
ORIGINAL ARTICLE

An integrated domain analysis approach for teleoperated systems

Joaquı́n Nicolás Æ Joaquı́n Lasheras Æ
Ambrosio Toval Æ Francisco J. Ortiz Æ
Bárbara Álvarez

Received: 6 August 2008 / Accepted: 3 December 2008 / Published online: 15 January 2009

� Springer-Verlag London Limited 2009

Abstract Teleoperated systems for ship hull maintenance

(TOS) are robotic systems for ship maintenance tasks, such

as cleaning or painting a ship’s hull. The product line par-

adigm has recently been applied to TOS, and a TOS

reference architecture has thus been designed. However,

TOS requirements specifications have not been developed

in any rigorous way with reuse in mind. We therefore

believe that an opportunity exists to increase the abstraction

level at which stakeholders can reason about this product

line. This paper reports an experience in which this TOS

domain was analyzed, including the lessons learned in the

construction and use of the TOS domain model. The

experience is based on the application of extensions of well-

known domain analysis techniques, together with the use of

quality attribute templates traced to a feature model to deal

with non-functional issues. A qualitative research method

(action research) was used to carry out the experience.

Keywords Domain analysis �
Product line requirements engineering �
Feature modelling � Generic use cases �
Teleoperated systems � Action research

1 Introduction

Teleoperated systems for ship hull maintenance (hereafter

TOS) are robotic systems which are extremely useful in

maintenance tasks such as cleaning or painting a ship’s hull

[1, 2]. Recent years have seen the development of a soft-

ware reference architecture in the TOS domain [3]. Since

TOS usually share a high number of common capabilities,

this generic architecture provides a common framework for

the reuse of software artefacts (assets). These systems can

thus be considered to constitute a product line (or product

family), i.e. they are a set of software-intensive systems

which share a common, managed set of features that satisfy

the specific needs of a particular market segment [4]. A

comprehensive review of software product lines current

practice is provided by van der Linden et al. [5] and Pohl

et al. [6], while a recent vision of the challenges in the

research in software product lines has been compiled by

Käkölä and Dueñas [7].

Rine and Nada [8] have shown empirically that the level

of reuse determines the effectiveness of the improvements in

productivity, quality and time-to-market, and they conclude

that greater benefits are obtained when reuse is considered

during the early phases of the software development lifecy-

cle. In TOS, in contrast, requirements specifications have not

been developed rigorously with reuse in mind.

In this context, we propose the construction of new

products in the TOS product line from a higher abstraction

level—from the product line requirements instead of from

its generic architecture—by developing what can be intui-

tively seen as a TOS domain model (the meaning of this and

some related terms is discussed more rigorously in Sect. 4).

This paper presents an experience in analyzing the TOS

domain, together with a set of lessons learned, and results

from a TOS domain model that serves to (1) accelerate

J. Nicolás (&) � J. Lasheras � A. Toval

Software Engineering Research Group,

Departamento de Informática y Sistemas,

Facultad de Informática, Universidad de Murcia,

Campus de Espinardo, 30071 Murcia, Spain

e-mail: jnr@um.es

F. J. Ortiz � B. Álvarez

Systems and Electronic Engineering Division,

Universidad Politécnica de Cartagena,

30202 Cartagena, Spain

123

Requirements Eng (2009) 14:27–46

DOI 10.1007/s00766-008-0072-6

product line understanding (by indicating its common and

variable elements), (2) obtain reusable requirements of the

product line, (3) foster efficient decision-making in the

specification of new systems, and (4) reuse the reference

architecture and the commands used in the implementation

of the product line. Well-known domain analysis techniques

were chosen in order to improve the applicability of the

proposal and the understanding of its results. These tech-

niques have been set in a simple framework to represent the

domain model, and have been extended to cope with the

particularities of the domain. Domain analysis has been

extended with quality attribute templates to specify non-

functional concerns which are also traced to a feature model.

Glass et al. [9] point out that solutions for specific

domains have traditionally received little attention in the

software engineering literature, which has focused on

generic solutions. This study, in contrast, presents an

approach for modelling a specific domain, that of TOS.

Glass et al. [9] also show that the research method most

used in software engineering has been conceptual analysis,

and they conclude that ‘‘software engineering researchers

tend to analyse and implement new concepts, and they do

very little or anything else’’. In contrast, this research uses

action research [10], a proven research method (used pri-

marily in the social sciences) in which the researchers work

with the experts in the domain to generate a better under-

standing of a phenomenon.

The structure of this paper is as follows: Sect. 2 briefly

describes the TOS domain and Sect. 3 introduces the

research method used in the experience. Section 4 shows

the framework used for domain analysis. This framework

consists of a feature model (expanded in Sect. 5), a generic

use case model (expanded in Sect. 6), a domain conceptual

schema (expanded in Sect. 7), and quality attribute tem-

plates (expanded in Sect. 8). Section 9 offers the lessons

learned and Sect. 10 reflects on the validity of the experi-

ence. Finally, Sect. 11 describes related work and Sect. 12

presents the conclusions and further work.

2 Teleoperated systems for ship hull maintenance

A critical operation for ship maintenance is periodical hull

blasting before re-painting. To date some partial solutions

exist, like blasting turbines for vertical surfaces or water

blasting units for stripping. However, grit based solutions

are usually restricted to full blasting in vertical surfaces,

while the water based solutions are expensive and they

have not shown such good performance and quality surface

preparation as the grit blasting systems. In the European

project EFTCoR (environmental friendly and cost-effective

technology for coating removal, Fifth Framework Pro-

gramme [11]), a family of robots (see Fig. 1) was

developed for hull grit blasting which was capable of

obtaining a high quality surface preparation together with a

dramatic reduction of waste and zero emissions to the

environment. Two research groups and eight European

companies participated in this project.

Figure 2 shows a block diagram of the subsystems

considered in the development of EFTCoR robots and their

relationships. The diagram is a conceptual description in

order to present the functionality of these systems briefly:

Fig. 1 A teleoperated system

for ship hull coating removal

28 Requirements Eng (2009) 14:27–46

123

• The monitoring subsystem, which encompasses the

functionality concerning the informational and mana-

gerial needs related to ship maintenance.

• The vision subsystem, which comprises the functional-

ity concerning hull inspection and determines the areas

of the hull to be treated and their state before and after

the surface preparation. This information constitutes

one of the inputs to the monitoring subsystem.

• The robotic device control unit (RDCU), which is in

charge of controlling the robotic devices (positioning

systems and tools) used in the maintenance tasks

according to the orders introduced by an operator (by

means of the MMI control unit) and the orders and

events generated by other subsystems.

• The recycling subsystem, which is in charge of

retrieving the residues from the working areas and

recycling them. Because such residues have to be

retrieved online, there is a strong relation between the

operation of the blasting tool (cleaning head) and the

operation of the Recycling Subsystem.

Robotic devices consist of a cleaning head and posi-

tioning devices. The positioning of the cleaning heads over

the ship hull is a problem that can be solved in different

ways. The following solution has been proposed by the

EFTCoR project:

• A family of specialized, low cost systems has been

developed instead of a single general purpose system.

• The different nature and requirements of the two

cleaning operations, full blasting and spotting, lead to

different systems.

• The global positioning system has been split into two

independent positioning subsystems: a primary posi-

tioning system able to position heavy burdens along

large surfaces (the whole ship hull) and a secondary

positioning system, which can be mounted on the

primary, able to position a light cleaning head with the

precision required for spotting over small surfaces (4–

10 m2).

• The primary and secondary positioning systems, as well

as their assemblies, have been designed in such a way

that different combinations of primary and secondary

positioning systems are possible.

• A climbing vehicle, Lazaro, provided with a cleaning

head was developed to reach those areas that were

unreachable with a reasonable combination of primary

and secondary positioning systems. The vehicle can be

used all over the ship hull.

• Whenever possible, a commercial solution has been

adopted or adapted to do the work.

3 Research method

Action-research (A-R) is a qualitative approach which can

be used to study the effects of changes in system devel-

opment and maintenance methods. Baskerville [10] states

that complex social processes (such as the use of infor-

mation technologies in organizations) can be studied

properly following an A-R approach, by introducing

changes in those processes and observing the effects of

those changes. A-R promotes a reflective learning process

and a search for practical solutions that involves both

researchers and practitioners. The application of A-R pro-

duces a cyclical process in which all the parties involved in

the research participate by examining the existing situation

with the intention of improving it. A-R does not refer to a

concrete research method, but to a class of methods which,

according to Baskerville [10], share the following features:

• Focus on a practical problem.

