipse plug-in that runs

along the Papyrus UML [23] graphical modeler. The

operational semantics UML models is implemented as a

translation into Promela, the specification language used by

the Spin [17] Model Checker. The translation of both

models and properties is integrated with a UML graphical

editor (Papyrus), a property editor and a result visualization

component that interact with Spin and the user [24]. Model

simulation and verification is performed by Spin.

The USVF and its graphical user interface are imple-

mented in Java and SWT, the GUI toolkit used by the

Eclipse platform. All parsers were generated using JavaCC.

The Design Model Constructor is responsible for the

creation of UML models, the generation of the internal

model representation and basic model validation. Papyrus

UML is the Graphical UML editor chosen to run along the

USVF. Papyrus has the required functionality that will

allow the user to build UML class and state machine dia-

grams, including provision for the definition of transition

guards, effects and actions.

The core functionality for model construction is pro-

vided by the Papyrus UML plug-in. The main output of this

component is the XMI representation of the model, saved

as a .uml file, which is later read and parsed. Internal

representation generation is divided into three steps: (1)

Parsing of the XML model file generated by Papyrus (.uml)

and parsing of the guard and effects in transitions. The

latter requires a separate parser, (2) Construction of internal

representation of UML model with most references

between objects still missing, (3) Resolution of all internal

references and generation of complete internal represen-

tation, and (4) Soundness check, e.g. minimal number of

classes, states, etc.

In essence, internal representation generation performs

type checking on the original model. If successful, the

translated model shall execute without runtime type errors.

The USVF performs verification of Papyrus UML

models against properties specified in the property speci-

fication language defined in Sect. 3.4. The USVF gets this

input from the user, parses it and translates it to its internal

representation. An important part of this process is the

resolution of formula elements to elements in the UML

model internal representation, effectively type checking the

property formula against the loaded model.

The implementation of the model and property transla-

tors is described in Sect. 4. The outputs of both translators

are put together into a single file, the never file, which is

used as input by the model checker.

The USVF uses Spin to model check system and secu-

rity properties against the UML models generated with

Papyrus UML. Spin models are written in Promela, a

special language similar to C. Spin can perform simulations

directly on Promela files. Verification is a more compli-

cated process and takes three steps. Given a Promela file,

Spin generates a C file with the code that implements the
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verifier for that particular model. The C program is com-

piled into a pan file. The pan file is executed.

The USVF provides an interface to Spin implemented as

a wrapper class. This wrapper class makes all the necessary

system calls to Spin, the gcc compiler and the compiled

verifier. Through the wrapper class, USVF uses the Spin

model checker to:

– Simulate Promela models.

– Call the Spin never clause generator that transforms

LTL formulas into never clauses.

– Generate a verifier executable given a Promela model

containing the property to be verified (never clause).

– Execute the verifier.

– Execute a simulation on the trail generated by the

verifier in case the verification fails.

6 Related work

6.1 Secure software engineering and modeling

languages

The area of secure software engineering has produced

solutions that aim to help system designers address security

issues during the whole development life-cycle of software

systems. In particular, UMLsec [25, 26] and SecureUML

[27] tackle this problem by introducing security require-

ments and constraints in the design phase via annotations

on UML models.

UMLsec and SecureUML are based on UML—profiles,

i.e. a set of stereotypes, tagged values and constraints—for

modeling security properties. Each of these approaches

focuses on specific types of properties. More specifically,

SecureUML focuses on role-based access control (RBAC)

and supports the specification of authorization constraints.

It combines the simplicity of using UML’s graphical

notation as the basis for expressing RBAC, with the

power of dynamic authorization constraints, i.e. constraints

based on the state of the system, e.g. field and parameter

values. Lodderstedt et al. [27] show how SecureUML

specifications can be used to generate security infrastruc-

tures that implement RBAC.

UMLsec provides a series of stereotypes used to model

security-related characteristics of system components—

communication links, roles, guarded elements—as well as

security requirements of systems (secrecy, integrity,

information flow, fair exchange, RBAC). In [22, 26],

Jürjens et al. show how UMLsec annotations can be used

to automatically evaluate UML specifications for vulnera-

bilities using a formal semantics of a simplified fragment of

UML and model checking techniques. In particular, they

address privacy by model checking an automatically

generated Promela model with cryptography operators and

that includes a Dolev–Yao attacker.