• Orientation towards action and change.

Ship A
Robotic Devices

RDCU

Control Unit
MMI

Vision
Subsystem Cameras

Monitoring
Subsystem

Recycling Subsystem

Cleaning head

Positioning
devices

Images (raw or processed) +
images info (area, state, etc.)

Queries (retrieve and update work orders)

Responses

Ship data

Commands
to Devices

Status

Control Status

Control
Status

Fig. 2 Block diagram showing the TOS subsystems

Requirements Eng (2009) 14:27–46 29

123

• Collaboration between participants.

• A process model that involves systematic and some-

times iterative steps.

In line with A-R terminology, the following roles have

been used in this experience:

• The researcher is the Software Engineering Research

Group of the University of Murcia (Spain).

• The researched, i.e. the object under research, is the

TOS product line.

• The critical reference group (CRG), i.e. the group that

has the problem we are trying to solve, is the Division

of Electronics Engineering and Systems (DEES) of the

Technical University of Cartagena (Spain). DEES

performed technology transfer to naval companies like

Navantia (formerly Izar) interested in the innovation

that teleoperated systems provide to ship hull mainte-

nance. DEES is directly in charge of the development

of these robots.

• The stakeholders are all those organizations that might

benefit from the results of the research: in this case, the

CRG and, in general, companies that perform ship hull

maintenance tasks, or manage similar teleoperated

systems.

The present experience has been developed in the con-

text of the 3-year R&D project described in Sect. 2. Reports

of the work in progress were presented and discussed in five

general 2-day workshops that took place during the project.

In addition, there were four specific, 1-day meetings

between the researcher and the CRG. Moreover, there were

a lot of personal communications between the researcher

and the CRG that were not formally registered. E-mail was

used in most of these communications.

In this study, a participative application of A-R took

place, in which the CRG put into practice the recommen-

dations proposed by the researcher, with whom the effects

and results were shared. Questionnaires were used to

quantify the value for the CRG of the approach presented

in this paper. An empirical variant of A-R would have been

difficult to apply because it would have required the CRG

to perform a wide systematic register of actions and effects,

but records of the CRG’s previous work did not exist, as is

explained in Sect. 9.

The activities performed in the first cycle of this appli-

cation of A-R are described in Fig. 3. The first cycle begins

with a plan, in which the questions to guide the research

are identified and the actions to solve those questions are

specified. First, the interest of performing an analysis of the

TOS domain was justified. Then the state of the art in the

domain analysis field was studied in order to adapt

the analysis models to tackle the problem. The study of the

domain was shortened because the CRG had experience in

developing TOS systems and they had a wide set of

documents available describing the overall objectives and

needs of these systems, their reference architecture, the

specification of the commands used in their development,

some informal safety and security concerns, and some early

requirements documentation, including an initial concep-

tual model, an initial FODA feature model for a part of the

product line and an attempt to use case identification. This

documentation helped the researcher to gain knowledge of

the domain.

After the plan, an action activity follows in which the

researcher induces a careful, deliberate, and controlled

variation of the practice. In this case study, the researcher

and the CRG worked together closely to build a TOS

domain model iteratively.

Next, an observation or evaluation is made, in which

information on the effects of the action is collected, and

some lessons learned begin to take shape. This observation

was first performed in a purely qualitative manner, and

then was supported by the analysis of a 20-point ques-

tionnaire that addressed the issues that had been considered

of interest in the first qualitative assessment.

Finally, the first cycle ends with a reflection, in which

the results are shared and analysed by all the stakeholders,

and new interesting questions can be raised to be tackled in

a second cycle, and so forth. This reflection was performed

independently by the researcher and the CRG and a con-

sensus was then reached.

4 A framework for domain analysis

First it was necessary to choose and characterize the

models to use in TOS domain analysis. Olivé’s work [12]

describing the nature of conceptual schemas and the role

that they play in information system development was used

to unify terminology and provide a simple framework for

this case study. Olivé focuses on information systems, but

Fig. 3 A-R application process

30 Requirements Eng (2009) 14:27–46

123

most of the conclusions may apply to the general field of

software. According to this work, conceptual schema can

be defined as the knowledge model that a system needs to

perform its functions. The present experience tries to build

a TOS conceptual schema.

Some confusion exists in the literature as to the simi-

larities and differences between the notion of conceptual

schema and similar concepts, such as domain model,

domain knowledge, functional specification and ontology.

Olivé’s attempt is to knit different ideas to identify the

nature of conceptual schemas and their roles in information

systems development, and also to show the correspondence

with related terms. Olivé considers that the conceptual

schema of a system consists of two types of knowledge: (1)

knowledge about its domain, and (2) knowledge about the

functions that the system performs. The first is called

domain conceptual schema (DCS), and the second func-

tionality specification (FS). Figure 4 shows how these

models have been devised in this case study.

On the one hand, the DCS, sometimes called domain

knowledge or domain model, has been developed by means

of:

• A UML class model, showing a taxonomy of domain

entity types (with their attributes, relationships, and

integrity constraints), and a set of domain event types.

For instance, this model includes entities such as tool,

blasting, primary, and secondary, and event types such

as those that cause the system to change from one

maintenance state to another (apprenticeship, calibra-

tion, diagnosis, and configuration). The conceptual

model consists of about 80 conceptual classes.

• A UML state machine that describes the dynamics of

the domain event types. There is only one state machine

modelled to describe the allowed sequences of events

changing the state of the system (eight states).

On the other hand, the FS has been carried out by means

of:

• A feature model—cf. FODA, feature-oriented domain

analysis [13], FORM, feature-oriented reuse method

[14] or PLA, product line analysis [15]—, which

intuitively specifies the vision of the product line that

the stakeholders have. The whole model comprises

about 150 features.

scenarios of use of the system
(when a feature is executed)
⇒ use case modelbehaviour: allowed sequences of events

⇒ UML state machine

FS — Functionality Specification

client’s view of product’s functionality
⇒ feature model

complex features that need
more details
⇒ textual requirements

DCS — Domain Conceptual Schema

non-functional concerns, strategies
and mechanisms to handle them

⇒ quality attribute templates
command specifications
⇒ pre and post-conditions

domain vocabulary: entities,
relationships, attributes, event types
⇒ UML class model

Fig. 4 Models used in the TOS

domain analysis. Dotted lines
represent trace relationships

Requirements Eng (2009) 14:27–46 31

123

• A generic use case model, describing the interactions

between the actors and the system. This model consists

of about 20 use cases.

• A collection of textual requirements, which detail

features which are especially complex, and which

involve an amount of information that cannot be

suitably included in the template of the feature. There

are about 550 textual requirements.

• A collection of command specifications, which are pre

and post-conditions on the commands used in TOS

implementation. There are about 25 commands (mainly

calibration and movement commands).

Non-functional concerns have been modelled through

quality attribute templates [16]. These templates do not

only encompass requirements, but also help to link

requirements and architectural design. One part of these

templates corresponds to the DCS, when they describe

stimuli related to non-functional concerns (called abstract

scenarios in this context). The other part of these templates

corresponds to the FS, when they describe the strategies

and mechanisms needed to solve these scenarios. This is

why quality attribute templates are shown halfway between

the DCS and the FS in Fig. 4. For instance, abstract sce-

narios are related to adaptability (e.g. describing changes in

elements of the system, such as the kind of tool used to do

the cleaning, or the use of a new operating system),

performance (e.g. describing changes in the tasks pro-

cessing time), or availability (e.g. dealing with

communications and safe stop availability). When related

to safety and security issues these abstract scenarios can be

considered threats to the product line, for instance, when

the system enters a condition in which it is not safe to

execute some commands. The product line has to minimize

the risks related to these abstract scenarios. There are about

20 coarse-grained quality attribute templates in the TOS

specification.

An essential issue when modelling product lines is

variability modelling. In a product line approach, software

contains variation points, which specify options of

behaviour that remain open during core asset development.

These variation points have to be instantiated during

product development so that the behaviour of the final

product is completely specified. In the TOS product line, as

we show in next sections, variability is captured in the

feature model, in the use cases, and in the quality attribute

templates. A sketch of the requirements meta-model

designed for the present experience is presented in Fig. 5,

whose details are explained in Sects. 5, 6, 7, and 8.

In summary, the process of developing the TOS domain

models was performed as follows. Firstly, the DCS was

developed to obtain a common understanding of the

domain for both the researcher and the CRG. The models

Mandatory
Feature

Optional
Feature

Default Variant
Feature

External
Feature

Mandatory
UC Step

Alternative
UC Step

Optional
UC Step

Parallel
UC Step

{ordered}

{complete, overlapping}

{complete, disjoint}

type

Implementation
Feature

Capability
Feature

0..n1..n

implemented-by

{complete, disjoint}

view

Parameterized
Feature

Variant
Feature

Vp-Feature

1..n
1

1..n
1

refine-alternative

Change
Feature

Change Case
11 11

trace-to

Textual
Requirement Command

0..n0..n

UC Step

1..n

0..n

1..n

0..n

trace-to

Use Case

0..n

0..n

0..n

0..n

impact-link

1..n1..n

Attribute
Template

0..n

0..n

0..n

0..n

trace-to

0..n

0..n

0..n

commitment0..n

Feature

0..n

0..1

0..nrefine-and

0..1

0..n

1..n

0..n

1..n
trace-to

0..n

1..n

0..n

1..n

trace-to

0..n

0..n

0..n

0..n

trace-to
0..n

trade-off

0..n

0..n

1..n

0..n

1..n

trace-to

0..n

1..n

0..n

1..n
trace-to

Fig. 5 Requirements meta-model designed for TOS domain analysis

32 Requirements Eng (2009) 14:27–46

123

to describe the FS were then chosen and built iteratively.

The feature model was chosen first to express the common

and variable functionalities of the product line. Some fea-

tures needed to be enlarged by means of textual

requirements, which did not fit properly in the feature

templates. Working on the feature model, it was evident

that the execution of some product line functionality led to

scenarios that needed to be described: a use case model,

thus, could be useful, and use case and feature models were

performed concurrently. While constructing the use case

model, it was quickly realized the necessity to extend

classical use cases to deal with the variability in the

product line. Lastly, quality attribute templates, which

were available as a product of the already developed ref-

erence architecture, were introduced to deal with non-

functional requirements.

5 System capabilities and constraints through features

The capabilities and technology constraints that appear in

the products of the product line are specified in the feature

model. In this case study, the feature model defined by Kang

et al. [14] in FORM has been adopted. FORM has been

chosen as the basis of the approach because it is a mature

and well-known software product line design method,

which has been demonstrated in several case studies (see,

for example, [17, 18]). Furthermore, it specifically supports

the requirements engineering process, in contrast to other

architecture design methods of product lines [19]. The

original feature model defined in FORM has been adopted

and extended as follows in the next paragraphs.

FORM organizes features in four layers: capability,

operating environment, domain technology, and imple-

mentation technique. With the aim of simplifying the

feature model, the four layers have been reduced to only

two: capability and implementation. The latter, therefore,

covers the original layers of operating environment,

domain technology and implementation technique, which

are very close and, in our opinion, sometimes seem to

overlap in practice, giving rise to confusion. In this line, for

instance, Trigaux and Heymans [20] also criticized the

complexity of these four layers. An extract of the feature

diagram is shown in Fig. 6, where part of the features

related to the services offered by the TOS product line and

to the quality aspects are reflected. The relationships

between the layers of capability and implementation are

specified through implemented-by traces, such as the one

that shows the types of technology used to do the cleaning,

grit-blasting and hydro-blasting.

Von der Massen and Lichter [21] established the

requirements that a notation for variability modelling must

satisfy. Subsequently, Trigaux and Heymans [20] extended

these requirements with another: the graphical representa-

tion of variability, and in particular, of variants, variation

points and cardinalities of variation points. In order to

satisfy all the requirements and obtain a more expressive

notation, the original notation of FORM has been extended

with the graphical representation of variation points and

cardinalities:

• In line with Griss et al. [22], in the graphical

representation of variation points, a feature can repre-

sent a variation point (called vp-feature), while other

features play the role of its variants (variant features).

For instance, Fig. 6 shows that a relationship imple-

mented-by links the feature hull inspection with a

variant point (vp-feature) inside the product line,

identified as camera, which could be B/W or colour.

Furthermore, a feature can be linked to more than one

variation point. For example, Fig. 6 shows how the hull

cleaning (cleaning) is linked to two variation points: the

implied surface (cleaning area) and the implied

technology (coating removal technology).

• With regard to the graphical representation of the

cardinalities, we have adopted the approach of Riebisch

et al. [23], based on the UML notation, because we

think that it is intuitive, simple, and complete. It is

complete because it covers all the possible combina-

tions of the cardinalities (min, max) and not only XOR

and OR refinements.

We have adopted the concept of external features as

proposed by Svahnberg et al. [24]. These are features

provided by the platform where the system is deployed.

They are not part of the system, but are important because

they are used by the system, which depends on them. In

TOS, for example, the shipyard should provide some

specified values of compressed air supply and electricity

supply, with each modelled as an external feature (see

Fig. 6). Variability in external features may motivate the

addition of software elements to manage this variability.

We have detected the need to add a new type of feature,

which we call change feature, whose inclusion in the

product line is planned for the future, but is not available

yet; for example, in the TOS product line, the painting of

the ship hull or its welding (Fig. 6).

In addition, we use local and global parameters in the

template of FORM’s parameterized features. The charac-

ters $ and @ are used to begin the name of a global and

local parameter, respectively. Examples of global param-

eters are the minimal resolution for a camera in the system

and the time of response for a movement of the secondary.

Examples of local parameters are the specific resolution of

a camera (for instance, the resolution of a colour and digital

camera) and the time of response for a movement of an

XYZ table.

Requirements Eng (2009) 14:27–46 33

123

The variability of the product line is reflected in the

feature model through the graphical representation of the

variation points and their variants, and the optional,

external, change, and parameterized features. Comple-

mentarily, each feature is described through a template.

Figure 7 shows an example of the textual description of the

spot feature, which is shown in Fig. 6. The textual

description of features and the rest of elements in the

approach described in Sect. 4 has been carried out by

means of the IBM Rational RequisiteWebTM tool [25],

which permits cooperative work through the web and

specification of trace relationships.

Composition relationships AND/OR are not enough to

express all the possible dependences between features in

the model, so a trade-offs field (Fig. 7) is used to specify

requires and excludes relationships between features. An

example of requires is shown in Fig. 7. On the other hand,

for instance, tower over rail excludes eder turbine. But the

trade-off can be more complex than a simple inclusion or

exclusion relationship: a feature can sometimes favour or

Services

Ship Monitoring
Services

Vision

Maintenance
Information

Fresh Water
Washing

Painting

Recycling

Scheduling

Ship Maintenance
Services

Secondary

Full Spot

Grit
Blasting

Hydro-
Blasting

Cleaning

Simulation

Vision
Navegation

IIMMPPLLEEMMEENNTTAATTIIOONN

Devices Control

Tool
Control

Positioning
Devices
Control

State Devices
and

Diagnosis

XYZ
Table

Eder Turbine

Tool Maintenance
Commands

Tool
Operation
Command

Ship Maintenance
General Purpose

Services

Camera Positioning Devices

Special
Vehicule

Tower
Over Rail

Crane

Welding

B/W
Color

Cleaning Area

Coating Removal
Technology

Primary

1...*

1

1

1 1

1

1...*

LLeeggeenndd

ccoommppoosseedd ooff

RReelllaattiiioonnsshhiiippss

aallltteerrnnaattiiivvee

iiimmppllleemmeenntteedd bbyy

FFeeaattuurreess

Feature Optional

alt 1 alt 2

vp-feature

Change External

multiplicity

aallltt.. ddeeffaauullltt

((......))

CCAAPPAABBIILLIITTYY

((......))

((......))

((......))

1

EFTCoR

Quality

Platform

Compressed
Air Supply

Electricity
Supply

((......))

Safety

Command
Management

Availability

((......)) ((......))

Hull
Inspection

Fig. 6 An excerpt of the feature model

34 Requirements Eng (2009) 14:27–46

123

condition another one. For example, crane favours XYZ

table, and special vehicle conditions XYZ table (because

the former has to be adapted specifically).

6 Interaction scenarios through generic use cases

In this case study, the execution of the functionality rep-

resented by certain features can be naturally specified as a

use case or a combination of use cases: when an actor

requires the execution of the functionality represented by a

feature with a goal in mind, thus causing a set of interac-

tions with a product in the product line (for example, see

the cleaning feature in Fig. 6). Traditional use cases are not

sufficient to support the variability of a product line, since

they describe the actions of an actor when following a

certain task while interacting with a particular system.