Current research efforts in the area of secure software

engineering include the integration of security methodol-

ogies and specification techniques. For example, in [28]

Mouratidis et al. merge the high-level concepts and mod-

eling activities of the secure Tropos methodology with

UMLsec models. The approach of USVF—unlike UMLsec

and SecureUML—is not based on the introduction of a

special purpose profile. Instead, in USVF we introduce a

generic property language that can be used to express not

only basic security properties but also more generic live-

ness and safety property as we explained in Sect. 3.1. In

principle, methodologies like UMLsec and SecureUML

can be integrated to USVF by using the property specifi-

cation language of the latter framework as an intermediate

language between the security properties specified by the

aforementioned profiles and the model checker. Further-

more, USVF complements UMLsec and SecureUML by

enabling the specification of a wide range of verification

properties (and their association with UML model ele-

ments) that cannot be inferred or generated from the UML

tags and stereotypes used in UMLSec and SecureUML. For

example, properties such as the availability of a particular

service (liveness) under a particular set of conditions, or

the constraints on e.g. the values of fields, at specific points

during the execution of a model need to be specified by the

designer using a language such as the USVF property

specification language.

6.2 UML semantics and model checking

The need to develop a more precise specification of UML

has been a concern [29] since its inception and adoption as

standard notation for object-oriented analysis and design

by the Object Management Group (OMG). As a

result, several formalizations have been proposed for the

behavioral part of UML and, in particular, the formal

specification of the semantics of state machine diagrams

[21, 30, 31].

Most of the work on formalization of UML state

machines has been in the context of automated formal

verification of systems and, in particular, model checking

[32–35]. A good number of these specifications have been

used as input to translations into Spin.

The automatic verification of UMLsec models, descri-

bed in [22, 26], is the most thorough work on model

checking security requirements of UML models using

Spin. The Spin translation used in this paper (for flat state

machines) resembles the one defined in [26]. Both, USVF

and UMLsec, consider non-hierarchical state machines,

treat completion and triggered transitions separately (in the

main loop), and define a separate process for message
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exchange. The latter is used to model intruders in con-

junction with a cryptographic action language. In UMLsec,

model checking is instructed by a series of annotations

based on stereotypes, which are transformed directly into

SPIN LTL. Our main contribution with respect to the

UMLsec translation is that our framework allows the user

to explicitly write properties, using the property specifi-

cation language, and that the transformation generates

special code to model check the predicates specified by the

specification language, e.g. special SPIN variables are

defined for keeping track of field updates, sending and

reading of messages.

Jussila et al. [32], like us, model UML classes as SPIN

processes and define a separate action language. However,

they do not provide a UML-based specification language;

the user is limited to entering checks in SPIN LTL. The

Hugo project [35] on the other hand uses a Spin trans-

lation to verify collaboration diagrams against UML state

machines but they do not support the verification of user-

defined temporal properties against the model as in

USVF.

Some of the work related to formal specification of

semantics of UML has been dedicated to provide a

complete formalization of complex aspects of state

machines such as hierarchical state machines and history

states. For example, Latella et al. [36] model UML state

machine diagrams as extended hierarchical automata

using Kripke structures. Our goal has been to formalize a

simple, though expressive, subset of UML in such a style

that facilitates the definition of UML model checking, i.e.

small step semantics with labeled transitions. Along those

lines, our UML semantic specification resembles the work

presented in [30]. In particular, starting from a precise

textual syntax definition, they develop a concise struc-

tured operational semantics for UML-Statecharts based

on labeled transition systems. Our approach to the mod-

eling of composite states follows the lines of the work of

Gnesi et al. [37] and Kuske [38] who use the concepts of

trees and term-rewriting. We simplify the latter by rep-

resenting state trees with the set of the tree’s simple

substates (leaves).

In [39], Xie et al. transform models expressed in xUML,

an executable subset of UML, into S/R models that can be

verified by the COSPAN model checker. COSPAN is an x-

automata-based model checker that takes as input models

and queries formulated in S/R (in their work, models are

defined as synchronous parallel composition of processes).

One of the most attractive points mentioned is the use of

static partial order reduction for model optimization.

However, no details of the approach are included. Simi-

larly, no syntax for the property specification language is

included which, from the examples given, seems to be

limited to conditions about machine states.

In [40], Moller et al. describe how CSP-OZ, a formal

method combining the process algebra CSP with the

specification language Object-Z, can be integrated into an

object-oriented software engineering process employing

UML as a modeling language and Java as an implemen-

tation language. Their methodology considers the use of

runtime checking tools to supervise the adherence of the

final Java implementation to generate JML contracts.

However, unlike in USVF, the types of properties consid-

ered are not temporal. More specifically, the static verifi-

cation part of their approach deals with JML-style

annotations, while the dynamic verification part checks

local assertions and invariants.