However, the modelling of a product line requires the

description of analogous tasks for different products in a

product line, that is, generic or product-line use cases. For

the use case diagrams and textual use case descriptions to

be suitable for product line modelling, commonality and

variability must be integrated and described in them. There

is no generally accepted formalism which integrates vari-

ability modelling with use cases in order to carry out

product line modelling. The approach adopted in this case

study is described in this section.

A use case diagram can be used to group the use cases

that are involved in the execution of a feature. For exam-

ple, Fig. 8 shows the use cases related to the cleaning of the

hull (cleaning feature). This use case diagram is created

only for grouping visually the functionality of complex or

important features in the product line (such as cleaning).

N:M trace relationships are established between features

and use cases. For example, the cleaning feature is related

to several use cases (full cleaning, spot cleaning, start up,

shutdown, calibration, and fail recovery), while the spot

cleaning use case is related to several features (cleaning,

spot, automatic, and teleoperated). Traceability is textually

established between use cases and features and between

steps within use cases and features through the feature

template (Fig. 7) and the use case template (Fig. 9).

The variation points of the product line are already

expressed in the feature model, thus avoiding as much as

FEAT Spot (capability, alternative)

Description: Cleaning performed only on isolated points of the ship hull surface.

Rationale: Full blasting is only performed when the hull surface is more than 75%

damaged because it implies increasing the costs of abrasive material, painting, staff,

etc. Most of the time a partial cleaning (only the deteriorated areas—spots) is

performed in order to minimize the operation costs. 80% of ships entering the

shipyards need this treatment (spot blasting).

Composition rules: —

Trade-offs: requires (Primary, Secondary). It is necessary to have primary and

secondary positioning systems, since the primary positioning system is not accurate

enough by itself.

Trace to: UC Spot Cleaning, REQ101, REQ102, (…)

Implements: —

Implemented by: —

END-FEAT

REQ101: The system shall use spot cleaning when less than 75% of the hull is damaged.

REQ102: The spot cleaning implies the use of primary and secondary positioning systems.

REQ103: The system shall force that the movement of the primary positioning system implies the

secondary is stopped.

REQ104: The system shall force that the movement of the secondary positioning system implies

the primary is stopped.

Fig. 7 Textual template for the

spot feature and some related

textual requirements

Requirements Eng (2009) 14:27–46 35

123

possible an overload of the use case model with the com-

plexity associated to the product line variability.

Nevertheless, in order to make use case diagrams more

legible, and following Gomaa [26], optional and alternative

use cases are labelled with the «optional» and «alternative»

stereotypes. In this way, optional and alternative use cases

can be easily appreciated visually, although the details of

the variability are specified in the feature model. In this

manner it can be considered that the use case model is

structured by means of trace relationships to the feature

model.

The feature model could be considered as a high level

interface of the product line. However, there is variability

that is intrinsic to use cases in a product line: that associ-

ated with the possible variations in the steps of the

interaction scenarios, depending on the features selected.

This variability has to be captured in the description tem-

plate of the use case.

After reviewing different approaches to capture the

variability of a product line in the use cases [21, 27–30],

that of Eriksson et al. [30] has been adopted. This approach

has been chosen because it is in line with our focus, and

because it proposes the use of:

• Change cases, in relation to the possible impact in the

use cases of the adoption of future, anticipated exten-

sions of the system, which are still unavailable. These

are special use cases, originally proposed by Ecklund

et al. [31], which capture possible extensions of the

system. Use cases which can be affected by each

change case are indicated by means of impact link trace

relationships. The CRG plans to extend its work to take

in systems that possess more functionality than EFT-

CoR, and it therefore judged the use of change cases to

be promising. For example, Fig. 8 shows a change case,

hydro-blasting, implying a change in the cleaning

technique used (grit-blasting until now).

• The modelling of the variability in the description of

use cases, using:

– Local and global parameters.

– An extended version of the textual description of

the flow of events. The steps of the scenario where

variation can appear are expressed with a special

notation.

Figure 9 shows the description of the spot cleaning use

case. The literals alt, opt, loop, and par are used to label

the steps. For example, alternative steps alt (using the

same number) are shown within the description field in

Fig. 9, evincing that the action can be carried out in a

teleoperated or automatic form: one step 3 would be

traced to the teleoperated feature and the other step 3 to

automatic (analogously to step 4). Optional steps such

as (5) opt are also given. In addition, a global variable

($MAX_TIME_START) together with two local vari-

ables (@MAX_TIME_TOOL, @MAX_TIME_SAFE_-

STOP) have been used to express the maximum response

time to certain actions within the use case, within the

budget requirements column. This column refers to non-

functional requirements which are related to their corre-

sponding step. For instance, @MAX_TIME_TOOL refers

to the maximum time allowed to activate the cleaning

tool (step 4). Finally, the trace to column contains the

commands which operationalize the use case and the

related features.

Like Gomaa [26], we have experienced that the con-

struction of feature and use case models is a concurrent,

two-way process: the identification of features pinpoints

some that are candidates for development by means of a

use case, and the identification of use cases and opera-

tionalization of these with TOS commands provides

feedback on the feature model.

7 Domain conceptual schema as a visual dictionary

The complex TOS domain was unfamiliar to the

researchers so that to start the modelling process a DCS

was used to describe the vocabulary of the domain, i.e. the

concepts of the problem space and the relationships

between them. To build the so-called domain model, a

conventional use of a UML class diagram was adopted

Start Up

Shutdown

Fail Recovery

Calibration

<< include >>

Full Cleaning
<<alternative >>

Spot Cleaning
<<alternative>>

Operator

Hydro-Blasting
<< change case >>

<< impact link >>

<<impact link>>

Fig. 8 Use cases related to the hull cleaning

36 Requirements Eng (2009) 14:27–46

123

(e.g. see Larman [32]). The DCS was extended with

information on the dynamics of the domain event types

through a UML state machine. Event types helped to know

the states of the system better.

As concluded by Lee et al. [33], in a new domain that

is not still mature, the standardization of the domain

terminology and the use of standard terms during the

analysis can accelerate the feature identification process.

Use case name: Spot Cleaning

Type: mandatory/alternative/optional

Actors: (primary) Operator

Summary: Ship hull cleaning in a specified ship hull area (spot). It can be performed in a teleoperated or

automatic way

Trace To: (quality attributes templates and features traced to the use case)

Quality attributes templates: Command Management, Stop Mechanisms, Access to the User Interface

Features: Cleaning, Spot

Preconditions: The system is started and calibrated

Postconditions: The chosen ship surface area is cleaned

Open issues: -

Description:

Step Actor Action System Budget Requirement Trace to

1 This use case starts when
the operator pushes the
cleaning button

The system is started
to carry out the
cleaning operation

Max. response time is
$MAX_TIME_START

2
loop

The operator moves the
primary with the aim of
reaching the cleaning area
of interest

The primary is moved

3
loop
alt

The operator executes
commands to move the
tool using the images of
the ship hull surface, with
the aim of placing it in the
cleaning area

The secondary is
moved

VP-FEAT
Execution Mode:
Teleoperated

3
loop
alt

The vision system
executes commands of the
positioning systems to
move the tool, with the
aim of placing it in the
cleaning area

The secondary is
moved

VP-FEAT
Execution Mode:
Automatic

4
alt

The operator pushes the
button to activate the tool

The tool is activated
for the cleaning

Total response time is
@MAX_TIME_TOOL

VP-FEAT
Execution Mode:
Teleoperated

4
alt

The system activates the
cleaning tool

The tool is activated
for the cleaning

Total response time is
@MAX_TIME_TOOL

VP-FEAT
Execution Mode:
Automatic

5
opt

The operator pushes the
emergency stop button.

The system stops
safely

Total response time is
@MAX_TIME_SAFE_
STOP

FEAT Emergency
Stop

6 The system checks the
quality of the cleaning

If it is OK then 7, if
not start again, 3

*7 At any time, the operator
pushes the cancellation
button

The cleaning stops at
that point

Fig. 9 Fully dressed spot cleaning use case

Requirements Eng (2009) 14:27–46 37

123

The domain entities involved in the feature templates,

textual requirements, use cases, and quality attribute

templates, must be specified in the DCS. In addition,

some functionality of the TOS systems was first described

in the DCS, and included later in the feature tree. How-

ever, not all features in the feature model are in the

conceptual schema. For instance, low-level features that

were discovered during feature model construction (e.g.

some implementation features) and most of the interme-

diate levels of the feature tree were not included in the

conceptual model. In the present experience the concep-

tual model was ‘‘frozen’’ after providing domain

understanding, a common vocabulary and a starting point

to build the feature model. The conceptual model was not

used later except to document the knowledge about the

domain graphically.

A part of the class model of the DCS is presented in

Fig. 10, including interactions between the RDCU and the

other subsystems: vision subsystem, monitoring subsystem,

and recycling subsystem. In fact, these subsystems belong

to the architecture, but they were included in the DCS for

the sake of domain understanding, as long as they were

described by the CRG as fixed in their description of the

domain. Only some of the attributes are shown in Fig. 10

owing to size and legibility.

The DCS is completed by the event types described

through a UML state machine (see Fig. 11). The state

machine shows that, when the system starts, it remains in

an idle state until it is made operational. Transitions

between states are produced by a change_of_mode() sig-

nal, with the exception of the transition to safe stop which

is a result of an alarm. When the alarm is restored, the

system will return to operational or idle depending on the

severity of the alarm. The maintenance state can be

considered as a limited operational state which allows

calibration, diagnosis, configuration or apprenticeship

operations to be performed with guarantees of safety (for

instance, the velocity of the axis and automated com-

mands are limited).

The researcher discussed whether it would be useful to

augment the degree of formality in the construction of the

DCS to arrive at the definition of a TOS domain ontology.

For example, the proposal of Guizzardi et al. [34], which

defines a UML profile, could be used to create an ontology

of TOS. The use of an ontology-defining language will

produce an overload in terms of effort and legibility, and

therefore the researcher believed that it should not be used

in the absence of evidence as to the benefits that it will

confer. A more practical approach has been chosen in the

case under study.

RDCUExternal System

Primary
Power consumption
Maximun load

Cleaning
Diameter
Maximun pressure

Painting
Diameter
Maximun pressure

Fresh Water Washing
Diameter
Maximun pressure

Blasting
Water

Pressure

Positioning
Degrees of freedom
Number of joints
Maximun linear speed
Maximun joint speed

{incomplete}

Secondary
Power consumption
Maximun load

Tool
Maximun speedProgrammer Operator

Image
Format
Number of pixels

MMI

1

1

1

1

uses

1

1

1

1

uses

0..n1..n
Vision System

Processing algorithm
Communication protocol

Monitoring System

Recycling System
Recycling quality
Recycling velocity

Robot
Degrees of freedom
Number of joints
Maximun linear speed
Maximun joint speed

Device RDCU1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0..n

1

0..n

1

interact

Device1 1..n1 1..n

0..1

1

0..1

1

Command
Transfer mode
Pre-conditions
Post-conditions

1

1..n

1

1..n

executes

1..n

1..n

1..n

1..n

Controller

0..n

1enters

{incomplete}

Fig. 10 An extract of the entities of the DCS

38 Requirements Eng (2009) 14:27–46

123

8 Approaching architecture and implementation:

quality attributes and commands

Certain emergent, non-functional properties of the system

acquire particular importance in the design of a generic

architecture for TOS. These quality attributes have been

modelled following the recommendations of Bass et al.

[16], because the CRG had already worked with them in

the specification of their reference architecture [1]. As was

stated in Sect. 4, the quality attribute templates include a

description of the abstract scenarios related to non-func-

tional concerns that the system has to take into account in

the product line, and the responses that these should pro-

duce. Moreover, possible strategies and mechanisms for

solving these abstract scenarios are provided, as well as

dependence relationships between the quality attributes.

These dependences are more complex than a simple

inclusive dependence, as they include commitment rela-

tionships—identified by Chung et al. [35].

Quality attribute templates may be seen as clusters

which encompass requirements, design strategies and

mechanisms related to a particular non-functional aspect.

For example, concerning safety in TOS, it is essential to

constantly monitor the system’s operation, to manage the

execution of commands and to provide safe shut-down

mechanisms that are activated by the operator or when

hazardous situations or serious operating errors are detec-

ted. For instance, command management is necessary to

prevent the execution of unsafe commands and to ensure

that commands are executed according to plan (see

Fig. 12). In this figure stimuli can be thought of as the

causes of the product line abstract scenario while responses

can be seen as the proposed solutions. In the figure

response (a) corresponds to stimulus (a), the system must

inhibit commands which are incompatible with the system

condition for reasons of safety, e.g., it must not move

autonomously if it is in maintenance mode. The same

correlation can be found between stimulus (b) and response

(b), and so on. Next, the Architectural strategies and

mechanisms field provides strategies and mechanisms for

dealing with or solving these scenarios, e.g., each system

status is associated with a number of commands that can be

executed in it. In identifying the architectural strategies and

mechanisms best suited to satisfying the quality attribute,

we are overlapping domain modelling with architecture

design.

To sum up, in the present experience non-functional

requirements have been specified by means of: (1) quality

features, which are the features related to non-functional

concerns in the feature model [14], (2) quality attribute

templates, which are traced to quality features, and (3) use

cases, where non-functional requirements are specified by

traces to quality attribute templates (field trace-to), and in

the steps of the use case (field budget requirement).

Commands are functional events which are interchanged

between subsystems in order to specify which operations

one subsystem requires from another. For example, the

Vision_Subsystem detects an area to be cleaned and thus

sends a command jog_motion(joint_id, angle, position,

direction, velocity, acceleration) to the RDCU (robotic

device control unit) to force the robot to move to the desired

area. TOS systems typically share the same commands

between applications (jog_motion, stop, move_forward,

etc.), although their implementation might be different. In

Idle

Operational

Safe stop

Apprenticeship

Diagnosis

Calibration

Configuration

se disparó alarmaalarm went off

startstart
cambiar modo()change of mode()

cambiar modo()change of mode()

se restaruó la alarma [era leve]alarm was restored [was slight]

offoff

shutdownshutdown

cambiar modo()change of mode()

se restauró la alarma [era grave]alarm was restored [was serious]

se disparó alarmaalarm went off
Maintenance

Fig. 11 State chart describing the RDCU (robotic devices control unit) changes of mode

Requirements Eng (2009) 14:27–46 39

123

our approach these commands can be accessed directly

from the features, from the textual requirements, or from

steps in the use cases. TOS commands are described in

templates by their meaning, parameters, type, constrains,

and pre and post-conditions. Figure 13 presents an extract

of the template which defines the main parameters of a

jog_motion command.

9 Lessons learned

The TOS domain model was defined after constructing a

first prototype called GOYA [36]. This prototype was the

first robot developed by the CRG for ship maintenance and

allowed them to perform an exhaustive study of the TOS

domain and to define features, use case models, and quality

attribute templates. TOS models were then instantiated in

the EFTCoR project for the products shown in Table 1.

The knowledge acquired during the development of these

EFTCoR systems has enriched the TOS domain model.

Although some members of the CRG participating in the

EFTCoR project had previously developed the GOYA

prototype, it was difficult to collect representative quanti-

tative data to be used in a comparison because the GOYA

project was not developed by taking software engineering

concerns into consideration during the requirements spec-

ifications, and no data were collected. Thus, we can only

provide general data with regard to developing time, peo-

ple involved, and the number of systems that were built in

both projects (see Table 2). In any case, we believe that the

qualitative research method chosen, action-research, has

been useful because it has driven research towards practical

objectives and has helped industry to put the results of the

research into practice.

In this section we discuss the main lessons learned, by

summarizing the EFTCoR project personnel’s experiences

Safety aspects: Command Management.

General description:

Management of commands to:
Prevent execution of unsafe commands.
Ensure that commands are executed according to plan.

Abstract scenarios:

Stimuli:

(a) The system enters a condition in which it is not safe to execute certain commands.
(b) Execution of the command is compatible with the current state of the system but it is not possible to say whether it is
safe to execute.
(c) The command is not executed according to plan.

Responses:

(a) Inhibit commands not compatible with system condition.
(b) Check viability of a command before it is executed (a command is viable if the state of the system after execution is
known and safe).
(c) Monitor execution of commands checking that they are carried out according to plan (no unacceptable discrepancies
between actual and expected conditions, no timeouts, etc.).

Architectural strategies and mechanisms:

Management of conditions and modelling of commands:
Each condition is associated with a number of commands that can be executed in it.
Each command can be executed by the system in certain conditions.

Separation of concepts and encapsulation:
With each condition, encapsulate the commands that can be executed in it.
With each command, encapsulate the conditions in which it can be executed.