The most advanced work in UML model checking is the

one developed by Gnesi et al. [14, 41]. In [14], they define

a logic based on l-ACTL, a state/event-based temporal

logic similar to the one in USVF that uses a doubly labeled

transition system as semantics domain. They also imple-

ment an on-the-fly model checker and report application of

the framework to different application domains such as

verification of protocols for service-oriented systems [41].

However, the property language of USVF is able to express

a richer set of predicates involving object fields, class fields

and action events, aided by the operational semantics

exposure of more action-related events and richer syntax.

7 Conclusions and future work

In this paper, we have presented USVF, a framework that

allows software developers to build and verify UML

models against properties specified in a general-purpose

property language. We propose the specification and veri-

fication of security and general system properties, as well

as the use of formal verification techniques, from the early

stages of software development.

The area of security requirements engineering focuses

on the question of addressing security concerns at the

requirements phase. If we are interested in the application

of verification techniques to the whole of the software

development process—the ultimate goal being a fully

verified system—then, at least, we need to provide a link

between requirements elicitation, model design and auto-

matic verification techniques. One of the objectives of

USVF is to be such link by providing a framework where

the software designer can specify, and automatically verify,

security requirements using formulas that are expressed

using high-level elements of the system.

We have defined the syntax and semantics of a prop-

erty specification language for UML model checking.

In order to do this, we have defined the operational

semantics of UML models, provided a property specifi-

cation language based on LTL and UML elements, and
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expressed the semantics of UML properties in terms of

the runtime domains used by the operational semantics.

This approach allows us get into the details of UML

model execution, thus increasing the type of properties to

be verified.

USVF was evaluated in terms of usability, performance,

and expressiveness of the property language by the

industrial partners in the PEPERS [12] project. The results

of this evaluation were positive. The partners were par-

ticularly satisfied with expressiveness of the specification

language and the integration of the model checking phase

with the model creation tool (Papyrus). They also high-

lighted the fact that in order to have a complete framework

to support development and analysis of security aspects of

the system, it is necessary to include a way of handling

cryptographic primitives. This can be achieved by

extending the action language of USVF.

The achievements, and limitations, presented in this paper

set up the basis for interesting future work. As mentioned in

Sect. 2.1, the UML subset used by the USVF includes the

basic features necessary to model communicating state

machines. However, in order to improve the usability of

USVF, the UML models considered in this paper should be

extended to include features such as synchronous operation

invocation, as well as concepts related to distributed com-

puting e.g. ports. Furthermore, USVF does not have, besides

object declarations, a pre-determined way of initializating

objects. The use of constructors and component diagrams—

that include, for example, constraints in the number of

objects and initialization conditions—would be an important

addition to the framework.

The area of UML model checking offers interesting

topics of further research. In particular, we would like to

investigate other approaches to the translation of hierar-

chical state machines to Promela, besides flattening, and

their effect in model checking. We would also like to

explore the possibility of the application of program anal-

ysis techniques, such as slicing [42], for the generation of

more efficient models, i.e. models optimized for model

checking of formulas given as input.

Further work also includes the addition inclusion of

UML stereotypes for the specification of security require-

ments and properties for domain specific applications such

as service-oriented systems.

Finally, the formal verification of design models should

be complemented with further verification steps in order to

cover the complete software development process [40].

These steps include the static verification of implementa-

tions (where the models become specifications) and the use

of dynamic verification techniques [43, 44] such as non-

intrusive runtime monitoring. In particular, we would like

to explore the relationship with latter with the static veri-

fication of UML models.

Acknowledgments This work was partially supported by the

European Comission under the Information Society Technologies

Programme as part of the project PEPERS (contract ISI-26901).

References

1. Mouratidis H, Giorgini P (2006) Integrating security and software

engineering: advances and future vision. IGI Global

2. Alexander I (2003) Misuse cases: use cases with hostile intent.

IEEE Softw 20:58–66

3. The Common Criteria. http://www.commoncriteriaportal.org

4. Viega J (2001) Building secure software: how to avoid security

problems the right way. Addison-Wesley, Reading

5. Abadi M, Blanchet B, Fournet C (2004) Just fast keying in the pi

calculus. In: 13th European symposium on programming

(ESOPG04). Springer, pp 340–354

6. Gritzalis S, Spinellis D, Georgiadis P (1999) Security protocols

over open networks and distributed systems: formal methods for

their analysis, design, and verification. Comput Commun 22:70–

77

7. Meadows C (1994) Formal verification of cryptographic proto-

cols: a survey. In: ASIACRYPT, pp 135–150

8. Jayaram KR, Mathur AP (2005) Software engineering for secure

software—state of the art: a survey. Tech. rep., Purdue University

9. Anderson RJ (2008) Security engineering: a guide to building

dependable distributed systems. Wiley, Chichester

10. Devanbu PT (2000) Software engineering for security: a road-

map. In: The future of software engineering. ACM Press, pp 227–

239

11. Mouratidis H, Giorgini P, Manson G (2005) When security meets

software engineering: a case of modelling secure information

systems. Inf Syst 30(8):609–629

12. PEPERS project. http://www.pepers.org

13. Redwine S, Davis N (2004) Processes to produce secure software:

towards more secure software. Software security subgroup of the

task force on security across the software development cycle.