Prior simulation of commands.
(...)

Relationship with other quality attributes:

Performance: (...)
Modifiability : (...)

(...)

Remarks:
(...)
On-line simulation of commands may seriously overload the system. An alternative and quite useful schema is to utilize
the data from an off-line simulation to generate the expected conditions and compare these periodically with the actual
conditions.

•
•

•
•

Fig. 12 Quality attribute template associated to management of commands (extract)

40 Requirements Eng (2009) 14:27–46

123

in using the TOS domain model. These are organized into

groups in order to ease reading. The impressions of the

CRG when adopting the TOS domain model have been

collected and evaluated through interviews, observations,

and group discussions. In addition, in order to quantify

their experiences and opinions, the personnel implied in

TOS development (ten people) filled out a 20-point

questionnaire.

9.1 FORM features are useful in the structuring

of a reusable requirements catalogue and speed

up the search for requirements in the catalogue

Prior to this experience, the researcher had worked on the

reuse of textual requirements in the domains of personal

data protection [37] and security [38], but had not used

FORM features. The researcher therefore knew from these

experiences that a reusable requirements catalogue in nat-

ural language for a broad domain may be sufficiently

precise and correct, but that it may sometimes be hard to

handle since it is made up of long lists of textual require-

ments which are arranged in sections in a hierarchy of

documents. For instance, it is at times difficult to locate the

requirements that are related to a certain concern. The

requirements catalogue in the TOS domain, however, has

been constructed directly on the basis of FORM features.

The use of features leads to more rapid reasoning in the

definition of a product in the product line than the use of

textual requirements only. When specifying a product in

the product line, it is possible to browse the problem space

by means of the decision space defined by features, and to

select those required, more quickly than by going through

long lists of textual requirements.

Regarding the CRG, almost all the people involved in

the project who had previous knowledge of the domain

since they had already worked on the GOYA prototype

found the feature model useful and easy to use in the

definition of a new product, and preferred to have a

graphical representation of features rather than a textual

description in order to define the main features of a new

product quickly. Ninety percent of those polled in EFTCoR

found the graphical representation the most appropriate,

but most of them also suggested that a software tool to

manage the model would be useful, especially when the

model is bigger.

Like Griss et al. [22], the CRG decided that it was

necessary to include views in the feature model to deal with

complexity, and so two levels of abstraction were inclu-

ded—capability and implementation—. These have proved

Fig. 13 Specification for jog

motion command (extract)

Table 1 EFTCoR products for which the models have been instantiated

Product ID. Cleaning operation and ship hull area Primary system Secondary system Tool

P1-SV Spotting (vertical surfaces) Vertical towers XYZ table Cleaning head with residues confinement

P2-SB Spotting (bottoms) Scissor crane XYZ table Cleaning head with residues confinement

P3-FV Full blasting (vertical surfaces) Vertical towers – Cleaning based on turbines

P4-FS Full blasting (shaped surfaces) Vertical towers – Cleaning head with residues confinement

Table 2 Comparison between GOYA and EFTCoR development

times and systems

Project Duration

(years)

Fixed

personnel

(people)

Auxiliary

personnel

(people)

Systems

built

GOYA 2 8 4 1 prototype

EFTCoR 3 12 4 4 systems

Requirements Eng (2009) 14:27–46 41

123

useful for dealing with the complexity of the model while

simplifying the four levels of FORM features. The expe-

rience in the EFTCoR project reflects that 80% of people

positively appreciate using two views to separate capability

from implementation.

9.2 FORM features are useful to specify variability

in requirements

We can again compare this experience with the work of the

researcher in the domains of personal data protection [37]

and security [38]. No variability model was explicitly

developed in the aforementioned works. Variability in

natural language requirements was expressed by means of

natural language in the requirements text, parameterized

requirements, and inclusive and exclusive traces between

requirements (in short, ReqA includes ReqB if for ReqA to

be satisfied, ReqB must also be satisfied; ReqA excludes

ReqB if ReqA cannot be satisfied in the case that ReqB is

satisfied). In these early experiences variability is conse-

quently broadened around the whole requirements

specification.

After the experience in the TOS domain, the researcher

believes that the feature model contributes towards a clearer

expression of the variability in the product line than the two

previous approaches. The feature model plays the role of a

variability model which encompasses the variability of the

product line that is relevant for an eventual purchaser of a

product of the product line: the feature model shows the

variability graphically and it extends the variability con-

structs which are present in the two previous approaches.

Graphical representation of the variation points in the fea-

ture model (vp-features), which extends the FORM notation,

has been useful in making the decisions that have to be taken

in the instantiation of the family explicit. However, using a

more expressive notation to denote cardinalities has only

proved useful in showing XOR and OR nodes.

During the reflection stage of the present experience

(Sect. 3), it was found that variability management as per-

formed with feature and use case models can be improved

by using decision models like those proposed in PuLSETM

(product line software engineering) [39]. These models list

the alternatives for each variation point and show the con-

sequences of choosing each alternative. Decision models

are particularly useful in large-scale projects. In a large

feature model the clear establishment of the different

products making up the product line is not a trivial task.

9.3 Direct traces from requirements to commands help

to reuse code

The CRG believe that traceability from the product line

requirements to the TOS commands is important. To this

end, features, use cases, and quality attribute templates

have been operationalized with TOS commands. These are

very common commands, both in the TOS family and in

other robots, and it would be extremely useful to be able to

reuse them. For instance, some commands are move_

primary_to(), move_secondary_to(), execute_sequence(),

jog_x(), and lookfor_spot(). When instantiating a new

product of the family, we know from the feature model

which capabilities the new product needs—for example,

vision navigation. It is very useful to have a trace from that

feature to the command lookfor_spot(), which includes

algorithms that can be directly reused. The developer thus

knows from the outset which commands will be needed.

9.4 All the techniques in the approach should not

always be used to model a new product line

from scratch

The framework used in the present experience was designed

in the context of existing TOS. Reference architectures had

already been developed in the TOS product line and quality

attribute templates were available. It may be asked whether

this framework is suitable to model a new product line from

scratch. In this case the researcher believes that if the

product line is not especially concerned with safety issues, it

might be worthwhile specifying non-functional require-

ments simply by means of natural language rather than

quality attribute templates, which add more information but

are, on the other hand, much harder to write. Quality attri-

bute templates are especially useful in safety critical

systems such as TOS systems. Furthermore, prior to mod-

elling features and use cases it might be interesting to build

a conceptual model quickly only if a number of new con-

cepts in the domain need to be understood. In the present

experience the conceptual model has been useful to assist in

the development of the feature model. Nevertheless, the

researcher now knows the domain well and thus the con-

ceptual schema would not currently be needed, so feature

and use case modelling might be built directly.

Some of the main impressions with regard to the use-

fulness of the approach are summarized in Table 3. It is

noteworthy that personnel with previous knowledge of the

domain are more enthusiastic about the approach presented

in this paper, probably because many of them worked on

the GOYA prototype and are aware of the amplitude and

complexity of the TOS domain and the difficulties of

developing such systems without a disciplined approach.

10 Validity of the results

This section provides a critical vision of the validity of the

results obtained in the present experience, and in particular

42 Requirements Eng (2009) 14:27–46

123

of the role played by A-R. The weaknesses of A-R arise

from misunderstandings in its application rather than from

its nature in itself. Baskerville and Wood-Harper [40] and

Baskerville [41] have provide an in-depth discussion of the

risks associated with A-R and how they can be handled.

Two problems that have sometimes arisen in the present

experience are the following:

• The absence of a method which will permit researchers

and practitioners to use and conceive A-R.

• The absence of a detailed research process model which

shows the steps to follow in A-R.

These problems jeopardize the rigour in the research

process. There is a risk in that researchers and practitioners

forget the framework of the research, and err in rigorously

defining the steps of planning, action, observation, and

reflection. This has happened at times in the present

experience. If this experience were to begin again, the

researcher would define the objectives of the A-R cycles

more strictly, and smaller cycles with more limited

objectives would be designed. It should be taken into

account that A-R was used in the present experience for the

first time by both the researcher and the CRG. A-R has

been shown to be a method which makes it possible to

establish a simple framework for the research, although in

practice the application scheme shown in Fig. 3 has proved

to be too inflexible if strictly followed, and the joint work

has proceeded with constant turn-backs and feedbacks. In

the present experience, for instance, it was not possible to

determine all the models that were necessary to carry out

the modelling (planning) until this had commenced

(action). In order to avoid the aforementioned problems

and to improve the rigour of the application of A-R, Estay

and Pastor [42] propose driving the research through a

project management perspective, by generating a project

structure that encompasses the main elements of A-R.

Research and project are equivalent concepts for these

authors.

A further problem in the application of A-R occurs when

the researcher adopts a role of mere consultant in the

process, sometimes by contract. When this happens, the

researcher has a limited capacity to change the practice. In

the present experience, however, researchers and CRG staff

were able to communicate through a common software

engineering language, and the CRG did not impose limits

on changes in the practice.

The conclusions drawn from the present experience

would be more valuable if quantitative data had been

collected. The improvement in the EFTCoR project in

relation to GOYA is evident from Table 2 (three more

products built with only four more people and one more

year), but it should be taken into account that the figures in

EFTCoR are better not only due to the TOS domain model,

but also due to the previous experience of six members of

the development team, who had previously worked on

GOYA.

11 Related work

On the basis of their work in aviation engine control sys-

tems, Lam et al. [43] have identified ten key questions

which can benefit an approximation to requirements reuse.

The present experience leads us to agree with most of the

steps proposed by Lam et al.: (1) to be reusable, the

specification of requirements needs to be generalized, but

to improve reuse the details also need to be considered, (2)

it is desirable to identify product families in order to

maximize reuse, (3) reuse techniques need to be evaluated

in terms of their impact on the process, and we have

therefore been working with simple, well-known approxi-

mations, (4) knowledge of the domain should be used to

organize reusable artefacts, as for instance we do by means

of the feature model, the use case model and the quality

attribute templates, (5) inclusive trace relationships need to

be introduced between requirements, so ‘‘requirement B is

only possible if requirement A is true’’, as we do by means

of the hierarchical decomposition relationship in the fea-

ture model, (6) the context of reuse needs to be made

explicit so as to avoid its wrong use, to which end we use

Table 3 Main conclusions extracted from questionnaires

Feature model Use case model Attribute templates Reuse of the domain

model

Personnel with

previous

knowledge of

the domain

83% think that it is the most useful

to understand the domain and to

define new products

33% think that it should be

extended (more than

30%) for new

developments

33% think that they are

difficult to use and that they

do not help to explain the

domain

83% think that it can be

reused in future

developments (at least

at 75%)

Personnel without

previous

knowledge of

the domain

50% think that it is more useful

than use cases to understand the

domain and to define new

products

75% think that it should be

extended (more than

30%) for new

developments

75% think that they are

difficult to use and that they

do not help to explain the

domain

50% think that it can be

reused in future

developments (at least

at 75%)

Requirements Eng (2009) 14:27–46 43

123

external features and trade-off relationships between fea-

tures, and (7) it is recommended to assess the impact of

requirements reuse on other development processes such as

design. We are not questioning the utility of the three

remaining key questions mentioned by Lam et al.; how-

ever, we must say that in the present experience they did

not prove relevant, (8) it was not necessary to use the

proposed method by Lam et al. to identify parameterized

requirements, which were identified in an ad hoc manner in

the present experience, (9) it was not necessary to identify

pluggable requirement parts which could have been used to

improve the definition and instantiation of the parameter-

ized parts of the requirements, and lastly (10) we were

unable to assess the statement that ‘‘parts of the require-

ments engineering process are also reusable’’, since the

process as such was not modelled. In fact the present

experience was guided more by those products described in

Sect. 4 than by a particular process model.

As we can see, for Lam et al. [43] one of the key

questions for improving reuse is the adoption of a product

line approach. Clements and Northrop [4] have described

the specific practices that are of use in the area of

requirements engineering for the development of product

lines, and these were put into practice: (a) domain analysis

techniques, (b) feature modelling, (c) use case modelling,

(d) change case modelling, and (e) traceability of require-

ments to associated work products. The only question

mentioned by Clements and Northrop that was not fol-

lowed up was the modelling of stakeholder views, as in the

present experience we only worked with one requirements

supplier, the CRG, who are the main developers of the

products and who had a clear idea of the product line

requirements.

Several authors, such as Pohl et al. [6] and Bayer et al.

[44] propose the use of a variability model to express the

variability of the product line. This variability model

includes the variation points and alternatives of the product

line and is independent of the other development models.

The basic idea is that the alternatives in the variability

model are traced to subsets of the development models. For

example, an alternative could be traced to certain features

and use cases at the requirements level. In particular, Pohl

et al. [6] propose the use of an orthogonal variability model

which solves some limitations of the feature models as

originally proposed by FODA/FORM. Pohl et al. [6] report

two shortcomings in these diagrams: (1) There is an

inability to distinguish between alternative features that are

common to all applications (and which are therefore a

commonality of the product line) and alternative features

that can be selected separately for a specific product. In the

TOS domain all alternative features have to be selected in

development time. (2) The feature tree lacks a grouping

mechanism which would allow arbitrary features to be

assigned to a particular variant. The developers might wish

to offer several variants, which are split across different

branches of the feature tree. Restructuring the feature tree

according to the grouping is not always a viable option,

since the original decomposition of features is then lost.

We have not needed these package features in the TOS

product line, and they have therefore not been handled in

our approach, but we do not question their general

applicability.

12 Conclusions and future work

We have presented an experience in analysis of the TOS

product line, with a view to enabling reuse of requirements

in this domain:

• We have presented a model of the TOS domain which

is designed to raise the level of abstraction with which

stakeholders can reason about this product line.

• We have shown the main lessons learned from this

experience in TOS modelling, which was designed

using a qualitative research method, A-R.

To the best of our knowledge, there is no specific pro-

posal to tackle TOS requirements management. To

construct the TOS domain model, then, we performed a

critical analysis of the state of the art in product line

requirements engineering, in the course of which we

selected and enriched existing techniques, the applicability

of which we have experienced in this domain. We have

selected techniques that are well-known in domain analysis

to render the proposal more accessible.

The impressions of the CRG when adopting the TOS

domain model were collected and evaluated through

interviews, observations, group discussions, and question-

naires. They reflect that CRG experienced personnel found

the adoption of software engineering techniques useful.

The CRG considers the present experience a success in that

the requirements documentation generated for the product

line lends it added value in terms of dissemination to both

customers and developers, since it is not usually developed

in teleoperated systems.

We believe that the use of domain analysis and

requirements as presented in this paper can be extrapolated

to other teleoperated systems: the requirements models

could be different, but we think that the approach is valid

for modelling them, because they share a basic set of

commands and the scenarios of use are similar.

We believe that the approach presented in this paper

would be more useful if a tool was available to generate

requirements documentation automatically from the anal-

ysis models. The idea is to define and automate the

mechanisms for transformation of the analysis models into

44 Requirements Eng (2009) 14:27–46

123

textual requirements that could be labelled with attributes

such as their priority or degree of accomplishment. A

software product line tool, GEARS [45], already permits

the generation of the requirements documentation based on

the features selected during product derivation. The docu-

mentation that GEARS generates is a snapshot of the

derivation of a product in the product family: the require-

ments document cannot evolve together with the software

product line models. Our idea is to go one step further,

which implies providing two synchronized views of the

software product line: the models view and the textual view.

In an iterative and incremental development, the textual

view would simplify the management of the requirements

of the project, and it could help the client to discover the

state of the project and to fix the terms of the contract.

Acknowledgments Partially financed by the CICYT (Science and
Technology Joint Committee), Spanish Ministry of Science and

Technology (TIN2006-15175-C05-02 and TIN2006-15175-C05-03).

We would like to thank Prof. Alan M. Davis for his selfless help in the

revision of the manuscript. Of course any remaining fault is ours.