National Cyber Security Summit

14. Gnesi S, Mazzanti F (2004) On the fly model checking of com-

municating UML state machines. In: ACIS. IEEE

15. Object Management Group. http://www.uml.org

16. Emerson E (1990) Temporal and modal logic. In: Leeuwen JV

(ed) Handbook of theoretical computer science, vol B: formal

models and semantics. MIT Press, Cambridge

17. Holzmann GJ (2003) The SPIN model checker: primer and ref-

erence manual. Addison-Wesley, Reading

18. Pfleeger CP, Pfleeger SL (2006) Security in computing. Prentice

Hall PTR, Upper Saddle River

19. Wynskel G (1993) The formal semantic of programming lan-

guages. MIT Press, Cambridge

20. Schneider F (2000) Enforceable security policies. ACM Trans Inf

Syst Secur 3(1):30–50

21. Jürjens J (2002) A UML statecharts semantics with message-

passing. In: Applied Computing 2002. Proceedings of the 2002

ACM symposium of applied computing, Madrid, pp 1009–1013

22. Jürjens J, Shabalin P (2004) Automated verification of UMLsec

models for security requirements. In: Baar T, Strohmeier A,

Moreira A, Mellor SJ (eds) UML 2004—The unified modeling

language. Model languages and applications. 7th International

conference, Lisbon, Portugal, October 11–15, 2004, Proceedings,

LNCS, vol 3273. Springer, pp 365–379

23. Papyrus UML. http://www.papyrusuml.org

24. Siveroni I, Spanoudakis G, Zisman A (2008) Property specifi-

cation and static verification of UML models. In: Proceedings of

3rd international conference on availability, reliability and

security (ARES 2008). IEEE Computer Society, Barcelona

Requirements Eng (2010) 15:95–118 117

123

http://www.commoncriteriaportal.org
http://www.pepers.org
http://www.uml.org
http://www.papyrusuml.org


25. Jürjens J (2004) Secure systems development with UML.

Springer, Berlin

26. Jürjens J, Shabalin P (2007) Tools for secure systems develop-

ment with UML. Int J Softw Tools Technol Transf 9(5):527–544

27. Lodderstedt T, Basin DA, Doser J (2002) Secureuml: a uml-based

modeling language for model-driven security. In: UML ’02:

Proceedings of the 5th international conference on the unified

modeling language. Springer, London, pp 426–441

28. Mouratidis H, Jürjens J, Fox J (2006) Towards a comprehensive

framework for secure systems development. In: Advanced

information systems engineering, pp 48–62

29. Evans A, Bruel JM, France R, Lano K, Rumpe B (1998) Making

UML precise. In: Andrade L, Moreira A, Deshpande A, Kent S

(eds) Proceedings of the OOPSLA’98 workshop on formalizing

UML. Why? How?. http://www.citeseer.ist.psu.edu/evans98

making.html

30. von der Beeck M (2002) A structured operational semantics for

uml-statecharts. Softw Syst Model 1(2):130–141

31. Paltor I, Lilius J (1999) Formalising uml state machines for

model checking. In: France RB, Rumpe B (eds) UML 1999,

Lecture Notes in Computer Science, vol 1723. Springer, pp 430–

445

32. Jussila T, Dubrovin J, Junttila T, Latvala T, Porres I (2006)

Model checking dynamic and hierarchical UML state machines.

In: Hearnden D, S??? JG, Baudry B, Rapin N (eds) MoDeV-a:

model development, validation and verification. University of

Queensland, Le Commissariat ? l’Energie Atomique - CEA

33. Latella D, Majzik I, Massink M (1999) Automatic verification of

a behavioural subset of uml statechart diagrams using the spin

model-checker. Formal Asp Comput 11(6):637–664

34. Paltor IP, Lilius J (1999) vUML: a tool for verifying UML

models. In: Hall RJ, Tyugu E (eds) Proceedings of the 14th IEEE

international conference on automated software engineering,

ASE’99. IEEE
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