References

1. Fernández C, Iborra A, Álvarez B, Pastor JA, Sánchez P, Fern-

ández-Meroño JM, Ortega N (2005) Co-operative robots in the

ship repair industry. IEEE Rob Automation Mag 12(3):65–77

2. Ortiz FP JA, Alvarez B, Iborra A, Ortega N, Rodriguez D, Conesa

C (2007) Robots for hull ship cleaning. In: IEEE international

symposium on industrial electronics (ISIE 2007). Vigo, pp 2077–

2082

3. Álvarez B, Sánchez P, Pastor JA, Ortiz F (2006) An architectural

framework for modeling teleoperated service robots. ROBOTI-

CA—Int J Inf Educ Res Rob Artif Intell 24:411–418

4. Clements P, Northrop L (2002) Software product lines. Practices

and patterns. SEI series in software engineering. Addison-Wes-

ley, Boston

5. van der Linden F, Schmid K, Rommes E (2007) Software product

lines in action. The best industrial practice in product line engi-

neering. Springer, Berlin

6. Pohl K, Böckle G, van der Linden F (2005) Software product line

engineering. Foundations, principles and techniques. Springer,

Berlin

7. Käkölä T, Dueñas JC (2006) Software product lines. Research

issues in engineering and management. Springer, Berlin

8. Rine DC, Nada N (2000) An empirical study of a software reuse

reference model. Inf Softw Technol 42(1):47–65

9. Glass RL, Vessey I, Ramesh V (2002) Research in software

engineering: an analysis of the literature. Inf Softw Technol

44(8):491–506

10. Baskerville RL (1999) Investigating information systems with

action research. Comm Assoc Inf Syst 2(19):1–31 (article no 4)

11. EFTCoR (2005) Environmentally friendly and cost-effective

technology for coating removal. In: 5th framework programme,

European Community, subprogram growth reference GRD2-

2001-50004. http://www.dsie.upct.es

12. Olivé A (2004) On the role of conceptual schemas in information

systems development. In: Ada-Europe. LNCS 3063. 2004.

Springer, Berlin, Heidelberg, Palma de Mallorca, Spain, pp 16–34

13. Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-

oriented domain analysis (FODA) feasibility study, technical

report CMU/SEI-90-TR-21, Pittsburgh, PA, Software Engineer-

ing Institute, Carnegie Mellon University

14. Kang KC, Kim S, Lee J, Kim K, Kim GJ, Shin E (1998) FORM: a

feature-oriented reuse method with domain-specific reference

architectures. Annals Softw Eng 5(5):143–168

15. Chastek G, Donohoe P, Kang K, Thiel S (2001) Product line

analysis: a practical introduction, technical report CMU/SEI-

2001-TR-001, Pittsburgh, PA, Software Engineering Institute,

Carnegie Mellon University

16. Bass L, Klein M, Bachmann F (2000) Quality attribute design

primitives, technical report CMU/SEI-2000-TV-017, Pittsburgh,

PA, Software Engineering Institute, Carnegie Mellon University

17. Kang KC, Kim S, Lee J, Lee K (1999) Feature-oriented engi-

neering of PBX software for adaptability and reusability. Softw

Pract Exp 29(10):875–896

18. Lee K, Kang KC, Chae W, Choi BW (2000) Feature-based

approach to object-oriented engineering of applications for reuse.

Softw Pract Exp 30(9):1025–1046

19. Matinlassi M (2004) Comparison of software product line

architecture design methods: COPA, FAST, FORM, KobrA and

QADA. In: 26th international conference on software engineering

(ICSE 2004). Edinburgh, pp 127–136

20. Trigaux J-C, Heymans P (2003) Modelling variability require-

ments in software product lines: a comparative survey. Computer

Science Institute. University of Namur, Namur

21. Von der Massen T, Lichter H (2002) Modeling variability

by UML use case diagrams. In: International workshop on

requirements engineering for product lines (REPL 2002). Essen,

pp 19–25

22. Griss M, Favaro J, d’Alessandro M (1998) Integrating feature

modeling with the RSEB. In: 5th international conference on

software reuse 1998. Vancouver, Canada, pp 76–85

23. Riebisch M, Böllert K, Streitferdt D, Philipow I (2002) Extending

feature diagrams with UML multiplicities. In: 6th conference on

integrated design and process technology (IDPT 2002). Pasadena

24. Svahnberg M, van Gurp J, Bosch J (2005) A taxonomy of vari-

ability realization techniques. Softw Pract Exp 35(8):705–754

25. RequisiteWeb (2008) IBM Rational RequisiteWeb. http://www-

01.ibm.com/software/rational/

26. Gomaa H (2005) Designing software product lines with UML:

from use cases to pattern-based software architectures. Addison-

Wesley, Boston

27. Gomaa H, Shin M (2002) Multiple-view meta-modeling of

software product lines. In: 8th international conference on engi-

neering of complex computer systems 2002, pp 238–246

28. John I, Muthig D (2002) Tailoring use cases for product line

modelling. In: International workshop on requirements engi-

neering for product lines (REPL 2002). Essen, pp 26–32

29. Halmans G, Pohl K (2003) Communicating the variability of a

software-product family to customers. Softw Syst Model 2:15–36

30. Eriksson M, Börstler J, Borg K (2004) Marrying features and use

cases for product line requirements modeling of embeded sys-

tems. In: 4th conference on software engineering research and

practice in Sweden (SERPS 2004)

31. Ecklund E, Delcambre L, Freiling M (1996) Change cases: use

cases that identify future requirements. ACM SIGPLAN Notices

31(10):342–358

32. Larman C (2005) Applying UML and patterns. 3rd edn, Prentice-

Hall, Upper Saddle River

33. Lee K, Kang KC, Lee J (2002) Concepts and guidelines of fea-

ture modeling for product line software engineering. In: 7th

international conference on software reuse. LNCS 2319. London,

pp 62–77

Requirements Eng (2009) 14:27–46 45

123

http://www.dsie.upct.es
http://www-01.ibm.com/software/rational/
http://www-01.ibm.com/software/rational/

34. Guizzardi G, Gerd W, Guarino N, van Sinderen M (2004) An

ontologically well-founded profile for UML conceptual models.

In: 16th international conference on advanced information system

engineering (CAiSE), LNCS 3084. Riga, pp 112–126

35. Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-functional

requirements in software engineering. The Kluwer international

series in software engineering. Kluwer, Boston

36. Ortiz F, Iborra A, Marı́n F, Álvarez B, Fernández-Meroño JM

(2000) GOYA: a teleoperated system for blasting applied to ships

maintenance. In: 3rd international conference on climbing and

walking robots 2000. Madrid, pp 835–846

37. Toval A, Olmos A, Piattini M (2002) Legal requirements reuse: a

critical success factor for requirements quality and personal data

protection. In: IEEE international joint conference on require-

ments engineering (ICRE 2002 and RE 2002). IEEE Computer

Press, Essen, pp 9–13

38. Toval A, Nicolás J, Moros B, Garcı́a F (2002) Requirements

reuse for improving information systems security: a practitioner’s

approach. Requir Eng 6(4):205–219

39. PuLSE (2008) PuLSE (Product Line Software Engineering).

http://www.iese.fraunhofer.de/Pulse/Bibliography/

40. Baskerville RL, Wood-Harper AT (1996) A critical perspective

on action research. J Inf Tech 11:235–246

41. Barkerville R (2001) Conducting Action Research: High Risk and

High Reward in Theory and Practice. In: Trauth E (ed) Qualita-

tive research in information systems. Idea Group Publishing,

Hershey, pp 192–218

42. Estay C, Pastor J (2000) Improving action research in information

systems with project management. In: 2000 Americas conference

on information system 2000. Long Beach, pp 1558–1561

43. Lam W, McDermid JA, Vickers AJ (1997) Ten steps towards

systematic requirements reuse. Requir Eng 2(2):102–113

44. Bayer J, Gerard S, Haugen O, Mansell J, Moller-Pedersen B,

Oldevik J, Tessier P, Thibault J-P, Widen T (2006) Consolidated

product line variability modeling. In: Käköla T, Dueñas JC (eds)

Software product lines. Research issues in engineering and

management. Springer, Berlin, pp 195–241

45. BigLever-Software (2008) GEARS—software product line

engineering tool and framework. http://www.biglever.com/

solution/product.html

46 Requirements Eng (2009) 14:27–46

123

http://www.iese.fraunhofer.de/Pulse/Bibliography/
http://www.biglever.com/solution/product.html
http://www.biglever.com/solution/product.html

	An integrated domain analysis approach for teleoperated systems
	Abstract
	Introduction
	Teleoperated systems for ship hull maintenance
	Research method
	A framework for domain analysis
	System capabilities and constraints through features
	Interaction scenarios through generic use cases
	Domain conceptual schema as a visual dictionary
	Approaching architecture and implementation: quality attributes and commands
	Lessons learned
	FORM features are useful in the structuring �of a reusable requirements catalogue and speed �up the search for requirements in the catalogue
	FORM features are useful to specify variability�in requirements
	Direct traces from requirements to commands help to reuse code
	All the techniques in the approach should not always be used to model a new product line�from scratch

	Validity of the results
	Related work
	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

